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Abstract. A theory based on a solution of the inelastic Enskog equation that goes beyond the weak
dissipation limit is used to determine the thermal diffusion factor of a binary granular mixture under
gravity. The Enskog equation that aims to describe moderate densities neglects velocity correlations but
retains spatial correlations arising from volume exclusion effects. As expected, the thermal diffusion factor
provides a segregation criterion that shows the transition between the Brazil-nut effect (BNE) and the
reverse Brazil-nut effect (RBNE) by varying the parameters of the system (masses, sizes, composition,
density and coefficients of restitution). The form of the phase diagrams for the BNE/RBNE transition
is illustrated in detail in the tracer limit case, showing that the phase diagrams depend sensitively on
the value of gravity relative to the thermal gradient. Two specific situations are considered: i) absence of
gravity, and ii) homogeneous temperature. In the latter case, after some approximations, our results are
consistent with previous theoretical results derived from the Enskog equation. Our results also indicate
that the influence of dissipation on thermal diffusion is more important in the absence of gravity than in
the opposite limit. The present analysis, which is based on a preliminary short report of the author (Phys.
Rev. E 78, 020301(R) (2008)), extends previous theoretical results derived in the dilute limit case.

PACS. 05.20.Dd Kinetic theory — 45.70.Mg Granular flow: mixing, segregation and stratification —

51.10.4y Kinetic and transport theory of gases — 05.60.-k Transport processes

1 Introduction

One of the most important phenomena occurring in gran-
ular flows containing more than one species (a polydis-
perse system) is the segregation and mixing of dissimilar
grains. This phenomenon, in which a homogeneous mix-
ture of different species becomes spatially non-uniform by
sorting themselves in terms of their masses and/or sizes,
is of central interest in the field of granular matter mainly
due to its industrial importance (powder metallurgy, phar-
maceutical pills, glass and paint industries, ...). The re-
sulting non-uniformity is usually an undesirable property,
although there are some applications in which one wants
to force species segregation (e.g., the separation of mined
ores). Unfortunately, in spite of its practical relevance, the
physical mechanisms that govern mixing and separation
processes are not well understood yet. This fact motivates
the development of fundamental theories that predict ac-
curately the bulk behavior of these systems in order to be
able to control such processes.

It is well known that when a binary mixture consti-
tuted by one large ball and a number of smaller ones is
subjected to vertical shaking in a container, usually the
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large particle (intruder) tends to climb to the top of the
sample against gravity. This phenomenon is known as the
Brazil-nut effect (BNE) and is an important problem wor-
thy to study [1-4]. On the other hand, a series of exper-
imental works [5,6] have also observed the reverse buoy-
ancy effect, namely, under certain conditions the intruder
can also sink to the bottom of the granular bed. This
effect is known as the reverse Brazil-nut effect (RBNE).
Several mechanisms have been proposed to explain the
transition BNE/RBNE;, for example, percolation [1], arch-
ing [3], convection [2,4,7], inertia [5], condensation [6], and
interstitial-fluid effects [8]. Among the different competing
mechanisms, thermal diffusion becomes the most relevant
one at large shaking amplitude where the sample of grains
resembles a granular gas. In this regime, binary collisions
prevail and kinetic theory can be a quite useful tool to
analyze granular systems.

Thermal diffusion (or thermophoresis) in dilute gran-
ular mixtures has been a subject of current interest in
the past few years. Thus, Serero et al. [9] have obtained
a Chapman-Enskog solution of the Boltzmann equation
given in powers of both the hydrodynamic gradients (or
equivalently, the Knudsen number) and the degree of dis-
sipation €;; = 1 — a7 (ay; being the coefficients of resti-
tution of the mixture). Their theory has been applied to
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analyze the relation between thermal diffusion and segre-
gation in granular mixtures. In particular, they predict a
novel effect, namely, the fact that even when the species
differ only by their respective coeflicients of restitution,
they segregate when subject to a temperature gradient.
Nevertheless, given that their method is based on an ex-
pansion around the elastic limit, their zeroth-order so-
lution in the corresponding perturbation theory satisfies
energy equipartition. Since this assumption can only be
considered as acceptable for nearly elastic systems, some
efforts have been made to assess the impact of energy
non-equipartition (which is a generic feature of granu-
lar mixtures) on thermal diffusion [10,11]. In particular,
the thermal diffusion factor has been recently [11] evalu-
ated for a dilute granular binary mixture from a solution
of the inelastic Boltzmann equation that applies for ar-
bitrary degree of dissipation and takes into account the
non-equipartition of energy. Interestingly, the results show
that the relative position of the large particles (particles of
mass mq) with respect to the small particles (particles of
mass ms) is determined by the sign of the control param-
eter 1 — (maoTy/m1Ts), where T} and T5 denote the partial
temperatures of both species. While in a molecular or or-
dinary gas mixture this sign is fixed only by the mass ratio
of the particles (since T} = T5), for a granular gas mixture
it also depends on the temperature ratio because of the
lack of equipartition. This segregation criterion compares
well with molecular dynamics (MD) simulations [10] car-
ried out in the tracer limit case (namely, a binary mixture
where the concentration of one of the species is negligible).

In the case of dense granular mixtures, previous rele-
vant contributions have also been reported. Thus, Jenkins
and Yoon [12] have developed a hydrodynamic theory for
the segregation of elastic particles, finding a criterion for
segregation relatively close to the numerical results ob-
tained by Hong et al. [6]. In the case of binary mixtures
of smooth, nearly elastic spheres, two interesting works
have been carried out by Arnarson and Willits [13] and
Arnarson and Jenkins [14]. While thermal diffusion fac-
tor was determined with and without gravity in the first
paper [13], simplified constitutive relations for the trans-
port coefficients of mixtures constituted by quite identical
particles were derived in the second one [14]. Moreover,
these authors [14] also studied segregation in a steady
shearing flow with gravity transverse to the flow. On the
other hand, all the above works for dense gases only ap-
ply for quasielastic particles so that non-equipartition ef-
fects on segregation are not accounted for. For this rea-
son, more recently Trujillo et al. [15] have derived an evo-
lution equation for the relative velocity of the intruder
by using the Enskog kinetic theory proposed by Jenk-
ins and Mancini [16] that is restricted to nearly elastic
particles. Interestingly, they considered the influence of
the non-equipartition of granular energy on segregation
through constitutive relations for the partial pressures.
These quantities (which are given in terms of the partial
temperatures) are determined from the same condition as
the one obtained when the granular gas is heated by means
of a stochastic thermostat [17,18]. Therefore, although not
explicitly stated by the authors, their results are affected
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by the presence of the thermostat. However, in spite of
the general results obtained by Trujillo et al. [15], their
phase diagrams for the transition BNE/RBNE have been
derived by assuming that the temperature is uniform in
the bulk region, so that the segregation dynamics is only
driven by the gravitational force. Therefore, it appears
that a complete theoretical description for the dynamics
of BNE/RBNE in dense gases is still lacking.

