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Abstract. The diffusion induced by a thermal gradient in a granular binary
mixture is analyzed here in the context of the (inelastic) Enskog equation.
Although the Enskog equation neglects velocity correlations among particles
that are about to collide, it retains the spatial correlations arising from volume
exclusion effects and thus is expected to be applicable for moderate densities.
In the steady state with gradients only along a given direction, a segregation
criterion is obtained from the thermal diffusion factor 3 by measuring the
amount of segregation parallel to the thermal gradient. As expected, the sign
of the factor 3 provides a criterion for the transition between the Brazil-nut
effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters
of the mixture (the masses and sizes of particles, concentration, solid volume
fraction and coefficients of restitution). The form of the phase diagrams for
the BNE/RBNE transition is illustrated in detail for several systems, with
special emphasis on the significant role played by the inelasticity of collisions.
In particular, an effect already found in dilute gases (segregation in a binary
mixture of identical masses and sizes but different coefficients of restitution)
is extended to dense systems. A comparison with recent computer simulation
results reveals good qualitative agreement at the level of the thermal diffusion
factor. The present analysis generalizes to arbitrary concentration previous
theoretical results derived in the tracer limit case.
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1. Introduction

Controlling the mixing/demixing of granular media containing more than one species
(polydisperse systems) is a problem faced by a wide range of industries. In some cases, one
would like to enhance the mixing effect, whereas in other situations, it might be a desired and
useful effect to separate particles of different types. Nevertheless, in spite of their practical
importance, the physical mechanisms involved in the segregation phenomenon are still not
completely understood [1]. This fact has motivated the development of accurate continuum
models for polydisperse solid mixtures in order to offer a reliable description of the bulk
behavior of these systems.

One of the most famous examples of (size) segregation in vertically vibrated mixtures is
the Brazil-nut effect (BNE), where a relatively large particle (intruder) tends to climb to the
top of the sample against gravity [2–5]. On the other hand, a series of experimental works
[6, 7] have observed also the reverse buoyancy effect: namely, the intruder can also sink to
the bottom of the granular bed under certain conditions (the reverse Brazil-nut effect (RBNE)).
Several mechanisms have been proposed to explain the transition BNE/RBNE: for example,
void filling [2], convection [3, 8], inertia [6] and interstitial-fluid effects [9]. Among the different
competing mechanisms, thermal diffusion becomes the most relevant one when the granular
system is vigorously shaken. Under these conditions, the motion of grains resembles the motion
of atoms or molecules in an ordinary gas and so near-instantaneous binary collisions prevail.
In this case, kinetic theory properly modified to account for the inelasticity of collisions may
be quite a useful tool to provide a reliable description of the kinetics and hydrodynamics of the
system and in particular to analyze segregation in mixtures.

Thermal diffusion (or thermophoresis in its single-particle manifestation [10]) is the
transport of matter caused by the presence of a thermal gradient. Due to the motion of the
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components of the mixture, a steady state can be reached in which the separation effect
arising from thermal diffusion is balanced by the remixing effect of ordinary diffusion. As
a consequence, partial separation or segregation is observed and described by the so-called
thermal diffusion factor. While this phenomenon has been widely studied in ordinary gases and
liquids (see for instance [11]), much less is known about thermal diffusion in the case of granular
mixtures. It must be noted that for granular systems, thermal diffusion can appear in vibrated
systems even in the absence of an external imposed temperature gradient, as a consequence
of inelasticity. In this case (energy supplied by vertical walls), the mean kinetic energy of the
grains decays away from the source of energy, giving rise to a (granular) temperature gradient.

