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Instabilities in granular binary mixtures at moderate densities
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A linear stability analysis of the Navier-Stokes (NS) granular hydrodynamic equations is performed to
determine the critical length scale for the onset of vortices and clusters instabilities in granular dense binary
mixtures. In contrast to previous attempts, our results (which are based on the solution to the inelastic Enskog
equation to NS order) are not restricted to nearly elastic systems since they take into account the complete
nonlinear dependence of the NS transport coefficients on the coefficients of restitution «;;. The theoretical
predictions for the critical length scales are compared to molecular dynamics (MD) simulations in flows of strong
dissipation («;; > 0.7) and moderate solid volume fractions (¢ < 0.2). We find excellent agreement between
MD and kinetic theory for the onset of velocity vortices, indicating the applicability of NS hydrodynamics to
polydisperse flows even for strong inelasticity, finite density, and particle dissimilarity.
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Although hydrodynamics is frequently used to describe
rapid granular flows, there are still some open questions about
the domain of validity of this description [1]. As for ordinary
fluids at moderate densities, the constitutive equations for the
irreversible fluxes and the forms of the transport coefficients
can be derived from the revised Enskog kinetic theory (RET)
[2] conveniently adapted to account for the dissipative dy-
namics. The derivation of such fluxes from the corresponding
kinetic equation assumes the existence of a hydrodynamic
regime where all space and time dependence of the distribution
function only occurs through the hydrodynamic fields (normal
solution). The Chapman—Enskog expansion [3] around the
homogeneous cooling state (HCS) provides a constructive
means to obtain an approximation to such a normal solution for
states in which spatial gradients are not too large. A first-order
Chapman-Enskog expansion provides the Navier-Stokes (NS)
hydrodynamic equations and also explicit expressions for the
corresponding transport coefficients, which are defined as
functions of the coefficient of restitution and other system
parameters. However, there are still some concerns regarding
the transition from kinetic theory to hydrodynamics beyond
the quasielastic limit [1]. The reason for this concern resides
in the fact that the inverse of the cooling rate, which measures
the rate of energy loss due to collisional dissipation, introduces
anew time scale not present for elastic collisions. The variation
of the granular temperature over this new time scale is faster
than over the usual hydrodynamic time scale. However, as
the inelasticity increases, it is possible that the system could
lack a separation of time scales between the hydrodynamic
and the pure kinetic excitations such that there is no aging to
hydrodynamics or, in the language of kinetic theory, there is
no normal solution at finite dissipation.

Strictly speaking, to definitively address the validity of
hydrodynamics for dissipative systems, the complete spectrum
of the (linearized) Enskog-Boltzmann collision operator must
be known. More specifically, knowing this spectrum allows
one to see if the hydrodynamic modes (density, velocity, and
temperature) decay more slowly than the remaining kinetic
excitations at large times. To the best of our knowledge,
this has only been accomplished [4] by considering a simple
model of the Boltzmann collision operator. On the other
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hand, the complex mathematical structure of the RET makes
an exact solution to this kinetic equation intractable, even
for studying the relaxation of small spatial perturbations
of the HCS. An alternative approach is to compare the
approximate theoretical solutions to the RET (obtained from
the Chapman-Enskog method by assuming the validity of a
normal solution) with numerical solutions to the RET obtained
via the direct simulation Monte Carlo (DSMC) method [5]
or MD simulations [6]. The latter does not utilize the RET
and thus provides an even stronger test for the validity of
the theory. The determination of the critical length scale L.
for the onset of instabilities (which is generally driven by the
transversal shear mode) in freely cooling flows offers one of
the best opportunities to assess NS hydrodynamics. This kind
of instability, which can be traced to the dissipative nature of
collisions, is perhaps the most striking phenomenon that makes
dissipative flows so distinct from ordinary (elastic) gases
[7-10]. Moreover, the comparison between kinetic theory and
computer simulations for the critical size can be considered
as a clean gauge of the former since both approaches (theory
and simulation) are restricted to the linear regime where the
deviations of the hydrodynamic fields from their values in the
HCS are small.

The accuracy of the prediction of L. given by kinetic theory
has been verified for a low-density monodisperse granular
gas by DSMC [11] and more recently by MD simulations
for a granular fluid at moderate density [12]. In both cases,
the theoretical predictions for the critical size compare well
with computer simulations even for strong dissipation. On
the other hand, the results for polydisperse granular systems
(namely, when the system is constituted by grains of different
masses, sizes, and coefficients of restitution) are more scarce.
Polydispersity introduces phenomena that have no counterpart
in monodisperse flow but may dramatically influence system
behavior, such as species segregation [13]. To the best of our
knowledge, the only comparison for shearing instability for
binary systems has been recently carried out in Ref. [14] in
the dilute limit case where the collisional contributions (due to
density effects) to the NS transport coefficients are neglected.
As for Ref. [11], theory compares well with the DSMC
simulations of the Boltzmann equation. However, given that
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most solids flows present in nature are dense and polydisperse,
a proper theoretical framework for these systems is critical to
obtain an accurate description of practical particle flows.