The goal of this paper is to analyze the segregation in-
duced by an externally imposed temperature gradient in
a moderately dense granular binary mixture under grav-
ity. The segregation criterion is obtained from the thermal
diffusion factor A, which is given in terms of the transport
coefficients of the mass flux. These coefficients are deter-
mined from the extension to driven systems of a recent
solution [19,20] of the inelastic Enskog equation that cov-
ers some of the aspects not taken into account in previous
works for dense gases [12,15] and extends previous results
derived for dilute binary mixtures [10,11] to higher den-
sities. Specifically, i) it takes into account the non-linear
dependence of the transport coefficients on dissipation so
that the theory is expected to be applicable for a wide
range of values of the coefficients of restitution; ii) it con-
siders the combined effect of gravity and thermal gradi-
ents on thermal diffusion and iii) it applies for moderate
densities. Consequently, the theory subsumes all previous
analysis for both dense and dilute gases, which are recov-
ered in the appropriate limits. In addition, the theoretical
predictions are in qualitative agreement with some MD
simulations [10,21,22] and are also consistent with previ-
ous experimental works [23]. A preliminary short report
of some of the results presented here has been given in
ref. [24].

As said above, our hydrodynamic theory aims to repro-
duce the qualitative trends observed in real experiments
of granular mixtures. In order to fluidize the system, in
most of the experiments energy is added to the gas by
the bottom wall which vibrates in a given way. Due to
this external injection of energy, the system reaches a
steady state whose properties far away from the bound-
aries (bulk domain) are expected to be insensitive to the
details of the driving forces. However, due to the mathe-
matical complexities associated with the use of vibrating
boundary conditions, here the gas will be driven (heated)
by means of a stochastic external force, coupling the ve-
locity of each particle to a white noise. The main advan-
tage of such a driving mechanism is that it lends itself to
theoretical progress. This kind of forcing, which has been
shown to be relevant for some two-dimensional experimen-
tal configurations with a rough vibrating piston [25], has
been used by many authors [26] in the past years to an-
alyze different problems, such as segregation in granular
mixtures [15,24]. Although the relationship of these ex-
ternal forces with real vibrating walls is not clear to date,
some results [11,18] derived in driven steady states for the
temperature ratio by using the stochastic driving method
agree quite well with MD simulations [21] of shaken mix-
tures. This agreement suggests that this driving method
can be seen as a plausible approximation for comparison
with experiments. Furthermore, since we want to compare
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our theoretical results with the ones derived by Trujillo et
al. [15] for thermalized systems, it seems natural to con-
sider the same conditions (a granular mixture heated by
the stochastic thermostat) as those assumed in ref. [15].
This is an another additional reason to consider a driven
granular mixture instead of an unforced system.

The plan of the paper is as follows. First, the thermal
diffusion factor A is defined and evaluated in sect. 2 by
using a hydrodynamic description. This factor provides
a convenient measure of the separation or segregation of
species generated by a thermal gradient in a multicompo-
nent system. Once A is expressed in terms of the pressure
and the transport coefficients associated with the mass
flux, these coefficients are explicitly determined by solving
the Enskog kinetic equation by means of the Chapman-
Enskog method. Some technical details of the extension of
this method to driven systems are given in appendix A.
The knowledge of the transport coefficients allows us to
get A as a function of the parameter space of the problem,
namely, the mass and diameter ratios, the composition,
the three independent coefficients of restitution of the bi-
nary mixture and the solid volume fraction. In sect. 4, the
form of the phase diagrams BNE/RBNE is widely inves-
tigated in the tracer limit case by varying the different
parameters of the system. Moreover, a close comparison
with the theoretical results [12,15] derived for thermal-
ized (driven) dense gases is also carried out, showing that
even in this limit the segregation criterion derived in this
paper is more general than the one previously obtained
since it covers the complete range of the parameter space
of the system. The paper is closed in sect. 5 with a brief
discussion of the results obtained in this paper.

2 Hydrodynamic description for segregation
by thermal diffusion

We consider a binary mixture of inelastic hard disks
(d = 2) or spheres (d = 3) of masses m; and diameters
o; (i = 1,2). Without loss of generality, we assume that
01 > og. The inelasticity of collisions among all pairs is
characterized by three independent constant coefficients
of restitution a1, asgg, and ays = agy. The mixture is in
presence of the gravitational field g = —gé,, where g is a
positive constant and €&, is the unit vector in the positive
direction of the z axis. In the hydrodynamic description,
it is assumed that the state of the mixture is characterized
by the local number densities n;(r, t), flow velocity U(r, t),
and temperature T'(r, t). The time evolution of these fields
is given by the balance hydrodynamic equations

Vi

m;

DU+p'V.-P=g,

TV -j;
Dtngz J

-
i=1 v

(2)

2
+ o (Voq+P:VU) = (T, (3)

where Dy = 9; + U - V is the material derivative, p is the
total mass density and n = ny+ns. In the above equations,
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ji is the mass flux of species i, P is the pressure tensor, q
is the heat flux, and ( is the cooling rate associated with
the energy dissipation in collisions.

In this paper, we are interested in analyzing segrega-
tion by thermal diffusion in a binary mixture [27]. Ther-
mal diffusion is caused by the relative motion of the com-
ponents of a mixture due to the presence of a thermal
gradient. As a consequence of this motion, a steady state
is reached in which the separating effect arising from the
thermal diffusion is balanced by the remixing effect of or-
dinary diffusion [27]. From an experimental point of view,
the amount of segregation parallel to the thermal gradi-
ent can be characterized by the thermal diffusion factor
A. Phenomenologically, it is defined at the steady state in
the absence of convection (zero flow velocity) through the

relation
olnT 0 s
Y/ il I [
0z 9z <n2> ’

where gradients only along the vertical direction (z axis)
have been assumed for simplicity. Let us assume that grav-
ity and thermal gradient point in parallel directions (i.e.,
the bottom plate is hotter than the top plate, 9, InT < 0).
Thus, when A > 0, the larger particles 1 tend to rise with
respect to the smaller particles 2 (i.e., 9, In(nq/n2) > 0)
while, when A < 0, the larger particles fall with respect to
the smaller particles (i.e., 9, In(ny/n2) < 0). The former
situation is referred to as the Brazil-nut effect (BNE) while
the latter is called the reverse Brazil-nut effect (RBNE).
As said before, we consider an inhomogeneous non-
convecting steady state with only gradients in the z direc-
tion. Since U = 0, then the mass flux j; = —jo vanishes
in the steady state according to the balance equation (1).
Moreover, clearly the pressure tensor is diagonal for this
state and so, P;; = pd;; where p is the hydrostatic pres-
sure. In this case, the momentum balance equation reduces

to
o _

(4)