Previous theoretical attempts to describe thermal diffusion based on kinetic theory have
been reported over the last few years. In the low-density regime, Serero et al [12, 13] have
studied the direct influence of inelasticity alone on thermal diffusion segregation for the case of
near-elastic particles [12] and finite degree of dissipation [13]. In particular, they found a novel
effect: namely, the fact that even when the species differ only by their respective coefficients
of restitution αi j , they may segregate when subject to a temperature gradient. However, they
assume energy equipartition, which can be considered as acceptable only when αi j ' 1. In
fact, the failure of energy equipartition in granular mixtures [14] has been widely confirmed by
computer simulations (see for instance [15]) and observed in real experiments [16] of agitated
mixtures. Additional efforts for dilute granular mixtures have been made in order to assess
the impact of breakdown of energy equipartition on thermal diffusion [17, 18]. Interestingly,
non-equipartition plays an important role, since those results show that the relative position of
the large particles 1 with respect to the small particles 2 is given by the sign of the control
parameter (m2T1/m1T2) − 1, where mi and Ti are the mass and partial temperature of species i .
Whereas for an ordinary gas this sign is determined by the mass ratio alone (since T1 = T2), for
a granular gas it depends also on the temperature ratio T1/T2 because of a lack of equipartition.
This segregation criterion compares well with molecular dynamics simulations [17, 19].

In the case of dense granular mixtures, Arnarson and Willits [20] have determined the
thermal diffusion factor for nearly elastic mixtures. However, their theory (which is based on the
results of Jenkins and Mancini [21]) differs from the theory for elastic particles [22] only by
the fact that it includes a sink term in the equation for temperature and hence no other inelastic
effects are accounted for. Slightly different approaches [23] based on kinetic theory have been
invoked to obtain a segregation criterion [24–26] in the absence of a temperature gradient. In
this latter case, the segregation dynamics of the intruder are driven only by the gravitational
force.

The aim of this paper is to determine the thermal diffusion factor 3 of a moderately
dense granular binary mixture described by the (inelastic) Enskog equation. Since the main
interest here lies in the analysis of the effect of a thermal gradient on granular segregation, it
will be assumed that no body forces (e.g. gravity) are present in the system. The segregation
criterion is obtained from the factor 3, which is explicitly given in terms of the parameters of
the system (masses and sizes of particles, concentration, solid volume fraction and coefficients
of restitution). More specifically, the sign of 3 determines the tendency of the large particles to
drift toward the cooler or warmer plate. It is apparent that the knowledge of the thermal diffusion
factor allows one to analyze the origin of its sign and how it is related to the different parameters
of the system. Previous theoretical results [27–29] on thermal diffusion have recently been
reported by the author of the present paper in the intruder limit case when the gas is driven by an
external thermostat. The objective here is to extend the above results to arbitrary concentration
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and compare these theoretical results with some recent molecular dynamics simulations [30] of
a granular segregating binary system subjected to a temperature gradient.

It must be remarked that the factor 3 has been obtained from a solution [31, 32] of the
Enskog equation that goes beyond the quasielastic limit (and thus it is applicable for a wide
range of values of the coefficients of restitution) and takes into account the non-equipartition of
kinetic energy. In this context, our theory subsumes all previous studies of both dilute [17, 18]
and dense [20], [23–25] mixtures and additionally assesses the influence of concentration on
thermal diffusion without any restriction on the parameter space (for a comprehensive review
of mixture theories, see [33]). This is the main added value of this paper since our results can
be relevant for a comparison with experiments/simulations at finite densities. Moreover, it must
be stated that the Navier–Stokes (NS) hydrodynamic equations are not actually solved in the
present paper. Instead, the results are conditional: if the temperature gradient has a given form,
then the segregation criterion has a resultant form. For instance, in the case of a temperature
inversion, the results on segregation reverse.

The plan of this paper is as follows. In section 2, the thermal diffusion factor 3 is defined
and evaluated by using a hydrodynamic description. The factor 3 is expressed in terms of
the pressure p and the transport coefficients DT

1 , D11 and D12 associated with the mass flux.
All of these coefficients have been explicitly determined from a Chapman–Enskog solution
[31, 32] of the Enskog kinetic equation. The explicit forms of the pressure and the transport
coefficients are displayed in appendix A. The knowledge of p, DT

1 , D11 and D12 allows one
to determine the thermal diffusion 3 as a function of the parameter space of the system: the
mass (m1/m2) and diameter (σ1/σ2) ratios, the concentration x1, the solid volume fraction φ

and the three independent coefficients of restitution of the binary mixture αi j . To assess the
impact of different parameters on the segregation criterion, some special situations are analyzed
and illustrated in detail in section 3. In section 4, the form of the phase diagrams BNE/RBNE
in the {σ1/σ2, m1/m2}-plane is widely investigated by varying the parameters of the system
in the case of a common coefficient of restitution (α11 = α22 = α12 ≡ α). Section 5 gives the
comparison between the Enskog theory and molecular dynamics results [30] for the thermal
diffusion factor. The paper is concluded in section 6 with a brief discussion of the results.