The aim of this Rapid Communication is to assess the ability
of hydrodynamics to predict L. via a comparison with MD
simulations in a binary granular mixture at moderate density.
The theoretical results are based on a recent solution to the
RET [15] that takes into account the nonlinear dependence
of the transport coefficients on dissipation. This Chapman-
Enskog solution [15] differs from some previous theoretical
attempts for dense granular flows [16] that were obtained for
quasielastic particles and so, none of the transport coefficients
depend on the coefficients of restitution. Thus, the present
theory subsumes all previous analyses [11,12,14,16], which
are recovered in the appropriate limits. Given that MD sim-
ulations avoid any assumptions inherent in the kinetic theory
(e.g., molecular chaos) or approximations made in solving the
RET by means of the DSMC method, the comparison between
kinetic theory and MD simulations carried out here can be
considered as the most stringent quantitative assessment of
kinetic theory to date for conditions of practical interest. In
this context, the results reported in this Rapid Communication
provide strong evidence of the reliability of hydrodynamics for
a wide range of densities and inelasticities in a quite complex
(polydisperse) system.

We consider a binary mixture of inelastic, smooth, hard
spheres of masses m; and m», and diameters o and o,. The
inelasticity of collisions among all pairs is characterized by
three independent constant coefficients of normal restitution
a;j. At a kinetic level, the relevant information on the state
of the mixture is given through the one-particle distribution
functions which obey the RET. From it, one can derive the NS
hydrodynamic equations for the granular binary mixture with
explicit expressions for the hydrostatic pressure, the cooling
rate, and the complete set of transport coefficients. The detailed
form of the above quantities can be found in Ref. [15]. As
for ordinary fluids, all these quantities (which have been
approximately obtained by considering the leading terms in
a Sonine polynomial expansion) are given in terms of the
mole fraction x; = n;/(n; + ny) (n; being the number density
of species i), the mass ratio m; /m,, the size ratio o1 /0>, the
solid volume fraction ¢, and the coefficients of restitution «;;.

The hydrodynamic equations admit a nontrivial solution
which corresponds to the so-called HCS. It describes a uniform
state (Vxig = Vnyg = VIy = 0) with vanishing flow field
(U = 0) and a granular temperature Ty decreasing monotoni-

cally in time, namely, (9; + {P(IO))TH = 0. Here, the subscript H

denotes the homogeneous state, ny = nig + 1oy, and {P(IO) x
/Ty is the zeroth-order contribution to the cooling rate.
However, it is well known [7] that the HCS is unstable with
respect to long enough wavelength perturbations. To obtain
quantitative estimates on the first stages of this instability, a
(linear) stability analysis of the NS hydrodynamic equations
with respect to the HCS can be performed. As usual, we
assume that the deviations 8yg(r,t) = yg(r,t) — yup(t) are
small, where 8yg(r,7) denotes the deviation of {x;,n,U,T}
from their values in the HCS. The resulting equations are
then written in dimensionless form by using the (dimen-

sionless) time T = % for vu(t)dt’ and the (dimensionless)
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length £ = %ggggr. Here, vy(t) = Tu(t)/m, m = (m1 +
m,)/2,and vy = [879"V/2/(d + 2)T'(d/2)Inyoty ' vy, where
o1p = (01 + 02)/2.

A set of Fourier transformed dimensionless variables are
introduced by Pk = 8x1k/X14, Pk = Onk/nyg, Wk = dug/vy,
and 0 = 67Ty /Ty, where Sykg = {01k, Pk, Wi, 0} is defined as

Sykp(T) = / dee ™ sys(L,7). (1)

As MD simulations carried out in this work clearly show,
the origin of the instability is associated with the transversal
components of the velocity field wx; = wyx — (W - K)k. As
such, L. = Lyorex, Where Lyoex 1S the critical length scale
for velocity vortex instabilities. As expected [11,12,14], the
d — 1 shear (transversal) modes wy decouple from the other
four longitudinal modes, greatly simplifying the theoretical
analysis of the onset of instability. The evolution equation of
Wk 1S

BWkJ_ 1 2
—n*k—¢f =0, 2
P + (277 & ) WkL ()

where n* = (anH)/(,oHva) is the (dimensionless) shear vis-
cosity of the mixture and ¢j = l({o) /vua [15]. Here, pg =
miniy + monoy is the total mass density. The solution to
Eq. (2) is wxi(k,7) = wg, (0)exp[s) (k)T], where s, (k) =
&5 - %n*kz. This identifies a critical wave number k{ =
V/2¢§ /n* such that a linear excitation of the (scaled) transversal
velocity with k < k9 grows in time.