(5)

As will be shown later, the spatial dependence of the pres-
sure p is through its dependence on the number densities
n; and the temperature 7. As a consequence, eq. (5) can
be written more explicitly as

p p Ip o
70T+ 8nlazn1 + ——0.ny = —py, (6)

8n2
where the partial derivatives 0,,p and Orp will be com-
puted once the equation of state for the mixture is ob-
tained. To close the problem of determining A one needs
a constitutive equation for the mass flux. Symmetry con-
siderations yield

. m? on
J1,2 = ——1p, = -
P 0z

where D1 is the kinetic diffusion coefficient, D5 is the
mutual diffusion coefficient, and DY is the thermal diffu-
sion coefficient. These transport coefficients measure the
contribution of each independent gradient to the mass flux
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of large particles (intruders). The condition j; , = 0 yields
the relation

.131/\1DT1 + $2>\2DT2 = —D{*, (8)

where x; = n;/n is the mole fraction of species i,

0, Inn;
o,InT"’ (9)

A=

and we have introduced the reduced coefficients

m;m, Vo [Z0)
AUSAVASYS p DT+ — P D{,

ijs 1
pT J 1 nT (O)

o
D} =
where g is an effective collision frequency (to be chosen

later). Moreover, in reduced units, eq. (6) can be written
as

T101A1 + 220202 = —(p* + g). (11)
Here, p* = p/nT, 3; = T~(dp/dn;), and
* P9
=2 __ <0 (12)
o)
n(52)

is a dimensionless parameter measuring the gravity rela-
tive to the thermal gradient. This quantity measures the
competition between these two mechanisms (g and 9,T)
on segregation.

In terms of the ratios \;, the thermal diffusion factor
can be written as

A=Ay — A (13)

where A\ and Ay are the solution to the set of linear equa-
tions (8) and (11). Their expressions are

\, _ " +0)Di = @D
z1(Be DYy — f1DYy)
DT* _ * * D*

Ay = B51Dq *(p +g )* 11 (14)
z2(B2D7; — 51 D7)

The condition A = 0 (or equivalently, A\; = A3) provides
the criterion for the BNE/RBNE transition. According
to eqgs. (14), and assuming that S D7y — $1 D7y # 0, the
condition A\; = Ao implies

(p* +g") (@1 D}y + 22 D1y) = (w161 + x262) D7 " (15)
This equation gives the line delineating the regimes be-
tween BNE and RBNE. To get the dependence of the ther-
mal diffusion factor on the parameters of the mixture, the
explicit form of the transport coefficients and the equa-
tion of state is needed. This can be achieved by solving
the Enskog equation by means of the Chapman-Enskog
method.

3 Enskog kinetic theory

We adopt now a kinetic theory point of view and start
from the Enskog kinetic equation for the system. Thus, all
the macroscopic (or hydrodynamic) properties of interest
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of the mixture are determined from the one-particle veloc-
ity distribution functions of each species f;(r,v,t). Since
thermal diffusion is given in terms of the transport coeffi-
cients D11, D12, and D{ associated with the mass flux ji,
our goal here is to solve the corresponding set of inelas-
tic Enskog equations by applying the Chapman-Enskog
method [28] to first order in the spatial gradients. The
Enskog equation neglects velocity correlations among par-
ticles which are about to collide, but it takes into account
the dominant spatial corrections to the Boltzmann equa-
tion (which only applies for dilute gases) due to excluded-
volume effects. Although the first assumption (molecular
chaos hypothesis) can be questionable at high densities,
there is substantial evidence in the literature of the accu-
racy of the Enskog theory for densities outside the dilute
limit (moderate densities) and values of dissipation be-
yond the quasielastic limit [29]. As a matter of fact, this is
the only available theory at present for making explicit cal-
culations of the transport properties of moderately dense
gases.

As said in the Introduction, here the mixture is driven
by a stochastic external force (thermostat) that mimics
the effect of a thermal bath. This external driving method
is usually employed in computer simulations [26] to com-
pensate for cooling effects associated with the inelasticity
of collisions. Under these conditions, the Enskog equation
for the binary mixture reads

- 1GT, 02
ot

vjﬁmi 2

0
g av) fi(rvvat)

= > TylvIfi0), £, (16)
J
where the collision operator J;;[v|fi(t), f;(t)] is
J’J[rth'fz(
/dVQ/dO'@ o -g12)(0 - g12)
x [aij Xij(r1,1v1 — 0i5) fi(r, vist) fi(r1 — o745, V53 t)
—Xij(r1, 11 4+ 035) fi(re, viit) fi(ry + o4, vas t)] . (17)

Here, 0;; = 040, 0,; = (0, + 0;)/2, ¢ is a unit vector
along the centers of the two colliding spheres, g5 = vi —
v, a;; (0 < ;5 < 1) is the coefficient of restitution for
collisions between particles of species ¢ and j, and x;; is
the pair correlation function at contact. The precollisional
velocities are given by

— Hji (1 + Oéi_jl) (3’
vy = vy + pij (1+ a;jl) (o

" 812)0
: g12)3

Vlll =V
(18)

where p;; = m;/(m;+m;). Upon writing eq. (16), we have
assumed that each species is driven by means of a stochas-
tic Langevin force representing Gaussian white noise [30].
This force is written as F; = m;&, where the covariance of
the stochastic acceleration has been chosen to be the same
for both species [17,31]. In the context of the Enskog equa-
tion (16), this external force is represented by a Fokker-
Planck collision operator of the form —1(¢;T;/m;)9%/0v?,
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where T; is the temperature of species ¢ and (; is the par-
tial cooling rate associated with T;. Note that the covari-
ance of the external force has been taken to achieve a
constant temperature in the homogeneous state. The gen-
eralization of the force to the inhomogeneous case is es-
sentially a matter of choice and here, for simplicity, we
have assumed that the stochastic force has the same form
as in the homogeneous case except that now (; and T;
are in general functions of space and time. This simple
choice has been widely used in ordinary gases to analyze
non-linear transport in shearing systems [32].

The Enskog kinetic equation for (undriven) multicom-
ponent systems has been recently solved [19,20] by means
of the Chapman-Enskog method [28]. The application of
this method to the driven case is easy and some technical
details are given in appendix A. As for elastic collisions,
the transport coefficients Dy, D1s, and DT are the so-
lutions of a set of linear integral equations, which can be
approximately solved by considering the first Sonine ap-
proximation. The explicit expressions for these transport
coefficients and the pressure are given by eqs. (A.20, A.21)
and (A.6), respectively.

