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The influence of a nonconservative force proportional to the velocity acting on a system 

described by the Boltzmann equation is analyzed. When this force is the only external action 

on the system, an H-theorem is proved. showing that the distrihution function tends towards 

a Maxwellian with a time-dependent temperature. Self-diffusion in such a state is analyzed in 

the case of Maxwell molecules. It is shown that the external force can even prevent the system 

to reach a hydrodynamic stage. Next. self-diffusion in a system under uniform shear How is 

considered. For Maxwell molecules. the conditions under which a hydrodynamic regime is 

reached arc discussed. In the hydrodynamic regime, a self-diffusion tensor is obtained to first 

order in the concentration gradient. This tensor is a highly nonlinear function of both the 

shear rate and the strength of the external force. Comparison with previous work is carried 

out. 

1. Introduction 

A usual way of controlling the temperature of a system in molecular 

dynamics simulations and also in kinetic theory is to introduce a velocity- 

dependent external force [l-3]. The simplest choice seems to be a homoge- 

neous force proportional to the (peculiar) velocity of the particle. This is 

equivalent to a continuous scaling of the velocities [4]. From a practical point 

of view, the possibility of controlling the temperature is very important. It 

allows, for instance, to compensate for dissipative heating effects and to 

maintain the system in a nonequilibrium stationary state. Nevertheless, little is 

known about the influence of this kind of nonconservative external forces on 

the properties of the system. In general, there is no reason to expect a simple 

relationship between the behaviors of the system with and without nonconser- 

vative forces. They can even affect the possibility of a hydrodynamic descrip- 

tion and the existence of “normal” solutions of a given kinetic equation. 

In the particular case of the Boltzmann equation for a system of Maxwell 

molecules under uniform shear flow, there is a close relationship between the 
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distribution functions with and without a thermostatic force [4]. However, such 

a relationship does not exist when other interaction potentials are considered. 

For instance, the dimensionless gcneralizcd shear viscosity is different beyond 

Navier-Stokes order when the viscous heating is controlled. This has been 

explicitly shown using the BGK model of the Boltzmann equation [4]. For 

dense fluids the situation is much more complicated, even for Maxwell 

molecules [3]. 

In this paper, WC study the influence of a nonconservative force on the 

self-diffusion transport coefficient in a gas described by the Boltzmann equa- 

tion. Two different physical situations will be considered. First. the system as a 

whole is assumed to be at equilibrium. The effect of the external force is just to 

change the temperature in time, but otherwise the distribution function is 

always Maxwellian. However, WC shall see that the self-diffusion coefficient, 

computed from the Chapman-Enskog expansion and for the particular cast of 

Maxwell molecules, is strongly modified. In fact, when the system is cooled fast 

enough, the distribution of tagged particles does not reach a normal or 

hydrodynamic form. 

The second case corresponds to a system under uniform shear flow. We shall 

restrict ourselves to Maxwell molecules, for which an exact solution to the 

Boltzmann equation describing that state is known [S, 61. In order to compute 

the self-diffusion coefficient, a Chapman-Enskog-like expansion around the 

above solution is carried out. In this way, we get a shear-rate-dependent 

transport coefficient tensor. In the case of no external forces, this quantity has 

been obtained by Dufty [7] using a generalized Green-Kubo formalism. Our 

results reduce to those of ref. [7] in the proper limit. The analysis shows that, 

again, a hydrodynamic regime is not reached if the cooling rate is large. 

The plan of the paper is as follows. In section 2 the nonconservative force to 

be considered is defined. It is shown that if that is the only external action on 

the system. an H-theorem holds. As a consequence, the system reaches in time 

an equilibrium-like state, but with a time-dependent temperature. Self-diffu- 

sion in the above system is considered in section 3. An equation for the first 

Chapman-Enskog order of the distribution function of tagged particles is 

derived. Taking moments in this equation, we arc able to obtain an expression 

for the particle flux. The conditions under which a hydrodynamic regime is 

reached are established. A similar analysis. but using the distribution function 

itself. is carried out in the appendix. Next, in section 4, self-diffusion in a 

system under uniform shear flow is considered. The situation is now much 

more complicated. since the system as a whole is far from equilibrium. 

