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Non-equilibrium phase transition in a sheared granular mixture
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Abstract – The dynamics of an impurity (or tracer particle) immersed in a dilute granular gas
under uniform shear flow is investigated. A non-equilibrium phase transition is identified from an
exact solution of the inelastic Boltzmann equation for a granular binary mixture in the tracer limit,
where the impurity carries either a vanishing (disordered phase) or a finite (ordered phase) fraction
of the total kinetic energy of the system. In the disordered phase, the granular temperature ratio
(impurity “temperature” over that of the host fluid) is finite, while it diverges in the ordered phase.
To correctly capture this extreme violation of energy equipartition, we show that the picture of
an impurity enslaved to the host fluid is insufficient.
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Under external driving, an initially mixed macroscopic
granular system may segregate. This ubiquitous effect
is not always desirable in applications, and among
the numerous counterintuitive properties of granular
materials, it has arguably been among the most studied
in the last twenty years [1,2]. Yet, it is not well under-
stood. The reason is twofold: there is a large number of
a priori relevant parameters involved in the description
of the granular mixture; additionally, analytical results
are scarce and difficult to obtain. Both shortcomings
call for an improved fundamental understanding of
physical situations where the different physical effects
at work (size asymmetry, forcing, collisional dissipation,
etc.) can be deciphered. As a consequence, seeking for
theoretical progress, we simplify the problem in two
respects. First, we consider the impurity limit where a
tracer particle is immersed in a driven dilute granular
gas described by the inelastic Boltzmann equation.
Second, we focus on an inelastic version of the so-called
Maxwell molecules [3], that can be seen as defining the
kinetic theorist’s Ising model. Indeed, the Boltzmann
equation for elastic bodies is already notoriously difficult
to deal with, and inclusion of collisional dissipation
—an essential aspect of inter-grains collisions— leads
to a far more complex description. The corresponding
inelastic Maxwell model, that has witnessed an upsurge
of interest in recent years [4–9], is inspired by Maxwell’s

original insight [10] that scattering processes involving
collision rates independent of the relative velocity of
impacting particles, define mathematically tractable
approaches [11].
A valid question to raise from the outset is then that of

the relevance of such a simplification. This issue should be
addressed by comparison with more refined approaches.
Among the few well accepted models accounting for the
specifics of dissipative inter-grains collisions, the simplest
is the inelastic hard-sphere model [2,12], where results
pertaining to the inelastic Boltzmann equation can be
compared to their Maxwell model counterpart. While
the agreement concerning the Navier-Stokes transport
coefficients is only qualitative [13], the situation improves
significantly for sheared mixtures where the rheological
properties (shear and normal stresses) agree very well with
(approximate) analytical results and computer simulations
for inelastic hard spheres [14]. This agreement, in a para-
meter space of large dimensionality, gauges and establishes
the reliability of the Maxwell model to capture important
effects in sheared granular mixtures. We come back to the
relevance of our approach before our concluding section,
see below, and we further note that experiments with
magnetic grains also point to the usefulness of Maxwell
models [15].
Our objective is to investigate the dynamics of an

