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The aim of this work is to explore the combined effect of polydispersity and roughness
on the partial energy production rates and on the total cooling rate of a granular fluid
mixture. We consider a mixture of inelastic rough hard spheres of different number densities,
masses, diameters, moments of inertia, and mutual coefficients of normal and tangential
restitution. Starting from the first equation of the BBGKY hierarchy, the collisional energy
production rates associated with the translational and rotational temperatures (T tr

i and T rot
i )

are expressed in terms of two-body average values. Next, those average values are estimated
by assuming a velocity distribution function based on maximum-entropy arguments, allowing
us to express the energy production rates and the total cooling rate in terms of the partial
temperatures and the parameters of the mixture. Finally, the results are applied to the
homogeneous cooling state of a binary mixture and the influence of inelasticity and roughness
on the temperature ratios T tr

1 /T rot
1 , T tr

2 /T tr
1 , and T rot

2 /T rot
1 is analyzed.

§1. Introduction

A granular fluid is usually modeled as a system of identical, inelastic smooth hard
spheres with a constant coefficient of normal restitution α. Despite its simplicity,
this model has been useful to capture the basic properties of granular flows.1) On the
other hand, the model can be made closer to reality by introducing more ingredients,
such as coefficients of normal restitution depending on the impact velocity,2) presence
of an interstitial fluid,3) non-spherical shapes,4) polydispersity,5) or roughness.6) Of
course, the few citations in the preceding sentence are just representative of many
works reporting features not accounted for by the simple monodisperse smooth-
sphere model.

In this paper we will focus on the two latter ingredients, namely polydispersity
and roughness. These properties are especially relevant, not only because beads and
grains are unavoidably polydisperse and rough, but also because any of these ingre-
dients unveils an inherent breakdown of energy equipartition in granular fluids, even
in homogeneous and isotropic states. In the case of multi-component granular fluids,
most of the studies have considered the inelastic smooth-sphere description. Some
of the problems addressed include non-equipartition in homogeneous states,7)–10)

Navier–Stokes transport coefficients,11)–15) and segregation phenomena.16)–20)

Concerning the case of inelastic rough spheres, most of the works we are aware
of are restricted to monodisperse systems.21)–41) Analogously to what happens with
the coefficient of normal restitution α, the simplest model accounting for friction
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during collisions assumes a constant coefficient of tangential restitution β. While
α is a positive quantity smaller than or equal to 1 (the value α = 1 corresponding
to elastic spheres), the parameter β lies in the range between −1 (perfectly smooth
spheres) to 1 (perfectly rough spheres). Except for α = 1 and β = ±1, the to-
tal kinetic energy is not conserved in a collision. Some of the early attempts to
develop a kinetic theory for rough spheres were carried out by Jenkins and Rich-
man21) and Lun and Savage,22) who applied their approaches to the simple shear
flow problem. The influence of roughness in shear flows has also been studied by sev-
eral authors,23)–29) usually assuming that the spheres are nearly smooth and nearly
elastic. In an extensive paper,30) Goldshtein and Shapiro obtained the collisional
energy production rates associated with the translational and rotational degrees of
freedom by using Maxwellian forms for the distribution functions. The result was
applied to the evaluation of the ratio between the translational (T tr) and rotational
(T rot) temperatures in the homogeneous cooling state (HCS). The time evolution
of the ratio T tr/T rot towards its HCS asymptotic value has been widely analyzed,
both theoretically and by means of molecular dynamics, by Luding, Zippelius, and
co-workers.31)–37) Other studies involving roughness include vibration with rough
walls,38) a micropolar fluid model for granular flows on a slope,39) derivation of hy-
drodynamic constitutive equations from the Boltzmann equation for nearly smooth,
nearly elastic granular gases,40) and correlations between the rotation axis and the
translational direction.41)

The studies about multi-component rough-sphere systems are much scarcer. To
the best of our knowledge, only the case of a fixed particle immersed in a bath
of thermalized point particles has been addressed.42)–44) On the other hand, the
general case of a polydisperse system made of mobile particles of different coefficients
of normal and tangential restitution (αij and βij) has not been studied yet. In this
paper, we address one of the basic aspects of the problem, namely those related to the
partition of the total energy. In order to characterize the effect of collisions on energy
partition, we focus on the partial productions rates ξtrij and ξrot

ij measuring the rate of
change of the translational and rotational kinetic energies, respectively, of particles
of component i due to collisions with particles of component j. A combination of ξtrij
and ξrot

ij gives the total cooling rate ζ of the mixture.
Starting from the collisional rules worked out in §2, the collisional rates of change

of momentum (linear and angular) and energy (translational and rotational) are
expressed as linear combinations of two-body average values in §3. These averages are
evaluated in terms of the partial temperatures T tr

i , T rot
i , T tr

j , and T rot
j by assuming

a maximum-entropy two-body distribution in §4. The expressions for ξtrij , ξ
rot
ij , and ζ

obtained in §5 extend previous results derived for monodisperse rough spheres30),33)

and for polydisperse smooth spheres.7) An application to the HCS of a binary mixture
is carried out in §6 with some illustrative examples. Finally, some concluding remarks
are presented in §7.
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Fig. 1. Sketch of the pre-collisional quantities of spheres i and j in the frame of reference solidary

with particle j.

