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Abstract. Segregation by thermal diffusion of an intruder immersed in a
sheared granular gas is analyzed from the (inelastic) Boltzmann equation.
Segregation is induced by the presence of a temperature gradient orthogonal to
the shear flow plane and parallel to gravity. We show that, like in analogous
systems without shear, the segregation criterion yields a transition between
upwards segregation and downwards segregation. The form of the phase diagrams
is illustrated in detail showing that they depend sensitively on the value of
gravity relative to the thermal gradient. Two specific situations are considered:
(i) absence of gravity and (ii) homogeneous temperature. We find that both
mechanisms (upwards and downwards segregation) are stronger and more clearly
separated when compared with segregation criteria in systems without shear.
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1. Introduction

The understanding of the physical mechanisms involved in segregation phenomena is one
of the most important challenges in the field of granular matter. Apart from its academic
interest, the problem is of central interest mainly due to its practical relevance in many
industrial processes (powder metallurgy, pharmaceutical pills, glass and paint industries,
etc). In some cases, it is a desired and useful effect to separate grains of different types
(e.g. the separation of mined ores), while in other situations the resulting non-uniformity
is an undesirable property that can be difficult to control. However, in spite of its practical
importance, the problem is not completely understood yet. This fact has motivated the
development of fundamental theories that provide accurate segregation criteria in the bulk
region of the sample [1].

One of the most familiar phenomena concerning segregation is the so-called Brazil-nut
effect (BNE): when a binary mixture composed of one large ball and a number of smaller
ones is vertically agitated, usually the intruder (large particle) tends to climb to the top of
the sample against gravity [2]–[5]. On the other hand, a series of experimental works [6, 7]
have also observed the reverse buoyancy effect, namely, under certain conditions the
intruder can also sink to the bottom of the granular bed. This effect is known as the
reverse Brazil-nut effect (RBNE). Although several mechanisms have been proposed to
explain the BNE/RBNE transition [2]–[10], the problem is still open. Among the different
competing mechanisms, thermal diffusion becomes the most relevant one when the sample
of grains resembles a granular gas (for example, at large shaking amplitude). In this
regime, binary collisions prevail and kinetic theory can be quite a useful tool to analyze
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granular systems. Thermal diffusion (or thermophoresis) in dilute [11]–[13] and dense [14]–
[19] granular mixtures has been a subject of current interest for the past few years.

A granular gas in the rapid flow regime can be achieved by shearing from the
boundaries [20]. Shearing is, in fact, as common as shaking in experiments with granular
systems. Thus, segregation criteria for sheared systems are also of interest. Furthermore,
experimental works in annular Couette cells [21]–[24] have shown that granular materials
segregate by particle size when subjected to shear. Nevertheless, in spite of the relevance
of the problem, much less is known of the theoretical description of segregation in sheared
granular systems. In effect, to the best of our knowledge, previous theoretical studies [25]
on the subject for dense systems have been based on a Chapman–Enskog expansion around
Maxwellian distributions at the same temperature for each species [26]. But the use of
these distributions can only be considered as acceptable for nearly elastic particles where
the assumption of the equipartition of energy still holds. Moreover, according to this level
of approximation, effects of inelastic collisions appear only through a sink term in the
energy balance equation and for this reason the expressions of the Navier–Stokes (NS)
transport coefficients for the mixture are the same as those obtained for ordinary gases
(elastic collisions). On the other hand, the use of the NS description to analyze segregation
in steady granular flows is a serious limitation since the NS theory heavily fails beyond the
quasielastic limit [27]. In addition, this is especially true in flows where viscous heating
is exactly balanced by inelastic cooling, for which the granular flow is inherently non-
Newtonian [28]. For this kind of flow, there is a special case of null temperature gradient,
called simple or uniform shear flow (USF). This flow has received a great deal of attention
in the past few years and is the reference case study for granular flows [20].

The aim of this paper is to analyze segregation by thermal diffusion in a binary
granular mixture under USF in the framework of the inelastic Boltzmann equation. Due
to the complexity of the general problem, here we consider the special case in which one of
the components is present in tracer concentration. The tracer problem is more amenable
to analytical treatment since there are fewer parameters than in a binary system. At
a kinetic theory level, in the tracer limit one can assume that the velocity distribution
function f(r,v; t) of the granular gas (excess component) obeys the (closed) Boltzmann
equation while the velocity distribution function f0(r,v; t) of the tracer particles satisfies
a (linear) Boltzmann–Lorentz equation. The problem is formally equivalent to considering
an impurity or intruder immersed in a dilute granular gas, and this will be the terminology
used in this paper.

We consider a physical situation where the system (granular gas plus intruder) is in
a steady state where weak spatial gradients of concentration, pressure and temperature
coexist with a strong shear rate, which for the steady USF means strong dissipation [29].
Under these conditions, the resulting diffusion of intruder is anisotropic and, thus,
tensorial quantities (Dij, Dp,ij and DT,ij) are required to describe mass transport instead
of the conventional scalar transport coefficients [17, 18, 25]. Explicit expressions for
the diffusion tensors Dij, Dp,ij and DT,ij have been recently obtained [30] by solving
the Boltzmann–Lorentz equation corresponding to the tracer particles by means of a
perturbation expansion around a nonequilibrium sheared state [31]–[33] rather than the
(local) equilibrium distribution [34]. This is the main new feature of this expansion
(in contrast to the usual Chapman–Enskog method) since the reference state retains
all the hydrodynamic orders (NS, Burnett, super-Burnett, etc) in the shear rate. As
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a consequence, the different approximations of this expansion are nonlinear functions of
the coefficients of restitution as well as of the parameters of the mixture (masses and
sizes).

The knowledge of the diffusion tensors allows us to study segregation by thermal
diffusion. On the other hand, due to the anisotropy induced by the shear flow, a thermal
diffusion tensor Λ is also required to characterize segregation in the different directions.
Since in this paper we are interested in steady state conditions, we consider a situation
where the temperature gradient is orthogonal to the shear flow plane and parallel to
gravity (i.e. ∂xT = ∂yT = 0, ∂zT �= 0 and ∂xUy = a ≡ const). In this case, the
segregation criterion is obtained from the thermal diffusion factor Λz, which is given in
terms of the generalized mass transport coefficients Dzz, Dp,zz and DT,zz. The use of these
generalized non-Newtonian coefficients results in different and more general segregation
criteria than those of previous works in sheared systems [25], which are limited to nearly
elastic particles.