Nevertheless, the knowledge of a solution to the Boltzmann equation for 

Maxwell molecules allows us to carry out explicit calculations. Using again a 

Chapman-Enskog-like expansion, a generalized Fick law is obtained if certain 
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conditions are satisfied. Due to the anisotropy of the system, a self-diffusion 

tensor, rather than a scalar, appears. Finally, the results are discussed and 

connected with previous work in section 5. 

2. Nonconservative forces 

We consider a dilute gas whose one-particle distribution function f(r, u; t) 

obeys the Boltzmann equation 

(2.1) 

where F(r, u; t) is an external force, m is the mass of a particle, and J is the 

Boltzmann collision operator, which in standard notation reads [8] 

du, da b - u, b(iu - u,I> ~)[f(u'hdu;) -f(uk(u,)l 

(2.2) 

We are interested in using the external force F as a way of controlling the 

temperature of the system. The simplest possibility seems to be a homogeneous 

nonconservative force proportional to the velocity of the particle, i.e., 

F(u, t) = {(t)mu . (2.3) 

It is easily verified that with this choice, eq. (2.1) admits the solution 

with T(r) being the solution of 

dT 
- =2cT 
dt 

(2.4) 

(2.5) 

Therefore, the system is in a time-dependent “equilibrium” state. By 

choosing l(t) in an appropriate way one can get any desired temperature 

evolution. In particular, the choice [ = const. leads to an exponential behavior. 

The natural question now is whether the form given by eq. (2.4) is reached 

starting from any initial condition. We are going to prove this in the form of an 

H-theorem. Let us define the function 



H(t) = dr du J‘ ln(fifR) , 
I 1 

where 

Here, K is the average number density and o(t) is defined by 

(2.6) 

(2.7) 

(2.8) 

V being the volume of the system. Notice that e(t) coincides with the 

temperature of the system T(t) when a homogeneous state is considered. In 

general, G(t) is proportional to the mean kinetic energy density. From eqs. 

(2.1) and (2.3) it follows that 69 obeys the equation 

dO 
_ =2@. 
dt 

Taking the time derivative of eq. (2.6), one gets 

The second term on the right-hand side vanishes, as 

Taking into account that 

1 dr 1 du (u .V’) ln( f‘if,) = - 1 dr 1 du fu *V In J 

(2.9) 

(2.10) 

(2.11) 

= 0 

and 

(2.12) 
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eq. (2.10) reduces to 

dH 

dr= 
du In(flfR)J[f, f] ~0, (2.14) 

where the last inequality follows from the general properties of the Boltzmann 

collision operator [8]. Consequently, H(t) monotonically decreases until it 

vanishes, which correponds to f = f,, i.e.. f = f,,. 

For homogeneous situations and for interaction potentials of the form 

V- r-‘, there is a close relationship between the solutions to the Boltzmann 

equation with and without the external force (2.3). When the external force is 

considered. we have 

Let us introduce the new variables 

and the new distribution function 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

In the above expressions T,, is an arbitrary reference temperature, while T(t) is 

the actual temperature at time t and verifies eq. (2.5). For a rmw-potential, the 

differential cross section v depends on the relative velocity u as u~~‘~ [9] and 

one obtains 

J[f, f] = (fJ-(‘+“Y,~ jI] (2.19) 
0 

Then, one easily gets eq. (2.15) in the new variables, 



(2.20) 

which formally coincides with the Boltzmann equation in absence of external 

forces. The consequence is that the effect of the external force (2.3) for 

homogeneous systems of particles interacting via r -@ -potentials is just to scale 

the velocities and to introduce a new time scale. The latter is such that the 

average number of collisions per unit time, as given by the effective collision 

frequency, remains constant in time. 