§2. Collisional rules

Let us consider the collision between two hard spheres of masses mi and mj,
diameters σi and σj , and moments of inertia Ii and Ij . The latter two quantities can
be equivalently characterized by the dimensionless parameters

κi ≡ 4Ii
miσ2

i

, κj ≡ 4Ij
mjσ2

j

. (2.1)

The value of κi depends on the mass distribution within the sphere and runs from
the extreme values κi = 0 (mass concentrated on the center) to κi = 2

3 (mass
concentrated on the surface). If the mass is uniformly distributed, then κi = 2

5 . Let
us denote by vij = vi − vj the pre-collisional relative velocity of the center of mass
of both spheres and by ωi and ωj the respective pre-collisional angular velocities.
This is sketched in Fig. 1, where σ̂ ≡ (rj − ri)/|rj − ri| is the unit vector pointing
from the center of i to the center of j. The velocities of the points of the spheres
which are in contact during the collision are

wi = vi − σi

2
σ̂ × ωi, wj = vj +

σj

2
σ̂ × ωj , (2.2)

the corresponding relative velocity being

wij = vij − σ̂ × Sij , Sij ≡ σi

2
ωi +

σj

2
ωj. (2.3)

Post-collisional velocities will be denoted by primes. Conservation of linear and
angular momenta yields37)

miv
′
i +mjv

′
j = mivi +mjvj , (2.4)

Iiω
′
i −mi

σi

2
σ̂×v′

i = Iiωi −mi
σi

2
σ̂×vi, Ijω

′
j +mj

σj

2
σ̂×v′

j = Ijωj +mj
σj

2
σ̂×vj .

(2.5)



34 A. Santos, G. M. Kremer and V. Garzó

Equations (2.4) and (2.5) imply that

v′
i = vi − 1

mi
Qij , v′

j = vj +
1
mj

Qij , (2.6)

ω′
i = ωi − σi

2Ii
σ̂ × Qij , ω′

j = ωj − σj

2Ij
σ̂ × Qij , (2.7)

where Qij is the impulse exerted by particle i on particle j. Therefore,

v′
ij = vij − 1

mij
Qij , w′

ij = wij − 1
mij

Qij +
1

mijκij
σ̂ × (σ̂ × Qij) , (2.8)

where
mij ≡ mimj

mi +mj
, κij ≡ κiκj

mi +mj

κimi + κjmj
(2.9)

are the reduced mass and a sort of reduced inertia-moment parameter, respectively.
To close the collisional rules, we need to express Qij in terms of the pre-collisional

velocities and the unit vector σ̂. To that end, we relate the normal (i.e., parallel to
σ̂) and tangential (i.e., orthogonal to σ̂) components of the relative velocities wij

and w′
ij by

σ̂ · w′
ij = −αijσ̂ · wij , σ̂ × w′

ij = −βijσ̂ × wij . (2.10)

Here, αij and βij are the coefficients of normal and tangential restitution, respec-
tively. The former coefficient ranges from αij = 0 (perfectly inelastic particles)
to αij = 1 (perfectly elastic particles), while the latter runs from βij = −1 (per-
fectly smooth particles) to βij = 1 (perfectly rough particles). Inserting the sec-
ond equality of Eq. (2.8) into Eq. (2.10) one simply gets σ̂ · Qij = α̃ijσ̂ · wij and
σ̂ × Qij = β̃ijσ̂ × wij , where

α̃ij ≡ mij (1 + αij) , β̃ij ≡ mijκij

1 + κij
(1 + βij) . (2.11)

Therefore,
Qij = α̃ij(vij · σ̂)σ̂ + β̃ij [vij − σ̂ × Sij − (vij · σ̂)σ̂] , (2.12)

where use has been made of the mathematical property σ̂× (σ̂×A) = (σ̂ ·A)σ̂−A.
Note that in the special case of perfectly smooth spheres (βij = −1) one has β̃ij = 0,
so that σ̂ × Qij = 0. In that case, according to Eq. (2.7), the angular velocities of
the two colliding spheres are unaltered by the collision.

The total kinetic energy before collision is

Eij =
mi

2
v2
i +

mj

2
v2
j +

Ii
2
ω2

i +
Ij
2
ω2

j . (2.13)

It can be checked (see the Appendix) that

E′
ij −Eij = −mij

2
κij

1 + κij

(
1 − β2

ij

) [
(σ̂ × vij)2 + (σ̂ × Sij)2 + 2(σ̂ × vij) · Sij

]
−mij

2
(
1 − α2

ij

)
(σ̂ · vij)2. (2.14)
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The right-hand side is a negative definite quantity. Thus, we observe that energy
is conserved only if the particles are elastic (αij = 1) and either perfectly smooth
(βij = −1) or perfectly rough (βij = 1). Otherwise, E′

ij < Eij and kinetic energy is
dissipated upon collisions.

Equations (2.6), (2.7), and (2.12) give the direct collisional rules. The restituting
collisional rules are

v′′
i = vi − 1

mi
Q−

ij , v′′
j = vj +

1
mj

Q−
ij , (2.15)

ω′′
i = ωi − σi

2Ii
σ̂ × Q−

ij , ω′′
j = ωj − σj

2Ij
σ̂ × Q−

ij , (2.16)

where

Q−
ij =

α̃ij

αij
(vij · σ̂)σ̂ +

β̃ij

βij
[vij − σ̂ × Sij − (vij · σ̂)σ̂] . (2.17)

Here the double primes denote pre-collisional quantities giving rise to unprimed quan-
tities as post-collisional values. The modulus of the Jacobian of the transformation
between pre- and post-collisional velocities is∣∣∣∣∂(v′

i,ω
′
i,v

′
j ,ω

′
j)

∂(vi,ωi,vj ,ωj)