2. Enskog kinetic theory for thermal diffusion

We consider a binary mixture of inelastic hard discs (d = 2) or spheres (d = 3) of masses mi

and diameters σi(i = 1, 2). Without loss of generality, we assume that σ1 > σ2. The inelasticity
of collisions among all pairs is characterized by three independent constant coefficients of
restitution α11, α22 and α12 = α21. For moderate densities, it is assumed that the velocity
distribution functions fi(r, v; t) of each species are accurately described by the coupled set of
inelastic Enskog equations [34, 35]. Like the Boltzmann equation, the Enskog equation neglects
velocity correlations among particles that are about to collide, but it takes into account the
dominant spatial correlations due to excluded-volume effects. In the hydrodynamic description,
it is assumed that the state of the mixture is characterized by the local number densities ni(r, t),
the flow velocity U(r, t) and the (total) granular temperature T (r, t). These hydrodynamic
fields are defined in terms of the velocity distribution functions fi as

ni =

∫
dv fi(v), ρU =

∑
i

mi

∫
dvv fi(v), (1)
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nT =

∑
i

mi

d

∫
dvV 2 fi(v), (2)

where ρ =
∑

i mi ni is the total mass density, n =
∑

i ni is the total number density and V =

v − U is the peculiar velocity. Assuming that there are no external forces acting on the mixture,
the macroscopic balance equations for mass, momentum and energy can be derived from the
Enskog equation. They are given by [31]

Dtni + ni∇ · U +
∇ · ji

mi
= 0, (3)

DtU + ρ−1
∇ · P = 0, (4)

Dt T −
T

n

∑
i

∇ · ji

mi
+

2

dn
(∇ · q + P : ∇U) = −ζ T . (5)

Here, Dt = ∂t + U · ∇ is the material derivative, ji is the mass flux of species i , P is the pressure
tensor, q is the heat flux and ζ is the cooling rate associated with the energy dissipation in
collisions.

The constitutive equations for the irreversible fluxes ji , P and q and the cooling rate ζ

have been recently obtained up to the NS order (first order in the spatial gradients) from the
Chapman–Enskog solution [36] to the Enskog equation [31, 32]. The results are

j1 = −
m2

1n1

ρ
D11∇ ln n1 −

m1m2n2

ρ
D12∇ ln n2 − ρDT

1 ∇ ln T, j2 = −j1, (6)

Pαβ = pδαβ − η

(
∇αUβ + ∇βUα −

2

d
∇ · U δαβ

)
− κ∇ · U δαβ, (7)

q = −T 2 Dq,1∇ ln n1 − T 2 Dq,2∇ ln n2 − λ∇T, (8)

ζ = ζ (0) + ζu∇ · U. (9)

In these equations, Di j are the mutual diffusion coefficients, DT
1 is the thermal diffusion

coefficient, p is the pressure, η is the shear viscosity, κ is the bulk viscosity, Dqi are the
Dufour coefficients, λ is the thermal conductivity coefficient, ζ (0) is the zeroth-order cooling
rate and ζu is a transport coefficient associated with the first-order cooling rate. All of the above
quantities have been explicitly obtained by considering the leading terms in a Sonine polynomial
expansion [32].

2.1. The thermal diffusion factor

As stated in the introduction, we are interested in analyzing segregation by thermal diffusion in a
binary mixture. The amount of segregation parallel to the thermal gradient may be characterized
by the thermal diffusion factor 3. This quantity is defined in an inhomogeneous non-convecting
(U = 0) steady state with zero mass flux (j1 = 0) through the relation

−3
∂ ln T

∂z
=

∂

∂z
ln

(
n1

n2

)
, (10)

where gradients only along the z-axis (vertical direction) have been assumed for simplicity. Let
us assume that the gas is enclosed between two plates where the bottom plate is hotter than
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the top plate, i.e. ∂z ln T < 0. In this geometry, according to equation (10), when 3 > 0 the
larger particles 1 tend to rise with respect to the smaller particles 2 (i.e. ∂z ln(n1/n2) > 0). On
the other hand, when 3 < 0, the larger particles fall with respect to the smaller particles (i.e.
∂z ln(n1/n2) < 0). The former situation will be referred to here as the BNE, while the latter will
be called the RBNE.