3. Self-diffusion at equilibrium 

Suppose now that some particles of the system described by eq. (2.1) arc 

tagged, but otherwise all the particles are mechanically cquilvalcnt. Let 

h(r, u; f) be the distribution function of tagged particles. Its time evolution is 

given by 

$+u.Vh+$. ! j s 12 = J[h, .f’] (3.1) 

Once the function f‘ is obtained from eq. (2.1), eq. (3.1) becomes a linear 

equation in h. In particular. if there is no external force andfis the equilibrium 

Maxwell-Boltzmann distribution, eq. (3.1) reduces to the Boltzmann-Lorentz 

equation 191. Notice that the kinetic equation (3.1) holds for any relative 

number of tagged particles. 

In this section, we consider self-diffusion in presence of the external force 

(2.3), with i_ = const. We assume that the system has been aged enough to hc 

described by the distribution function (2.4), i.e., we take f=h, in eq. (3.1). 

Our aim is to determine the self-diffusion coefficient. We shall carry out a 

Chapman-Enskog method [Xl. As usual, we look for normal solutions to cq. 

(3.1) by expanding 

,!, = h”” + &(‘) + E2h(2) + . (3.2) 

FJ a,, a, 2 a2 

xt- at 
--+&;)t+& ;tt+y (3.3) 

where E is an auxiliary parameter measuring the nonuniformity of the concen- 

tration of tagged particles. The term u -Vh in eq. (3.1) is assumed to be 

affected by a factor of F. The definition of d,/at is taken from the kth order 

approximation to the hydrodynamic balance equations, 
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a,, 
--n,=O, 
at 

(3.4a) 

ah - n, = -v.y”, 
at 

ks 1, (3.4b) 

dT 
“-=25T. 

at 

d,T 
at 

-0, kal. 

(3Sa) 

(3Sb) 

Here, n, is the number density of tagged particles and J is the flux of tagged 

particles. They are given by 

n,=[duh=j”duh’“‘, (3.6) 

-co = 
J I 

dv vhck) , (3.7) 

respectively. Upon writing eqs. (3.4), (3.5) we have taken into account that 

the system as a whole is at equilibrium with a temperature T(t). It is assumed 

that all the time and position dependence of the distribution function occurs 

through the hydrodynamic fields (normal solution), and, therefore. 

2 h”’ = f$ n, $ h”’ + 2 T 3 ,$“I 

I 

By introducing (3.2) and (3.3) into eq. (3.1), and equating terms 

order in F, we get a set of equations. The first two equations are 

2 h”” + < $ - (vh(())) = J[h’“‘, A,] , 

2 h(l) + 2 ,$(“I + v .Vh(“) + i & - (v/z”‘) = J[h”‘, J;,] . 

The solution to eq. (3.9) is easily seen to be 

h’“‘(r, v; t) = q A,(v, t) . 

Insertion of this expression into eq. (3.10) yields 

f;,v -V 2 + 2<T & 15”’ + i -& - (vh”‘) = J[,$“‘, h,] , 

(3.8) 

of the same 

(3.9) 

(3.10) 

(3.11) 

(3.12) 



where use has been made of eq. (3.8). The external force manifests itself in the 

two terms proportional to <. which explicitly contain the unknown function 

h”‘. Therefore, WC are faced with a linear integro-differential equation. This in 

contrast with the usual Chapman-Enskog expansion [X] for conservative 

external forces. In that case, a factor of F in front of the external force term is 

assumed. As a consequence. the first order equation is an integral equation 

containing /7 'I' just through the collision term. 