∣∣∣∣ =
∣∣∣∣∣ ∂(vi,ωi,vj ,ωj)
∂(v′′

i ,ω
′′
i ,v

′′
j ,ω

′′
j )

∣∣∣∣∣ = αijβ
2
ij . (2.18)

§3. Collisional rates of change

Let f (2)
ij (ri,vi,ωi; rj ,vj ,ωj ; t) be the two-body distribution function with the

normalization condition∫
dri

∫
dvi

∫
dωi

∫
drj

∫
dvj

∫
dωjf

(2)
ij (ri,vi,ωi; rj ,vj,ωj ; t) = NiNj , (3.1)

Ni being the number of spheres of component i. The one-body distribution function
is

fi(ri,vi,ωi; t) = N−1
j

∫
drj

∫
dvj

∫
dωj f

(2)
ij (ri,vi,ωi; rj ,vj ,ωj; t). (3.2)

The marginal distribution functions associated with the translational and rotational
degrees of freedom are

f tr
i (ri,vi; t) =

∫
dωi fi(ri,vi,ωi; t), f rot

i (ri,ωi; t) =
∫
dvi fi(ri,vi,ωi; t). (3.3)

Given a one-body function ψ(vi,ωi), we define its average as

〈ψ(vi,ωi)〉 ≡ 1
ni

∫
dvi

∫
dωi ψ(vi,ωi)fi(vi,ωi), ni =

∫
dvi

∫
dωi fi(vi,ωi),

(3.4)
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where ni is the number density of component i and, for the sake of brevity, we have
omitted the spatial and temporal arguments. In particular, one can define partial
temperatures associated with the translational and rotational degrees of freedom as

T tr
i =

mi

3
〈(vi − u)2〉, T rot

i =
Ii
3
〈ω2

i 〉, (3.5)

where

u =
∑

imini〈vi〉∑
imini

(3.6)

is the flow velocity. Note that in the definition of T rot
i we have not referred the

angular velocities to any average value because of the lack of invariance under the
addition of a common vector to every angular velocity. The global temperature is

T =
∑

i

ni

2n
(
T tr

i + T rot
i

)
, (3.7)

where n =
∑

i ni is the total number density.
By starting from the Liouville equation and following standard steps, one can

derive the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy.45) The
first equation of the hierarchy reads

∂tfi(ri,vi,ωi; t) + vi · ∇fi(ri,vi,ωi; t) =
∑

j

Jij [ri,vi,ωi; t|f (2)
ij ], (3.8)

where

Jij [ri,vi,ωi; t|f (2)
ij ] = σ2

ij

∫
dvj

∫
dωj

∫
dσ̂Θ(vij · σ̂)(vij · σ̂)

×
[

1
α2

ijβ
2
ij

f
(2)
ij (ri,v

′′
i ,ω

′′
i ; ri − σijσ̂,v

′′
j ,ω

′′
j ; t)

−f (2)
ij (ri,vi,ωi; ri + σijσ̂,vj ,ωj; t)

]
(3.9)

is the collision operator. Here, σij ≡ (σi + σj)/2 and use has been made of Eqs.
(2.10) and (2.18).

Multiplying both sides of Eq. (3.8) by ψ(vi,ωi) and integrating over vi and ωi

one gets

∂tni〈ψ(vi,ωi)〉 + ∇ · ni〈viψ(vi,ωi)〉 =
∑

j

Jij [ψ(vi,ωi)|f (2)
ij ], (3.10)

where

Jij [ψ(vi,ωi)|f (2)
ij ] ≡

∫
dvi

∫
dωi ψ(vi,ωi)Jij [vi,ωi|f (2)

ij ]

= σ2
ij

∫
dvi

∫
dωi

∫
dvj

∫
dωj

∫
dσ̂Θ(vij · σ̂)(vij · σ̂)

×f (2)
ij (ri,vi,ωi; ri + σijσ̂,vj ,ωj)

[
ψ(v′

i,ω
′
i) − ψ(vi,ωi)

]
.

(3.11)
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Thus, n−1
i Jij [ψ(vi,ωi)|f (2)

ij ] is the rate of change of the quantity ψ(vi,ωi) due to
collisions with particles of component j. This rate of change is a functional of
the two-body distribution function f

(2)
ij , as indicated by the notation, and it is in

general a rather intricate quantity. The physically important cases are ψ(vi,ωi) =
{mivi, Iiωi,miv

2
i , Iiω

2
i }. The corresponding rates of change are obtained by inserting

Eqs. (A.5)–(A.8) into Eq. (3.11). Note that so far all the results are formally exact.
To proceed, let us make the approximation

Jij [ψ(vi,ωi)|f (2)
ij ] ≈ Jij [ψ(vi,ωi)|f̄ (2)

ij ], (3.12)

where

f̄
(2)
ij (ri,vi,ωi; vj ,ωj) ≡

∫
dσ̂Θ(vij · σ̂)(vij · σ̂)f (2)

ij (ri,vi,ωi; ri + σijσ̂,vj,ωj)∫
dσ̂Θ(vij · σ̂)(vij · σ̂)

(3.13)
is the orientational average of the pre-collisional distribution f (2)

ij . Thus, Eq. (3.12)

replaces a detailed functional of f (2)
ij by a simpler one where the solid angle integral∫

dσ̂Θ(vij · σ̂)(vij · σ̂)
[
ψ(v′

i,ω
′
i) − ψ(vi,ωi)

]
(3.14)

can be evaluated independently of f (2)
ij . It is important to borne in mind that the

approximation (3.12) is much weaker than the approximation f (2)
ij ≈ f̄

(2)
ij . Notwith-

standing this, the equality f
(2)
ij = f̄

(2)
ij holds if (a) the system is homogeneous and

isotropic (regardless of the reduced densities niσ
3
i and njσ

3
j ), in which case f

(2)
ij

only depends on |ri − rj |, or (b) the system is in the Boltzmann limit (niσ
3
i → 0,

njσ
3
j → 0), in which case one can formally take σij → 0 in the contact value of f (2)

ij .
Therefore, the approximation (3.12) is justified if the density of the granular gas
and/or its inhomogeneities are small enough so the value of f (2)

ij at contact is hardly
dependent on the relative orientation of the two colliding spheres.