Segregation is induced and sustained by both small gravity field and/or temperature
gradient. The signature of Λz provides a segregation criterion that shows a transition
between upwards and downwards segregation (or BNE and RBNE when the intruder is
large) by varying the parameters of the system. In particular, we find that the form for
the upwards/downwards segregation transition depends very sensitively on the value of
gravity relative to the thermal gradient in such a way that depending on this one or the
other mechanism vastly predominates in the space parameter. Moreover, our results show
differences with those derived [17, 18] when the gas is driven by a stochastic thermostat
that mimics the effect of a thermal bath [35]. These differences lead to interesting
results; most notably, we found the upwards/downwards segregation mechanisms are much
stronger when shear is input in the system. This may, of course, be a signature of a more
effective segregation process, with a direct impact for applications.

The plan of this paper is as follows. First, the thermal diffusion factor Λz is defined
and evaluated in section 2 by using a hydrodynamic description. In section 3 we determine
the magnitudes needed to calculate Λz (stress tensors of gas and intruder and zz elements
of the diffusion tensors Dij, Dp,ij and DT,ij). All these quantities are explicitly obtained
after solving the set of (inelastic) Boltzmann equations by means of the aforementioned
Chapman–Enskog-like expansion. The knowledge of the above quantities yields Λz as a
function of the parameter space of the problem, namely the mass and diameter ratios, the
two independent coefficients of restitution for collisions among gas–gas and intruder–gas
particles and the reduced gravity (gravity over thermal gradient). The form of the phase
diagrams of segregation is investigated in section 4 by varying the different parameters of
the system. In addition, a comparison with the theoretical results [13] derived when the
system is thermalized by a stochastic thermostat is also carried out. Finally, we briefly
discuss the results obtained in this paper in section 5.

2. Hydrodynamic description for thermal diffusion under shear flow

The model system considered is a dilute granular gas of smooth inelastic discs (d = 2)
or spheres (d = 3) of mass m and diameter σ, plus one intruder or impurity of mass
m0 and diameter σ0. The presence of the intruder does not perturb the state of the
granular gas and so the model system (gas plus intruder) is formally equivalent to a dilute
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granular binary mixture in the tracer limit for the impurity component. Therefore, only
gas–gas and intruder–gas particle collisions need to be taken into account. Collisions are
inelastic and characterized by two independent (constant) coefficients of normal restitution
α and α0, respectively. We assume that the system (gas plus impurity) is in USF. This
flow is characterized by constant densities n, n0 (number densities of gas and intruder,
respectively), uniform granular gas temperature T and a linear velocity profile Us,x = ay,
where a is the constant shear rate. In the USF state the temperature changes in time
due to the competition between two (opposite) mechanisms: on the one hand, viscous
(shear) heating and, on the other hand, energy dissipation in collisions. A steady state is
achieved when both mechanisms cancel each other and the fluid autonomously seeks the
temperature at which the above balance occurs [29].

The main goal of this paper is to study thermal diffusion of the intruder when the gas is
under USF. We introduce small perturbations to our base state (USF). The perturbations
are produced by a weak gravitational field and small hydrodynamic gradients. These
perturbations give rise to contributions to the mass flux, which can be characterized by
generalized transport coefficients. Therefore, intruder segregation will be determined by
the competition between these two different perturbations and by the relevant parameter
values.

The transport properties we need result from a general perturbation of the USF
for which the flow velocity may be expressed as U = Us + δU, where δU is a small
perturbation. Here, Us = a · r with a = aδixδjy. Thus, under these conditions, the
macroscopic balance equations for the system associated with this disturbed USF state
are given by [30]

∂tn + Us · ∇n + ∇ · (nδU) = 0, (1)

∂tn0 + Us · ∇n0 = −∇ · (n0δU) − ∇ · j0
m0

, (2)

∂tδU + a · δU + (Us + δU) · ∇δU = −(mn)−1 (∇ · P − nmg) , (3)

d

2
n∂tT +

d

2
n(Us + δU) · ∇T + aPxy + ∇ · q + P : ∇δU = −d

2
pζ, (4)

where we have assumed that the gravitational field g is the only external force. Here,
g = −gêz, where g is a positive constant and êz is the unit vector in the positive direction
of the z axis. Moreover, j0 is the mass flux of the intruder, P is the pressure tensor, q is
the heat flux and ζ is the cooling rate associated with the energy dissipation of collisions
between the gas particles themselves. It must be noted that the balance equations (1)–(4)
can be exactly obtained from the (inelastic) Boltzmann equation and they provide the
basis for developing a hydrodynamic description of this disturbed USF state. As usual, to
get a hydrodynamic description one has to represent the fluxes j0, P and q as well as the
cooling rate ζ as explicit functionals of the hydrodynamic fields and their gradients. Once
these constitutive equations are determined, the hydrodynamic equations (1)–(4) become
a closed set of equations for the fields n, n0, U and T .

Thermal diffusion is caused by the relative motion of the components of a mixture
due to the presence of a thermal gradient. As a consequence of this motion, a steady state
is achieved in which the separating effect arising from the thermal diffusion is balanced by
the remixing effect of ordinary diffusion [36]. We intend to calculate segregation criteria
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for steady states that weakly deviate from the USF. Specifically, we are interested in a
steady state with δU = 0 and with (small) gradients of density, pressure and temperature
only along the z axis. These small gradients are caused by boundary conditions for the
temperature and a weak gravitational field. The hydrodynamic equations (2)–(4) admit
a steady solution for these states.

Let us explain how we will obtain segregation criteria. From an experimental point
of view, the amount of segregation parallel to the thermal gradient can be characterized
by the thermal diffusion factor Λz, which in a steady state is defined through the relation

Λz
∂ ln T

∂z
= − ∂

∂z
ln

(n0

n

)
. (5)

We will consider also that the temperature gradient is directed downwards (∂T/∂z < 0),
i.e. in the same direction as gravity. Thus, when Λz > 0 (i.e. ∂z ln(n0/n) > 0), the
intruder tends to rise with respect to the gas particles (BNE when the intruder is larger
than the particles of the gas) and when Λz < 0 (i.e. ∂z ln(n0/n) < 0), the intruder falls
with respect to the gas particles (RBNE when the intruder is larger than the particles of
the gas).

