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Abstract

Transport coefficients associated with the mass flux of a binary mixture of Maxwell molecules under uniform shear flow are
exactly determined from the Boltzmann kinetic equation. A normal solution is obtained via a Chapman–Enskog-like expansion
around a local shear flow distribution that retains all the hydrodynamics orders in the shear rate. In the first order of the expansion
the mass flux is proportional to the gradients of mole fraction, pressure, and temperature but, due to the anisotropy induced
in the system by the shear flow, mutual diffusion, pressure diffusion and thermal diffusion tensors are identified instead of the
conventional scalar coefficients. These tensors are obtained in terms of the shear rate and the parameters of the mixture (particle
masses, concentrations, and force constants). The description is made both in the absence and in the presence of an external
thermostat introduced in computer simulations to compensate for the viscous heating. As expected, the analysis shows that there
is no simple relationship between the results with and without the thermostat. The dependence of the three diffusion tensors on the
shear rate is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from
their equilibrium forms is in general quite important.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The description of transport properties for states close to equilibrium in gaseous binary mixtures is well established.
In these situations, the Curie principle [1] states that the presence of a velocity gradient (second-rank tensorial
quantity) cannot modify a vectorial quantity such as the mass flux j1, which is generated by gradients of mole fraction
x1, pressure p, and temperature T . As a consequence, the mutual-diffusion coefficient D (which couples the mass
current with ∇x1), the pressure diffusion coefficient Dp (which couples the mass current with ∇ p) and the thermal
diffusion coefficient DT (which couples the mass current with ∇T ) do not depend on the velocity gradient. However,
when the shear rate applied is large, non-Newtonian effects are important so that the Curie principle does not hold and
the coefficients associated with the mass transport are affected by the presence of shear flow. In particular, if the spatial
gradients ∇x1, ∇ p, and ∇T are weak, one expects that the flux j1 is still linear in these gradients but the standard
scalar coefficients {D, Dp, DT } must be replaced by the shear-rate dependent second-rank tensors {Di j , Dp,i j , DT,i j }.
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It is theoretically known that the presence of shear flow affects the microscopic diffusion [2–5]. On a molecular
scale, nonequilibrium molecular dynamics simulations have shown an anisotropy of self-diffusion under shear [6–9].
In the case of colloidal systems this anisotropy has been measured experimentally by neutron scattering [10–12]
and also in computer simulations [13]. However, the shearing effects on diffusion observed in liquids are qualitatively
different from those observed in gas phase systems. In this paper, to gain some insight into this phenomenon, a gaseous
binary mixture in the low-density regime will be considered to determine the dependence of the diffusion tensors
{Di j , Dp,i j , DT,i j } on the shear rate. For a low-density gas, the Boltzmann equation [14] is the master equation and
describes the time evolution of the one-particle distribution function.

We are interested in a situation where weak spatial gradients of mole fraction, pressure, and temperature coexist
with a strong shear rate. Under these conditions, the application of the conventional Chapman–Enskog expansion [15]
around the local equilibrium state to obtain higher-order hydrodynamic effects (Burnett, super-Burnett, etc.) to the
mass flux turns out to be extremely difficult. This gives rise for the need to look for alternative approaches. A
possibility is to expand around a more relevant reference state than the local equilibrium. Since we want to compute
the mass transport in a strongly sheared mixture, the so-called uniform shear flow (USF) state can be chosen as the
reference state. The USF state is characterized by constant mole fractions, a uniform temperature, and a linear velocity
profile ux = ay, where a is the constant shear rate. Due to its simplicity, this state has been widely used in the past to
shed light on the complexities associated with the nonlinear response of the system to the action of strong shearing.
In addition, the USF state is one of the rare exceptions for which the hierarchy of moments of the Boltzmann equation
admits an exact solution for single [16] and multicomponent gases [17] of Maxwell molecules (repulsive potential
of the form r−4). In this case, explicit expressions of the pressure tensor (which is the relevant irreversible flux of
the problem) have been obtained for arbitrary values of the shear rate and the parameters of the system (masses,
concentrations and force constants).