impurity or tracer particle (hereafter referred to as
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species 1) in an inelastic dilute gas (species 2), main-
tained in a non-equilibrium steady state by a uniform
shear flow. This particular state is amenable to analytical
treatment from the Boltzmann equation since it is
characterized by constant and uniform partial densi-
ties (ni for i= 1, 2) as well as a uniform “granular
temperature” T (t) (see footnote 1), while the only
gradient affects the velocity profile, that is furthermore
common to both species: ux = ay in a Cartesian frame
((x, y, z) in three dimensions). This linear velocity
field defines the constant shear rate a that quantifies
viscous heating (shearing work). This energy injection
mechanism is balanced by dissipation in inelastic colli-
sions, the latter being parameterized by the constant
coefficients of normal restitution αij for collisions between
species i with j [12]. Although the total temperature
T = (n1T1+n2T2)/(n1+n2) (Ti is the partial temper-
ature of species i) changes with time, the temperature
ratio T1/T2 is time independent in the hydrodynamic
regime (namely, for times much larger than the mean free
time). Note that equipartition, of course, has no reason to
hold in such non-equilibrium conditions: T1/T2 �= 1 [16]. A
plausible expectation is that upon taking the tracer limit
c1→ 0 (where ci = ni/(n1+n2) is the mole fraction of
species i), the properties of the medium (or granular gas)
are not affected by the presence of the tracer particles
(or impurity). Let us consider the relative contribution
of the tracer particles to the total energy of the system,
E1/E = c1T1/T . Out of equilibrium, one expects that
E1/E actually scales like c1, and should therefore vanish
when c1→ 0. In other words, the impurity should be
enslaved to the host medium, and should not change the
macroscopic properties of the system. In this letter we
present an example of a violation of the above expecta-
tion: a non-equilibrium phase transition takes place, that
allows to discriminate a disordered phase, where T1/T in
the tracer limit is finite —and hence E1/E = 0—, from
an ordered phase where E1/E is finite —and therefore
T1/T diverges. The corresponding regions of phase space
will be worked out explicitly, which will reveal that both
phases may exhibit unexpected reentrant features. The
apparition of an ordered phase corresponds to an extreme
violation of equipartition, and has already been reported,
but only in the case of an unforced system (a= 0) [17].
However, this work was performed at the “enslaved
impurity” level, neglecting the retroaction of impurity
onto the host fluid. This precludes the derivation of the
order parameter. Compared to the findings of ref. [17],
we obtain explicitly the value of the transition order
parameter E1/E in the ordered phase, and show that
the scenario is more complex than reported so far,
with the emergence of overlooked phases. Furthermore,

1As routinely done in the field, we define the granular temper-
ature kinetically, from the variance of the velocity distribution [9].
Such a quantity does not have any thermodynamic basis. For equi-
librium systems only (no dissipation, no forcing) is it endowed with
a thermodynamic significance.

we investigate the fate of the previous phases, includ-
ing the new ones obtained, at finite shear (a �= 0).
These new results are the most significant contribution of
the present work.
We consider a binary mixture of grains at low density,

driven by a uniform shear flow. In the Lagrangian frame
moving at the linear flow velocity u, the velocity distrib-
ution functions fi(r,v, t) of each species become uniform,
i.e., fi(r,v, t)≡ fi(V, t) where V= v−u. In this frame,
the set of coupled Boltzmann equations for the velocity
distributions fi(V, t) read [18]

∂

∂t
fi− aVy

∂

∂Vx
fi =
∑

j

Jij [v|fi, fj ], (1)

where the Boltzmann collision operator Jij [fi, fj ] is

Jij [V1|fi, fj ] =
ωij
njΩd

∫

dV2

∫

dσ̂
[

α−1ij fi(V
′

1)fj(V
′

2)

−fi(V1)fj(V2)] . (2)

Here, Ωd = 2π
d/2/Γ(d/2) is the total solid angle in d

dimensions, and αij � 1 denotes the (constant) coefficient
of restitution for collisions between particles of species
i with j. Moreover, V′1 =V1−µji

(

1+α−1ij
)

(σ̂ ·g12)σ̂,
V′2 =V2+µij

(

1+α−1ij
)

(σ̂ ·g12)σ̂, where g12 =V1−V2,
σ̂ is a unit vector directed along the centers of the two
colliding spheres, and µij =mi/(mi+mj). The effective
collision frequencies ωij for collisions i-j are independent
of the relative velocities of the colliding particles but
can depend on space and time through its dependence
on densities ni and temperature T . They can be also
seen as free parameters of the model. Here, since our
problem involves a delicate tracer limit, we aim at the
simplest possible approach: In the “plain vanilla” Maxwell
model worked out here, the collision frequencies ωij are of
the form ωij = νcj , where ν