The transport coefficients and the pressure are given
as functions of the temperature ratio v = T3 /T5. This
quantity measures the departure of the system from the
energy equipartition. As confirmed by computer simula-
tions [10,21,33], experiments [34] and kinetic theory cal-
culations [35], the partial temperatures of both species
are in general different. Before considering the segregation
problem, the dependence of the temperature ratio v on the
parameters of the system is worth analyzing. The condi-
tion to determine the temperature ratio in the (stochastic)
driven case differs from the one derived in the undriven
(free cooling) case [35]. In the first case (driven case), v is
determined from the condition [17,18]

(0)
T:
_e b (19)
ma

CfO)Tl
my

while «y is obtained by requiring the equality of the cooling
rates in the free cooling case, i.e.,

=g (20)

Here, Ci(o) are the partial cooling rates evaluated by using

the zeroth-order approximation fi(o) to the velocity distri-
bution function. Their expressions are given by eq. (A.4).
It must be noted that in the case of boundary condi-
tions corresponding to a sawtooth vibration of one wall
the condition to get the temperature ratio coincides with
the one derived from the stochastic thermostat [18]. Since
the condition to determine the ratio T /7% is different in
the driven and undriven states, it is interesting to ex-
plore the similarities and differences between the tem-
perature ratios in both situations. Note that, according

to eq. (A.4), the dependence of do) on v in the tracer
limit (z; — 0) is through the ratio of mean-square ve-
locities © = moTy/m1Ts. In terms of the parameter O,
the conditions (19) and (20) are cubic equations with a
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Fig. 1. (Color online) Plot of the ratio of the mean square
velocities moT1 /m1T> as a function of h = ma(1+ai12)/2(m1+
mg) for hard disks (d = 2), a2 = 0.95, 01/02 = 1 in the case
of a dilute gas (¢ = 0) in the tracer limit (z; — 0). The solid
lines are the theoretical predictions given by egs. (19) and (20)
and the symbols are MD simulation results obtained by Brey
et al. [10] for different values of the mass ratio: mi/mo = 2
(triangles), 1 (squares), 0.75 (stars), and 0.5 (circles).

unique real, positive solution. In particular, the behavior
of the solution in the limit @ — 0 for undriven homoge-
neous states has been analyzed by Santos and Dufty [36],
where a change similar to a second-order phase transition
has been shown. In fig. 1, we plot @ as a function of the
dimensionless quantity h = mao(1 + @i12)/2(m1 + ms) in
the tracer limit for a dilute gas of hard disks (d = 2)
with ag2 = 0.95 and o1/09 = 1. The theoretical pre-
dictions obtained from the conditions (19) and (20) in-
dicate that © is a function only of the parameter h for
given values of age and o1 /03 [36]. MD simulation results
obtained by Brey et al. [10] in an open vibrated granu-
lar gas for different values of the mass ratio have been
also included. It is apparent that, for the range of values
explored in fig. 1, the heating mechanism slightly affects
the value of @ since the theoretical curves obtained from
the driven and undriven conditions yield quite identical
results. Moreover, the agreement between theory (driven
and undriven cases) and simulation data is very good, ex-
cept perhaps for small values of h where the results ob-
tained in the undriven case compare with simulation data
better than those derived in the driven case. On the other
hand, significant differences between the results obtained
with and without a thermostat for the temperature ra-
tio T1 /Ty are observed in fig. 2, where T /T5 is plotted
versus the size ratio o1 /09 for binary mixtures composed
of spheres of the same material (and so, the same mass
density, mi/ms = /(01/02)?) and equal volumes of large
and small particles (i.e., xo = (01/02)321). The theoreti-
cal results are compared with MD simulations of Schroter
et al. [21] in agitated mixtures with o = 0.78. We have
considered two different values of the solid volume frac-
tion ¢: ¢ = 0 (low-density regime) and ¢ = 0.2 (moderate
densities). Here, for hard spheres (d = 3), the solid volume
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Fig. 2. (Color online) Plot of the temperature ratio 71 /7> as
a function of the size ratio o1 /02 for a;j = a = 0.78 in the case
of mixtures composed of spheres of the same mass density and
equal total volumes of large and small particles. Two different
values of the solid volume fraction have been considered: ¢ = 0
(solid lines) and ¢ = 0.2 (dashed lines). The points refer to MD
simulations of Schroter et al. [21] in agitated mixtures.

fraction is defined as ¢ = (7/6)(n103 +na03) while for the
pair correlation function evaluated at zertoh-order the fol-
lowing approximation has been taken [37]:

5 0i0; +1 52 (0’,‘0’j>2
Q=92 o5 2(1=9)*\0y; )’

(21)
where & = (7/6)(n10? + ngo3). It is evident that the dis-
agreement found in fig. 2 illustrates the fact that the heat-
ing mechanisms affect in general non-equipartition even in
the bulk of the system [38]. While a good agreement be-
tween kinetic theory and MD simulations is found when
the mixture is heated by the stochastic thermostat, impor-
tant discrepancies appear in the undriven case, especially
as the size ratio increases. We also observe a weak influ-
ence of density on the temperature ratio. As noted in a
previous work [11], the good agreement found in fig. 2
stimulates the use of this driving method for qualitative
comparisons with experimental results and is one of the
main reasons for which the above thermostat has been
introduced in the segregation problem studied in this pa-
per. On the other hand, given the results reported in fig. 1
in the tracer limit case for dilute gases, more simulation
data are needed to make quantitative comparisons be-
tween theories based on homogeneously heated granular
systems and boundary-driven problems in order to assess
the reliability of the above theoretical predictions.

o _ 1
Xij —1_¢

L3
2

4 Intruder limit case: Phase diagrams for the
BNE/RBNE transition

Once the form of the transport coefficients is known, the
thermal diffusion factor A can be explicitly obtained when
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one substitutes egs. (A.20, A.21) for DT, Dy;, and Dy,
respectively, and eq. (A.6) for p into egs. (13) and (14).
This gives the dependence of A in terms of the parame-
ter space of the problem. On the other hand, the explicit
evaluation of the expressions for the different transport
coefficients for a variety of masses, diameters, composi-
tion, dissipation and density is still intricate. In subse-
quent publications, we will analyze the quantitative vari-
ation of such coefficients (along with those associated with
the momentum and heat fluxes) across this parameter set
of the system. Here, in order to show more clearly the dif-
ferent competing mechanisms appearing in the segregation
phenomenon, we consider the tracer limit case, namely, a
binary mixture where the concentration of one of the com-
ponents (the tracer or intruder) is very small compared
to that of the other (solvent or excess) component. This
limit case (21 — 0) allows us to present a simplified theory
where a segregation criterion can be explicitly obtained.