As said before, here we want to compute the mass transport under USF for Maxwell molecules. Since the mixture
is slightly perturbed from the USF, the Boltzmann equation can be solved by an expansion in small gradients around
the (local) shear flow distribution instead of the (local) equilibrium. This is the main feature of the expansion since
the reference state is not restricted to small values of the shear rate. In the first order of the expansion, the set of
generalized transport coefficients {Di j , Dp,i j , DT,i j } is identified from the mass flux j1 as nonlinear functions of
the shear rate and the parameters of the mixture. This Chapman–Enskog-like expansion has been used to analyze
transport properties in spatially inhomogeneous states near USF in the case of ordinary gases [18] and more recently
in the context of granular gases [19–23]. On the other hand, although the results derived in this paper are restricted
to Maxwell molecules, one expects that the influence of the interaction potential on the nonlinear transport properties
is only residual, once the relevant transport properties are conveniently nondimensionalized. This expectation has
been clearly confirmed by computer simulations [24,25] for non-Maxwell interaction potentials where it has been
shown that the rheological properties of the USF problem are indeed practically insensitive to the interaction law. A
comparison between the exact results derived here for Maxwell molecules with those obtained by performing Monte
Carlo simulations for hard spheres could assess the influence of the interaction potential on the shear-rate dependence
of the coefficients {Di j , Dp,i j , DT,i j }. Although this is an interesting issue, it is beyond the aim of the present paper.

Some previous attempts to determine the above coefficients have been carried out earlier by the author and
coworkers [5,26] in the case of the diffusion tensor Di j . However, all these studies have been restricted to perturbed
steady states with the constraints p = const and T = const. Although steady states are in general desirable for
practical purposes, especially in computer simulations [27], here we extend the above studies to a general time and
space dependence of the hydrodynamic fields. This allows us to evaluate new contributions to the mass flux (those
proportional to ∇ p and ∇T ), which where not taken into account in the previous studies.

2. A binary mixture under uniform shear flow

We consider a dilute binary mixture where fs(r, v; t) is the one-particle velocity distribution function of species s
(s = 1, 2). The time evolution of the distributions fs is given by the set of two coupled nonlinear Boltzmann equations:(

∂t + v · ∇ +
∂

∂v
·

Fs

ms

)
fs(r, v, t) =

2∑
r=1

Jsr [v| fs(t), fr (t)] , (2.1)
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where ms is the mass of a particle of species s, Fs is a possible external force acting on particles of species s, and
Jsr [v| fs, fr ] is the Boltzmann collision operator [15]. The basic moments of fs are the species number densities
ns , the mean velocity us , and the partial kinetic temperatures Ts . These quantities define the total number density
n =

∑
s ns , the flow velocity u =

∑
s ρsus/ρ and the temperature nkB T =

∑
s nskB Ts . Here, ρs = msns is the mass

density of species s, ρ =
∑

s ρs is the total mass density, and kB is the Boltzmann constant. Moreover, in a dilute
gas the hydrostatic pressure p is given by p = nkB T . The quantities ns , u, and T are associated with the densities of
conserved quantities (mass of each species, total momentum, and total energy). The corresponding balance equations
define the dissipative fluxes of mass

js = ms

∫
dv V fs, (2.2)

momentum (pressure tensor),

P =

∑
s

Ps =

∑
s

ms

∫
dv VV fs, (2.3)

and energy (heat flux)

q =

∑
s

qs =

∑
s

ms

2

∫
dv V2V fs . (2.4)

The expressions of the partial contributions Ps and qs can be easily identified from the second equalities in Eqs. (2.3)
and (2.4), respectively. The fact that the mass flux js is defined with respect to the local center-of-mass velocity u
implies that

∑
s js = 0.