−1 is an effective (constant)
mean free time. The form of ωij is closer to the original
model of Maxwell molecules for ordinary gas mixtures [10].
The plain vanilla Maxwell model has been previously
considered by several authors [17,19] in several problems
pertaining to granular mixtures. Other choices of ωij are
possible, e.g. if the goal lies in mimicking as accurately as
possible inelastic hard spheres [14], but at the price of a
substantial increase in the complexity of the model that
prevents to get exact results.
In the uniform shear flow problem, the reduced shear

rate a∗ = a/ν is the relevant non-equilibrium parameter
since it measures the distance from the unforced case,
the much studied so-called homogeneous cooling state
(HCS) [12]. Within our framework, a∗ does not depend
on time, so that in general a∗ and αij are indepen-
dent parameters. This decoupling allows us to analyze
the combined effect of both control parameters on the
dynamic properties of the granular mixture. This is one
of the main advantages of the vanilla model used here
in contrast to previous works [14]. More generally, a key
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feature of the Boltzmann equation for Maxwell models is
that the pressure tensor P can be exactly determined in
terms of the shear rate and the parameters of the mixture
(the mass ratio µ≡m1/m2, the mole fraction c1 = n1/
(n1+n2) and the coefficients of restitution αij) [14,20].
The knowledge of the pressure tensor allows one to
determine the non-Newtonian transport properties of
the mixture. The energy ratio E1/E is also an impor-
tant property that can be obtained from the pressure
tensor.
We now address the tracer limit (c1→ 0) for E1/E.

After some tedious but straightforward algebra [21], an
interesting phenomenon is uncovered in this limit: while
E1/E vanishes for some parameter range —this is the
naive expectation—, the possibility exists that E1/E �= 0.
Two relaxation rates, λ

(0)
1 and λ

(0)
2 , play a key role in

delimitating the two behaviours [21]: whenever λ
(0)
2 >λ

(0)
1 ,

one has E1/E = 0 while on the other hand, E1/E �= 0 for
λ
(0)
2 <λ

(0)
1 . The corresponding expressions for λ

(0)
2 and

λ
(0)
1 are [21]

λ
(0)
2 =

(1+α22)
2

d+2
ϕ(ã)− 1−α

2
22

2d
, (3)

λ
(0)
1 =

2µ221
d+2

(1+α12)
2ϕ

(

ã

2µ221

(

1+α22
1+α12

)2
)

−2
d
µ21(1+α12)

[

1− µ21
2
(1+α12)

]

, (4)

where ã= 2(d+2)a∗/(1+α22)
2, and ϕ(x)≡

2
3 sinh

2[16 cosh
−1(1+ 27d x

2)]. In cases where λ
(0)
1 >λ

(0)
2 ,

the expression of E1/E can be written as

E1
E
=

D(λ
(0)
1 )

∆01(λ
(0)
1 )λ

(1)
1 +∆1(λ

(0)
1 )
, (5)

where the dependence of m1/m2, αij , and a
∗ is implic-

itly assumed on the right-hand side. In addition, λ
(1)
1

is defined by the expansion λ1(a
∗, c1)≈ λ(0)1 (a∗)+λ

(1)
1

(a∗)c1+O(c21) where λ1 is the largest real root of a sixth-
degree polynomial equation [21]. The general expressions
of D, ∆01 and ∆1 are too lengthy to be written down here.
For the sake of illustration, we give their expressions for
the case m1m2 =

1
4 and α11 = α22 = α12 =

1
2 :

D = − 9
25

[

λ
(0)
1 +

7

20

]2 [

λ
(0)
1 +

76

125

]2

−18a
∗2

125

[

λ
(0)
1

(

1+λ
(0)
1

)

+
1331

5000

]

, (6)

∆01 =
144

125

(

λ
(0)
1 +

7

20

){

a∗2− 625
48

(

76

125
+λ

(0)
1

)

×
[

2581

15625
+λ

(0)
1

(

2077

2500
+λ

(0)
1

)]}

, (7)