Under these conditions, when one considers the form of
the transport coefficients (eqs. (A.25-A.27)) in the tracer
limit, the criterion (15) can be written as

op* *—1
g*(vM)Jrcb[(ng*);;Mp 3 g*}

d

2 1+M M

(22)

Here, M = mj/mg is the mass ratio, w = o1/09 is the
diameter ratio, 5 = p* + ¢0yp™,

pr =142 (1 + ) (23)

is the (reduced) pressure of the gas [39,40] and

e .,
= —— 24
¢ 2d-141'(d/2) 272 (24)
is the solid volume fraction. Moreover,
1 )
A= % (M> 7 (25)
X12 T ad) T,ny

where g1 is the chemical potential of the intruder. Equa-
tion (25) contains all the information necessary to describe
the segregation due to thermal (or Soret) diffusion of an in-
truder in a moderately dense granular fluid. The first term
on the left-hand side measures essentially the influence of
the non-equipartition of the granular energy on segrega-
tion. This term vanishes in the absence of the gravitational
force. The second and third terms are proportional to the
solid volume fraction ¢ and so, they account for the effects
of density on thermal diffusion. These latter two terms
vanish in the dilute limit case (¢ — 0). The influence of
each term on the segregation criterion (22) depends on
the specific values of dissipation (which is for instance
the main responsible for the energy non-equipartition),
density, mechanical parameters of the system and/or (re-
duced) gravity.
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Fig. 3. (Color online) Plot of the thermal diffusion factor A versus the (reduced) gravity |g*| for mi/mg = o1/02 =2, ¢ = 0.2
and three values of the (common) coefficient of restitution a@ = a2 = a12. The left panel is for hard disks (d = 2) while the

right panel is for hard spheres (d = 3).

Before exploring the dependence of the parameter
space on the form of the phase diagrams BNE/RBNE, it is
instructive to consider some special limit situations. Thus,
when the intruder and particles of the gas are mechanically
equivalent (my = mg, 01 = 09, and a2 = @a2), then as ex-
pected the two species do not segregate. This is consistent
with eq. (22) since in this limit case DI* = D%, + D7, =0
and so A = 0 for any value of «;; and ¢. On the other
hand, in the case of a dilute gas (¢ — 0), then eq. (22)
yields

g"(y — M) =0, (26)
In the absence of gravity, eq. (26) holds trivially, so that
the intruder does not segregate in a dilute gas when
g* = 0. This result is due to the failure of the first Sonine
approximation to accurately describe this special situa-
tion since segregation would appear if one retained higher-
order terms in the Sonine polynomial expansion [27,41].
On the other hand, when |¢g*| # 0, the solution to eq. (26)
is

Ty

TQ o mo '

my

(27)

This result agrees with recent results derived from the
Boltzmann equation [10,11]. Note that, due to the lack of
energy equipartition, the criterion (27) is rather compli-
cated since it involves all the parameter space. The seg-
regation criterion (27) compares well with MD simulation
results for the case of the steady state of an open vibrated
granular system in the absence of macroscopic fluxes [10].

In the tracer limit, the parameter space is sixfold: the
dimensionless gravity ¢g*, the mass ratio my /ma, the size
ratio o1 /09, the coefficients of restitution ass and aqa and
the solid volume fraction ¢. In order to get the phase dia-
grams for the BNE/RBNE transition, one has to give the

form of the pair correlation functions xé%) and ng) and

the chemical potential p1. In the three-dimensional case,
the pair correlation functions can be easily obtained from

eq. (21) by taking the limit z; — 0, namely,

1-1
X5 = = 25?3
o 1 w 10} w? @?
Xz =g P ae T e (e %Y

The expression for the chemical potential of the intruder
consistent with the approximation (28) is [42]

% =(C3+Inng —ln(l - ¢) +3wﬁ
+3w? {111(1 —¢)+ m}
o [ot1 g o @060+ 36%)
|:21 (1 ¢) + (1 — (f))g :| ) (29)

where Cj5 is a constant. For hard disks (d = 2), Xé%) and
(0)

Xio are approximately given by [16]
O_1-%¢ ©_ 1 9w ¢
T R S T (O

(30)
Now, the form of the chemical potential consistent with
the above approximations is [43]

1, [o(7+29)
3 gy - qb)] : (31)

where C5 is a constant.

Equations (13) and (14) clearly show that A is a linear
function of gravity ¢g*. This is illustrated in fig. 3 where
thermal diffusion is plotted as a function of |¢g*| for hard
disks (d = 2) and spheres (d = 3). We have considered the
system my /ma = 01/09 = 2, ¢ = 0.2 and several values of



268
10 T T T T T T
d=2
8r BNE 1
SN a=0.7
. 6 L _——
S
4t - gl
= RBNE
2¢ ; o=0.9 -
1.0 1.5 2.0 25 3.0

The European Physical Journal E

10 . . .

m]/mz

1.0 1.5

Fig. 4. (Color online) Phase diagram for BNE/RBNE for ¢ = 0.25 in the absence of gravity (¢* = 0) for two values of the
(common) coefficient of restitution o = a22 = ai12. Points above the curve correspond to A > 0 (BNE) while points below the
curve correspond to A < 0 (RBNE). The dashed line is the result obtained for o« = 0.7 assuming energy equipartition (77 = T5).
The top panel is for hard disks (d = 2) while the bottom panel is for hard spheres (d = 3).

the (common) coefficient of restitution a = oy = aya. It
is apparent for the case analyzed here that the RBNE is
dominant for hard disks in all the range of values of grav-
ity (except for & = 0.5 where a change to BNE is expected
for values of |¢g*| larger than 2) while the RBNE is only
dominant at small |g*| for hard spheres. Thus, as already
noted in ref. [24], for given values of my/ma, 01/02, aaa,
a2 and ¢ there is a critical value |¢gf| such that a tran-
sition BNE < RBNE (or RBNE < BNE) is observed for
lg*| > |g%|. We see that the value of |g}| increases with
dissipation.

According to eq. (22), segregation is driven and sus-
tained by both gravity and temperature gradients. The
combined effect of both ¢ and 0.7 on thermal diffusion
is through the dimensionless gravity ¢g* < 0 defined by
eq. (12). This parameter measures the competion between
both mechanisms on segregation. Although our pertur-
bation approach assumes that both gravity and thermal
gradient are of the same order of magnitude, it is inter-
esting for illustrative purposes to separate the influence of
each one of the terms appearing in eq. (22) on segregation.
Therefore, some specific cases (¢ = 0 or 9,7 — 0) will be
considered in the next subsections.

