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Abstract
The third and fourth degree collisional moments for d-dimensional inelastic
Maxwell models are exactly evaluated in terms of the velocity moments, with
explicit expressions for the associated eigenvalues and cross coefficients as
functions of the coefficient of normal restitution. The results are applied to the
analysis of the time evolution of the moments (scaled with the thermal speed)
in the free cooling problem. It is observed that the characteristic relaxation
time toward the homogeneous cooling state decreases as the anisotropy of the
corresponding moment increases. In particular, in contrast to what happens in
the one-dimensional case, all the anisotropic moments of degree equal to or
less than 4 vanish in the homogeneous cooling state for d � 2.

PACS numbers: 05.20.Dd, 45.70.−n, 51.10.+y

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A realistic model capturing the influence of dissipation on the dynamic properties of granular
systems consists of a gas of inelastic hard spheres (IHS) with a constant coefficient of normal
restitution α � 1 [1]. For sufficiently low densities, the Boltzmann equation for IHS provides
the adequate framework to describe the time evolution of the one-particle velocity distribution
function f (r, v; t) [2]. However, the intricacy of the Boltzmann collision operator for IHS
makes it difficult to obtain exact results. For instance, the fourth cumulant a2 of the velocity
distribution in the so-called homogeneous cooling state (HCS) is not exactly known, although
good estimates of it have been proposed [3–5]. For inhomogeneous situations, explicit
expressions for the Navier–Stokes (NS) transport coefficients are approximately obtained by
considering the leading terms in a Sonine polynomial expansion [6–9].

As in the elastic case, part of the above difficulties can be overcome by considering the so-
called Maxwell models, i.e., models for which the collision rate is independent of the relative
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velocity of the two colliding particles. Inelastic Maxwell models (IMM) have attracted the
attention of physicists and mathematicians since the beginning of the century [10–34]. The
structure of the Boltzmann collision operator for IMM has the advantage of allowing for
the derivation of a number of exact properties, such as the high-velocity tails [14–19] and the
cumulants [15, 17, 22, 23, 27, 31] in homogeneous situations, the NS transport coefficients
[27, 31] and the rheology under simple shear flow [13, 29]. As a consequence, it is possible
to explore the influence of inelasticity on the dynamic properties in a clean way, without the
need of introducing additional, and sometimes uncontrolled, approximations. Apart from
their academic interest, it turns out that the IMM reliably describes the properties of IHS in
some situations, as happens in the simple shear flow problem [29] and for the NS transport
coefficients associated with the mass flux [31]. Furthermore, it is interesting to remark that
recent experiments [35] for magnetic grains with dipolar interactions are well described by
IMM.

The aim of this paper is to contribute to the advancement in the knowledge of exact
properties of IMM by evaluating all the third and fourth degree moments of the Boltzmann
collision operator for an arbitrary number of dimensions d. The knowledge of those collisional
moments, along with that of the second degree collisional moments [27, 29], opens up a number
of interesting applications. For instance, one can investigate the temporal relaxation toward the
HCS, starting from arbitrary initial conditions (not necessarily isotropic), as measured by the
lowest degree moments (namely, the fourth degree moments) which signal the non-Gaussian
character of the asymptotic velocity distribution function. This issue will be covered in this
paper.

This paper is organized as follows. In section 2 the Boltzmann equation for IMM is
presented. Next, the Ikenberry polynomials [36] Y2r|i1i2...is (V) of degree k = 2r + s are
introduced and their associated collisional moments J2r|i1i2...is for k = 3 and 4 are evaluated,
the technicalities being relegated to an appendix. The results are applied to the relaxation
problem of the (scaled) moments toward their asymptotic values in the HCS in section 3. The
paper is closed in section 4 with a brief discussion of the results obtained here.

2. Collisional moments for IMM

In the absence of external forces, the inelastic Boltzmann equation for a granular gas reads [1]

(∂t + v · ∇)f (r, v; t) = J [v|f, f ], (2.1)

where J [v|f, f ] is the Boltzmann collision operator. The form of the operator J for IMM can
be obtained from the form for IHS by replacing the IHS collision rate (which is proportional
to the relative velocity of the two colliding particles) by an effective velocity-independent
collision rate. With this simplification, the form of J becomes [28]

J [v1|f, f ] = ν

n�d

∫
dv2

∫
dσ̂[α−1f (v′

1)f (v′
2) − f (v1)f (v2)]. (2.2)

Here,

n =
∫

dv f (v) (2.3)

is the number density, ν is an effective collision frequency (to be chosen later), �d =
2πd/2/�(d/2) is the total solid angle in d dimensions, and α � 1 refers to the constant
coefficient of restitution. In addition, the primes on the velocities denote the initial values
{v′

1, v′
2} that lead to {v1, v2} following a binary collision:

v′
1 = v1 − 1

2 (1 + α−1)(σ̂ · g)σ̂, v′
2 = v2 + 1

2 (1 + α−1)(σ̂ · g)σ̂, (2.4)
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where g = v1 − v2 is the relative velocity of the colliding pair and σ̂ is a unit vector directed
along the centers of the two colliding spheres. The collision frequency ν can be seen as a
free parameter in the model. Its dependence on the coefficient of restitution α can be chosen
to optimize the agreement with the results obtained from the Boltzmann equation for IHS. In
particular, to get the same expression for the cooling rate as that found for IHS (evaluated in
the local equilibrium approximation) one takes the choice [27]

ν = d + 2

2
ν0, ν0 = 4�d√

π(d + 2)
nσ d−1

√
T

m
, (2.5)

where σ is the diameter of the spheres. Note that, in any case, the results derived in this paper
will be independent of the specific choice of ν0.