We obtain now a relation of the type (10) from the balance equations. First, according to
equation (6), the steady-state condition j1,z = 0 yields

−(x1λ1 D∗

11 + x2λ2 D∗

12) = DT ∗

1 , (11)

where xi = ni/n is the mole fraction or concentration of species i ,

λi =
∂z ln ni

∂z ln T
, (12)

and we have introduced the reduced coefficients

D∗

i j =
mi m jν0

ρT
Di j , DT ∗

1 =
ρν0

nT
DT

1 , (13)

where ν0 is an effective collision frequency defined below equation (A.5). Moreover, since
U = 0, equation (7) clearly shows that the pressure tensor is diagonal for this state and so
Pαβ = pδαβ . In this case, the momentum balance equation (4) reduces simply to

∂p

∂z
= 0. (14)

The spatial dependence of the pressure p is through its dependence on the number densities ni

and the temperature T . As a consequence, in reduced units, equation (14) can be written more
explicitly as

−(x1β1λ1 + x2β2λ2) = p∗, (15)

where p∗
= p/nT and

β1 = T −1 ∂p

∂n1
= p∗ +

φ1

x1

∂p∗

∂φ
+ x2

∂p∗

∂x1
, (16)

β2 = T −1 ∂p

∂n2
= p∗ +

φ2

x2

∂p∗

∂φ
− x1

∂p∗

∂x1
. (17)

Here, φ = φ1 + φ2 is the total solid volume fraction, where φi is the partial solid volume fraction
of species i given by

φi =
π d/2

2d−1d0(d/2)
niσ

d
i , (18)

where 0 refers to the Gamma function.
The solution to the set of linear equations (11) and (15) is

λ1 =
p∗D∗

12 − β2 DT ∗

1

x1(β2 D∗

11 − β1 D∗

12)
, λ2 =

β1 DT ∗

1 − p∗D∗

11

x2(β2 D∗

11 − β1 D∗

12)
. (19)

According to equation (10), 3 = λ2 − λ1. Therefore, the thermal diffusion factor 3 is

3 =
DT ∗

1 (x1β1 + x2β2) − p∗(x1 D∗

11 + x2 D∗

12)

x1x2(β2 D∗

11 − β1 D∗

12)
. (20)
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Figure 1. Plot of the reduced coefficients (a) D11(α)/D11(1), (b) D12(α)/D12(1)

and (c) DT
1 (α)/DT

1 (1) as functions of the (common) coefficient of restitution
α for hard spheres (d = 3) with x1 = 1/2, σ1/σ2 = 2, m1/m2 = 8 and a solid
volume fraction φ = 0.1.

It is quite apparent that the influence of the parameters of the mixture on the sign of 3 is rather
complicated, given the large number of parameters involved. For the sake of concreteness,
we consider the region of the parameter space where β2 D∗

11 − β1 D∗

12 6= 0. In this case, the
condition 3 = 0 (which provides the criterion for the BNE/RBNE transition) implies (see the
denominator of equation (20))

p∗(x1 D∗

11 + x2 D∗

12) = (x1β1 + x2β2)DT ∗

1 . (21)

When the parameter set yields β2 D∗

11 − β1 D∗

12 = 0, |3| → ∞ and BNE (RBNE) appears if
3 > 0 (3 < 0). In any case, the condition β2 D∗

11 − β1 D∗

12 6= 0 covers practically all of the
parameter space of the problem.

Equation (21) gives the curves delineating the regimes between BNE and RBNE. To obtain
the dependence of the thermal diffusion factor on the parameters of the mixture, the explicit form
of the transport coefficients and the equation of state is needed. These forms were evaluated
in [31, 32] and some corrections to the expressions presented in these references have been
performed more recently in [37]. The final correct expressions are displayed in appendix A for
the sake of completeness.