We obtain now a relation of the type (5) from the balance equations. In the steady
state with δU = 0, the mass flux j0,z vanishes according to the balance equation (2). To
first order in the spatial gradients, the mass flux j0,z is given by

j0,z = −m0Dzz
∂x0

∂z
− m

T
Dp,zz

∂p

∂z
− mn

T
DT,zz

∂T

∂z
, (6)

where x0 = n0/n. Here, Dzz, Dp,zz and DT,zz are the zz elements of the diffusion tensor
Dij , the pressure diffusion tensor Dp,ij and the thermal diffusion tensor DT,ij, respectively
(as we said, due to the presence of the shear flow, the diffusion process is anisotropic and
thus tensorial quantities are required to describe mass transport under USF). Thus, the
condition j0,z = 0 yields

∂x0

∂z
= − m

m0T

Dp,zz

Dzz

∂p

∂z
− ρ

m0T

DT,zz

Dzz

∂T

∂z
. (7)

The momentum balance equation (3) for our steady state reduces to

∂Pzz

∂z
= −ρg, (8)

where ρ = mn is the mass density of the gas. This equation will allow us to express the
gradient of p as a function of the other two gradients and thus to obtain a relation of the
type (5) from the condition j0,z = 0.

In the hydrodynamic regime, the pressure tensor Pij has the form [32, 33]

Pij = pP ∗
ij(a

∗), (9)

where p = nT is the hydrostatic pressure and a∗ = a/ν is the (reduced) shear rate. Here

ν =
π(d−1)/2

Γ(d/2)

8

d + 2
pσd−1 (mT )−1/2 (10)

doi:10.1088/1742-5468/2010/07/P07024 6
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is an effective collision frequency. According to equation (9), the spatial dependence of
Pzz occurs explicitly through p and through its dependence on a∗. As a consequence

∂Pzz

∂z
= P ∗

zz

∂p

∂z
+ p

∂P ∗
zz

∂a∗
∂a∗

∂z

=
∂p

∂z
(1 − a∗∂a∗)P ∗

zz +
∂T

∂z

1

2

p

T
a∗(∂a∗P ∗

zz), (11)

where use has been made of the identity

∂a∗

∂z
= a∗

(
1

2
∂z ln T − ∂z ln p

)
. (12)

Using equation (11), we can obtain an expression of the gradient of p:

∂ ln p

∂z
= −

ρg
p

+ a∗
2

(∂a∗P ∗
zz)∂z ln T

P ∗
zz − a∗(∂a∗P ∗

zz)
. (13)

Use of (13) into (7) and substitution of equation (7) into equation (5) finally leads to

Λz =
D∗

T,zz − (P ∗
zz − a∗(∂a∗P ∗

zz))
−1 D∗

p,zz

(
g∗ + 1

2
a∗(∂a∗P ∗

zz)
)

D∗
zz

, (14)

where we have introduced the reduced coefficients

D∗
zz =

m0ν

p
Dzz, D∗

p,zz =
mν

Tx0
Dp,zz, D∗

T,zz =
mν

Tx0
DT,zz (15)

and

g∗ =
ρg

n
(

∂T
∂z

) < 0 (16)

is a dimensionless parameter measuring the gravity relative to the thermal gradient.
This quantity measures the competition between these two mechanisms (g and ∂zT ) on
segregation.

The condition Λz = 0 provides the criterion for the upwards/downwards segregation
transition. Since the diffusion coefficient D∗

zz is positive (as will be shown later), according
to equation (14), the condition Λz = 0 implies

(P ∗
zz − a∗(∂a∗P ∗

zz)) D∗
T,zz = D∗

p,zz

(
g∗ + 1

2
a∗(∂a∗P ∗

zz)
)
. (17)

This equation delimits the upwards and downwards segregation regimes in a granular
gas driven by shear flow. The explicit form of the pressure tensor and the diffusion
coefficients relevant for this problem were calculated in previous works [29, 30, 32, 33]. We
briefly explain in the next section the procedure followed to obtain them.

doi:10.1088/1742-5468/2010/07/P07024 7
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3. Boltzmann kinetic theory

We adopt now a kinetic theory point of view and start from the set of Boltzmann kinetic
equations for the system (gas plus intruder). In this description, all the macroscopic
properties of interest of the system are determined from the one-particle distribution
function of the gas f(r,v; t) and the one-particle distribution function of the impurity
f0(r,v; t). While the time evolution of the distribution function f(r,v; t) is given by the
(closed) inelastic Boltzmann equation [37, 38], the distribution function f0(r,v; t) obeys
the (linear) Boltzmann–Lorentz equation.

In this paper we are interested in a flow that differs slightly from the steady
USF [28, 29]. Under these conditions, the kinetic equations for f and f0 have been recently
solved [30]–[33] by means of a Chapman–Enskog-like expansion around local shear flow
distributions. Therefore, we look for solutions of the form

f = f (0) + f (1) + · · · , f = f
(0)
0 + f

(1)
0 + · · · , (18)

where the reference zeroth-order distribution functions f (0) and f
(0)
0 are the corresponding

local versions of the USF distributions of the gas and the intruder, respectively. According

to this perturbation scheme, the successive approximations f (k) and f
(k)
0 are of order k

in the spatial gradients of concentration x0, pressure p and temperature T but retain all
the hydrodynamic orders in the shear rate a. As said in the Introduction, this is the
main new ingredient of this expansion with respect to the conventional Chapman–Enskog
method [34]. This feature allows us to deploy for the first time a segregation theory based
on non-Newtonian hydrodynamics for granular sheared systems.