A useful identity for an arbitrary function h(v) is given by

J [h] ≡
∫

dv1 h(v1)J [v1|f, f ] = ν

n�d

∫
dv1

∫
dv2 f (v1)f (v2)

∫
dσ̂[h(v′′

1) − h(v1)],

(2.6)

where

v′′
1 = v1 − 1

2 (1 + α)(σ̂ · g)σ̂ (2.7)

denotes the post-collisional velocity. If h(v) is a polynomial, then

M[h] ≡
∫

dv h(v)f (v) (2.8)

is its associated velocity moment and J [h] is the corresponding collisional moment.
In the case of Maxwell models (both elastic and inelastic), it is convenient to introduce

the Ikenberry polynomials [36] Y2r|i1i2...is (V) of degree k = 2r + s, where V = v − u(r) is the
peculiar velocity, u(r) being the mean flow velocity defined as

u = 1

n

∫
dv vf (v). (2.9)

The Ikenberry polynomials are defined as Y2r|i1i2...is (V) = V 2rYi1i2...is (V), where Yi1i2...is (V)

is obtained by subtracting from Vi1Vi2 . . . Vis that homogeneous symmetric polynomial of
degree s in the components of V such as to annul the result of contracting the components of
Yi1i2...is (V) on any pair of indices. The polynomial functions Y2r|i1i2...is (V) of degree smaller
than or equal to 4 are

Y0|0(V) = 1, Y0|i (V) = Vi, (2.10)

Y2|0(V) = V 2, Y0|ij (V) = ViVj − 1

d
V 2δij , (2.11)

Y2|i (V) = V 2Vi, Y0|ijk(V) = ViVjVk − 1

d + 2
V 2(Viδjk + Vjδik + Vkδij ), (2.12)

Y4|0(V) = V 4, Y2|ij (V) = V 2

(
ViVj − 1

d
V 2δij

)
, (2.13)

Y0|ijk	(V)= ViVjVkV	 − 1

d + 4
V 2(ViVj δk	 +ViVkδj	 + ViV	δjk + VjVkδi	 + VjV	δik + VkV	δij )

+
1

(d + 2)(d + 4)
V 4(δij δk	 + δikδj	 + δi	δjk)

= ViVjVkV	 − 1

d + 4
[Y2|ij (V)δk	 + Y2|ik(V)δj	 + Y2|i	(V)δjk + Y2|jk(V)δi	

+ Y2|j	(V)δik + Y2|k	(V)δij ] − 1

d(d + 2)
V 4(δij δk	 + δikδj	 + δi	δjk). (2.14)



14930 V Garzó and A Santos

Here we will use the notation M2r|i1i2...is = M[Y2r|i1i2...is ] and J2r|i1i2...is = J [Y2r|i1i2...is ] for
the associated moments and collisional moments, respectively. Note that M0|0 = n, J0|0 = 0
(conservation of mass), M0|i = 0 (by definition of the peculiar velocity), J0|i = 0 (conservation
of momentum) and M2|0 = pd/m, where p = nT is the hydrostatic pressure, T being the
granular temperature. Moreover, M0|ij = (Pij −pδij )/m, where Pij is the pressure tensor and
M2|i = 2qi/m, where q is the heat flux vector. The moment M2|0, the number density n and the
flow velocity u are the hydrodynamic fields, while the moments M0|ij and M2|i constitute the
momentum and energy fluxes, respectively. The remaining third degree moments M0|ijk and
the moments of a degree k � 4 are not directly related to the hydrodynamic description, but
they are useful to provide information about the velocity distribution function. In particular,
the moment M4|0 is related to the fourth cumulant a2 as

a2 = m2

d(d + 2)nT 2
M4|0 − 1, (2.15)

while the moments M0|ijk,M0|ijk	 and M2|ij measure the degree of anisotropy of the velocity
distribution.

As in the elastic case, the mathematical structure of the collision operator (2.2) implies
that a collisional moment of degree k can be expressed in terms of velocity moments of a degree
less than or equal to k. More specifically, the choice of the polynomials Y2r|s̄ (V), where we
have introduced the short-hand notation s̄ ≡ i1i2 . . . is , yields the following structural form
for the collisional moments J2r|s̄ :

J2r|s̄ = −ν2r|sM2r|s̄ +
∑

r ′,r ′′,s̄ ′,s̄ ′′

†
λr ′r ′′ |s̄ ′ s̄ ′′ s̄M2r ′ |s̄ ′M2r ′′ |s̄ ′′ , (2.16)

where the dagger in the summation denotes the constraints 2(r ′ + r ′′) + s ′ + s ′′ = 2r + s, 2r ′ +
s ′ � 2, and 2r ′′ + s ′′ � 2. Since the first term on the right-hand side of equation (2.16) is
linear, ν2r|s represents the eigenvalue of the linearized collision operator corresponding to the
eigenfunction Y2r|s̄ (V).

Let us now display the explicit expressions for the collisional moments J2r|i1i2...is for
k = 2r + s � 4. We start with the second degree moments.