4.1 Absence of gravity (|g*| — 0)

Let us study first the segregation of two species of grains in
the presence of a temperature gradient, but in the absence
of gravity (¢ = 0). This limit has been considered in some
MD simulations (see, for example, the simulations carried
out by Galvin et al. [22]). In this case, |g*| — 0 and eq. (22)
reduces to

3])* o (1+w)d M (0)
QL 96 = 9 1+MX12 ¢(1+0412)

5 o (a0

Of course, this equation is trivially satisfied in the case of

(32)

a dilute gas (¢ = 0). Beyond the dilute limit, the influence
of each term in (32) is still intricate. As an illustration,
fig. 4 shows the phase diagram in the {m;/ms, 0y /02}-
plane at a total volume fraction of ¢ = 0.25 (moderately
dense gas) and two different values of the (common) co-
efficient of restitution ay = «a. It is apparent that, in the
absence of gravity, the main effect of dissipation is to re-
duce the size of the BNE. This effect is more significant in
the case of hard spheres than in the case of disks. We ob-
serve that in general the RBNE (intruders move towards
the hot regions) is dominant for both small mass ratio
and/or large size ratio. In order to assess the impact of
the non-equipartition of granular energy on segregation,
we have also plotted the corresponding phase diagram for
a = 0.7 but assuming that 77 = T5. The comparison
between both curves clearly shows the significant influ-
ence of the temperature differences on thermal diffusion
in the absence of gravity. This is consistent with the re-
cent MD findings of Galvin et al. [22] where they showed
that non-equipartition driving forces for segregation are
comparable to other driving forces for systems displaying
moderate level of non-equipartition. Figure 5 illustrates
the influence of the volume fraction on the phase diagram
for a three-dimensional system at moderate level of dissi-
pation (a = 0.8). It is apparent that the role played by the
density is quite important since the range of size and mass
ratios for which the RBNE exists increases with decreas-
ing ¢. Note that when both the mass and diameter ratios
of the intruder are very large, the state of the gas could be
disturbed by the presence of the intruder. In this case, the
results obtained from eq. (22) could be questionable since
they have been obtained by neglecting the cross-collision
term in the kinetic equation for the gas particles.

4.2 Thermalized systems (0,T — 0)

We consider now a system in which the inhomogeneities
in both the temperature and the mixture volume fraction
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Fig. 5. (Color online) Phase diagram for BNE/RBNE for in-
elastic hard spheres for @ = @22 = a2 = 0.8, |g*| = 0 and
three different values of the solid volume fraction ¢.

are neglected (9,7 — 0) but gravity is different from zero.
In this case, the segregation dynamics of the intruders is
essentially driven by the gravitational force. This situa-
tion (gravity dominates the temperature gradient) can be
achieved in the shaken or sheared systems employed in
numerical simulations and physical experiments [6,23,44,
45]. Under these conditions (]g*| — o), the criterion (22)
can be written as

d
1+ 5 D 6(1 + a12) 1HE 2 L _m
1+ 292§ 6(1 + ) [1 + ¢ In <¢Xég))] feome
(33)

As said in the Introduction, previous theoretical attempts
to describe this particular situation have been made inde-
pendently by Jenkins and Yoon [12] for elastic systems and
by Trujillo et al. [15] for inelastic systems. Both descrip-
tions are based on a kinetic theory [16] that is restricted
to the quasielastic limit (a;; — 1), although Trujillo et
al. [15] take into account the effect of non-equipartition of
energy on segregation. Their segregation criterion differs
from eq. (33) and is given by [15]

W) (0
1+%X§2)¢5_@

==, (34)
Lt 2iixg)e Tooome

which is consistent with the one derived by Jenkins and
Yoon [12] when ags = a1z = 1. The discrepancies between
egs. (33) and (34) can be attributed to the simplicity of
the kinetic theory used for deriving the latter criterion. In
particular, it is easy to see that eq. (33) reduces to eq. (34)
when one i) neglects the dependence on inelasticity and
assumes equipartition in certain terms, ii) takes the ap-
proximation A =1 (which only applies for a dilute gas of
mechanically equivalent particles), and iii) neglects high
density corrections (last term in the denominator of (33)).
Therefore, in relation to the above previous results, we can
conclude that the criterion (33) is more general than the
one derived by Trujillo et al. [15], since our results are not
restricted to nearly elastic gases.
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Fig. 6. (Color online) Phase diagram for BNE/RBNE for a
two-dimensional system in the absence of thermal gradient
(lg*] — o0) at ¢ = 0.4 and two values of the (common)
coefficient of restitution o« = @922 = a12. The dashed and
dashed-dotted lines refer to the results obtained by Jenkins
and Yoon [12] for elastic gases (a = 1) and by Trujillo et
al. [15] for a = 0.8, respectively.

A typical phase diagram for thermalized systems de-
lineating the regimes between BNE and RBNE is plot-
ted in fig. 6 for the two-dimensional case. (The qualita-
tive features of the corresponding phase diagram for the
three-dimensional case are similar.) Comparison between
the left panel of fig. 4 (hard disks) and fig. 6 clearly shows
that the presence of gravity changes dramatically the form
of the phase diagram. In particular, the main effect of in-
elasticity is to reduce the size of the RBNE region, which
is consistent with experiments [23]. Moreover, we also ob-
serve that the RBNE regime appears essentially now for
both large mass ratio and/or small diameter ratio. On
the other hand, the predictions of Trujillo et al. [15] for
a = 0.8 disagree with our results even at a qualitative
level since they find that the mass ratio is a two-valued
function of the size ratio in the phase diagram. In fact,
according to the results of Trujillo et al. [15], the effect
of dissipation is to introduce a threshold size ratio above
which there is no RBNE. We also observe that our results
differ from those obtained by Jenkins and Yoon [12] for
elastic gases, especially for large size ratios. Our results
also indicate (not shown in fig. 6) that non-equipartition
has a weaker influence on segregation for thermalized sys-
tems than in the opposite limit (absence of gravity). This
behavior qualitatively agrees with the experiments carried
out by Schréter et al. [21] for vibrated mixtures as well as
with some recent theoretical results of Yoon and Jenk-
ins [46] since both works find that segregation (when is
only driven by gravity) is not significantly influenced by
the difference between the temperatures of the two species.

4.3 General case

Finally, we consider the effect of density for finite val-
ues of the reduced gravity |¢g*|. Figure 7 shows a phase
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Fig. 7. (Color online) Phase diagram for BNE/RBNE for in-
elastic hard spheres for o = @22 = a12 = 0.7, |¢g*| = 1 and
three different values of the solid volume fraction ¢.

diagram when |¢g*| = 1 (gravity comparable to the ther-
mal gradient) for different values of the volume fraction.
We have considered inelastic hard spheres (d = 3) with
Q92 = a2 = 0.7. In contrast to fig. 5, we observe that
the RBNE regime appears essentially now for both large
mass ratio and/or small size ratio. Regarding the influ-
ence of density on the form of the phase diagram, it is
apparent that the regime of the RBNE decreases signif-
icantly with increasing ¢. Following Trujillo et al. [15],
in the fluidized regime the effect of shaking strength of
vibration on the phase diagram for BNE/RBNE can be
tied to the effect of varying the solid volume fraction ¢.
According to this argument, fig. 7 shows that the possi-
bility of RBNE increases with increasing shaking strength
(or decreasing density). The experimental findings of Breu
et al. [23] show similar trends with increasing shaking
strength, which is consistent with our results.