Due to the mathematical complexity of cq. (3.12). WC arc going to restrict 

ourselves from now on to Maxwell molecules. namely we consider the interac- 

tion potential V(r) = tcir4. In this cast, the Boltzmann collision operator has 

the property (61 

1 dv vJ[ f, g] = ---a 1 dv \ dv, (v, -~~ v)J(v,)g(v) (3. I.?) 

for arbitrary .f and g. Here, cu is the constant 

CY = l.l%r(K;',77) 2 

==/dllsin[Iucr(u.H)(l-~0~0). (3.14) 

Thus, by multiplying cq. (3.12) by v and integrating, the following is obtained: 

(3.15) 

In absence of an external force (< = 0). one recovers the usual Fick equation 

with a self-diffusion coefficient II,, = k,T/rrln(r. For < # 0. the general solution 

of the differential equation (3. IS) is 

(3.16) 

where C is a constant vector to be determined from the initial conditions. A 

hydrodynamic expression for the flux, independent of the initial conditions. is 

expected to hold after a transient period. To analyze whether this is the 

situation here. Ict us consider the time dependence of the last term in eq. 

(3.16). Using eq. (2.5) for i = const., we have 
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We see that this term decays to zero in the long-time limit only for [ + c~rz > 0. 

Therefore, the system does not reach a hydrodynamic regime when i + LYE < 

0. This case corresponds to cooling the system with a rate larger than or equal 

to the characteristic collision frequency (in. For smaller cooling rates or for 

arbitrary heating rates, we reobtain Fick’s law with an effective self-diffusion 

coefficient given by 

D= k’3T 
m(an + 0 

(3.18) 

Therefore, at a given temperature, a system that is being heated has a smaller 

self-diffusion coefficient than a system kept at constant temperature. The 

opposite happens if the system is cooled with a rate smaller than (~rz. Notice 

that eq. (3.18) becomes unphysical in the non-hydrodynamic region 5 G -an, 
since D becomes divergent or negative. 

In any case, it must be noticed that when the system is being cooled with 

cun/3 < 1 &‘I < Lyn or heated with [ > an, the characteristic time of change of the 

temperature is smaller than the one associated to the decay of the initial 

condition. Therefore, in practice, it can be hard to reach a hydrodynamic 

regime in those cases. We could consider a “true” hydrodynamic region to be 

reached only for -cunl3 < [ < Lyn. 

The above discussion has been restricted to the behavior of the flux of tagged 

particles. In the appendix we consider the more general question of analyzing 

the conditions under which the first Chapman-Enskog approximation h”’ can 

indeed describe a hydrodynamic regime. There, it is shown that the condition 

for a hydrodynamic h (” is just the same as for a hydrodynamic flux. 

4. Self-diffusion under uniform shear flow 

In the following, we will consider a system under uniform shear flow (USF). 

The macroscopic state of the fluid is defined by the hydrodynamic fields, 

n = const. , (4.1) 

VT=O, (4.2) 

ui = allyi , 
a,j = a&s,, , (4.3) 

where n is the number density, T is the temperature, ui is the ith component of 

the local velocity, and a is a constant shear rate. This state has been extensively 



studied theoretically [3-S] and also by means of molecular dynamics simula- 

tions [I]. In absence of external forces, the USF state is not stationary. since 

the temperature increases in time due to viscous heating. This fact has been 

used to measure a generalized shear viscosity far from equilibrium [ 1 I]. On the 

other hand. some authors have introduced a fictitious nonconservative force to 

compensate for the viscous heating. looking for a stationary state [ 11. It must 

be pointed out that the relationship between the transport coefficients mcas- 

ured with and without nonconservative forces is not clear beyond the Navicr- 

Stokes order [3.4]. 

Our aim here is to study the self-diffusion coefficient in a system under USF 

and how it is affected by the introduction of a nonconservative external force. 

This will be done in the context of the Boltzmann equation for Maxwell 

molecules. 