The USF state is macroscopically defined by constant densities ns , a spatially uniform temperature T (t) and a linear
velocity profile u(y) = u1(y) = u2(y) = aŷx, where a is the constant shear rate. Since ns and T are uniform, then
js = q = 0, and the transport of momentum (measured by the pressure tensor) is the relevant phenomenon. In the USF
problem, the temperature tends to increase in time due to viscous heating. Usually, an external force (thermostat) is
introduced in computer simulations to remove this heating effect and to keep the temperature constant [27]. The
simplest choice is a Gaussian isokinetic thermostat given by Fs = −msαV, where V = v − u is the peculiar
velocity. The thermostat parameter α is a function of the shear rate adjusted so as to keep the temperature constant.
The implicit assumption behind the introduction of these forces is that they play a neutral role in the transport
properties, so that the latter are the same with and without a thermostat, when conveniently scaled with the thermal
speed. Nevertheless, this expectation is not in general true, except for some specific situations and/or interaction
potentials [28,29].

The hierarchy of velocity moments associated with the Boltzmann equation in the USF state can be recursively
solved in the particular case of Maxwell molecules, i.e., when particles of species r and s interact through a potential
of the form Vrs(r) = κrsr−4. The key point is that for this interaction the collision rate is independent of the relative
velocity and so the collisional moments of order k only involve moments of degree smaller than or equal to k. Thanks
to the above property, exact expressions of the pressure tensor P for a binary mixture of Maxwell molecules under
USF were obtained some time ago [17]. The nonzero elements of P are related to the rheological properties of the
mixture, namely, the nonlinear shear viscosity and the viscometric functions. In reduced units, they turn out to be
nonlinear functions of the (reduced) shear rate a∗

= a/ζ (where ζ is a convenient time unit defined below) and the
parameters of the mixture: the mass ratio µ = m1/m2, the mole fraction x1 = n1/n and the force constant ratios
κ11/κ12 and κ22/κ12. As expected, the results also show that the temperature ratio T1/T2 is clearly different from
1 and so, the total kinetic energy is not equally distributed between both species (breakdown of the equipartition
theorem). The temperature ratio T1/T2 does not present a monotonic dependence on the shear rate and so, both
partial temperatures coincide at a certain value of a∗, which depends on the parameters of the system. Regarding
the influence of thermostat, it must be noted that in the particular case of Maxwell molecules there is an exact
equivalence between the USF results with and without the Gaussian thermostat. As will be shown below, beyond
the USF problem, the presence of the thermostat does not play a neutral role in the results and a certain influence
may exist.
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3. Mass flux under shear flow

Let us disturb the USF state by small spatial perturbations. The response of the system to those perturbations
gives rise to contributions to the mass flux that can be characterized by generalized transport coefficients. In order to
analyze this problem we have to start from the set of Boltzmann Eq. (2.1) with a general time and space dependence.
Let u0 = a · r be the flow velocity of the undisturbed USF state, where the elements of the tensor a are ai j = aδi xδ j y .
In the disturbed state, however the true velocity u is in general different from u0, i.e., u = u0 + δu, δu being a small
perturbation to u0. As a consequence, the true peculiar velocity is now c ≡ v − u = V − δu, where V = v − u0. In
the Lagrangian frame moving with u0, the Boltzmann Eq. (2.1) can be written as

∂

∂t
f1 −

∂

∂Vi

(
ai j V j + αVi

)
f1 + (V + u0) · ∇ f1 + αδu ·

∂ f1

∂V
= J11[ f1, f1] + J12[ f1, f2], (3.1a)

∂

∂t
f2 −

∂

∂Vi

(
ai j V j + αVi

)
f2 + (V + u0) · ∇ f2 + αδu ·

∂ f2

∂V
= J22[ f2, f2] + J21[ f2, f1], (3.1b)

where the derivative ∇ fs is taken at constant V. In addition, in Eqs. (3.1a) and (3.1b) the thermostat force has been
assumed to be proportional to the actual peculiar velocity, Fs = −msα(V − δu) where now the parameter α is
in general a function of r and t through their functional dependence on the hydrodynamic fields ns and T . The
generalization of α to the inhomogeneous case is essentially a matter of choice. Here, for the sake of simplicity, we
will take two different choices for α: (i) α = 0, so that the temperature grows in time, and (ii) the same expression
obtained in the (pure) USF problem, except that the densities and temperature are replaced by those of the general
inhomogeneous state.