∆1 =
153a∗2

500

(

λ
(0)2
1 +

223

170
λ
(0)
1 +

55857

170000

)

− 75831
125000

(

λ
(0)
1 +

7

20

)(

λ
(0)
1 +

76

125

)

×
[

1+5λ
(0)
1

10403+132100λ
(0)
1

101108

]

. (8)

It must be noted that in general the expression of E1/E
does not explicitly depend on the coefficient of restitution
α11 which is equivalent to neglecting the collisions among
tracer particles themselves in the kinetic equation of f1.
The change of behaviour (energy ratio that vanishes or

not) is akin to an ordering process where the tracer is
either enslaved to the host fluid (E1/E = 0), or carries a
finite fraction of the total kinetic energy of the system
(E1/E �= 0). The latter situation, where the temperature
ratio is divergent, will be subsequently referred to as the
“ordered phase”, characterized by an extreme breakdown
of energy equipartition. Loosely speaking, the system
is invariant under the transformation c1→ δc1 in the
disordered phase, where T1/T reaches a finite value in
the limit c1→ 0. This invariance is broken in the ordered
phase, since then T1/T ∝ c−11 .
In light of the previous discussion, it is instructive to

analyze some special cases. First, for sheared elastic gases

(a∗ �= 0 and α12 = α22 = 1), it is easy to see that λ(0)2 >λ
(0)
1

(“disordered” phase) if the mass ratio µ>
√
2− 1≃ 0.414

for any value of a∗. However, if µ<
√
2− 1, λ(0)1 >λ

(0)
2

(“ordered” phase) for a∗ larger than a critical value
a∗c(µ). We recover here the transition already found [22]
for elastic Maxwell mixtures under uniform shear flow.
A second interesting situation is that of the HCS (a∗ = 0
but αij �= 1). In this case, there are also two different
phases depending on the relative positions of λ

(0)
1 and

λ
(0)
2 . In particular, the transition point (λ

(0)
1 = λ

(0)
2 )

—where it can be shown that the system relaxation time

diverges— leads to the critical mass ratios µ
(±)
HCS = (α12±

√

(1+α222)/2)/(1∓
√

(1+α222)/2 with µ
(−)
HCS <µ

(+)
HCS.

The ordered phase (λ
(0)
1 >λ

(0)
2 ) exists for mass ratios

smaller than µ
(−)
HCS or larger than µ

(+)
HCS. Moreover, the

first ordered phase (µ< µ
(−)
HCS corresponding to light

impurities) is present only when α12 >
√

(1+α222)/2,
and so is absent when α12 = α22 or when α12 < 1/

√
2.

It therefore appears that the occurrence of this ordered
phase not only requires collisional dissipation but more
precisely, asymmetric dissipation. In the absence of shear
(a∗ = 0), the order parameter E1/E can be cast in a
simple form as

E1
E
=
α222− 1+4µ21(1+α12)

[

1− µ212 (1+α12)
]

α222− 1+2µ21(1−α212)
. (9)

The existence of the second ordered phase (µ> µ
(+)
HCS,

heavy impurities) was already found by Ben-Naim and
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Fig. 1: Phase diagram in the reduced shear rate vs. mass
ratio plane, for different coefficients of restitution. The lines
display the boundaries between ordered and disordered phases;
the light and heavy impurity ordered phases are indicated.
The vertical dot-dashed line corresponds to a cut leading
to the inset of fig. 2. The arrows shows µ

(−)
HCS and µth for

α12 = 0.9 and α22 = 0.6. For the two other parameters sets,
{α12, α22}= {0.9, 0.9} and {0.6, 0.9}, the thresholds µth and

µ
(+)
HCS exist (not shown, for clarity) while µ

(−)
HCS is not defined.

Here, d= 2, but very similar results are obtained in three
dimensions.