It is convenient to introduce rest-frame velocities defined by 

V, = u, ~ u,,r, (4.3) 

The Boltzmann equation (2.1) then becomes 

$ + (V, + N,,‘,) $ f‘- u,,y gr f + $ g f) = 46 .f‘l 
/ I 

In this new frame, the USF state is spatially homogeneous. Therefore. if we 

assume a homogeneous external force F(V. t), the distribution function of the 

system obeys the equation 

(4.6) 

where the simplest generalization of cq. (2.3) has been assumed for the 

external force, namely F = <(t)mV. Taking moments in eq. (4.6). one gets the 

following evolution equation for the temperature: 

dT 
--2[T+& 
dt 

llP,, =o, 
H 

(4.7) 

where P,, is a component of the pressure tensor 

P,, = m dV V,V,f' (4.X) 

For Maxwell molecules the solution to eq. (4.6) with arbitrary [ can be easily 



V. Garzd et al. I Self-diffusion and nonconservafive forces 661 

obtained from the solution for l= 0. In fact, if we make the change of 

variables [4] 

v= R(t)V , (4.9) 

j(+, t) = Rm3(t)f(V, t) , (4.10) 

with R(t) given by 

t(r) = i In R(t) . 

eq. (4.6) reduces to 

(4.11) 

(4.12) 

Therefore, the change of variables is formally equivalent to make [ = 0 in eq. 

(4.6). Taking moments in this equation one gets a set of equations that can be 

solved recursively [5]. In particular, the nonzero components of the pressure 

tensor in the long time limit (hydrodynamic regime) are given by [6] 

p,, =LJ 
1 + 3A(a”) 

1 + A(a”) ’ 

1 
PVL = P,, = p 

1 + h(aZ”) ’ 

3 h(a”) 
P,,, = P,., = -p - __ 

2 a” ’ 

(4.13) 

(4.14) 

(4.15) 

where p = nk,T is the pressure, 

h(a”) = + sinh’[ i cash-‘( 1 + 9a*‘)] , (4.16) 

and a” is the reduced shear rate, 

a*=a. 
v,l 

Here, v. is an eigenvalue of the Boltzmann operator, 

?T 

v,, = $-n 
I 

d0 sin 8 U(T(U, 0) sin’0 

(4.17) 

= 1.85~rn(~/m)“‘. (4.18) 
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Using the relations (4.9) and (4.10), it is easily seen that eqs. (4.13)-(4.15) 

also hold for the long time limit solution of eq. (4.6). 

We consider a system described by eq. (4.6) in the hydrodynamic regime. 

For the sake of simplicity, we will assume in the following that [ is a constant. 

This includes, in particular, the case of a thermostatic force keeping the 

temperature constant. From cqs. (4.7) and (4.15) it follows that a constant 

temperature is achieved if 

< = (,,(a*) = -4 v,,h(u”c) (4.19) 

Now, a concentration of tagged particles is assumed as in section 3. Their 

distribution function h(r, V, t) obeys the kinetic equation 

$ + (v, + u,,Y,) $ h - $ (Q’, - iV!)h = J[h, f‘], 
I / 

(4.20) 

where S is given by the hydrodynamic solution of eq. (4.6). To solve eq. (4.20) 

we will use again a Chapman-Enskog expansion. Nevertheless, now the 

expansion will be around a time-dependent nonequilibrium state, namely a 

USF state with arbitrary shear rate a*. By introducing the expansions (3.2) and 

(3.3) into eq. (4.2(I), one gets 

2 h”” _ $ (a,,~ ~ <V,)h”” = J[h’“‘> f] 3 (4.21) 

d,,h ( ’ ’ 
i)t 

+ 2 h’“’ + (v, + al,‘,) 5 h”” - 5 (u,,v, - {V,)h”’ = J[h”‘, J’] , 

i , 
(4.22 

where 

o,, - i)t n, + Q,,Y, $ n, = 0 1 
(4.23a ) 

a, .(i I) 
-11,=-v-J . 
at 

kal, (4.23b) 

(4.23~) 

q _ at -0. kzl. (4.23d) 

In these expressions, n, and Jck’ are given by eqs. (3.6) and (3.7). The solution 

to eq. (4.21) is 
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P)(r, v, t) = q f(V, I) . (4.24) 