2.1. Second degree collisional moments

The second degree collisional moments were already evaluated in [27]. They are given by

J2|0 = −ν2|0M2|0, J0|ij = −ν0|2M0|ij , (2.17)

where the expressions for the eigenvalues ν2|0 and ν0|2 are

ν2|0 = d + 2

4d
(1 − α2)ν0, (2.18)

ν0|2 = (1 + α)(d + 1 − α)

2d
ν0 = ν2|0 +

(1 + α)2

4
ν0. (2.19)

The quantity ν2|0 is not but the cooling rate, i.e., the rate of change of the granular temperature
due to the inelasticity of the collisions. The eigenvalue ν0|2 is the collision frequency associated
with the NS shear viscosity and reduces to ν0 in the elastic limit. The second equality in
equation (2.19) decomposes ν0|2 into the part inherent to the collisional cooling plus the
genuine part of the momentum collisional transfer. As shown below, a similar decomposition
can be carried out for the eigenvalues ν2r|s .
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2.2. Third degree collisional moments

The evaluation of the third degree collisional moments J2|i and J0|ijk is performed in the
appendix. The results are

J2|i = −ν2|1M2|i , J0|ijk = −ν0|3M0|ijk, (2.20)

where

ν2|1 = (1 + α) [5d + 4 − α(d + 8)]

8d
ν0 = 3

2
ν2|0 +

(1 + α)2(d − 1)

4d
ν0, (2.21)

ν0|3 = 3

2
ν0|2. (2.22)

Equation (2.21) was first obtained in [27]. The eigenvalue ν2|1 is the collision frequency
associated with the NS thermal conductivity. It is interesting to note that

(
ν2|1 − 3

2ν2|0
)/

(ν0|2 −
ν2|0) = (d − 1)/d, which generalizes the simple relationship, holding for elastic Maxwell
models, between the collision frequencies associated with the thermal conductivity and the
shear viscosity. An even simpler extension is provided by equation (2.22).

2.3. Fourth degree collisional moments

The fourth degree collisional moments are also worked out in the appendix. They can be
written as

J4|0 = −ν4|0M4|0 + λ1n
−1M2

2|0 − λ2n
−1M0|ijM0|ji , (2.23)

J2|ij = −ν2|2M2|ij + λ3n
−1M2|0M0|ij − λ4n

−1

(
M0|ikM0|kj − 1

d
M0|k	M0|	kδij

)
, (2.24)

J0|ijk	 = −ν0|4M0|ijk	 + λ5n
−1

[
M0|ijM0|k	 + M0|ikM0|j	 + M0|i	M0|jk

− 2

d + 4
(M0|ipM0|pj δk	 + M0|ipM0|pkδj	 + M0|ipM0|p	δjk

+ M0|jpM0|pkδi	 + M0|jpM0|p	δik + M0|kpM0|p	δij )

+
2

(d + 2)(d + 4)
M0|pqM0|qp(δij δk	 + δikδj	 + δi	δjk)

]
. (2.25)

In equations (2.23)–(2.25), the usual summation convention over repeated indices is assumed.
The collision frequencies (or eigenvalues) ν2r|s and the cross coefficients λi are given by

ν4|0 = (1 + α)[12d + 9 − α(4d + 17) + 3α2 − 3α3]

16d
ν0

= 2ν2|0 +
(1 + α)2(4d − 7 + 6α − 3α2)

16d
ν0, (2.26)

ν2|2 = (1 + α)[7d2 + 31d + 18 − α(d2 + 14d + 34) + 3α2(d + 2) − 6α3]

8d(d + 4)
ν0

= 2ν2|0 +
(1 + α)2[3d2 + 7d − 14 + 3α(d + 4) − 6α2]

8d(d + 4)
ν0, (2.27)



14932 V Garzó and A Santos

ν0|4 = (1 + α)[2d3 + 21d2 + 61d + 39 − 3α(d + 3)(d + 5) + 3α2(d + 3) − 3α3]

2d(d + 4)(d + 6)
ν0

= 2ν2|0 +
(1 + α)2[d3 + 9d2 + 17d − 9 + 3α(d + 4) − 3α2]

2d(d + 4)(d + 6)
ν0, (2.28)

λ1 = (1 + α)2(d + 2)(4d − 1 − 6α + 3α2)

16d2
ν0, (2.29)

λ2 = (1 + α)2(1 + 6α − 3α2)

8d
ν0, (2.30)

λ3 = (1 + α)2[d2 + 5d − 2 − 3α(d + 4) + 6α2]

8d2
ν0, (2.31)

λ4 = (1 + α)2[2 − d + 3α(d + 4) − 6α2]

4d(d + 4)
ν0, (2.32)

λ5 = (1 + α)2[d2 + 7d + 9 − 3α(d + 4) + 3α2]

2d(d + 4)(d + 6)
ν0. (2.33)

Equations (2.26) and (2.29) coincide with the results of [27].
We have checked that, in the elastic case (α = 1) and for three-dimensional systems

(d = 3), all the expressions reported in this section reduce to known results [36, 37].
In the one-dimensional elastic case (d = 1, α = 1), the gas behaves as an ideal gas
because a collision is equivalent to exchanging the labels of both colliding particles. As
a consequence, J2r|s̄ = 0. It is easy to check that equations (2.17)–(2.33) are consistent
with this property since the coefficients affecting the non-vanishing moments are zero, i.e.,
ν2|1 = ν4|0 = λ1 = 0. Moreover, for one-dimensional inelastic gases (d = 1, α < 1), our
expressions for ν2|0, ν2|1, ν4|0 and λ1 agree with the results derived by Ben-Naim and Krapivsky
[12], who obtained the exact expressions for all the collisional moments, namely J2r|0 and
J2r|x .