The rheological properties of the reference states f (0) and f
(0)
0 are related to the

pressure tensors P(0) and P(0)
0 , respectively. They are defined as

P
(0)
ij =

∫
dvmViVjf

(0)(V), P
(0)
0,ij =

∫
dvmViVjf

(0)
0 (V), (19)

where V = v −Us is the peculiar velocity. In addition, the steady state condition in the
USF problem requires that the viscous heating term a∗P ∗

xy is exactly compensated for by
the collisional cooling term ζ∗ [28, 29]. In that case, the (reduced) shear rate a∗ and the
coefficient of restitution α are not independent parameters but they are coupled by the
relation

a∗P ∗
xy = −d

2
ζ∗, (20)

where P ∗
ij = P

(0)
ij /p and ζ∗ = ζ/ν. Equation (20) shows the intrinsic connection between

the shear field and dissipation in the system. In fact, in the elastic limit (α = 1), ζ∗ = 0
and the (reduced) shear rate vanishes. The explicit expressions for the (reduced) pressure

tensor P ∗
ij , P ∗

0,ij = P
(0)
0,ij/x0p and their derivatives with respect to a∗ in the steady USF were

obtained in [29, 32, 33]. They are displayed in the appendix A for the sake of completeness.
Since α ≤ 1 the range of (reduced) shear rates is defined, according to equation (A.3),

in the interval 0 ≤ a∗ ≤ (3 + 2d)
√

(d + 2)/(32d(d + 1)). Thus, for hard discs (d = 2),
0 ≤ a∗ � 1.01 while 0 ≤ a∗ � 1.03 for hard spheres (d = 3). This clearly shows that
non-Newtonian effects become important as the dissipation increases. To illustrate this
non-Newtonian behavior, figure 1 shows a∗ versus α for hard discs and spheres. It is
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Figure 1. Plot of the reduced shear rate a∗ as a function of the coefficient of
restitution α for d = 2 (dashed line) and d = 3 (solid line).

apparent that the (reduced) shear rate (which gives the steady granular temperature) is a
nonlinear function of α in contrast to previous analysis [25] carried out for nearly elastic
particles where a∗2 ∝ 1 − α.

To complement the results shown in figure 1, the dependence of the relevant elements
of P ∗

ij and P ∗
0,ij on α is plotted in figure 2 for the system d = 3, σ0/σ = 2 and

m0/m = 4. As expected, the transport properties in the steady USF state are inherently
different from those of the NS description (which means here nearly elastic particles
due to equation (20)). A non-Newtonian signal of this behavior is the existence of the
normal stress differences in the shear flow plane. It must be remarked that, although
the expressions of P ∗

ij and P ∗
0,ij have been obtained by an approximate solution based on

Grad’s method, their α dependence compares quite well with Monte Carlo simulations
even for strong dissipation [39]–[42].

Once the rheological properties of the gas and the intruder are well characterized, the
diffusion coefficients Dzz, Dp,zz and DT,zz can be obtained to first order in the expansion.
The expressions of these generalized coefficients were derived in [30]. While the coefficient
Dzz decouples from the other two, the coefficients Dp,zz and DT,zz obey a set of coupled
equations. These equations are solved in appendix B. The results show that Dzz > 0
while Dp,zz and DT,zz do not have a definite signature.

Before exploring the dependence of the parameter space on the form of the phase
diagrams, it is instructive to consider certain limit situations. For example, there is
no segregation when the intruder and the particles of gas are mechanically equivalent
(m0 = m, σ0 = σ and α0 = α). This is consistent with the results derived in appendix B
since in this limit Dp,zz = DT,zz = 0 (the right-hand side of equations (B.3) and (B.4)
vanish since P ∗

zz = P ∗
0,zz) and so Λz = 0 for all values of α. Another reference situation is

the elastic limit (α = α0 = 1, which implies a∗ = 0 in the steady state condition (20)). In
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Figure 2. Dependence of the diagonal elements (a) P ∗
xx and P ∗

0,xx, (b) P ∗
yy and

P ∗
0,yy, and the off-diagonal elements (c) P ∗

xy and P ∗
0,xy on the (common) coefficient

of restitution α = α0 in the three-dimensional case for σ0/σ = 2 and m0/m = 4.
The solid lines correspond to the elements P ∗

ij of the granular gas while the dashed
lines are the elements P ∗

0,ij of the intruder particles.

this limit case, P ∗
zz = 1 and the diffusion coefficients behave as

Dzz → p

m0ω0
, Dp,zz → Tx0

mω0

(
1 − m0

m

)
, DT,zz → 0, (21)

where

ω0 =
4π(d−1)/2

dΓ(d/2)
n

(
σ + σ0

2

)d−1
√

2mT

m0(m + m0)
(22)

is a (positive) collision frequency. Consequently, for elastic collisions the segregation
criterion (17) becomes

g∗
(
1 − m0

m

)
= 0. (23)

In the absence of gravity, equation (23) holds trivially, and so the intruder does not
segregate. On the other hand, when |g∗| �= 0 the solution to (23) is simply m0 = m, namely
segregation is predicted for particles that differ in mass, no matter what their diameters
may be [13]. For inelastic systems, in general the criterion (17) is rather complicated since
it involves all the parameter space of the problem.

Equation (14) clearly shows that Λz is a linear function of the reduced gravity |g∗|.
This is illustrated in figure 3 where thermal diffusion is plotted as a function of |g∗| for
m0/m = σ0/σ = 2 and several values of a common coefficient of restitution (α = α0).
For the case represented here, downwards segregation is dominant, except for quite small
values of |g∗| (i.e. there is a critical value |g∗

c | such that a transition upwards segregation
⇒ downwards segregation occurs for |g∗| > |g∗

c |). It is to be noticed that the opposite
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Figure 3. Plot of thermal diffusion factor Λz versus the (reduced) gravity |g∗|
for inelastic hard spheres (d = 3) in the case m0/m = σ0/σ = 2. Three different
values of the common (α = α0) coefficient of restitution α have been considered:
α = 0.9 (solid line), α = 0.8 (dashed line) and α = 0.7 (dotted line).