5 Conclusions

The problem of segregation by thermal diffusion in a bi-
nary granular mixture has been addressed in this paper.
Thermal diffusion is the relevant segregation mechanism
in agitated granular mixtures at large shaking amplitude.
In this situation, the thermal diffusion factor A (defined
by eq. (4)) characterizes the amount of segregation par-
allel to the thermal gradient [27]. Here, the factor A has
been obtained in a non-convecting steady state with gra-
dients only along the vertical direction (parallel to grav-
ity). Two complementary approaches have been followed
to evaluate the thermal diffusion. First, by using a hy-
drodynamic description /A has been expressed in terms of
the pressure and the transport coeflicients associated with
the mass flux. Then, the above quantities have been ex-
plicitly determined by solving the inelastic Enskog equa-
tion by means of the Chapman-Enskog method [28]. This
allow us to determine A as a function of the mass and
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size ratios, the composition, the coefficients of restitu-
tion, the solid volume fraction and the reduced gravity
g* = pg/nd. T < 0. Once the explicit form of A is known,
the condition A = 0 provides the segregation criterion for
the transition BNE < RBNE. This criterion is given by
eq. (15) in terms of the transport coefficients whose ex-
pressions are given by egs. (A.20, A.21).

One of the main objectives of this paper has been to
extend the analysis made in ref. [11] to higher densities
by considering the revised Enskog kinetic theory. By ex-
tending the Boltzmann analysis to high densities, com-
parisons with MD simulations become practical and allow
one to quantitatively test the use of a hydrodynamic de-
scription for segregation in granular vibrated mixtures.
On the other hand, given that the Enskog equation still
assumes uncorrelated particle velocities (molecular chaos
hypothesis), it is expected that our results apply for mod-
erate densities (solid volume fractions typically smaller
than or equal to 0.2). Furthermore, the segregation cri-
terion derived in this paper has been obtained by us-
ing the first Sonine approximation for the transport co-
efficients whose accuracy can be questionable for strong
values of dissipation and/or disparate values of the mass
and size ratios [41]. This is one of the restrictions of the
results offered here. Another ingredient in our theory is
the use of a driving stochastic thermostat instead of us-
ing vibrating boundary conditions to fluidize the system.
Although previous experiments in agitated mixtures [34]
have shown a less significant dependence of the tempera-
ture ratio Ty /T on inelasticity than the one obtained in
driven steady states [18], it must be remarked that the
results derived here and in ref. [11] for the temperature
ratio from this stochastic driving method compare quite
well with MD simulations of agitated mixtures [21]. As
said in the Introduction, this agreement could justify the
use of this kind of thermostat as a first approximation to
make comparisons with experiments of vibrated mixtures.

Some previous theoretical efforts [12,13,15] on the
same topic for dense granular mixtures have been made.
However, they have been based on kinetic theories which
are valid for nearly elastic particles [13] and have consid-
ered situations where the temperature has been assumed
to be homogeneous (and so, the effects of the tempera-
ture gradient on segregation have been neglected) [15].
The present study goes beyond the weak dissipation limit
and takes into account the influence of both thermal gradi-
ent and gravity through the reduced gravity g*. Moreover,
previous results [10,11] obtained in the dilute regime limit
are recovered at zero density (¢ — 0).

In order to illustrate the form of the phase diagrams
BNE/RBNE in the mass and size ratio plane, the tracer
or intruder limit case has been considered. This limit sim-
plifies the evaluation of the transport coefficients (since
for instance, the temperature ratio is independent of com-
position and so, dv/dn; = 0) and in addition, it al-
lows us to clearly present the different competing mech-
anisms appearing in the segregation phenomena. Under
these conditions, the segregation criterion for the tran-
sition BNE < RBNE is given by eq. (22). This is one
of the most important results of the paper. Two specific
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Fig. 8. Phase diagram for BNE/RBNE for a dilute binary mix-
ture composed of spheres of the same mass density and equal
total volumes of large and small particles. The data points rep-
resent the simulation results of Schroter et al. [21] for a = 0.78
when convection is suppressed.

situations have been mainly studied: g* = 0 (absence
of gravity) and |¢*| — oo (homogeneous temperature).
The first case has been considered in recent MD simula-
tions [22] while the second case has been widely studied
by using kinetic theory [12,15], computer simulations [21]
and experiments [23]. Our results show that the influ-
ence of dissipation on thermal diffusion is more impor-
tant when the thermal gradient dominates over gravity
(¢* = 0) than in the opposite limit (|g*| — o). This weak
influence on dissipation in the latter case contrasts with
the results of Trujillo et al. [15] since they found that the
main effect of inelasticity is to introduce a threshold size
ratio above which there is no RBNE (see fig. 6). We at-
tribute this discrepancy with ref. [15] to the use of some
(uncontrolled) approximations in the expressions of the
partial pressures and the transport coefficients. Regard-
ing the role played by the non-equipartition of granular
energy (pseudo-thermal buoyancy force) in the segrega-
tion process, our results indicate (see fig. 4) that, while
the temperature difference has an important influence on
thermal diffusion in the absence of gravity, it has a weaker
effect on segregation when gravity dominates over thermal
gradient. These conclusions agree qualitatively well with
recent MD simulations [22] and with some experiments
carried out by Schréter et al. [21] in vibrated mixtures.
Although the theory reported in this paper is consis-
tent with previous numerical and experimental results, a
more quantitative comparison with the latter is desirable.
To make some contact with experiments of size segrega-
tion driven by thermal diffusion, let us consider again the
results obtained by Schroter et al. [21] for spheres made
of particles with the same mass density and equal total
volumes of large and small particles. Specifically, we con-
sider the simulation data reported in fig. 11 of ref. [21]
when the convection has been suppressed. Here, for the
sake of simplicity, we consider the segregation criterion
given by eq. (15) for a dilute binary mixture (¢ = 0) with
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my/me = x9/21 = (01/02)® and a common coefficient of
restitution (a;; = «). Figure 8 shows the phase diagram
for this kind of systems where the data points represent
the MD results for v = 0.78 (the experimental value of the
coefficient of restitution considered). It is apparent that,
although the RBNE is dominant at small diameter ratios,
there is a crossover to BNE at sufficiently large diameter
ratios. As noted in ref. [11], the form of this phase dia-
gram agrees qualitatively with the findings of ref. [21] for
this type of conditions since they do not observe a change
back to BNE for diameter ratios up to o1 /0y = 3 (see red
squares in fig. 11 of [21]). Moreover, although the range of
values for the size ratio considered in MD simulations is
smaller than the one studied here theoretically, one could
roughly obtain the transition value of the diameter ratio
by extrapolating their simulation data. In this case, an
extrapolation from their simulation data at the diameter
ratios of 2 and 3 shows that the transition from RBNE
to BNE might be around o;/02 = 10. This value quan-
titatively agrees with our theoretical curve at v = 0.78.
We expect that this agreement is also kept for experiments
carried at higher densities. In this context, it is hoped that
this paper stimulates the performance of such simulations.