Since the simulations made here consider periodic bound-
ary conditions, the smallest allowed wave number is 27 /L,
where L is the system length. Hence, for given values of the
parameters of the mixture (masses, diameters, composition,
coefficients of restitution, and volume fraction), we can
identify a critical length Lyoex such that the system becomes
unstable when L > Loex. The value of Lyopex 1S

d+2 T(%) IN
2V2 T4 g

In order to assess the accuracy of the theoretical predictions,
we have performed MD simulations. A cubic, periodic domain
of length L that consists of a total number of N spheres (d = 3)
is simulated via hard-sphere MD [6]. The parameter space
over which Eq. (3) has been verified is the mole fraction xi,
the mass ratio m/m;, the ratio of diameters o, /07, the solid
volume fraction ¢ = (r/ 6)(n1013 + n2023), and the (common)
coefficient of restitution o = oy = oy = «y2. Two different
values of the solid volume fraction ¢ have been considered
here, ¢ = 0.1 and ¢ = 0.2, both representing a granular fluid
with moderate density. In addition, three different values of
o have been studied: o = 0.9 (weak dissipation), o = 0.8
(moderate dissipation), and o = 0.7 (strong dissipation). To
determine the stability of a given simulation with respect
to velocity vortices, we have used a Fourier analysis [17].
Specifically, we use an integrated Fourier transform of the
momentum field to assess the magnitude of contributions to
given wavelengths. A monotonic increase in the magnitude
of contribution with respect to wavelength corresponds to a

(o)~ 3)

Lvortex =

020201-2



INSTABILITIES IN GRANULAR BINARY MIXTURES AT ...

homogeneous flow. Relatively large contributions (or exci-
tations) at small wavelengths (27 /L or 47 /L in the HCS)
correspond to velocity vortices, organized structures in the
momentum field.

For each set of particle parameters simulated, a critical
dimensionless length scale exists that distinguishes stable
systems from ones unstable to velocity vortices. To determine
this critical scale, we have considered 24 replicate simulations
(that only differ in initial conditions) for a range of domain
length scales. If any one of the 24 replicates is unstable, the
corresponding L /o7 is considered unstable. Thus, a range for
Lyorex /012 can be determined where the higher L/oy, (i.e.,
upper bound) of this range is unstable and the smaller L /o,
(i.e., lower bound) is stable. As an illustration, Fig. 1 shows
snapshots of velocity and concentration fields. Small systems
will remain stable [see Figs. 1(a) and 1(b) for homogeneous
velocity field and particle positions, respectively], while
instabilities [see Figs. 1(c) and 1(d) for vortices and clusters,
respectively] will manifest in large systems after long times.

Next, the (linear) hydrodynamic predictions of Lygex given
by Eq. (3) are compared to results from MD simulations.
Figure 2 shows Lyoiex/012 as a function of the mass ratio and
coefficient of restitution with o1/0, = 1, and x; = 0.1. It is
quite apparent that Fig. 2(a) (¢ = 0.1) shows excellent agree-
ment between hydrodynamics and MD simulations throughout
the parameter space studied, even for significant dissipation in
combination with large mass ratios. For moderate densities
(¢ = 0.2) and dissipation (¢ = 0.9) [see Fig. 2(b)], excellent
agreement is observed up to quite extreme mass ratios

FIG. 1. (Color online) Visualizations from a MD simulation of an
equimolar mixture (x; = 0.5) withm/m, =2,01/0, =3,¢ = 0.2,
and o = 0.7 of (a) stable, coarse-grained velocity field at five
collisions per particle (or “cpp”), (b) stable particle positions at
five cpp, (c) unstable, coarse-grained velocity field at 400 cpp, and
(d) cluster systems at 400 cpp. A cell size of L/5 is used for local
velocity averaging.
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FIG. 2. (Color online) Critical length scale for velocity vortices
as a function of the mass ratio m;/m, with x; = 0.1, 01/0, =1
for (a) ¢ =0.1 and (b) ¢ = 0.2. The data points correspond to
MD simulations, while the lines are the theoretical predictions
given by Eq. (3). (Blue) circles/solid line, (red) triangles/dashed
line, and (black) squares/dot-dashed line correspond to o = 0.9,
o = 0.8, and o = 0.7, respectively. Error ranges are the size of the
data points and are omitted.