By substituting this expression into eq. (4.22) and using eqs. (4.23), it is found 

that 

fV*V > + (2i + hv,,)T & h”’ - $ (L$,v, - [V,)h”’ = J[h”‘, f‘] . 
I 

(4.25) 

From this equation, one obtains 

PA a n1 + (2l + Av,,)T +T j,“’ (1) _ + u,,j:” - ij, .( I ) --- 
tn dr, n 

- -“nJ, 1 (4.26) 

where eq. (3.13) has been used. Of course. eq. (4.26) reduces to eq. (3.15) in 

the limit a* -+ 0. Notice that the above equation becomes an algebraic equation 

if the thermostatic expression for the external force, eq. (4.19), is considered. 

On the other hand, no significant simplification occurs in the absence of 

external forces (i = 0). The general solution to eq. (4.26) is 

.(I)_ ‘BT ’ 
J, --- rn an + [ + hv,, 

6,,_ ‘rk jp;,+ 
an + [ + /iv,, / 

2iL:,1Av,, In T C,T- 
(n,, +<+hq,)‘(Z< -*I,,,) 1 3 (4.27) 

where P= = P,,lp and C is a constant vector. 

independent of the initial condition when the 

can be neglected. To analyze whether this is 

write 

The above expression becomes 

last term on the right-hand side 

the case, we use eq. (4.23~) to 

(4.28) 

Therefore, a necessary condition for the system to reach a hydrodynamic 

regime is that 5 > - (cwn + AL+,). Nevertheless, if we impose a more restricted 

condition, namely that the rate of decay of the initial condition must be larger 

than the rate of change of the temperature. we get -(nn + 2Av,,) 13 < 5 < an. 

It is seen that both [ = 0 and l= j,, lie 

When the initial condition term can 

found. 

inside the “true” hydrodynamic region. 

be neglected, a generalized Fick law is 

if” = -D,, $ n, , 
k 

(4.29) 
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with the self-diffusion tensor given by 

k,,T D,, = __ 
I 

- 4- i 
“ii 

m CYn + 5 + Au,, an + 5 + Au,, 
P” Ii, (4.30) 

Eqs. (4.29) and (4.30) h ave been derived keeping the first order in the gradient 

of the concentration of tagged particles. but all the others in the shear rate arc 

included. Also, no expansion in the strength of the external force has been 

carried out. The shear flow induces cross effects in the self-diffusion of 

particles. In particular. a gradient of the concentration along the direction of 

the flow of the system (s-axis) creates a transport of tagged particles parallel to 

the gradient of the flow velocity (y-axis). For CI = 0, D,, = D6,1. with D given by 

cq. (3.18). 

In fig. 1. WC have plotted D T, - D :, and 0!:1'3 versus II’: in absence of an 

external force ([ = 0) and also for a thermostatic force (c = &‘,,). Here, 

D,: = (mcun/k,,T)D,,. The figure shows that the anisotropy of the system, as 

measured by the difference D:, - D :, , is q uit, c important and grows very fast 

for small values of N”. In fig. 2 the nondiagonal elements [I:, and Dr, arc 

shown. Although they are different, their shape is quite similar. In all the 

cases, the presence of the thermostatic force strongly affects the self-diffusion 

tensor and there is not a simple relationship between the results with and 

without thermostatic. This is in contrast with the distribution function of the 

i- 

Fig. 1. Shear-rate dependence of the diagonal elements of the reduced self-diffusion tensor II,: 

The solid line corresponds to the case of a thermostatic force (< = [,,)% while the dashed line 

corresponds to the cast of no external force ( < = 0). 
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1 

0.5 

C I 

2 4 6 8 i’0 
a* 

Fig. 2. The same as fig. I. but for nondiagonal elements of D,: 

whole system, for which the influence of the thermostatic force reduces to the 

simple time-dependent scaling defined by eqs. (4.9) and (4.10). 