We assume that the deviations from the USF state are small. This means that the spatial gradients of the
hydrodynamic fields are small. For systems near equilibrium, the specific set of gradients contributing to each flux
is restricted by fluid symmetry, Onsager relations, and the form of entropy production [1]. However, in far from
equilibrium situations (such as the one considered in this paper), only fluid symmetry applies and so there is more
flexibility in the representation of the heat and mass fluxes since they can be defined in a variety of equivalent ways
depending on the choice of hydrodynamic gradients used. Here, as in previous works in granular mixtures [22,31],
the mole fraction x1, the pressure p, the temperature T , and the local flow velocity δu are chosen as hydrodynamic
fields. Since the system is strongly sheared, a solution to the set of Boltzmann equations (3.1a) and (3.1b) can be
obtained by means of a generalization of the conventional Chapman–Enskog method [15] in which the velocity
distribution function is expanded around a local shear flow reference state in terms of the small spatial gradients
of the hydrodynamic fields relative to those of USF. This is the main new ingredient of the expansion. This type
of Chapman–Enskog-like expansion has been already considered to obtain the set of shear-rate dependent transport
coefficients in thermostatted shear flow problems [18] and it has also been recently developed for inelastic gases [19–
23]. More technical details on the application of this perturbative scheme to obtain the mass flux in a binary mixture
of Maxwell molecules can be found in Ref. [30].

The first-order contribution to the mass flux j(1)
1 can be written as

j (1)
1,i = −

m1m2n

ρ
Di j

∂x1

∂r j
−

ρ

p
Dp,i j

∂p

∂r j
−

ρ

T
DT,i j

∂T

∂r j
, (3.2)

where the set of generalized transport coefficients Di j , Dp,i j , and DT,i j are nonlinear functions of the shear rate
and the parameters of the mixture. As expected, the mass flux is expressed in terms of a diffusion tensor Di j , a
pressure diffusion tensor Dp,i j , and a thermal diffusion tensor DT,i j . As will be shown below, when a∗

= 0, one
recovers the usual Navier–Stokes description, namely, Di j = D0δi j , Dp,i j = Dp,0δi j and DT,i j = 0. However,
for nonvanishing shear rates, it is apparent that the anisotropy induced by the presence of shear flow gives rise to
new transport coefficients which are zero when the mixture is close to equilibrium (say for instance, the off-diagonal
coefficients Dxy 6= Dyx 6= Dp,xy 6= Dp,yx 6= DT,xy 6= DT,yx 6= 0). Note that although the partial temperatures
of each species are different (T1 6= T2), there are no additional hydrodynamic degrees of freedom in the problem
since the temperatures Ti can be still expressed in terms of the global temperature T , which is the relevant one at
a hydrodynamic level. As a consequence, the mass flux (3.2) can be represented in terms of the gradients of the
hydrodynamic fields x1, p, and T .
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3.1. Unthermostatted USF state

In the absence of an external thermostat (α = 0), the generalized transport coefficients Di j , Dp,i j , and DT,i j obey
the following set of coupled algebraic equations:[(

ρλ12

m1m2
−

2
3

a P∗
xy

)
δik + aik

]
Dk j =

ρkB T

m1m2

(
∂x1 P∗

1,i j −
ρ1

ρ
∂x1 P∗

i j

)
+

2aρ2

3m1m2n
(∂x1 P∗

xy)
(
Dp,i j + DT,i j

)
, (3.3)[(

ρλ12

m1m2
−

2a

3p
(1 − a∗∂a∗)P∗

xy

)
δik + aik

]
Dp,k j =

p

ρ
(1 − a∗∂a∗)

(
P∗

1,i j −
ρ1

ρ
P∗

i j

)
−

2a

3
a∗ DT,i j (∂a∗ P∗

xy), (3.4)[(
ρλ12

m1m2
−

2a

3
(1 + a∗∂a∗)P∗

xy

)
δik + aik

]
DT,k j =

p

ρ
a∗∂a∗

(
P∗

1,i j −
ρ1

ρ
P∗

i j

)
+

2a

3
a∗ Dp,i j (∂a∗ P∗

xy). (3.5)