(m1/my = 10), while for higher dissipation (o = 0.7), strong
agreement is observed to significant mass ratios (m/m, = 4).
An interesting qualitative agreement is also displayed in Fig. 2.
For both MD simulations and hydrodynamics, the Lyoex/012
predictions for ¢ = 0.7 and o = 0.8 begin to converge for
large mass ratios and eventually crossover. Figure 3(a) shows
Lyorex /012 as a function of the ratio of diameters with x; = 0.5,
myi/my =2, and ¢ = 0.2. Excellent agreement is observed
throughout the conditions studied. Figure 3(b) shows the
critical size as a function of species composition x; for
a relatively large mass ratio (m;/m, = 6) with o1/0, = 1,
and ¢ = 0.2. We observe that even in the extreme case of
small composition (x; = 0.1) and large dissipation (o = 0.7),
hydrodynamics and MD deviate by less than roughly 10%.
For moderate dissipation (¢ = 0.9), we observe that the theory
compares very well with MD for all species compositions.
We see that the comparison carried out in Figs. 2 and 3
for Lyornex Shows in general an excellent agreement between
theory and simulation when physical properties of particles
are similar, while only good (at worst 20% error) for the
most extreme conditions studied [e.g., Fig. 2(b); m/m, = 10,
x;1 =0.1,¢ = 0.2, and @ = 0.7]. On the other hand, based on
the results derived from the RET for ordinary fluid mixtures
[18], one would expect that the accuracy of the first Sonine
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FIG. 3. (Color online) Critical length scale for velocity vortices
as a function of (a) the ratio of diameters o, /0, with m;/m, = 2,
x; = 0.5, and ¢ = 0.2 and (b) the mole fraction x; with m;/m, = 6,
01/02 =1, and ¢ = 0.2. The meaning of symbols and lines is the
same as that of Fig. 2.
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approximation to the shear viscosity n* [which is the transport
coefficient involved in Lygnex; see Eq. (3)] would decrease as
the mass ratio becomes more disparate. In this context, the
leading order truncation of the Sonine polynomial expansion
may be responsible for the discrepancies found between
theory and MD rather than assumptions inherent to the RET,
such as the absence of velocity correlations (molecular chaos
hypothesis). In fact, recent results [19] for the tracer diffusion
coefficient D have shown that in general the second Sonine
approximation to D improves significantly the prediction
of the first Sonine solution, especially for high dissipation
and/or extreme mass or diameter ratios. The inclusion of the
second-order Sonine corrections to n* could mitigate part of
the discrepancies observed here, especially in the case of quite
extreme values of the mass ratio.

In summary, the comparison addressed here between
the predictions of linear hydrodynamics (derived from the
RET) and discrete-particle computer simulations provides
the most stringent test to date for hydrodynamic descrip-
tion of multicomponent granular fluids. This hydrodynamic
description continues to be a source of controversy, from
the appropriateness of the RET (which is derived under
the molecular chaos assumption) for flows with moderate
densities to the appropriateness of the NS equations. Here, we
use MD simulations (which do not rely on any of the
above assumptions) as our ideal data set. The system we
examine is complex; hydrodynamic instabilities in a transient,
polydisperse system at moderate density with significant
dissipation levels. The good agreement found in this paper
between the predictions of linear hydrodynamics (with the
NS transport coefficients derived from the RET) and MD
simulations must be considered as a nontrivial example of
the reliability of hydrodynamics as a quantitative predictive
tool for moderate dense and highly dissipative granular binary
mixtures. Therefore, although the theoretical method used here
(Chapman-Enskog) is formal and does not strictly establish
the existence of hydrodynamics, our results (theory and MD
simulations) clearly indicate that the granular temperature can
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still be considered as a slow hydrodynamic variable such that
the normal solution to the RET is still applicable. It is also
worth noting that recent work [20] has shown that NS order
equations for monodisperse granular systems perform well
even in the presence of quite large spatial gradients (whereas
small gradients are present at the onset of the vortex instability
examined here). This finding echoes what is also true for
rarefied gases, i.e., the NS approximation has a much wider
range of applicability than would be expected from a strict
interpretation of its assumption. Accordingly, the current work
on polydispersity and recent work [20] on higher-order effects
implies that the NS hydrodynamic description is much more
robust than previously considered possible.

Hydrodynamic descriptions derived from kinetic theory
are critical tools in the description of numerous industrial
processes involving solid particles. These descriptions are now
standard features of commercial, multiphase computational
fluid dynamics codes (such as FLUENT) and open-source,
research codes (such as MFIX). Given that such codes rely on
accurate expressions for the transport coefficients, it is evident
that the results displayed in the present paper are of great
value not only to the granular physics community working on
kinetic theory but also to more applied scientists interested in
more practical problems (e.g., biomass gasification, mixing of
pharmaceutical powders, heat exchange in concentration solar
power plants, synthesis of fine chemicals, pollution control,
and ejection of lunar soil from rocket landings). Because
of this pervasiveness, the applicability of hydrodynamics to
complex polydisperse systems should resonate throughout the
fluid dynamics community.
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