Figure 4. Plot of thermal diffusion factor Λzversus common (α = α0) coefficient
of restitution α for inelastic hard spheres (d = 3) in the case σ0/σ = 1
and m0/m = 2. Three different values of the reduced gravity |g∗| have been
considered: |g∗| = 1 (solid line), |g∗| = 0.1 (dotted line) and |g∗| = 0 (dashed
line).

behavior is present in the segregation results for dense systems driven by a stochastic
thermostat [17, 19]. Figure 4 shows the α dependence of the thermal diffusion factor for
different values of the reduced gravity |g∗|. We observe that the presence of gravity changes
dramatically the regions of positive and negative Λz. In particular, for the case considered
here and for not quite small values of α, we observe that the downwards segregation region
increases with the reduced gravity.
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4. Phase diagrams for segregation

As can be noticed from equation (14) and from appendix A, the thermal diffusion factor Λz

depends on many parameters: the dimensionless gravity g∗, the mass ratio m0/m, the size
ratio σ0/σ, and the coefficients of restitution α and α0. Given that the parameter space
is fivefold, for simplicity, we take the simplest case of a common coefficient of restitution
α = α0. This reduces the parameter space to four quantities.

The zero contour of Λz separates regions of positive (upwards segregation) and
negative (downwards segregation) Λz. Points lying on the zero contour correspond
to values of the parameters of the system for which the intruder does not segregate.
According to equation (17), segregation is sustained by both gravity and the thermal
gradient. The combined effect of both g and ∂zT on thermal diffusion is through the
dimensionless gravity g∗ < 0 defined by equation (16). Although our previous perturbation
analysis [30] assumes that the external field is of the same order of magnitude as ∂zT , it is
instructive to separate the influence of each one of the terms appearing in equation (17)
on segregation. Thus, two specific limit situations will be considered first in the next
subsections: (a) absence of gravity (g = 0) and (b) homogeneous temperature (∂zT = 0).

4.1. Absence of gravity (|g∗| = 0)

In this case, segregation of the intruder is due only to the presence of the thermal gradient.
Under these conditions, |g∗| → 0 and equation (17) reduces to

P ∗
zzD

∗
T,zz = a∗(∂a∗P ∗

zz)
(
D∗

T,zz + 1
2
D∗

p,zz

)
. (24)

Of course, this condition is trivially satisfied in the elastic case (for which α = 1, a∗ = 0
and D∗

T,zz = 0). For inelastic systems (α �= 1), the influence of each term in equation (24)
is still intricate due to the presence of shear flow. As an illustration, figure 5 shows the
phase diagram in the {m0/m, σ0/σ} plane for three different values of the coefficient of
restitution α. As expected, when m0/m = σ0/σ = 1, the species are indistinguishable,
and so Λz = 0. Consequently, all zero contours of Λz pass through the point (1, 1). It is
apparent that, for σ0 < σ, the main effect of dissipation (or, equivalently, the reduced shear
rate a∗) is to reduce the size of the upwards segregation region while the opposite happens
when the intruder is larger than the particles of the gas. In the latter case, the influence of
dissipation on the phase diagram is much smaller than in the former case (when σ0 < σ)
so that all the curves tend to collapse into a common one for sufficiently large values of
the size ratio σ0/σ. We also observe that in the zero gravity limit large intruders will, in
general, tend to move towards hotter regions, since the upwards segregation is dominant
and occupies most of the parameter space: in fact, for large intruders (σ0/σ > 1), upwards
segregation is the only active mechanism for σ0/σ � 1.4. This is to be put in contrast
with the case of no shear (vibrated systems in dense systems), where segregation tends to
be predominantly of the downwards segregation type as the intruders get larger [19], just
the opposite behavior seen here for sheared granular gases.

4.2. Thermalized systems (∂zT = 0)

Let us consider now a system with both negligible temperature and mole fraction gradients
(∂zT → 0, ∂zx0 → 0). Thus, the segregation of the intruders is only driven by gravity.
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Figure 5. Phase diagram for segregation for inelastic hard spheres (d = 3) in the
absence of gravity (|g∗| = 0). Three different values of the (common) coefficient of
restitution α have been considered: α = 0.9 (solid line), α = 0.8 (dashed line) and
α = 0.7 (dotted line). Points above the curve correspond to Λz > 0 (upwards
segregation) while points below the curve correspond to Λz < 0 (downwards
segregation).

This situation (gravity dominates over thermal gradient) can be achieved in vibrated or
sheared systems in computer simulations and real experiments [7], [43]–[45]. In this case
(|g∗| → ∞), the sign of Λz is the same as that of the pressure diffusion coefficient D∗

p,zz

and so the criterion (17) becomes simply

D∗
p,zz = 0. (25)

In the elastic case, D∗
p,zz ∝ m − m0, and so the segregation criterion is m0 = m. For

inelastic gases, the dependence of D∗
p,zz on the parameter space is quite complex.

As we said in section 1, previous results for thermal diffusion have been obtained
when the gas is driven by means of a stochastic external force (thermostat) that mimics
the effect of a thermal bath. This external driving method is usually employed in
computer simulations [46] to compensate for cooling effects associated with the inelasticity
of collisions. Under these conditions, an explicit expression for the thermal diffusion factor
based on the NS transport coefficients has been recently obtained [13]. This expression
for Λz leads to the segregation criterion [13]

T0

T
=

m0

m
, (26)

where the temperature ratio is determined from the condition ζ0T0/m0 = ζT/m. The
segregation criterion (26) compares well with molecular dynamics simulation results for the
case of the steady state of an open vibrated granular system in the absence of macroscopic
fluxes [12]. As expected, it is clear that the segregation criterion (26) (obtained from the
NS description) differs from the one derived here for sheared gases (see appendix B).
The discrepancies between (25) and (26) are a direct consequence of the inherent non-
Newtonian features of the USF state not present at the NS level.
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Figure 6. Segregation phase diagram for inelastic hard spheres (d = 3) in the
absence of thermal gradient (|g∗| → ∞). Three different values of the (common)
coefficient of restitution α have been considered: α = 0.9 (solid line), α = 0.8
(dashed line) and α = 0.7 (dotted line). Points above the curve correspond
to Λz < 0 (downwards segregation) while points below the curve correspond
to Λz > 0 (upwards segregation). The dashed–dotted line refers to the results
obtained when the gas (for α = 0.8) is driven by a stochastic external force.