While the α dependence of the second and third degree eigenvalues, equations (2.18),
(2.19), (2.21) and (2.22), is relatively simple, that of the fourth degree eigenvalues (2.26)–
(2.28) and the cross coefficients (2.29)–(2.33) is more involved. Figure 1 shows the α

dependence of the (reduced) eigenvalues ν∗
4|0, ν

∗
2|2 and ν∗

0|4, where ν∗
2r|s ≡ ν2r|s/ν0, and the

shifted eigenvalues ω4|0, ω2|2 and ω0|4, where we have called ω2r|s ≡ ν∗
2r|s − (r + s/2)ν∗

2|0, for
d = 2 and d = 3. While ν∗

0|4 decays monotonically as the inelasticity increases, the other
two eigenvalues ν∗

2|2 and ν∗
4|0 start growing, reach a maximum, and then decay. The maximum

value of ν∗
2|2 occurs at α � 0.40 for d = 2 and at α � 0.67 for d = 3. In the case of ν∗

4|0, the
maximum occurs at α � 0.18 and α � 0.30 for d = 2 and d = 3, respectively. However,
when the part associated with the cooling rate is subtracted from the bare eigenvalues, the
resulting shifted quantities ω4|0, ω2|2 and ω0|4 exhibit a monotonic behavior. As shown in
section 3, these shifted eigenvalues are the relevant ones in the time relaxation of the scaled
moments in the free cooling problem. Therefore, the decrease of ω4|0, ω2|2 and ω0|4 implies
that the characteristic relaxation times of the (scaled) fourth degree moments toward their
asymptotic values increase with dissipation.

It is instructive to compare the fourth degree eigenvalues with the second and third degree
eigenvalues. In the elastic case, one has ω4|0 = ω2|1 < ω0|2 = ω2|2 < ω0|3 < ω0|4 for d = 2
and ω4|0 = ω2|1 < ω0|2 < ω2|2 < ω0|3 < ω0|4 for d = 3. We have observed that inelasticity
breaks the degeneracy ω4|0 = ω2|1 for both dimensionalities (yielding ω4|0 < ω2|1) and the
degeneracy ω0|2 = ω2|2 for d = 2 (yielding ω2|2 < ω0|2). The inelasticity also affects the
ordering of the eigenvalues: for d = 2 one has ω4|0 < ω2|1 < ω2|2 < ω0|2 < ω0|3 < ω0|4
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Figure 1. Plot of the (reduced) fourth degree eigenvalues ν∗
0|4, ν

∗
2|2 and ν∗

4|0 (top panels) and of the
shifted eigenvalues ω0|4, ω2|2 and ω4|0 (bottom panels) as functions of the coefficient of restitution.
The left and right panels correspond to d = 2 and d = 3, respectively.

if 0.17 < α < 1 and ω4|0 < ω2|1 < ω2|2 < ω0|2 < ω0|4 < ω0|3 if 0 < α < 0.17; for
d = 3 the ordering is ω4|0 < ω2|1 < ω0|2 < ω2|2 < ω0|3 < ω0|4 if 0.43 < α < 1 and
ω4|0 < ω2|1 < ω2|2 < ω0|2 < ω0|3 < ω0|4 if 0 < α < 0.43. Since, except ω4|0, these quantities
are related to moments which vanish in isotropic states, the fact that ω4|0 is the smallest one
implies that (as expected on physical grounds) the characteristic time needed to achieve an
isotropic state is shorter than the one needed to reach the asymptotic state.

Let us consider now the (reduced) cross coefficients λ∗
i ≡ λi/ν0 (i = 1, . . . , 5), which

measure the coupling of the second degree moments to the evolution of the fourth degree
moments. Their dependence on dissipation is shown in figure 2. It is apparent that the effect
of inelasticity on λ∗

i is more pronounced than on the fourth degree eigenvalues. For elastic
collisions, λ∗

3 = 0 < λ∗
5 < λ∗

4 = λ∗
2 = λ∗

1 for d = 2 and λ∗
5 < λ∗

3 < λ∗
4 = λ∗

2 < λ∗
1 for d = 3.

This ordering changes with inelasticity. Moreover, λ∗
1, λ

∗
2 and λ∗

4 significantly decrease with
increasing dissipation, λ∗

3 has a non-monotonic behavior, and λ∗
5 is nearly constant. Note

that the coefficient λ4 does not actually play any role in d = 2 since the combination
M0|ikM0|kj − 1

d
M0|k	M0|	kδij appearing in the collisional moment J2|i , cf equation (2.24),

vanishes in the two-dimensional case.
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Figure 2. Plot of the (reduced) cross coefficients λ∗
i , as functions of the coefficient of restitution.

The left and right panels correspond to d = 2 and d = 3, respectively.

3. Relaxation to the homogeneous cooling state

The results derived in the preceding section can be applied to several interesting situations.
Here we will consider the most basic problem, namely the time evolution of the moments of
degree less than or equal to 4 (both isotropic and anisotropic) in the homogeneous free cooling
state [1]. In that case, the Boltzmann equation (2.1) becomes

∂tf (v, t) = J [v|f, f ], (3.1)

which must be complemented with a given initial condition f (v, 0). Since the collisions are
inelastic, the granular temperature T (t) monotonically decays in time and so a steady state
does not exist. In the context of IMM, it has been proven [24, 25] that, provided that f (v, 0)

has a finite moment of some degree higher than 2, f (v, t) asymptotically tends toward a
self-similar solution of the form

f (v, t) → n[v0(t)]
−dφ(V/v0(t)), (3.2)

where v0(t) ≡ √
2T (t)/m is the thermal speed and φ(c) is an isotropic distribution that is only

known in the one-dimensional case [17]. According to equation (3.2), the scaled moments

M∗
2r|s̄ (t) ≡ n−1[v0(t)]

−(2r+s)M2r|s̄ (t) (3.3)

must tend asymptotically to

M∗
2r|s̄ (t) → µ2r|s̄ ≡

∫
dc Y2r|s̄ (c)φ(c). (3.4)

Due to the isotropy of φ(c), then µ2r|s̄ = 0 unless s = 0. Moreover, it is known that the
scaled distribution φ(c) exhibits an algebraic high velocity tail [14, 15, 18, 19] of the form
φ(c) ∼ c−d−γ (α), so that the moments µ2r|0 diverge if 2r � γ (α). The quantity γ (α) obeys a
transcendental equation whose solution is always γ (α) > 4, except for d = 1. Consequently,
for any value of α and d � 2, the scaled moment M∗

4|0(t) goes to a well-defined value µ4|0,
while the remaining scaled moments of degree equal to or less than 4 are anisotropic (except
of course M∗

0|0 = 1 and M∗
2|0 = d/2) and so they tend to zero. The main goal of this section
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is to analyze in detail the relaxation of the second, third and fourth degree moments (both
isotropic and anisotropic) toward their asymptotic values.