Here, P∗
= P(0)/p and P∗

s = P(0)
s /p are the (reduced) pressure tensors of the USF and λsr = 1.69π

√
κsr msmr/(ms + mr ). In addition, a∗

= a/ζ , where ζ = (2p/kB T )[λ′

12/(m1 + m2)] with λ′
sr = 2.61π

√
κsr msmr/(ms + mr ). The solution to Eqs. (3.3)–(3.5) provides the forms of the tensors Di j , Dp,i j and DT,i j in

the unthermostatted shear flow state.
In the absence of shear field (a = 0), then P∗

s,i j = xsδi j , and P∗

i j = δi j , so that Eqs. (3.3)–(3.5) have the solutions
Di j = D0δi j , Dp,i j = Dp,0δi j , and DT,i j = 0, where D0 and Dp,0 are the conventional Navier–Stokes transport
coefficients for Maxwell molecules [15]. Their expressions are D0 = kB T/λ12 and Dp,0 = D0(m2 − m1)(ρ1ρ2/ρ

3).
The fact that the thermal diffusion coefficient vanishes when a∗

= 0 is due to the interaction potential considered
(Maxwell molecules) since this coefficient is different from zero for more general interaction potentials [15]. However,
when the mixture is strongly sheared, the Boltzmann equation leads to contributions to the mass flux proportional
to the thermal gradient, even for Maxwell molecules. In the case of mechanically equivalent particles (µ = 1,
κ11 = κ22 = κ12), P∗

1,i j = x1 P∗

i j , ∂x1 P(0)
1,i j = P(0)

1,i j/x1 = P(0)
xy , and so Dp,i j = DT,i j = 0 and the expression

for Di j is consistent with previous results derived for the self-diffusion tensor [32,33]. Furthermore, known results for
the diffusion tensor [26] are also recovered in the tracer limit (x1 → 0).

3.2. Thermostatted USF state

In the thermostatted case, α = −a P(0)
xy /3p, and the explicit expressions for Di j , Dp,i j , and DT,i j are given by

Di j =
ρkB T

m1m2

1

α +
ρλ12
m1m2

(
δik −

aik

α +
ρλ12
m1m2

)(
∂x1 P∗

1,k j −
ρ1

ρ
∂x1 P∗

k j

)
, (3.6)

Dp,i j =
p

ρ

1

α +
ρλ12
m1m2

(
δik −

aik

α +
ρλ12
m1m2

)
(1 − a∗∂a∗)

(
P∗

1,k j −
ρ1

ρ
P∗

k j

)
, (3.7)

DT,i j =
p

ρ

a∗

α +
ρλ12
m1m2

(
δik −

aik

α +
ρλ12
m1m2

)
∂a∗

(
P∗

1,k j −
ρ1

ρ
P∗

k j

)
. (3.8)

The expression (3.6) for the diffusion tensor Di j coincides with the one derived before [5] in a stationary state with the
constraints p = const and T = const. Finally, it is also apparent that, except for vanishing shear rates, the expressions
of the generalized transport coefficients (3.6)–(3.8) in the thermostatted state differ from the ones derived in the
absence of a thermostat, Eqs. (3.3)–(3.5). This shows again that the presence of the thermostat affects the nonlinear
transport properties of the system.
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Fig. 1. Shear-rate dependence of the trace 1
3 D∗

kk of the mutual-diffusion tensor for x1 = 0, κ22 = κ12 and several values of the mass ratio
µ = m1/m2.

Fig. 2. Shear-rate dependence of the trace 1
3 D∗

p,kk of the pressure diffusion tensor for x1 = 0, κ22 = κ12 and several values of the mass ratio
µ = m1/m2.

4. Illustrative examples in the tracer limit

The results obtained in the preceding Section give all the relevant information on the influence of shear flow on
the mass transport. In general, the elements Di j , Dp,i j and DT,i j present a complex dependence on the shear rate and
the parameters of the mixture without any restriction on their values. However, although the solution to Eqs. (3.3)–
(3.5) (in the unthermostatted case) and Eqs. (3.6)–(3.8) (in the thermostatted case) is simple, it involves quite a tedious
algebra due to the complex dependence of the partial pressure tensors P(0)

s,i j and the thermostat parameter α on the mole

fraction x1 and the reduced shear rate a∗. To show the shear-rate dependence of the tensors Ti j ≡
{

Di j , Dp,i j , DT,i j
}

in a clearer way, the tracer limit (x1 → 0) will be considered here in detail. In addition, to make some contact with
computer simulation results, the thermostatted case will be studied. In the tracer limit case, P(0)

' P(0)
2 and the partial

pressure tensors P(0)
1 and P(0)

2 have a more simplified forms [26]. In particular, ∂x1 P(0)
i j = 0 and ∂x1 P(0)

1,i j = P(0)
1,i j/x1.