In the remainder of this section we particularize to ψ(vi,ωi) = {mivi, Iiωi,miv
2
i ,

Iiω
2
i } and express the rates of change n−1

i Jij [ψ(vi,ωi)] in terms of two-body averages
of the form

〈A(vi,ωi; vj ,ωj)〉 ≡ 1
ninj

∫
dvi

∫
dωi

∫
dvj

∫
dωj A(vi,ωi; vj ,ωj)

×f̄ (2)
ij (vi,ωi; vj ,ωj). (3.15)

The results are (see the Appendix)

n−1
i Jij [mivi] = −njσ

2
ijπ

(
α̃ij + β̃ij

2
〈vijvij〉 − 2β̃ij

3
〈vij × Sij〉

)
, (3.16)

n−1
i Jij [Iiωi] = −njσ

2
ijσi

π

8
β̃ij

[
3〈vijSij〉 − 〈v−1

ij (vij · Sij)vij〉
]
, (3.17)
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Table I. Estimates of the two-body averages appearing in Eqs. (3.16)–(3.19), as obtained from the

replacement (4.2).

Quantity Estimate

〈vijvij〉 0

〈vij × Sij〉 0

〈vijSij〉 1
2

(σi˙i + σj˙j) 〈vij〉
〈v−1

ij (vij · Sij)vij〉 1
6

(σi˙i + σj˙j) 〈vij〉
〈vijvi · vij〉 T tr

i
mi

„
T tr

i
mi

+
T tr

j

mj

«−1

〈v3
ij〉

〈Sij · (vi × vj)〉 0

〈vijS
2
ij〉

„
3T rot

i
miκi

+
3T rot

j

mjκj
+ 1

2
σiσj˙i · ˙j

«
〈vij〉

〈v−1
ij (vij · Sij)

2〉
„

T rot
i

miκi
+

T rot
j

mjκj
+ 1

6
σiσj˙i · ˙j

«
〈vij〉

〈vij!i · Sij〉
“

6T rot
i

miκiσi
+ 1

2
σj˙i · ˙j

”
〈vij〉

〈v−1
ij (vij · Sij) (vij · !i)〉

“
2T rot

i
miκiσi

+ 1
6
σj˙i · ˙j

”
〈vij〉

〈vij〉 2
q

2
π
χij

„
T tr

i
mi

+
T tr

j

mj

«1/2

〈v3
ij〉 8

q
2
π
χij

„
T tr

i
mi

+
T tr

j

mj

«3/2

n−1
i Jij [miv

2
i ] = −njσ

2
ijπ

[(
α̃ij + β̃ij

)
〈vijvi · vij〉 +

4β̃ij

3
〈Sij · (vi × vj)〉

− α̃
2
ij + β̃2

ij

2mi
〈v3

ij〉 −
3β̃2

ij

4mi
〈vijS

2
ij〉 +

β̃2
ij

4mi
〈v−1

ij (vij · Sij)
2〉
]
,(3.18)

n−1
i Jij [Iiω2

i ] = −njσ
2
ij

π

4
β̃ij

{
3σi〈vijωi · Sij〉 − σi〈v−1

ij (vij · Sij) (vij · ωi)〉

− β̃ij

miκi

[
2〈v3

ij〉 + 3〈vijS
2
ij〉 − 〈v−1

ij (vij · Sij)
2〉
]}

. (3.19)

§4. Estimates of the average values

Equations (3.16)–(3.19) express the collisional rates of change of the main quan-
tities as linear combinations of two-body averages of the form (3.15). They are local
functions of space and time and functionals of the orientation-averaged pre-collisional
distribution f̄ (2)

ij . While, thanks to the approximation (3.12), Eqs. (3.16)–(3.19) are
much more explicit than the exact results obtained from Eq. (3.11), they still require
the full knowledge of f̄ (2)

ij .
Suppose, for simplicity, that 〈vi〉 = 〈vj〉 = u and define the average angular

velocities
〈ωi〉 = Ωi, 〈ωj〉 = Ωj . (4.1)

Now, let us imagine that, instead of the full knowledge of f̄ (2)
ij , we only know the local
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values of the two densities (ni and nj), the two average angular velocities (Ωi and
Ωj), and the four partial temperatures (T tr

i , T rot
i , T tr

j , and T rot
j ). The question we

want to address in this section is, can we get reasonable estimates of the two-body
averages appearing in Eqs. (3.16)–(3.19) by expressing them in terms of ni, nj , Ωi,
Ωj , T tr

i , T rot
i , T tr

j , and T rot
j ? In the absence of further information, the least biased

estimates are obtained from the replacement

f̄
(2)
ij (vi,ωi; vj,ωj) → χij

(
mimj

4π2T tr
i T

tr
j

)3/2

exp

[
−mi

(vi − u)2

2T tr
i

−mj
(vj − u)2

2T tr
j

]
×f rot

i (ωi)f rot
j (ωj), (4.2)

where χij is the contact value of the pair correlation function. Equation (4.2) can
be justified by maximum-entropy arguments, except that here we do not need to
assume a Maxwellian form for the rotational distributions, given that the angular
velocities only appear linearly or quadratically in Eqs. (3.16)–(3.19). Like in the
approximation (3.12), it is important to stress that we are not making the strong
claim that f̄ (2)

ij (vi,ωi; vj ,ωj) is well approximated by the right-hand side of Eq. (4.2)
[see Ref. 41)] but only the wekaer one that the two-body averages can be estimated
by performing such a replacement. Table I displays those estimates.