Finally, it must be noted that, although the results
derived in this paper for thermal diffusion hold for gen-
eral binary mixtures (with arbitrary values of composition
x1), only the limit of a single intruder (x; — 0) has been
widely investigated. This limit precludes the possibility of
analyzing the influence of composition on the thermal dif-
fusion factor A, where previous results for dilute gases [11]
have shown that the effect of 21 on A can be significant in
many situations. The study on the dependence of thermal
diffusion on composition is an interesting open problem. I
plan to carry out such work in the near future.

I am grateful to Maria José Ruiz-Montero for providing me the
simulation data for fig. 1. This work has been supported by the
Ministerio de Educacién y Ciencia (Spain) through grant No.
FIS2007-60977, partially financed by FEDER funds and by the
Junta de Extremadura (Spain) through Grant No. GRU09038.

Appendix A. Chapman-Enskog solution in
the driven case

In this appendix we solve the set of Enskog equations (16)
to first order in the spatial gradients by means of the
Chapman-Enskog method [28]. From this solution, we de-
termine then the transport coefficients Dy, D15 and DY
associated with the mass flux.

The zeroth-order distribution function fi(o) obeys the
Enskog equation

C/'(O)Ti 92
B Qmi 8V2

1O=S 90 @A
J
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where

JZ,(JQ) [fi(o)’f;o) _Xz?) Z 1/dv2/d0'@ o - g12

x(@-gu2) [0 10 D) = 1O 17 (v2)]
(A.2)

Upon writing eq. (A.1) use has been made of the fact that
8§O)T = 0 at this order in the driven case. Moreover, CZ-(O)
refers to the partial cooling rate evaluated by using the
zeroth-order velocity distribution function fi(o). Since the
latter is not exactly known, one has to expand fi(o)

Sonine polynomials. A good approximation for it (at least

for not very strong inelasticity) is given by the Gaussian
distribution

m; d/2 2
g —m;V /2TL'
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where V = v — U. Employing it, one gets
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where vy = \/QT(ml + mg)/mims is a thermal velocity
defined in terms of the global temperature T' of the mix-
ture and

(A.5)
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and v = T /T is the temperature ratio.

The determination of the first-order distribution fi(l)
follows similar mathematical steps as those made in the
undriven case for polydisperse systems [19]. Here, we only

display some partial results. The distribution fz-(l) can be

written as
Y= A (V) ~VlnT+Bi(V) VInn,+Ci(V) - Vinng

+Di ke (V) <8kUe + 0cUy, — 5sz ' U) +&(V)V - U,

1\3\»—\

d
(A.8)

where the quantities A;, B;, C;, D; ke and &; are the solu-
tions of a set of coupled linear integral equations. In this
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paper we are only interested in the first-order contribution
to the mass flux jgl). It is defined as

i = [avv i) (A.9)

Using eq. (A.8) into eq. (A.9) and taking into account
symmetry considerations, one gets the constitutive form
+(1)

for j;/ given by eq. (7), where
DT = —m—c} /de LA (V) (A.10)
p
is the thermal diffusion coefficient,
D11 = — /dVV . Bl(V) (All)
ming
is the kinetic diffusion coefficient and
mong

is the mutual diffusion coefficient. In the above equations
p = miny + maongy is the total mass density. According
to eqgs. (A.10-A.12), only the coefficients A;, By, and C;

are involved in the evaluation of the mass transport J( ),

These quantities are the solutions of the following set of
linear integral equations:

C(O)Tl 62
;ml W“‘h +L1A + M Ay = Ay, (A13)
(0) 2
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ST Wcl + L£iC) + MCy =Cy. (A.15)
Here, we have introduced the linear operators
LA = — (IQTAL 0]+ T 110, Al
0 0
+J1(2) [AL f2 ( )])’
MiA;, = —JD[12, A, (A.16)

and the inhomogeneous terms A;, B; and C; of the in-
tegral equations (A.13-A.15) can be easily obtained for
a binary mixture from egs. (6.17) and (6.18) of ref. [19].
Note that, in contrast to what happens in the undriven
case [19], here each one of the quantities A;, B;, and C;
obeys closed integral equations.

For practical purposes, the integral equations (A.13—
A.15) must be approximately solved by using a Sonine
polynomial expansion. In the lowest Sonine approxima-
tion, the quantities A;, B; and C; are approximated by

Ai(V) —

— —f1, MV Dipy

A2 (V) = [, MV DlT, (A.17)
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Upon writing (A.17-A.19) use has been made of the iden-
tity J(l) jél). To get the transport coefficients DT, Dy,
and Do, we substitute first A;, B; and C; by their So-
nine approximations (A.17-A.19), respectively, and then,
we multiply the integral equations (A.13-A.15) by m'V
and integrate over the velocity. After some algebra, one
gets the final expressions

pr_ _Pm (1 B mel) 72 0T
' vpp? PP dr (%) pvp
Z n]l’éljxgj)o-ljf)/](l + alj) (A20)
j=1
0 ;0
Dyj=—"— " (1) - LT
m;m;Vp an] m;vp On,;
/2
pni T
+ od (1 + oy
dr (2) mJVDZX” a0 1hei ‘)
i e 1 ny 0 (0)
— 4+ — ) 0o+ =-— | nj=—Iny, Lio:
g (mi me) []€+2nj <nJ8nj Xae it
neye O
— 1 A21
e (a21)
where
op(d=1)/2 g1 ©) 0y + 05 1/2
VD = ——77"015 U 1+ o
D dl’(g) 12 voXiz ( )( 0.6, )
X (napiz1 + napnz) - (A.22)

The quantities I;¢; are the origin of the primary difference
between the standard Enskog theory and the revised ver-
sion for elastic collisions. They are zero if i = £, but oth-
erwise are not zero. In general, they are defined through
the relation [20]

Z WXZe Uzé (nﬁanj In ng) + Iz’[j)

n; |1 [ Ou; 1 (0) d
= |- — — 6, —2B . (A.23
B2 T(&%‘)T,nk#j n; J 2X ( )
where a2
T
dr’ (5)

and p; is the chemical potential of species i.
In the tracer limit (z; — 0), the expressions of the
(reduced) transport coefficients defined by (10) with vy =
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noody t\/2Ts /my [47] become
* B
Dll == ]/T’ (A25)
D
M v (1+w)d M (0)
DT* — ( * 7) - TT®) 1
L o P T T s T 2 (1 +n2),
(A.26)
Diy = —— - 1
=0t e (), )
(A.27)

where M = my/mo, w = 01/09,
given by eq. (23) and

B = p* + ¢dgp™, p*

— d—
e or(d—1)/2 (012) 1 ng) M+7(1+a12)
Proar(g) \oo 1+MV M '
(A.28)
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