As expected, Txz = Tzx = Tyz = Tzy = 0, in agreement with the symmetry of the problem. As a consequence,
there are five relevant elements: the three diagonal (Txx , Tyy , and Tzz) and two off-diagonal elements (Txy and Tyx ).

In addition, Txx 6= Tyy = Tzz and Txy 6= Tyx . The equality P(0)
s,yy = P(0)

s,zz implies Tyy = Tzz . This property is
a consequence of the interaction model considered since for non-Maxwell molecules computer simulations show
that the yy and zz elements of the pressure tensor are different [25]. In Figs. 1–6, the relevant elements of tensors
D∗

i j , D∗

p,i j and D∗

T,i j are plotted as functions of the reduced shear rate a∗ for κ12 = κ22 and several values of the
mass ratio µ. Here, the tensors have been reduced with respect to their Navier–Stokes values (except DT,i j ), namely,
D∗

i j = Di j/D0, D∗

p,i j = Dp,i j/Dp,0 and D∗

T,i j = DT,i j/x1 D0. One third of the trace of these tensors is plotted in
Figs. 1–3, while the xy element is plotted in Figs. 4–6. We observe that in general the influence of shear flow on the
mass transport is quite important. It is also apparent that the anisotropy of the system, as measured by the traces 1

3 D∗

kk ,
1
3 D∗

p,kk , and 1
3 D∗

pT kk , grows with the shear rate. This anisotropy is more significant when the impurity is heavier than
the particles of the gas. Moreover, the shear field induces cross effects in the diffusion of particles. This is measured
by the (reduced) off-diagonal elements D∗

xy , D∗
p,xy , and D∗

T,xy . These coefficients give the transport of mass along
the x axis due to gradients parallel to the y axis. While D∗

xy and D∗
p,xy are negative, the coefficient DT,xy can be
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Fig. 3. Shear-rate dependence of the trace 1
3 D∗

T,kk of the thermal diffusion tensor for x1 = 0, κ22 = κ12 and several values of the mass ratio
µ = m1/m2.

Fig. 4. Shear-rate dependence of the off-diagonal element −D∗
xy of the mutual-diffusion tensor for x1 = 0, κ22 = κ12 and several values of the

mass ratio µ = m1/m2.

Fig. 5. Shear-rate dependence of the off-diagonal element −D∗
p,xy of the pressure diffusion tensor for x1 = 0, κ22 = κ12 and several values of the

mass ratio µ = m1/m2.

positive in the region of small shear rates. We observe that, regardless of the mass ratio, the shapes of D∗
xy and D∗

p,xy
are quite similar: there is a region of values of a∗ for which −D∗

xy and −D∗
p,xy increase with increasing shear rate,

while the opposite happens for larger shear rates. The magnitude of D∗

T,xy is smaller than that of the elements −D∗
xy

and −D∗
p,xy , especially when the tracer particles are lighter than the particles of the gas. In this latter case, D∗

T,xy is
practically negligible.

5. Discussion

Diffusion of particles in a binary mixture in non-Newtonian regimes is a subject of great interest from fundamental
and practical points of view. If the mixture is strongly sheared, the mass flux j1 can be significantly affected by the
presence of shear flow so that the corresponding transport coefficients may differ significantly from their equilibrium
values. In order to gain some insight into this complex problem, a dilute binary mixture of Maxwell molecules under
USF has been considered. This is perhaps the only interaction potential for which the Boltzmann equation can be
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Fig. 6. Shear-rate dependence of the off-diagonal element D∗
T,xy of the thermal diffusion tensor for x1 = 0, κ22 = κ12 and several values of the

mass ratio µ = m1/m2.