Although 〈vi〉 = 〈vj〉 has been assumed in the results shown in Table I, the
generalization to 〈vi〉 �= 〈vj〉 can be carried out following the same steps as done in
Ref. 46) for smooth spheres.

§5. Energy production rates and cooling rate

The most characteristic feature of a granular gas is the energy dissipation taking
place after each collision. In the model of inelastic rough hard spheres this is clearly
apparent from Eq. (2.14). On the other hand, any of the four partial kinetic energies
contributing to Eij in Eq. (2.13) can either increase or decrease after a given collision.
To characterize this effect at a statistical level, it is convenient to introduce the rates
of change of the partial temperatures T tr

i and T rot
i due to collisions of particles of

component i with particles of component j. More explicitly, we define the (partial)
energy production rates ξtrij and ξrot

ij as

ξtrij ≡ − 1
3niT tr

i

Jij [mi(vi − u)2], ξrot
ij ≡ − 1

3niT rot
i

Jij [Iiω2
i ]. (5.1)

When collisions of particles of component i with all the components are considered,
we get the (total) energy production rates

ξtri ≡ − 1
T tr

i

(
∂T tr

i

∂t

)
coll

=
∑

j

ξtrij , ξrot
i ≡ − 1

T rot
i

(
∂T rot

i

∂t

)
coll

=
∑

j

ξrot
ij . (5.2)

Finally, the net cooling rate is

ζ ≡ − 1
T

(
∂T

∂t

)
coll

=
∑

i

ni

2nT
(
T tr

i ξ
tr
i + T rot

i ξrot
i

)
. (5.3)
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In contrast to the energy production rates defined in Eqs. (5.1) and (5.2), the cooling
rate ζ is positive definite, i.e., collisions produce a decrease of the total temperature
T unless αij = 1 and βij = ±1 for all pairs ij.

From Eqs. (3.16)–(3.19) and the expressions of Table I one gets the following
estimates:

n−1
i Jij [mivi] = 0, n−1

i Jij [Iiωi] = −νij
β̃ij

4
σi (σiΩi + σjΩj) , (5.4)

ξtrij =
νij

miT tr
i

[
2
(
α̃ij + β̃ij

)
T tr

i −
(
α̃2

ij + β̃2
ij

)(T tr
i

mi
+
T tr

j

mj

)

−β̃2
ij

(
T rot

i

miκi
+

T rot
j

mjκj
+

1
6
σiσjΩi · Ωj

)]
, (5.5)

ξrot
ij =

νij

miκiT rot
i

β̃ij

[
2T rot

i +
1
6
miκiσiσjΩi · Ωj − β̃ij

(
T tr

i

mi
+
T tr

j

mj
+
T rot

i

miκi
+

T rot
j

mjκj

+
1
6
σiσjΩi · Ωj

)]
, (5.6)

where we have introduced the effective collision frequency

νij ≡ 4
√

2π
3

χijnjσ
2
ij

√
T tr

i

mi
+
T tr

j

mj
. (5.7)

Equations (5.5) and (5.6) are the main results of this paper. They express the
collisional rates of change as functions of the local values of ni, nj , Ωi, Ωj , T tr

i , T rot
i ,

T tr
j , and T rot

j , as well as of the mechanical parameters mi, mj , σi, σj , κi, κj , αij ,
and βij . The energy production rates (5.5) and (5.6) can be decomposed into two
classes of terms. The first class is made of terms headed by 1+αij and 1+βij which
exist even if collisions are conservative. These terms do not have a definite sign, are
proportional to temperature differences (except for the scalar product Ωi ·Ωj), and
tend to make the four temperatures equal . The second class is made of terms headed
by 1 − α2

ij and 1−β2
ij and are positive definite, thus contributing to a decrease of the

temperatures due to energy dissipation. The terms of the first and second classes
can be termed equipartition and cooling rates, respectively. Only the latter class
contributes to the net cooling rate defined by Eq. (5.3). The result is

ζ =
∑
ij

niνij

4nT
mij

[
(1 − α2

ij)

(
T tr

i

mi
+
T tr

j

mj

)
+

κij

1 + κij
(1 − β2

ij)

(
T tr

i

mi
+
T tr

j

mj

+
T rot

i

miκi
+

T rot
j

mjκj
+

1
6
σiσjΩi · Ωj

)]
. (5.8)

In the case of smooth spheres (βij = −1), Eqs. (5.5) and (5.8) reduce to those
obtained in Ref. 7).
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Before closing this section, note that in the monodisperse case Eqs. (5.5), (5.6),
and (5.8) become

ξtr =
ν

2

[
1 − α2 +

κ

1 + κ

(
1 − β2

)
+

κ

(1 + κ)2
(1 + β)2

(
1 − T rot + κmσ2Ω2/12

T tr

)]
,

(5.9)

ξrot =
ν

2
1 + β

1 + κ

T tr

T rot

[
(1 − β)

T rot + κmσ2Ω2/12
T tr

− κ

1 + κ
(1 + β)

×
(

1 − T rot + κmσ2Ω2/12
T tr

)]
, (5.10)

ζ =
ξtrT tr + ξrotT rot

T tr + T rot
=
ν

2
T tr

T tr + T rot

[
1 − α2 +

1 − β2

1 + κ

(
κ+

T rot + κmσ2Ω2/12
T tr

)]
,

(5.11)
where ν ≡ (4

√
2π/3)χnσ2

√
2T tr/m. Equations (5.9)–(5.11) agree with those previ-

ously derived in Refs. 30) and 33) with Ω = 0.