Taking velocity moments in both sides of equation (3.1) one has

∂tM2r|s̄ = J2r|s̄ . (3.5)

In particular,

∂tM2|0 = −ν2|0M2|0. (3.6)

Since M2|0 = dnT /m, equation (3.6) is the equation for the time evolution of the granular
temperature and ν2|0 is the cooling rate. The solution of equation (3.6) is

T (t) = T (0)

[1 + ν2|0(0)t/2]2
, (3.7)

where T (0) is the initial temperature and ν2|0(0) ∝ T 1/2(0) is the initial cooling rate.
Equation (3.7) is not but Haff’s law [1].

Let us consider now the scaled moments (3.3). In that case, from equations (3.5) and
(3.6) one simply obtains

∂τM
∗
2r|s̄ = J ∗

2r|s̄ +
2r + s

2
ν∗

2|0M
∗
2r|s̄ , (3.8)

where J ∗
2r|s̄ ≡ J2r|s̄ /ν0nv2r+s

0 and

τ =
∫ t

0
dt ′ ν0(t

′) (3.9)

measures time as the number of (effective) collisions per particle. The effect of the second
term on the right-hand side of equation (3.8) is to shift the eigenvalues ν∗

2r|s to ω2r|s =
ν∗

2r|s − (r + s/2)ν∗
2|0. For instance,

∂τM
∗
4|0 = −ω4|0M∗

4|0 + λ∗
1
d2

4
− λ∗

2M
∗
0|ijM

∗
0|ji . (3.10)

3.1. The one-dimensional case

In the one-dimensional case, the only scaled moments of degree equal to or less than 4 are
(apart from M∗

0|0 = 1 and M∗
2|0 = 1

2 ) M∗
2|x and M∗

4|0. Their evolution equations are

∂τM
∗
2|x = 0, (3.11)

∂τM
∗
4|0 = 3

16 (1 − α2)2
(
M∗

4|0 + 3
4

)
. (3.12)

The solution of equation (3.12) is

M∗
4|0(τ ) = M∗

4|0(0) e
3
16 (1−α2)2τ + 3

4

[
e

3
16 (1−α2)2τ − 1

]
. (3.13)

This solution shows that the (scaled) fourth degree moment monotonically increases with time,
i.e., µ4|0 = ∞. This is consistent with the exact HCS solution found by Baldassarri et al [17],
namely

φ(c) = 23/2

π

1

(1 + 2c2)2
. (3.14)

On the other hand, equation (3.11) shows that M∗
2|x(τ ) = M∗

2|x(0), i.e., if the initial
state is anisotropic with M2|x(0) �= 0 then one has M2|x(t) = M2|x(0)[T (t)/T (0)]3/2. The
constancy of M∗

2|x implies that any initial anisotropy does not vanish in the scaled velocity
distribution function for long times. As a consequence, while the distribution (3.14) represents



14936 V Garzó and A Santos

the asymptotic form φ(c) for a wide class of isotropic initial conditions, it cannot be reached,
strictly speaking, for any anisotropic initial state. Whether or not there exists a generalization
of (3.14) for anisotropic states is, to the best of our knowledge, an open problem. Since
the symmetry of the distribution (3.14) implies that M∗

2|x ≡ 〈
c3
x

〉 = 0 but the average 〈|c|3〉
diverges, a small correction to the form (3.14) could accommodate a finite value of

〈
c3
x

〉
.

3.2. The two-dimensional case

As is known, one-dimensional systems are generally not very realistic and so they can
exhibit peculiar properties. However, two-dimensional systems are usually considered as
representative of the features present in real systems.

For the sake of simplicity, in the remainder of this section we will consider the two-
dimensional case. The set of independent moments of second, third and fourth degree will be
taken as

{M∗
0|xx,M

∗
0|xy}, (3.15)

{M∗
2|x,M

∗
2|y,M

∗
0|xxx,M

∗
0|xxy}, (3.16)

{M∗
4|0,M

∗
2|xx,M

∗
2|xy,M

∗
0|xxxx,M

∗
0|xxxy}, (3.17)

respectively. The remaining moments are simply related to the above ones as M∗
0|yy =

−M∗
0|xx,M

∗
0|xyy = −M∗

0|xxx,M
∗
0|yyy = −M∗

0|xxy,M
∗
2|yy = −M∗

2|xx,M
∗
0|yyyy = −M∗

0|xxyy =
M∗

0|xxxx,M
∗
0|xyyy = −M∗

0|xxxy . From equation (3.8), it is easy to obtain the time dependence
of the (scaled) second and third degree moments:

M∗
0|ij (τ ) = M∗

0|ij (0) e−ω0|2τ , (3.18)

M∗
2|i (τ ) = M∗

2|i (0) e−ω2|1τ , M∗
0|ijk(τ ) = M∗

0|ijk(0) e−ω0|3τ . (3.19)