Figures 1 and 2 show the dependence of the diffusion transport coefficients (D11, D12,
DT

1 ), the pressure p and its derivatives βi with respect to the partial densities as functions of the
(common) coefficient of restitution α ≡ αi j . We have considered here an equimolar mixture
(x1 = 1/2) with a solid volume fraction φ = 0.1 and mechanical parameters σ1/σ2 = 2 and
m1/m2 = 8. To show more clearly the influence of inelasticity in collisions on mass transport
and equation of state, all of the quantities have been normalized with respect to their values in
the elastic limit. We observe that the effect of collisional dissipation is in general significant,
especially in the case of the diffusion coefficients.

3. Some special limit situations

The explicit form of the thermal diffusion factor 3 can be obtained when one substitutes
equations (A.1)–(A.3) for DT ∗

1 , D∗

11 and D∗

12, respectively, and equation (A.6) for p∗ (and
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Figure 2. Plot of the reduced coefficients (a) p(α)/p(1), (b) β1(α)/β1(1) and
(c) β2(α)/β2(1) as functions of the (common) coefficient of restitution α for
hard spheres (d = 3) with x1 = 1/2, σ1/σ2 = 2, m1/m2 = 8 and a solid volume
fraction φ = 0.1.

its corresponding derivatives βi ) into equation (20). This gives the dependence of 3 on the
parameter space of the problem (mass and size ratios, mole fraction, solid volume fraction and
coefficients of restitution). It is apparent that this dependence is in general quite complex. Thus,
in order to show more clearly the different competing mechanisms appearing in the segregation
phenomenon, it is first convenient to consider some special situations where a more simplified
criterion can be obtained.

3.1. Mechanically equivalent particles

This is quite a trivial case since the system is in fact monodisperse (m1 = m2, σ1 = σ2,
α11 = α22 = α12). In this limit case, equation (A.1) shows that the thermal diffusion coefficient
vanishes (DT ∗

1 = 0), while D∗

11 and D∗

12 are given by equations (A.19). Consequently, since the
combination x1 D∗

11 + x2 D∗

12 = 0, the factor 3 vanishes (see equation (20)) and the condition
(21) holds for any values of the coefficient of restitution and volume fraction. In this case, as
expected, no segregation is possible.

3.2. Dilute binary mixtures

Let us consider a binary mixture in the low-density regime (φ → 0 or, equivalently, niσ
d
i → 0).

In this regime, p∗
= βi = 1, and

n1
∂ζ (0)

∂n1
+ n2

∂ζ (0)

∂n2
= ζ (0), n1

∂p

∂n1
+ n2

∂p

∂n2
= p. (22)

Taking into account these identities, it is easy to obtain the explicit form of the transport
coefficients from equations (A.1)–(A.3). They can be written as

DT ∗

1 =
(
ν∗

D − ζ ∗
)−1

(
x1γ1 −

ρ1

ρ

)
. (23)

x1 D∗

11 + x2 D∗

12 =

(
ν∗

D −
1

2
ζ ∗

)−1 (
ζ ∗DT ∗

1 + x1γ1 −
ρ1

ρ

)
, (24)
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where γ1 ≡ T1/T (the partial temperatures Ti are, in general, different from the total temperature
T ) and ν∗

D and ζ ∗ are defined by equations (A.4) and (A.5), respectively, with χi j = 1. According
to the above expressions, the criterion (21) becomes simply

x1x2 Mζ ∗

(ν∗

D − ζ ∗)(x2 + x1γ )(x2 + x1 M)

( γ

M
− 1

)
= 0, (25)

where M ≡ m1/m2 is the mass ratio and γ ≡ T1/T2 is the temperature ratio. Since in general
ν∗

D > ζ ∗, the solution to equation (25) is simply

m1

m2
=

T1

T2
. (26)

Although the explicit form of 3 derived here for a (unforced) dilute mixture differs from the
one obtained when the mixture is driven (heated) by means of a stochastic external force [18],
the segregation criterion (26) (based on the sign of 3) is the same as the one found in [18].
Note that if one assumes energy equipartition (T1 = T2), then segregation is predicted only for
those particles that differ in mass, no matter what their diameters may be. It must be remarked
that condition (26) is rather complicated, since it involves all of the parameter space of the
system. As stated in the introduction, criterion (26) compares well with molecular dynamics
simulations [17] carried out in the tracer limit case (x1 → 0) and is also able to explain [18] some
of the molecular dynamics segregation results [19] observed in agitated mixtures constituted by
particles of the same mass density and equal volumes of large and small particles.