5. Discussion 

In this paper we have studied the effect on self-diffusion in a dilute gas of a 

nonconservative external force proportional to the velocity. The problem 

involves two parts. First, the influence of the force on the distribution function 

of the whole system has to be determined. Then, the kinetic equation for the 

distribution function of tagged particles must be solved. 

Two different physical situations have been addressed. In the first one, the 

nonconservative force was the only one acting on the system. It has been 

shown by means of an H-theorem that in this case the distribution function of 

the whole system reaches in the long time limit a Maxwellian form with a 

time-dependent temperature. Even more, for interaction potentials of the form 

V(r) - r-‘*, there is a close relationship between the solutions of the Boltzmann 

equation with and without force. The self-diffusion coefficient has been 

obtained by using a Chapman-Enskog-like expansion. In order to carry out 

explicit calculations, we have restricted ourselves to Maxwell molecules. A 

hydrodynamic regime, independent of initial conditions, is reached when 

< > -an, where 4 is a parameter characterizing the strength of the external 

force. eq. (2.3), and c~yn is a characteristic frequency of the collision operator, 



eq. (3.14). In this regime a self-diffusion coefficient can be identified. The 

effect of a heating (cooling) external force is to decrease (increase) the 

self-diffusion coefficient of the system as compared with the equilibrium 

situation at the same tempcraturc. 

The other situation studied corresponds to a system under uniform shear 

flow. For the particular case of Maxwell molecules. the Boltzmann equation is 

known to have a solution. indpendent of the initial condition, describing the 

above state. Besides. the effect of an external force of the kind we arc dealing 

with reduces to a time-dependent scaling of the velocities. Therefore, the 

distribution function of the whole system is well characterized. although it must 

be noticed that its explicit form is not known. Using again a Chapman- 

Enskog-like expansion around the uniform shear flow state, the flux of tagged 

particles to first order has been calculated. Now. the expression tends towards 

a hydrodynamic form for j > -(LYIZ + Au,,). where v,) is a collision frequency 

given by cq. (4.18). and h is a function of the reduced shear rate, cq. (4.16). 

The anisotropy of the system due to the shear Aow gives rise to a self-diffusion 

tensor D,, , which is a highly nonlinear function of the shear rate. WC have 

analyzed the shear-rate depcndcnce of Di, for two choices of <. namely { = 0. 

i.e.. no external force, and [ == &(u”), corresponding to a thermostatic force. 

Marchetti and Dufty [6] have computed the velocity autocorrelation function 

in a system under uniform shear flow without cxrernal forces by using a 

Boltzmann description. They obtain, in our notation. 

(y(t)v/(7)) = e (““’ “[ 6,, - Ulh( 1 - T)] yJ 

for f > T. This expression can be related to the self-diffusion tensor derived in 

this paper through [7] a generalized Green-Kubo formula, 

D,,(r) = i dr (V$)v,(d) (S.2) 

Substitution of eq. (5.1) into cq. (5.2) yields 

k,,T(r) 1 
D,,(t) = ~___ 

n1 cryl + /iv,, 

Comparison of cqs. (5.3) and (4.30) shows that they agree for long times. Of 

course, one has to make < = 0 in eq. (4.30) since no external forces arc 
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considered in ref. [6]. On the other hand, their calculations can be easily 

extended for i = 0, and one gets 

fY(t>V,(~l) = e- (-l(‘-r)[~;k _ a,k([ - T)] !A& 
(5.4) 

When this expression is introduced into eq. (5.2) one recovers eq. (4.30). 

Taking into account that Pk,(r) -e(21+Avr1)7, it is easily seen that 

(Y(r)Y(r)) -e 
~(an+~+~%)(‘-r) (Y.#)v,#) (5.5) 

Therefore, the velocity autocorrelation as a function of the time difference 

t - T only decays to zero when (in + 5 + hv, > 0. This is precisely the condition 

we have found for the system to rech a hydrodynamic regime in the discussion 

of the Chapman-Enskog expansion. This provides a self-consistency test of our 

calculations. 
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Appendix 

In this appendix we study the general solution to eq. (3.12) for Maxwell 

molecules. The point we are interested in is whether the solution reaches in 

time an asymptotic form that is independent of the initial conditions. This 

would be the hydrodynamic solution whose existence is assumed in the 

Chapman-Enskog procedure. 