In the case of the fourth degree moments, one has to deal with inhomogeneous linear differential
equations involving the second degree moments. The solutions are

M∗
4|0(τ ) = M∗

4|0(0) e−ω4|0τ +
λ∗

1

ω4|0
(1 − e−ω4|0τ )

− 2λ∗
2

2ω0|2 − ω4|0

[
M∗2

0|xx(0) + M∗2
0|xy(0)

]
(e−ω4|0τ − e−2ω0|2τ ), (3.20)

M∗
2|ij (τ ) = M∗

2|ij (0) e−ω2|2τ +
λ∗

3

ω0|2 − ω2|2
M∗

0|ij (0)(e−ω2|2τ − e−ω0|2τ ), (3.21)

M∗
0|xxxx(τ ) = M∗

0|xxxx(0) e−ω0|4τ +
3

2

λ∗
5

2ω0|2 − ω0|4

[
M∗2

0|xx(0) − M∗2
0|xy(0)

]
(e−ω0|4τ − e−2ω0|2τ ),

(3.22)

M∗
0|xxxy(τ ) = M∗

0|xxxy(0) e−ω0|4τ +
3λ∗

5

2ω0|2 − ω0|4
M∗

0|xx(0)M∗
0|xy(0)(e−ω0|4τ − e−2ω0|2τ ). (3.23)

Equations (3.18)–(3.23) show that all the moments, except M∗
4|0, tend to zero for sufficiently

long times. The asymptotic expression of M∗
4|0 is

M∗
4|0 → µ4|0 = λ∗

1

ω4|0
= 2

7 − 6α + 3α2

1 + 6α − 3α2
, (3.24)

which agrees with previous results [27].



Third and fourth degree collisional moments for inelastic Maxwell models 14937

Figure 3. Time evolution of the scaled fourth degree moments in the free cooling of a two-
dimensional IMM with α = 0.5 (solid lines). The time evolution to equilibrium of an elastic
system (α = 1) is also shown (dashed lines). In both cases the initial state is described by
equation (3.25). The horizontal dotted lines in the bottom panel indicate the corresponding
asymptotic HCS values µ4|0.

As an illustration, let us analyze the time evolution of the scaled fourth degree moments
(3.17) for the following initial anisotropic distribution:

f (v, 0) = n

3
[δ(V − V1) + δ(V − V2) + δ(V − V3)], (3.25)

where V1 = v0(0)̂x, V2 = (v0(0)/
√

2)̂y and V3 = −V1 − V2. Here, v0(0) = √
2T (0)/m

is the initial thermal speed, where the initial temperature T (0) is arbitrary. Figure 3 shows
the evolution of the moments (3.17) for two values of the coefficient of restitution: α = 1
(elastic system) and α = 0.5 (strongly inelastic system). It is quite apparent that the number
of collisions needed to reach the HCS values increases with the inelasticity, as expected from
figure 1. In the particular case of α = 0.5, the relaxation times are about twice the ones
corresponding to α = 1. Moreover, since ω0|4 > ω2|2 > ω4|0, we observe that the moments
M∗

0|ijk	 tend to zero more rapidly than the moments M∗
2|ij , and that the isotropic moment M∗

4|0
reaches its asymptotic value more slowly than the anisotropic moments.



14938 V Garzó and A Santos

4. Discussion

As Maxwell already realized [38], scattering models where the collision rate of two particles
approaching each other with a relative velocity g is independent of the magnitude of g
allows one to evaluate exactly the collisional moments without the explicit knowledge of the
velocity distribution function. In the conventional case of ordinary gases of particles colliding
elastically, Maxwell models are useful to find non-trivial exact solutions to the Boltzmann
equation in far from equilibrium situations [37]. Needless to say, the introduction of inelasticity
through a constant coefficient of normal restitution α � 1 opens up new perspectives for exact
results, including the elastic case as a special limit (α = 1). This justifies the growing interest
in IMM by physicists and mathematicians alike in the past few years.

The choice of the Ikenberry polynomials [36] Y2r|s̄ of degree 2r + s allows one to express
the corresponding collisional moments J2r|s̄ in the form (2.16): an eigenvalue −ν2r|s times the
velocity moment M2r|s̄ plus a bilinear combination of moments of degree less than 2r + s. In
particular, ν2|0 is the cooling rate of the gas. In this paper we have evaluated all the third and
fourth degree collisional moments of the IMM defined by equation (2.2). In that context, the
results are exact for arbitrary values of α and apply to any dimensionality d. Known results
are recovered for three-dimensional elastic systems [36, 37] and for one-dimensional inelastic
systems [12]. We have observed that some of the eigenvalues ν2r|s do not have a monotonic
dependence on α, while the shifted eigenvalues ν2r|s − (r + s/2)ν2|0 monotonically decrease
with increasing inelasticity. Moreover, given a value of α and a degree 2r + s, the eigenvalues
ν2r|s increase with s. This means that the larger the anisotropy of a moment M2r|s̄ the higher
its collisional rate of change. Although the above observations are based on the moments of
degree 2r + s � 4, we expect that they extend to moments of higher degree.

As a simple application of the results derived in section 2, we have studied the time
evolution of the moments of degree equal to or less than 4 in the free cooling state, in
which case the evolution of the moments scaled with the thermal speed is governed by the
shifted eigenvalues. An interesting feature of the one-dimensional case is that the heat flux
qx = (m/2)M2|x , when scaled with the thermal speed, does not change in time, so that an
initial anisotropic distribution cannot evolve toward an asymptotic isotropic distribution. Thus,
the exact solution found by Baldassarri et al [17] does not play a universal role, at least in
a strict sense, unless the initial distribution is isotropic. On the other hand, we have found
that all the anisotropic moments of degree equal to or less than 4 vanish in the long time
limit for d � 2. However, this does not preclude the possibility that anisotropic moments of
higher degree diverge for α sufficiently small. We plan to explore this possibility in the near
future.