exactly solved in some specific nonhomogeneous situations, such as in the case of the USF problem. This exact
solution is of great significance in providing insight into the type of phenomena that can occur in conditions far away
from equilibrium. In this paper, the interest has been focused on situations that slightly deviate from the USF by small
spatial gradients. Under these conditions, a generalized Chapman–Enskog method [18,20–23] around the shear flow
distribution has been used to determine mass transport in the first order of the deviations of the hydrodynamic field
gradients from their values in the reference shear flow state f (0)

s . In this case, the mass flux j(1)
1 is given by Eq. (3.2),

where the corresponding set of generalized transport coefficients {Di j , Dp,i j , DT,i j } is the solutions of the coupled
algebraic equations (3.3)–(3.5) in the unthermostatted case, while they are explicitly given by Eqs. (3.6)–(3.8) in the
presence of a Gaussian thermostat [27]. This type of external forces are usually employed in nonequilibrium molecular
dynamics simulations to compensate exactly for the viscous increase of temperature.

As expected, the results show that the coefficients {Di j , Dp,i j , DT,i j } present a complex dependence on the shear
rate and on the masses, mole fractions, and force constants. This is clearly illustrated in Figs. 1–6 for the tracer
limit case (x1 → 0). The deviations of {Di j , Dp,i j , DT,i j } from their equilibrium values are basically due to three
different reasons. First, the presence of shear flow modifies the collision frequency of the conventional diffusion
problem (ρλ12/m1m2) by a shear-rate dependent term. Second, given that the binary mixture is in general constituted
by particles mechanically different, the reference shear flow states f (0)

1 and f (0)
2 are completely different. This effect

gives rise to terms proportional to P∗

1,i j − (ρ1/ρ)P∗

i j . Third, in the unthermostatted case, the generalized coefficients
are coupled due to the inherent non-Newtonian features of the USF state. Each one of the three effects is a different
reflection of the extreme nonequilibrium conditions present in the mixture.

It is apparent that the results presented here in the particular case of Maxwell molecules may be relevant for
interpreting computer simulation results. As said in the Introduction, Sarman, Evans, and Baranyai [7] carried out
some time ago molecular dynamics simulations in a strongly sheared Lennard-Jones binary mixture to evaluate the
self- and mutual-diffusion tensor by means of Green–Kubo formulae [34]. They considered an equimolar Lennard-
Jones mixture at two different densities and the parameters in the potential were adjusted to model an argon–krypton
mixture, which means that the two components are fairly similar. As already said in Ref. [5], when one considers
this type of mixture (x1 = 0.5, m1/m2 = 0.48, κ11 = κ22 = κ12) in the thermostatted case, the general qualitative
dependence of the (reduced) mutual-diffusion tensor Di j (a∗)/D0 on the (reduced) shear rate agrees quite well with
computer simulations. Thus, theory and simulation predict that in general, the xx element increases to a maximum
and then it decreases again, while the yy element decreases with increasing shear rate. The off-diagonal elements xy
and yx are negative and their magnitude increases with a∗ for not very large values of the shear rate. However, the
kinetic theory predicts that |Dxy | > |Dyx |, while the opposite happens in computer simulations. On the other hand,
a quantitative comparison is prevented by the difficulties involved in mapping the Lennard-Jones parameters of the
mixture onto the force constants for Maxwell interactions, as well as by the fact that the simulations were performed
for densities beyond the range of applicability of the Boltzmann equation. An alternative to overcome these difficulties
is to use the well-known direct simulation Monte Carlo method [35] for dilute gases. I hope that the results derived here
for Maxwell molecules for Di j , Dp,i j and DT,i j stimulate the performance of Monte Carlo simulations to assess the
reliability of the Maxwell results to describe mass transport in strongly sheared mixtures for more realistic interaction
potentials.
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[29] V. Garzó, A. Santos, Kinetic Theory of Gases in Shear Flows. Nonlinear Transport, Kluwer Academic Publishers, Dordrecht, 2003.
[30] V. Garzó, arXiv:0709.1055v1[cond-mat.stat-mech].
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