A typical phase diagram for thermalized sheared systems delineating the regimes
between upwards and downwards segregation is plotted in figure 6. The results obtained
from the relation (26) (stochastic driving thermostat) for α = 0.8 are also shown for
comparison. In spite of the differences between the criteria (25) and (26), the shape of
the phase diagram obtained from both relations agrees very well for large size ratios. In
particular, when σ0/σ < 1, the main effect of inelasticity is to reduce the size of the
downwards segregation region, while the opposite happens when σ0/σ > 1. On the other
hand, the effect of dissipation on the form of the phase diagrams is much more important
when σ0 < σ than when σ0 > σ. Moreover, comparison between figures 5 and 6 clearly
shows that the presence of gravity changes dramatically the form of the phase diagram
since the regions of positive and negative Λz are interchanged.

In the same way as happens for |g∗| = 0, there is one clearly predominant segregation
mechanism, the downwards segregation this time, being the only active mechanism for
m0/m > 1 if σ0/σ > 1. Interestingly, the downwards segregation is not present for small
but heavy intruders if the granular gas is sufficiently inelastic. This last situation is in
contrast with the vibrated systems since there the downwards segregation still occurs in
this region [19].

4.3. General case

We analyze the form of the phase diagrams for finite values of the reduced gravity |g∗|.
Figure 7 shows the phase diagram when |g∗| = 1 (gravity comparable to the thermal
gradient) for the same cases as considered in the previous figures. In general, the form of
the phase diagram for |g∗| = 1 is quite similar to the one obtained when |g∗| = ∞, i.e.

doi:10.1088/1742-5468/2010/07/P07024 14

http://dx.doi.org/10.1088/1742-5468/2010/07/P07024


J.S
tat.M

ech.
(2010)

P
07024

Segregation by thermal diffusion in granular shear flows

Figure 7. Segregation phase diagram for inelastic hard spheres (d = 3) in the case
|g∗| = 1. Three different values of the (common) coefficient of restitution α have
been considered: α = 0.9 (solid line), α = 0.8 (dashed line) and α = 0.7 (dotted
line). Points above the curve correspond to Λz < 0 (downwards segregation)
while points below the curve correspond to Λz > 0 (upwards segregation). The
dashed–dotted line refers to the results obtained when the gas (for α = 0.8) is
driven by a stochastic external force.

|g∗| = 1 is already sufficiently large to show the high gravity segregation behavior (similar
to that of the thermalized systems). Comparison with the stochastic driving results shows
now better agreement with the sheared results than those observed for thermalized systems
(see figure 6).

All previous graphs have been obtained by assuming a common coefficient of
restitution. Therefore, it is worth studying the (pure) effect on inelasticity on segregation
in shear flows. In order to illustrate this case, we consider the case m0 = m and σ0 = σ
with |g∗| = 1, corresponding to a system of particles that differ by their coefficients of
restitution only. Clearly, when all the coefficients of restitution are equal (α = α0), the
thermal diffusion factor vanishes (Λz = 0) and so, as expected, the intruder does not
segregate. Figure 8 presents plots of Λz versus α0 for different values of α. When the
coefficients of restitution are different from each other, thermal diffusion is different from
zero so that segregation in the presence of a temperature gradient can therefore occur
as a consequence of inelasticity only. This effect is also present when the mixtures are
vertically vibrated [11, 47]. But, again contrary to what happens in the vibrated systems,
in the sheared system the upwards segregation region increases for increasing inelasticity.

Therefore, we have seen that in most cases the qualitative behavior of the segregation
criteria for the sheared system is rather different from the criteria for vibrated systems.
Moreover the shearing has the effect of clearly favoring just one segregation mechanism:
upwards segregation for |g| < |gc| and downwards segregation for |g| > |gc|.

5. Discussion

The problem of segregation of an intruder in a sheared granular gas has been addressed in
this paper. The relative motion of the intruder with respect to the particles of the gas is
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Figure 8. Plot of thermal diffusion factor Λz versus the coefficient of restitution
α0 for inelastic hard spheres (d = 3) for the system σ0/σ = m0/m = 1 when
|g∗| = 1. Three different values of the coefficient of restitution α have been
considered: α = 0.9 (solid line), α = 0.8 (dashed line) and α = 0.7 (dotted line).

caused by the combined effect of gravity and a temperature gradient. In this case, thermal
diffusion (or thermophoresis in its single-particle manifestation) forces large or massive
particles to move down temperature gradients [48]. Under these conditions, the amount
of segregation parallel to the thermal gradient can be measured by the thermal diffusion
factor. However, the analysis of thermal diffusion in a strongly shearing gas is an intricate
problem basically due to the anisotropy induced in the system by the shear flow. For this
reason, in general a thermal diffusion tensor is needed to describe the segregation process
in the different directions. In this paper, for the sake of simplicity we have assumed that
the temperature gradient is orthogonal to the shear flow plane.

Under the above conditions, the thermal diffusion factor Λz (defined by equation (5))
has been obtained in a steady state where weak spatial gradients of concentration, pressure
and temperature directed along the vertical direction (parallel to gravity) coexist with a
strong (constant) shear rate a. Our approach to determine the thermal diffusion factor
follows two complementary routes. First, by using a hydrodynamic description, Λz has
been expressed in terms of the pressure tensor Pij of the gas and the transport coefficients
Dzz, Dp,zz and DT,zz associated with the mass flux of the intruder. Second, we have
adopted a kinetic theory point of view and have considered some previous results [30, 31]
obtained by solving the Boltzmann kinetic equation for the gas and the Boltzmann–
Lorentz equation for the intruder by means of a Chapman–Enskog-like type of expansion.
This allows us to compute the thermal diffusion factor as a function of the mass and
size ratios, the coefficients of restitution for gas–gas and intruder–gas collisions and the
reduced gravity g∗ = ρg/n∂zT < 0. Once the explicit form of Λz is known, the condition
Λz = 0 provides the segregation criterion for the transition upwards segregation (regions
of positive Λz) ⇔ downwards segregation (regions of negative Λz). This criterion is given
by equation (17) in terms of the (reduced) zz element of the pressure tensor P ∗

zz and the
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diffusion transport coefficients D∗
zz, D∗

p,zz and D∗
T,zz. In order to make the paper self-

contained, the complete expressions for all the above quantities have been displayed in
appendices A and B.