The explicit results provided in this paper can be useful for studying different problems.
An important application is the exact derivation of the Burnett order constitutive equations
for IMM, with explicit expressions of the associated transport coefficients as functions of d
and α. This is possible because the determination of the Burnett order pressure tensor and
heat flux requires the previous knowledge of the third and fourth degree collisional moments
to Navier–Stokes order. Another interesting problem is the so-called simple or uniform shear
flow, which is an intrinsically non-Newtonian state [39]. Apart from the rheological quantities,
the results derived here allows one to analyze the time evolution of the fourth degree velocity
moments toward their steady state values [40] and investigate their possible divergence, in
a similar way to the analysis carried out in the elastic case [41]. Finally, the generalized
transport coefficients characterizing small perturbations around the simple shear flow have
been determined [42] and compared with those previously obtained for IHS [43] from a model
kinetic equation.
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Appendix A. Explicit evaluation of the collisional moments

In this appendix we give the details of the derivation, by using the property (2.6), of the
collisional moments J2r|s̄ = J [Y2r|s̄] associated with the Ikenberry polynomials of third and
fourth degree. To carry out the calculations we will need the angular integrals∫

dσ̂(σ̂ · g)2r+1σ̂i = Br+1g
2rgi, (A.1)

∫
dσ̂(σ̂ · g)2r σ̂i σ̂j = Br

2r + d
g2(r−1)(2rgigj + g2δij ), (A.2)

∫
dσ̂(σ̂ · g)2r+1σ̂i σ̂j σ̂k = Br+1

2(r + 1) + d
g2(r−1)[2rgigjgk + g2(δij gk + δikgj + δjkgi)], (A.3)

∫
dσ̂(σ̂ · g)2r σ̂i σ̂j σ̂kσ̂	 = Br

(2r + d)[d + 2(r + 1)]

[
4r(r − 1)g2(r−2)gigjgkg	

+ g2(r−1)2r(gigj δk	 + gigkδj	 + gig	δjk + gkgj δi	 + g	gj δik + gkg	δij )

+ g2r (δij δk	 + δikδj	 + δjkδi	)
]
. (A.4)

Here, the coefficients Br are [3]

Br =
∫

dσ̂(σ̂ · ĝ)2r = �dπ
−1/2 �

(
d
2

)
�

(
r + 1

2

)
�

(
r + d

2

) . (A.5)

A.1. Third degree moments

We start by noting that the collision rule (2.7) implies that

V ′′
1iV

′′
1jV

′′
1k = V1iV1jV1k − 1 + α

2
(σ̂ · g)(V1iV1j σ̂k + V1iV1kσ̂j + V1jV1kσ̂i)

+

(
1 + α

2

)2

(σ̂ · g)2(V1i σ̂j σ̂k + V1j σ̂i σ̂k + V1kσ̂i σ̂j )−
(

1 + α

2

)3

(σ̂ · g)3σ̂i σ̂j σ̂k.

(A.6)

Next, making use of equations (A.1)–(A.3), one obtains

J [V1iV1jV1k] = −nν0

2d

1 + α

2

{
(d + 2)〈giV1jV1k + gjV1iV1k + gkV1iV1j 〉

−1 + α

2
[2〈gigjV1k + gigkV1j + gjgkV1i〉 + 〈g2(V1iδjk + V1j δik + V1kδij )〉]

}
,

(A.7)

where the brackets are defined as

〈h(V1, V2)〉 ≡ 1

n2

∫
dV1

∫
dV2 h(V1, V2)f (V1)f (V2) (A.8)
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and we have taken into account that 〈gigjgk〉 = 〈g2gi〉 = 0. It is easy to obtain

n〈giV1jV1k〉 = n〈gigjV1k〉 = M0|ijk +
1

d + 2
(M2|iδjk + M2|j δik + M2|kδij ), (A.9)

n〈g2V1i〉 = M2|i . (A.10)

Therefore,

J [V1iV1jV1k] = − ν0

2d

1 + α

2

[
3(d + 1 − α)M0|ijk

+
5d + 4 − α(d + 8)

2(d + 2)
(M2|iδjk + M2|j δik + M2|kδij )

]
. (A.11)

If one makes j = k and sum over j one gets the first equality of equation (2.20) with ν2|1
given by equation (2.21). Also, by subtracting (J2|iδjk + J2|j δik + J2|kδij )/(d + 2) from both
sides of equation (A.11) one gets the second equality of equation (2.20) with ν0|3 given by
equation (2.22).