§6. Application to the homogeneous cooling state

In the so-called homogeneous cooling state (HCS) the flux term ∇·ni〈viψ(vi,ωi)〉
in Eq. (3.10) is absent. Therefore, the evolution equations for the total and partial
temperatures are

∂tT = −ζT, ∂t
T tr

i

T
= − (ξtri − ζ

) T tr
i

T
, ∂t

T rot
i

T
= − (ξrot

i − ζ
) T rot

i

T
. (6.1)

After a certain transient time, a scaling regime is reached where all the time depen-
dence occurs through the total temperature T , which implies constant temperature
ratios and equal production rates, i.e.,

ξtr1 = ξtr2 = · · · = ξrot
1 = ξrot

2 = · · · . (6.2)

Since the HCS is an isotropic state, it follows that, for symmetry, Ωi = 0.

6.1. Monodisperse system

In the monodisperse case the HCS condition ξtr = ξrot yields the quadratic
equation

1 − α2 − 1 − κ

1 + κ
(1 − β2) − κ

(1 + κ)2
(1 + β)2

(
T rot

T tr
− T tr

T rot

)
= 0. (6.3)

In the smooth-sphere limit (β → −1) we get

T rot

T tr
≈
{

(1+κ)2

κ (1 − α2)(1 + β)−2 → ∞, α < 1,
κ

2(1−κ2)
(1 + β) → 0, α = 1.

(6.4)

Thus the elastic-sphere limit (α → 1) and the smooth-sphere limit (β → −1) do
not commute. If the spheres are inelastic (α < 1) but perfectly smooth (β = −1),
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Fig. 2. HCS of a dilute equimolar binary mixture with α11 = α12 = α22 = α, β11 = β12 = β22 = β,

κ1 = κ2 = 2
5
, σ2/σ1 = 2, and m2/m1 = 8. Plot of the temperature ratios (a) T tr

1 /T rot
1 , (b)

T rot
2 /T rot

1 , and (c) T tr
2 /T tr

1 vs 1 + β for [from top to bottom in (a) and from bottom to top in

(b) and (c)] α = 1, 0.9, 0.8, 0.7, 0.6, and 0.5. The circles at 1 + β = 0 in (c) represent the

results obtained in the case of perfectly smooth spheres (rotational degrees of freedom ignored

from the beginning).7)

the rotational and translational degrees of freedom are decoupled and T rot does not
change with time, while T tr keeps decreasing due to inelasticity.34) As a conse-
quence, the ratio T rot/T tr diverges in the long-time limit. On the other hand, if first
we assume that the spheres are perfectly elastic (α = 1) and then consider small
roughness (β → −1), the coupling between T rot and T tr is weak but not broken.
As long as T tr ∼ T rot, the translational temperature decays more slowly than the
rotational temperature (ξtr/ξrot ≈ κ), resulting eventually in a temperature ratio
T rot/T tr ∼ 1 + β → 0.

6.2. Binary mixture

In the particular case of a binary mixture, there exist three relevant tempera-
ture ratios that can be chosen in different ways. Here we take one of the transla-
tional/rotational ratios (T tr

1 /T
rot
1 ) and the two component/component ratios (T tr

2 /T
tr
1

and T rot
2 /T rot

1 ). The dimensionless parameter space is twelve-dimensional: the three
coefficients of normal restitution (α11, α12, α22), the three coefficients of tangential
restitution (β11, β12, β22), the two parameters κ1 and κ2, the mass ratio m1/m2, the
size ratio σ1/σ2, the mole fraction x1 = n1/(n1 +n2), and the total packing fraction
φ = (π/6)(n1σ

3
1 + n2σ

3
2).

To illustrate the results, here we first assume an equimolar mixture where all
the spheres are uniformly solid and are made of the same material, the size of the
spheres of one component being twice that of the other component. More specifically,
x1 = 1

2 , α11 = α12 = α22 = α, β11 = β12 = β22 = β, κ1 = κ2 = 2
5 , σ2/σ1 = 2, and

m2/m1 = 8. Moreover, we consider a dilute granular gas (φ � 1), so that χij ≈ 1.
Thus only the parameters α and β remain free. Figure 2 shows the three independent
temperature ratios as functions of the roughness parameter 1 +β for several charac-
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Fig. 3. HCS of a dilute equimolar binary mixture with α11 = α12 = α22 = α, β11 = β12 = β22 = β,

κ1 → 0, κ2 = 2
3
, σ2/σ1 = 1, and m2/m1 = 1. Plot of the temperature ratios (a) T tr

1 /(T rot
1 /κ1),

(b) T rot
2 /(T rot

1 /κ1), and (c) T tr
2 /T tr

1 ) vs 1 + β for [from top to bottom in (a) and from bottom

to top in (b) and (c)] α = 1, 0.9, 0.8, 0.7, 0.6, and 0.5.