Some previous works [14, 25] on thermal diffusion segregation in sheared systems
have been based on the elastic NS transport coefficients. These coefficients are obtained
by the Chapman–Enskog expansion around the local equilibrium distribution. Thus, their
expressions are limited to nearly elastic systems in the USF problem. The present study
takes the (local) shear flow distributions for the gas particles and the intruder as reference
states in the Chapman–Enskog method so that the corresponding transport coefficients
derived from this expansion retain all the hydrodynamic orders (NS, Burnett, super-
Burnett, etc) in the shear rate. As a consequence, since the coefficients of restitution
and the shear rate are not independent parameters in the steady USF (see equations (20)
and/or (A.3)), our segregation criterion goes beyond the weak-dissipation limit. This is
perhaps the main new added value with respect to previous theoretical results [14, 25].
Moreover, our theory also takes into account the influence of both thermal gradients and
gravity through the reduced gravity g∗.

In order to illustrate the form of the phase diagrams in the mass and size ratio plane,
a (common) coefficient of restitution α = α0 has been assumed. Two specific situations
have been mainly studied: |g∗| = 0 (absence of gravity) and |g∗| → ∞ (homogeneous
temperature). The shear field has the neat effect of selecting more strongly the upwards
segregation mechanism: we have found that upwards segregation predominates very
strongly for small gravity |g∗| (and is, in fact, the only active mechanism for large and
heavy intruders if gravity is small). These results are in contrast with segregation in the
absence of shear, where there is no such strong predominance of the upwards segregation
mechanism for small gravities [19]. Regarding the impact of the inelasticity of collisions on
segregation, the results show that the influence of dissipation on thermal diffusion is more
important when the thermal gradient dominates over gravity (g∗ = 0) than in the opposite
limit (|g∗| → ∞), especially when the intruder is smaller than the particles of the gas. In
addition, in general the effect of inelasticity on segregation mechanisms is less sensitive
when the diameter of the intruder is greater than the particles of the gas. We also observe
that the influence of gravity on the form of phase diagrams is quite important: while
upwards segregation is dominant for small g∗, downwards segregation dominates if g∗ is
large. To complement the previous study, we have also considered the case of identical
mass and size for the intruder and gas particles but different coefficients of restitution
(α �= α0). As it happens for vibrated granular mixtures [11, 47], the intruder can segregate
in a sheared granular gas on the basis of differences in their inelastic properties.

The results derived here for thermal diffusion have been obtained in the tracer limit
x0 → 0. This limit precludes the possibility of analyzing the influence of composition on
the thermal diffusion factor Λz, where previous results for dilute gases [13] have shown
that the effect of x0 on Λz can be significant in many situations. The study on the
dependence of thermal diffusion on composition is an interesting open problem. It is also
apparent that the results presented here are relevant to make a comparison with numerical
simulations and/or experiments. In this context, we hope that this paper stimulates the
performance of such simulations/experiments to check the relevance of kinetic theory to
describe thermal diffusion segregation under shear flow. We plan to work along the above
lines in the near future.
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Appendix A. Pressure tensor of the gas and of the impurity in the steady USF

The nonzero elements of the (reduced) pressure tensor of the gas P ∗
ij = Pij/p are given

by [29]

P ∗
yy = P ∗

zz = · · · = P ∗
dd =

d + 1 + (d − 1)α

2d + 3 − 3α
, P ∗

xx = d − (d − 1)P ∗
yy, (A.1)

P ∗
xy = −4d

d + 1 + (d − 1)α

(1 + α)(2d + 3 − 3α)2
a∗, (A.2)

where the relationship between the reduced shear rate a∗ = a/ν (where ν is defined by
equation (10)) and the coefficient of restitution α is

a∗(α) =

√
d + 2

32d

(1 + α)(2d + 3 − 3α)2(1 − α2)

d + 1 + (d − 1)α
. (A.3)

Moreover, the (reduced) cooling rate ζ∗ = ζ/ν is

ζ∗ =
d + 2

4d
(1 − α2). (A.4)

The derivative of P ∗
zz with respect to a∗ is [30, 32, 33]

∂P ∗
zz

∂a∗ =
∂P ∗

yy

∂a∗ = 4P ∗
zz

a∗Δ + P ∗
xy

2a∗2Δ + d(2β + ζ∗)
, (A.5)

where

β =
1 + α

2

[
1 − d − 1

2d
(1 − α)

]
, (A.6)

and Δ ≡ (∂P ∗
xy/∂a∗) is the real root of the cubic equation

2a∗4Δ3 + 4da∗2(ζ∗ + β)Δ2 +
d2

2
(7ζ∗2 + 14ζ∗β + 4β2)Δ

+ d2β(ζ∗ + β)−2(2β2 − 2ζ∗2 − βζ∗) = 0. (A.7)

Apart from the pressure tensor of the gas, another relevant transport property is the
partial pressure tensor P0 of the impurity. This quantity along with its derivative with
respect to a∗ is also needed to compute the diffusion coefficients. The elements of the
reduced pressure tensor P ∗

0,ij = P0,ij/n0T are [31]

P ∗
0,yy = P ∗

0,zz = · · · = P ∗
0,dd = −F + HP ∗

yy

G
, (A.8)

P ∗
0,xy =

a∗P ∗
0,yy − HP ∗

xy

G
, (A.9)

P ∗
0,xx = dγ − (d − 1)P ∗

0,yy, (A.10)
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where γ = T0/T is the temperature ratio and

F =

√
2

2d

(
σ

σ

)d−1

M0

(
1 + θ

θ3

)1/2

(1 + α0)

[
1 +

M

2
(d − 1)(1 + θ)(1 + α0)

]
, (A.11)

G = −
√

2

4d

(
σ

σ

)d−1

M

(
1

θ(1 + θ)

)1/2

(1 + α0)

×{2[(d + 2)θ + d + 3] − 3M(1 + θ)(1 + α0)} , (A.12)

H =

√
2

4d

(
σ

σ

)d−1

M0

(
1

θ(1 + θ)

)1/2

(1 + α0) [3M(1 + θ)(1 + α0) − 2] . (A.13)