Krapivsky [17] in their analysis on the velocity statistics
of an impurity immersed in a uniform granular fluid. It
must be remarked that a similar extreme breakdown of
the energy equipartition has also been reported in the HCS
for inelastic hard spheres [23] since, in the ordered phase,
the ratio of the mean square velocities for the impurity
and fluid particles T1m2/T2m1 is finite for extremely large
mass ratios (m1/m2→∞).
We now turn to the general case where viscous heat-

ing and collisional dissipation are both at work. Unlike
with the HCS where the light impurity ordering requires
asymmetric dissipation, we find here that adding the
“shear dimension” to the phase diagram ensures the
systematic existence of the light impurity ordered phase.
This is illustrated in fig. 1, see the left-hand side. On
the other hand, the heavy impurity order sets in at
large enough mass ratio and small enough shear (lower
right corner of fig. 1). As anticipated from the study of
the unforced system, the behaviour differs depending on
whether the inequality α12 >

√

(1+α222)/2 holds or not.
In fig. 1, the parameter set fulfilling the above constraint
is α12 = 0.9 and α22 = 0.6. In the low shear rate limit,
the figure indeed exhibits two distinct ordered phases,
one at low mass ratio µ, and one in the opposite heavy
intruder limit. This behaviour is fully consistent with
the previously analyzed HCS scenario. Conversely, when
α12 <

√

(1+α222)/2, the light impurity ordered pocket
is more restricted, and confined in a portion of high
shear, a∗ >a∗c , with quite a complex dependence on the
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Fig. 2: Order parameter of the non-equilibrium transition, as
a function of mass ratio µ=m1/m2 in the unforced case for
a two-dimensional system. Here, α12 = 0.9 and α22 = 0.6 The
inset shows the same quantity as a function of reduced shear
rate, for µ= 0.03<µ

(−)
HCS. The hatched regions indicate the

ordered phases (reentrant light impurity phase in the inset).
The two thresholds in the unforced case are indicated by the
vertical arrows (µ

(−)
HCS ≃ 0.041 and µ

(+)
HCS ≃ 9.83).

coefficients of restitution α22 and α12 (see fig. 1). In all
cases, the light impurity phase can only exist provided
µ does not exceed some dissipation-dependent threshold,
µ< µth, with µth =

√
2(1+α12)/(1+α22)− 1. As can be

seen in fig. 1, the order/disorder threshold shear rate
diverges as µ→ µth. Of course, µth =

√
2− 1 for elastic

gases, as discussed above. The phase diagram shown in
fig. 1 also indicates that the ordered phase exhibits reen-
trant features. Upon increasing mass ratio at fixed reduced
shear rate, or conversely increasing shear rate at fixed mass
ratio, the following sequence may be observed for some
portion of phase space: a first transition from ordered to
disordered states, followed by a reverse disorder → order
transition. This is illustrated in fig. 2, where the fraction
of the total energy that is transported by the impurity is
plotted against either mass ratio, or shear rate. It is appar-
ent that, for asymptotically large shear rates, the tracer
contribution to the total energy can be even larger than
that of the excess component.
Before concluding, we come back to the reliability of our

“plain vanilla” Maxwell approach. Although approximate,
it turns out to provide a relevant framework for granular
binary mixtures under uniform shear flow. This is illus-
trated in fig. 3 for an equimolar mixture in the steady
uniform shear flow state, namely, when viscous heating
and collisional cooling cancel each other and consequently,
the (reduced) shear rate a∗ depends on the coefficients of
restitution αij . Figure 3 compares the predictions of the
plain inelastic Maxwell model to the Monte Carlo results
obtained within the more realistic inelastic hard-sphere
model. It can be seen that the plain Maxwell model predic-
tion captures the important trend observed within a more
refined framework (the discrepancies between theory and
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Fig. 3: Temperature ratio T1/T2 vs. the (common) coefficient of
restitution (α= α11 = α12 = α22) in the steady uniform shear
flow state. The predictions of the inelastic Maxwell model
(continuous curve, present work) are tested against Monte
Carlo data (symbols, from [24]). The parameters are c1 = 0.5
(equimolar mixture) for a three-dimensional system (d= 3).
Two mass ratios are considered, corresponding to moderately
heavy intruders.