teristic values of the inelasticity parameter α. As happened in the monodisperse case,
the translational/rotational temperature ratio T tr

1 /T
rot
1 exhibits a peculiar behavior

in the smooth-sphere limit 1 + β → 0: it diverges for elastic particles (α = 1) while
it vanishes for inelastic particles (α < 1). This phenomenon has a reflection in the
rotational/rotational ratio: either T rot

2 /T rot
1 converges to a finite value or it diverges,

depending on whether α = 1 or α < 1, respectively. Quite interestingly, the huge dis-
parity between the rotational and translational temperatures in the smooth-sphere
limit has a non-negligible effect on the translational/translational ratio T tr

2 /T
tr
1 if

α < 1: it tends to a finite value different from (in fact higher than) the value directly
obtained in the case of perfectly smooth spheres.7) Thus, a tiny amount of roughness
has dramatic effects on the temperature ratio T tr

2 /T
tr
1 , producing an enhancement

of non-equipartition.
As a second example, we now consider a dilute equimolar mixture of spheres

externally identical (same mass, size, and coefficients of restitution), except that
the mass of the spheres in one of the components is practically concentrated in the
centre (κ1 → 0), while the other component is made of hollow spheres (κ2 = 2

3).
Were the spheres strictly smooth, then the system would be indistinguishable from
a monodisperse system. However, again the smooth case is singular and the results
show that both components have different temperatures even in the limit 1+β → 0,
as illustrated by Fig. 3. Note that in the limit κ1 → 0 the rotational temperature
T rot

1 vanishes but the ratio T rot
1 /κ1 is well defined.

6.3. Locus of equipartition

As is well known, non-equipartition prevails in granular mixtures. This has
been illustrated in Figs. 2 and 3. On the other hand, by fine-tuning the mechanical
parameters and the composition, it is in principle possible to reach equipartition,
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Fig. 4. HCS of a dilute binary mixture with α11 = α12 = α22 = α, β11 = β12 = β22 = β, and

κ1 = κ2 = κ. (a) Loci of values of α and β for κ = 2
3
, 2

5
, and 0 where equipartition holds,

provided the second equality of Eq. (6.6) is satisfied. (b) The hatched region represents the

values of m1/m2 and and σ1/σ2 where equipartition is possible. The boundaries of the region

correspond to the extreme limits n1/n2 → 0 and n1/n2 → ∞, while the dotted line corresponds

to n1/n2 = 1.

i.e., T tr
i = T rot

i = T . In this equipartition case, Eqs. (5.5) and (5.6) become

ξtrij = νij
mj

mi +mj

[
1 − α2

ij +
κij

1 + κij

(
1 − β2

ij

)]
, ξrot

ij = νij
mjκj

miκi +mjκj

1 − β2
ij

1 + κij
,

(6.5)
where νij = 4

√
2π

3 χijnjσ
2
ij

√
T (mi +mj)/mimj . To show under which conditions

equipartition is possible, let us consider again a dilute binary mixture with α11 =
α12 = α22 = α, β11 = β12 = β22 = β, and κ1 = κ2 = κ. Otherwise, α, β, κ, m1/m2,
σ1/σ2, and n2/n1 are arbitrary. After simple algebra, the HCS conditions (6.2) yield

1 − α2 =
1 − κ

1 + κ
(1 − β2),

n1

n2
=
σ2

12

√
m2
m1

− σ2
2

√
m1+m2

2m2

σ2
12

√
m1
m2

− σ2
1

√
m1+m2

2m1

. (6.6)

The first equality establishes a relationship between both coefficients of restitution
and κ that is independent of composition, masses, and sizes of the particles [see Fig.
4(a)]. Moreover, the composition is constrained by the second equality. Without
loss of generality, let us take m1 ≤ m2. Then, positivity of the right-hand side of the
second equality of Eq. (6.6) implies that max {0, A12} ≤ σ1/σ2 ≤ A−1

21 ≤ 1, where

Aij ≡ 2
[
mi(mi +mj)/2m2

j

]1/4 − 1. The above inequality defines a wing-shaped
region in the plane σ1/σ2 vs m1/m2 [see Fig. 4(b)] where equipartition is possible,
provided both equalities in Eq. (6.6) are satisfied.
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§7. Concluding remarks

Despite the success and prevalence of the inelastic smooth-sphere model to char-
acterize granular matter under rapid flow conditions,1) it is known that the presence
of friction in collisions can be relevant and even essential for a more realistic model-
ing of granular flows.6),41) Moreover, granular matter is typically present in nature
in polydisperse form. In this paper we have combined both aspects (roughness
plus polydispersity) in a model of inelastic hard spheres with constant coefficients
of normal (αij) and tangential (βij) restitution. Otherwise, the masses, diameters,
moments of inertia, coefficients of restitution, and composition are arbitrary. Given
the complexity of the system, here we focus on the derivation of the (partial) energy
production rates ξtrij and ξrot

ij due to binary collisions. These quantities determine the
collisional rates of change of the translational (T tr

i ) and rotational (T rot
i ) granular

temperatures associated with each component, as well as the cooling rate ζ of the to-
tal temperature of the mixture. They can be considered as the most basic quantities
in a granular mixture since they are involved in the energy balance equations.