Here, σ = (σ + σ0)/2, θ = m0T/mT0 is the mean-square velocity of the gas particles
relative to that of the impurity, M = m/(m+m0) and M0 = 1−M = m0/(m+m0). The
temperature ratio γ is determined from the condition

γ =
ζ∗P ∗

0,xy

ζ∗
0P

∗
xy

, (A.14)

where the ‘cooling rate’ ζ∗
0 = ζ0/ν for the impurity is given by

ζ∗
0 =

(d + 2)
√

2

2d

(
σ

σ

)d−1

M

(
1 + θ

θ

)1/2

(1 + α0)

[
1 − M

2
(1 + θ)(1 + α0)

]
. (A.15)

The derivative of the elements of P ∗
0,ij with respect to a∗ is more involved. They can

be written as [30]

∂P ∗
0,yy

∂a∗ =
∂P ∗

0,zz

∂a∗ =
χP ∗

0,yy +
(
Y ′ + X ′

0P
∗
0,yy + X ′P ∗

yy

)
(∂γ/∂a∗) + X(∂P ∗

yy/∂a∗)
1
2
a∗χ − X0

, (A.16)

∂P ∗
0,xy

∂a∗ =

(
1

2
a∗χ − X0

)−1 {
χP ∗

0,xy +
(
X ′

0P
∗
0,xy + X ′P ∗

xy

)
(∂γ/∂a∗)

− [
P ∗

0,yy + a∗(∂P ∗
0,yy/∂a∗)

]
+ XΔ

}
, (A.17)

where χ = (2/d)(P ∗
xy + a∗Δ) and

Y =
d + 2

2
√

2d

(
σ

σ

)d−1

M0(1 + α0)

(
1 + θ

θ

)3/2 [
λ0

d + 2
+

d

d + 3
M(1 + α0)

]
, (A.18)

X0 = −d + 2√
2d

(
σ

σ

)d−1

M0(1 + α0) [θ(1 + θ)]−1/2

[
1 +

(d + 3)

2(d + 2)

1 + θ

θ
λ0

]
γ−1, (A.19)

X =
d + 2√

2d

(
σ

σ

)d−1

M0(1 + α0) [θ(1 + θ)]−1/2

[
1 − (d + 3)

2(d + 2)
(1 + θ)λ0

]
, (A.20)

with

λ0 =
2

1 + θ
− 3

d + 3
M0(1 + α0). (A.21)
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Moreover, Y ′ ≡ ∂Y/∂γ, X ′ ≡ ∂X/∂γ, X ′
0 ≡ ∂X0/∂γ, ζ ′

0 ≡ ∂ζ∗
0/∂γ and ∂γ/∂a∗ = Λ1/Λ2,

where

Λ1 = d

(
1

2
a∗χ − X0

) {(
1

2
a∗χ − X0

) (
χγ − 2

d
P ∗

0,xy

)
− 2

d
a∗ (

χP ∗
0,xy − P ∗

0,yy + XΔ
)}

+ 2a∗2 [
χP ∗

0,yy + X(∂P ∗
yy/∂a∗)

]
, (A.22)

Λ2 = d
(

1
2
a∗χ − X0

) [ (
1
2
a∗χ − X0

) (
ζ∗
0 + 1

2
χ + γζ ′

0

)

+
2

d
a∗ (

X ′
0P

∗
0,xy + X ′P ∗

yy

) ]
− 2a∗2 (

Y ′ + X ′
0P

∗
0,yy + X ′P ∗

yy

)
. (A.23)

Appendix B. Diffusion coefficients D∗
zz, D∗

p,zz and D∗
T,zz

In this appendix we give the explicit expressions of the tensors D∗
zz, D∗

p,zz and D∗
T,zz. The

diffusion coefficient D∗
zz is given by [30, 31]

D∗
zz =

P ∗
0,zz

Ω∗
zz

, (B.1)

where

Ω∗
zz =

√
2

4d

(
σ

σ

)d−1

M(1 + α0) [(1 + θ)θ]−1/2 γP ∗−1
0,zz {(d + 2)(1 + θ)

+ θ (P ∗
zz − 1) + [(d + 3) + (d + 2)θ]

(
γ−1P ∗

0,zz − 1
)}

. (B.2)

In the region of parameter space explored, Ω∗
zz > 0 so that the diffusion coefficient D∗

zz is
always positive.

The pressure diffusion D∗
p,zz and the thermal diffusion D∗

T,zz coefficients are coupled.
They obey the set of algebraic equations [30]

[
2

d
a∗(P ∗

xy − a∗Δ) + 2ζ∗ − Ω∗
zz

]
D∗

p,zz −
(

2

d
a∗2Δ − ζ∗

)
D∗

T,zz

= (1 − a∗∂a∗)
(m0

m
P ∗

zz − P ∗
0,zz

)
, (B.3)

[
2

d
a∗

(
P ∗

xy +
1

2
a∗Δ

)
+

1

2
ζ∗ − Ω∗

zz

]
D∗

T,zz +

(
a∗2

d
Δ − 1

2
ζ∗

)
D∗

p,zz

=
1

2
a∗∂a∗

(m0

m
P ∗

zz − P ∗
0,zz

)
, (B.4)

where Δ is the real root of (A.7) and the expressions of the nonzero elements of the pressure
tensors P ∗

ij and P ∗
0,ij and their derivatives with respect to a∗ are given in appendix A. The

solution to the set of equations (B.3) and (B.4) is elementary and provides the explicit
expressions of D∗

T,zz and D∗
p,zz in terms of m0/m, σ0/σ, α and α0. The results show that,

while D∗
zz > 0, the coefficients D∗

p,zz and D∗
T,zz do not have a definite sign.
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[13] Garzó V, 2006 Europhys. Lett. 75 521
[14] Arnarson B and Willits J T, 1998 Phys. Fluids 10 1324
[15] Jenkins J T and Yoon D, 2002 Phys. Rev. Lett. 88 194301
[16] Trujillo L, Alam M and Herrmann H J, 2003 Europhys. Lett. 64 190

Alam M, Trujillo L and Herrmann H J, 2006 J. Stat. Phys. 124 587
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