By using eq. (2.5), eq. (3.12) can be rewritten as 

ah”’ 
at -t&u -V +’ + 5 $ - (uh”‘) = J[h”‘, J;,] . 

It is convenient to introduce 

5 = (2k,T/rn))‘% ) 

and the reduced distribution 

the dimensionless velocity 5 by 

4( 5, t) by 

(A.1) 

(A.21 



h”‘(U, t) = (A.3) 

where 

j,(&)=/ Te t’. (A.4) 

From these equations, one easily gets 

IV4 -~~,L,(5)d% r) - 4X* 5 [f;,(OGG f)l 

(A.5) 

and 

Also 

where I is the linear operator [IO] 

with 

Inserting eqs. (A.5)-(A.7) into eq. (A.l) one gets 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

Here, we have taken the z-axis along Vn,. 

The general solution of this equation can be expressed in terms of the 

eigenfunctions of the operator 1. i.e., the solutions to 

~[dJI,,ml = - bbu,r, (A.ll) 
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They are given by [lO] 
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V%,,?,(5) = Nk,5’L:+‘:2(52)Y;n(5/151) > (A.12) 

A,, = 2~ 
I 

dtI sin 8 F(O)[l - cos2”+‘(H/2)P,(cos(O/2))] . (A.13) 

In these expressions, N,, is a normalization constant, L[+‘j2 is an associated 

Laguerre polynomial, Yy( &/ 15 I) 1s a spherical harmonic in the direction of 5, 

and P, is a Legendre polynomial. Now WC write 

4crt f> = & Ck ,,n (t)th lm (5) . (A. 14) 

Taking into account the orthonormalization property of the functions Go,,,,, eq. 

(A.14) leads to 

(A. 15) 

The coefficient C,,,,,, vanishes due to eq. (3.6). Substitution of the expansion 

(A.14) into eq. (A.10) yields 

(A. 16) 

where use has been made of the fact that &,,,,( 5) = v’? 5,. The solution to eq. 

(A.16) is 

GinI (I) = Cl,,,, (0) exp - i i i 

for (k, 1, m) f (0, 1, O), and 

C,,,,,(t) = C,,,,,(t)) expj- c 5 

1 1 

(A. 17) 

-- 
l.4 /81( 

{l- exp[-t[ + 11: nA,,,)t]] (A.18) 

< + v ; %I 

It follows then that +( 5, t) tends towards to an expression that is independent 

of the arbitrary initial conditions if 
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/p&T 
i + 1’ ; nh,, > 0 1 (A. 19) 

for all (k. I) # ((I,()). Taking into account the properties of the Legendre 

polynomials, it is easy to prove that all the eigenvalues A,, are positive [lOl 

(except A,,,, = 0). Also, the following inequalities hold: 

A Ao~A,,~A,,. 122. (A.20) 

A hi S A, + I ,/ ’ ISI. (A.21) 

It must be noticed that these properties follow from eq. (A.13) with independ- 

ence of the explicit expression of F(O). As a consequence. the smallest 

eigenvalues are 

(A.22) 

where CY has been defined in eq. (3.14). Therefore, the condition for the 

existence of a hydrodynamic solution to eq. (A.10). or, equivalently, to eq. 

(A.l). is 

j+cwrz>o. (A.23) 

This condition coincides with the one obtained in section 3 from the analysis of 

the flux of particles. Under this condition, the hydrodynamic first order 

distribution function for the tagged particles is 

h”‘(u, I) = -.lJu. 1) && v.&L!, 
n 

(A.24) 
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