A.2. Fourth degree moments

Now the starting point is the collision rule

V ′′
1iV

′′
1jV

′′
1kV

′′
1	 = V1iV1jV1kV1	 − 1 + α

2
(σ̂ · g)(V1iV1jV1kσ̂	 + V1iV1jV1	σ̂k + V1iV1kV1	σ̂j

+ V1jV1kV1	σ̂i) +

(
1 + α

2

)2

(σ̂ · g)2(V1iV1j σ̂kσ̂	 + V1iV1kσ̂j σ̂	 + V1iV1	σ̂j σ̂k

+ V1jV1kσ̂i σ̂	 + V1jV1	σ̂i σ̂k + V1kV1	σ̂i σ̂j )

−
(

1 + α

2

)3

(σ̂ · g)3(V1i σ̂j σ̂kσ̂	 + V1j σ̂i σ̂kσ̂	 + V1kσ̂i σ̂j σ̂	 + V1	σ̂i σ̂j σ̂k)

+

(
1 + α

2

)4

(σ̂ · g)4σ̂i σ̂j σ̂kσ̂	. (A.12)

After integrating over σ̂,

J [V1iV1jV1kVi	] = − nν0

2d(d + 4)(d + 6)

1 + α

2

{
(d + 2)(d + 4)(d + 6)〈giV1jV1kV1	+

(3)· · ·〉

− 1 + α

2
(d + 4)(d + 6)

[
2〈gigjV1kV1	+

(5)· · ·〉 + 〈g2(V1iVij δk	+
(5)· · ·)〉]

+ 3(d + 6)

(
1 + α

2

)2 [
2〈gigjgkV1	+

(3)· · ·〉 + 〈g2[(giV1j + gjV1i )δk	+
(5)· · ·]〉]

− 3

(
1 + α

2

)3 [
8〈gigjgkg	〉 + 4〈g2(gigj δk	+

(5)· · ·)〉 + 〈g4〉(δij δk	+
(2)· · ·)]},

(A.13)

where
(s)· · · denotes the s terms obtained from the canonical one by permutation of indices.

Making k = 	 and summing over k we obtain
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J
[
V 2

1 V1iV1j

] = − nν0

2d(d + 4)

1 + α

2

{
(d + 2)(d + 4)〈2(g · V1)V1iV1j + V 2(giV1j + gjV1i )〉

− 1 + α

2
(d + 4)

[
2
〈
V 2

1 gigj + 2(g · V1)(giV1j + gjV1i )
〉

+
〈
(d + 6)g2V1iV1j + g2V 2

1 δij

〉]
+ 3

(
1 + α

2

)2 [
(d + 6)〈g2(giV1j + gjV1i )〉 + 2〈(g · V1)(2gigj + g2δij )〉

]
− 3

(
1 + α

2

)3

〈4g2gigj + g4δij 〉
}

. (A.14)

Next, by taking i = j and summing over i, equation (A.14) yields

J
[
V 4

1

] = −nν0

2d

1 + α

2

{
4(d + 2)

〈
(g · V1)V

2
1

〉 − 2
1 + α

2

[
(d + 4)

〈
g2V 2

1

〉
+ 4〈(g · V1)

2〉]
+ 12

(
1 + α

2

)2

〈(g · V1)g
2〉 − 3

(
1 + α

2

)3

〈g4〉
}

. (A.15)

Now we express the averages in terms of the Ikenberry moments. Let us consider first the
four-index averages:

n〈giV1jV1kV1	〉 = M0|ijk	 +
1

d + 4
(M2|ij δk	+

(5)· · ·) +
1

d(d + 2)
M4|0(δij δk	+

(2)· · ·), (A.16)

n〈gigjV1kV1	〉 = M0|ijk	 +
1

d + 4
(M2|ij δk	+

(5)· · ·) +
1

d(d + 2)
M4|0(δij δk	+

(2)· · ·)

+ n−1M0|ijM0|k	 +
n−1

d
M2|0(M0|ij δk	 + M0|k	δij ) +

n−1

d2
M2

2|0δij δk	, (A.17)

n〈gigjgkV1	〉 = M0|ijk	 +
1

d + 4
(M2|ij δk	+

(5)· · ·) +
1

d(d + 2)
M4|0(δij δk	+

(2)· · ·)

+ n−1(M0|ijM0|k	+
(2)· · ·) +

n−1

d
M2|0(M0|ij δk	+

(5)· · ·) +
n−1

d2
M2

2|0(δij δk	+
(2)· · ·),

(A.18)

〈gigjgkg	〉 = 2〈gigjgkV1	〉. (A.19)

Summing over two repeated indices we get the two-index averages:

n〈g2V1iV1j 〉 = n〈V 2
1 gigj 〉 = M2|ij +

1

d
M4|0δij + n−1M2|0

(
M0|ij +

1

d
M2|0δij

)
, (A.20)

n〈g2giV1j 〉 = n〈(g · V1)gigj 〉 = M2|ij +
1

d
M4|0δij + 2n−1M0|ikM0|kj

+
n−1

d
M2|0

[
(d + 4)M0|ij +

d + 2

d
M2|0δij

]
, (A.21)

〈g2gigj 〉 = 2〈g2giV1j 〉, (A.22)
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n〈V 2
1 giV1j 〉 = n〈(g · V1)V1iV1j 〉 = M2|ij +

1

d
M4|0δij , (A.23)

n〈(g · V1)giV1j 〉 = M2|ij +
1

d
M4|0δij + n−1M0|ikM0|kj +

n−1

d
M2|0

[
2M0|ij +

1

d
M2|0δij

]
.

(A.24)

Summing again,

n
〈
g2V 2

1

〉 = M4|0 + n−1M2
2|0, (A.25)

n
〈
(g · V1)V

2
1

〉 = M4|0, (A.26)

n〈(g · V1)
2〉 = M4|0 + n−1M0|ijM0|ji +

n−1

d
M2

2|0, (A.27)

n〈(g · V1)g
2〉 = M4|0 + 2n−1M0|ijM0|ji + n−1 d + 2

d
M2

2|0, (A.28)

〈g4〉 = 2〈(g · V1)g
2〉. (A.29)

Substituting equations (A.25)–(A.29) into equation (A.15) one obtains equation (2.23).
Analogously, from equations (A.14) and (A.13) one obtains, after some algebra,
equations (2.24) and (2.25), respectively.
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Santos A and Garzó V 1995 Physica A 213 409
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