Starting from the collisional rules (2.6) and (2.7), together with Eq. (2.12), the
energy production rates are first expressed in a formally exact way in terms of the
two-body distribution function f (2)

ij [see Eqs. (3.11), (A.7), and (A.8)]. Next, the true

function f (2)
ij is replaced by its pre-collisional orientational average f̄ (2)

ij defined by Eq.
(3.13), what is justified if the density and/or the inhomogeneities are not too large.
This replacement allows us to express the collisional rates of change as combinations
of two-body averages, Eqs. (3.16)–(3.19). To get more explicit results as functions of
the local values of densities, temperatures, and mean angular velocities, a maximum-
entropy approach is followed in Eq. (4.2). The final expressions are given by Eqs.
(5.5), (5.6), and (5.8). These are the main results of the paper and generalize previous
results derived for monodisperse rough-sphere gases37) and polydisperse smooth-
sphere gases.7)

As a preliminary application of our results, we have studied the HCS, where
collisions are the only source of energy change. For a binary mixture of common
coefficients of restitution αij = α and βij = β, we have analyzed the influence of both
inelasticity and roughness on the three independent temperature ratios T tr

1 /T
rot
1 ,

T tr
2 /T

tr
1 , and T rot

2 /T rot
1 . As a surprising result, we find that a small amount of

roughness has a significant effect on the translational/translational ratio T tr
2 /T

tr
1 .

More specifically, it turns out that, at a given value of α, the value of T tr
2 /T

tr
1 in the

limit β → −1 differs from the value obtained directly in the smooth case (β = −1).
This paradoxical phenomenon is mainly due to the fact that, even if β is close to
−1, there exists a transfer of energy from the rotational to the translational degrees
of freedom that becomes relevant since the rotational temperatures are much larger
than the translational ones in the nearly smooth case. The latter effect is closely tied
to the non-stationary character of the HCS. In homogeneous steady states, as the
one driven by a white-noise thermostat, the extreme sensitivity of the ratio T tr

2 /T
tr
1

to whether β → −1 or β = −1 disappears.
The results obtained here can be applied to several problems. First, we plan to
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compare the theoretical results derived in this paper with computer simulations in
homogeneous states. This will allow us to assess the reliability of the approximations
made here to get explicit results. Secondly, taking the local version of the HCS as
the reference state, a Chapman–Enskog method can be followed to get the Navier–
Stokes constitutive equations for a mixture of rough spheres. Finally, following steps
similar to those done in Ref. 46), a kinetic model for rough spheres preserving the
energy production rates obtained here will be proposed.
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Appendix
Collisional Changes

In this appendix the expressions for the collisional changes of vi, ωi, v2
i , and ω2

i

are given. First, note that from Eq. (2.12) it follows that

Q2
ij = α̃2

ij(vij · σ̂)2 + β̃2
ij

[
(σ̂ × vij)2 + (σ̂ × Sij)2 − 2vij · (σ̂ × Sij)

]
, (A.1)

σ̂ × Qij = β̃ij [σ̂ × vij − σ̂ × (σ̂ × Sij)] , (A.2)

(σ̂ × Qij)
2 = β̃2

ij

[
(σ̂ × vij)2 + (σ̂ × Sij)2 + 2(σ̂ × vij) · Sij

]
. (A.3)

where use has been made of the mathematical identities

σ̂ × (σ̂ ×A) = (σ̂ ·A)σ̂ −A, (σ̂ ×A) · (σ̂ ×B) = A ·B − (σ̂ ·A)(σ̂ ·B). (A.4)

Next, Eqs. (2.6) and (2.7) yield

miv
′
i −mivi = −α̃ij(vij · σ̂)σ̂ − β̃ij [vij − σ̂ × Sij − (vij · σ̂)σ̂] , (A.5)

Iiω
′
i − Iiωi = −σi

2
β̃ij [σ̂ × vij − σ̂ × (σ̂ × Sij)] , (A.6)
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miv
′
i
2 −miv

2
i =

α̃2
ij

mi
(vij · σ̂)2 +

β̃2
ij

mi

[
(σ̂ × vij)2 + (σ̂ × Sij)2 − 2vij · (σ̂ × Sij)

]
−2α̃ij(vij · σ̂)(vi · σ̂) − 2β̃ij [(σ̂ × vi) · (σ̂ × vij) − vi · (σ̂ × Sij)] ,

(A.7)

Iiω
′
i
2 − Iiω

2
i =

β̃2
ij

miκi

[
(σ̂ × vij)2 + (σ̂ × Sij)2 + 2(σ̂ × vij) · Sij

]
−β̃ijσiωi · [σ̂ × vij − σ̂ × (σ̂ × Sij)] . (A.8)

Similar expressions are obtained for particle j by exchanging i ↔ j and σ̂ ↔ −σ̂.
Combining Eqs. (A.7) and (A.8), plus their counterparts for particle j, one can
get Eq. (2.14), where use is made of Eq. (2.11) and the identity A · (σ̂ × B) =
−B · (σ̂ × A). From Eqs. (A.5)–(A.8) one can easily obtain Eqs. (3.16)–(3.19) by
using the mathematical identities∫

dσ̂Θ(vij · σ̂)(vij · σ̂)� =
2π
�+ 1

v�
ij , (A.9)

∫
dσ̂Θ(vij · σ̂)(vij · σ̂)�σ̂ =

2π
�+ 2

v�−1
ij vij , (A.10)∫

dσ̂Θ(vij · σ̂)(vij · σ̂)�σ̂σ̂ =
2π

(�+ 1)(�+ 3)
v�−2
ij

(
�vijvij + v2

ij I
)
, (A.11)

where I is the unit tensor.
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