simulation are less than 15%, even for strong values of
dissipation). We therefore expect that the transition found
in this paper is not artefactual but is a robust feature.
In conclusion, we have analysed the tracer limit of an

exact solution [14,20] of the Boltzmann equation for a
binary granular mixture of inelastic Maxwell gases. This
solution applies to arbitrary values of the shear rate a and
the parameters of the mixture, namely, the mole fraction
c1, the mass ratio µ, and the coefficients of restitution
αij . We have argued that when the granular system is
driven by an externally imposed (uniform) shear, the
inelastic Maxwell model correctly encodes the physics of
more complex models, as evidenced by the dependence of
the non-Newtonian transport properties on the numerous
parameters of the mixture [14].
Within the framework of the mean-field Maxwell model,

we have shown a quite unexpected result: the relative
contribution of the tracer species (or impurity) to the total
properties of the mixture does not necessarily tend to zero
as c1→ 0. Consequently, the seemingly natural “enslaved
impurity” picture2 breaks down. This surprising result
extends to granular gases some related results derived time
ago for ordinary sheared mixtures [22]. The phenomenon
discovered here, arising from an exact solution of the
set of coupled Boltzmann equations, has been illustrated
with the energy ratio E1/E as a probe, but identical
conclusions can be drawn for other properties of the
system such as the (intrinsic) shear viscosity and the
viscometric functions [25].
The corresponding extreme kinetic energy equipartition

violation can be seen as an ordering transition, governed
by the competition between two characteristic relaxation

2Such a point of view leads to the Boltzmann equation for
the excess component and the Lorentz-Boltzmann equation for the
impurity and so, the impurity cannot retroact on the host medium.

frequencies, λ
(0)
1 and λ

(0)
2 . We have found two different

classes of ordered phases (see the shear rate vs. mass
ratio diagram in fig. 1): a light impurity phase that exists

when µ< µ
(−)
HCS for shear rates larger than a certain critical

value and a heavy impurity phase that requires µ> µ
(+)
HCS

and shear rates smaller than a certain threshold value. As
fig. 2 clearly shows, both ordered phases exhibit reentrant
features.
Usually, in the tracer limit, one assumes that the state of

the excess component 2 (or granular gas) is not disturbed
by collisions with tracer particles 1 (or impurity) and
that the self-collisions among tracer particles can be also
neglected [26]. The results derived in this letter show that
while the second hypothesis is correct, the first expectation
fails in the ordered phase. In this sense, the tracer limit
must be taken with care since it presents, in the ordered
phase, a similar complexity as the general problem with
finite concentration. In addition, although our present
description has focused on the energy ratio for a binary
system, we expect that the results reported here should
have interesting consequences for polydisperse mixtures,
or in terms of the velocity statistics, not addressed here.
Finally, an important simplification allowed by our modeli-
sation lies in the decoupling between shear rate and
dissipation, while granular gases exhibit —in the steady
state— inherent coupling between inelasticity and spatial
gradients. This means that a fingerprint of our scenario
should be sought for experimentally in the hydrodynamic
transient regime, before the steady state where collisional
dissipation and viscous heating balance each other. We
hope that this letter stimulates the performance of such
experiments and/or computer simulations to detect the
transition phenomenon reported here.
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V. Garzó and E. Trizac

[3] Ernst M. H., Phys. Rep., 78 (1981) 1.
[4] Baldasarri A., Marini Bettolo Marconi U. and
Puglisi A., Europhys. Lett., 58 (2002) 14.

[5] Ernst M. H. and Brito R., Europhys. Lett., 58 (2002)
182.

[6] Ernst M. H., Trizac E. and Barrat A., Europhys.
Lett., 76 (2006) 56.
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