3.3. Tracer limit in a dense binary mixture

Let us consider now a dense binary mixture where one of the components is present in
tracer concentration (x1 → 0). This problem is formally equivalent to studying the dynamics
of an intruder immersed in a granular gas. The tracer limit case simplifies significantly the
evaluation of the transport coefficients since, for instance, the dependence of the temperature
ratio γ = T1/T2 on the partial densities is only through the volume fraction φ (see equation
(B.3)). The explicit expressions for the diffusion coefficients in the tracer limit are given by
equations (B.4)–(B.6). According to these expressions, DT ∗

1 and D∗

11 are proportional to the
concentration x1 and so equation (20) for the thermal diffusion factor 3 becomes

3 =
βx−1

1 DT ∗

1 − p∗(D∗

11 + x−1
1 D∗

12)

β D∗

11

, (27)

where β = p∗ + φ∂φ p∗,

p∗
= 1 + 2d−2χ22φ(1 + α22) (28)

is the (reduced) pressure of the excess component and

φ ≡
πd/2

2d−1d0(d/2)
n2σ

d
2 (29)

is the total solid volume fraction. Since β and D∗

11 are positive in the tracer limit, the condition
3 = 0 leads to the segregation criterion

β DT ∗

1 = p∗(x1 D∗

11 + x2 D∗

12). (30)
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This criterion can be written more explicitly when one takes into account equations (B.4)–(B.6)
with the result[(

ν∗

D −
1

2
ζ ∗

)
β − p∗ζ ∗

(
1 + φ∂φ ln χ22

)] [
γ − Mp∗ +

(1 + ω)d

2

M

1 + M
χ12φ(1 + α12)

]
= p∗(ν∗

D − ζ ∗)

[
γ − Mβ + φ

∂γ

∂φ
+

1

2

γ + M

1 + M

φ

T

(
∂µ1

∂φ

)
T,n2

(1 + α12)

]
, (31)

where ω = σ1/σ2 is the size ratio and µ1 is the chemical potential of the tracer particles (given
by equation (A.12) for d = 2 and by equation (A.14) for d = 3). It is apparent that in spite of the
tracer limit case considered, the segregation criterion (31) is quite intricate and so it is not easy
to disentangle the impact of each effect (non-equipartition, dissipation, density and/or mass and
size ratios) on thermal diffusion.

Thermal diffusion segregation of an intruder in a granular dense gas has recently been
studied [27, 29]. In order to maintain the granular medium in a fluidized state, particles of the gas
were assumed to be heated by a stochastic-driving force, which mimics a thermal bath. This kind
of forcing, which has been shown to be relevant for some two-dimensional (2D) experimental
configurations with a rough vibrating piston [38], has been used in the past by many authors (see
for instance [39]) to analyze different problems, including segregation in granular mixtures [25].
Although previous experiments in vibrated granular mixtures [16] have shown a less significant
dependence of the temperature ratio T1/T2 on inelasticity than the one obtained [40] in systems
heated by an external thermostat, some results (see for instance figure 2 of [29]) derived for
T1/T2 from this stochastic driving method compare well with molecular dynamics simulations
of shaken mixtures [19]. This agreement suggests that this stochastic thermostat can be seen
as a plausible approximation to modelize the experiments carried out in driven systems. On the
other hand, more comparisons between results derived for driven and heated systems are needed
before quantitative conclusions can be drawn on the reliability of the segregation conditions
obtained from the transport coefficients derived with [29] and/or without [31, 32] an external
thermostat.

As expected, the external thermostat does not play a neutral role in the transport properties
of the system [41] and, consequently, criterion (31) differs from the one obtained in the driven
heated case, equation (B.12). To illustrate more clearly these differences, a phase diagram
delineating the regimes between BNE (3 > 0 when ∂zT < 0) and RBNE (3 < 0 when ∂zT < 0)
in the {σ1/σ2, m1/m2}-plane is shown in figure 3 for α ≡ α22 = α12 = 0.8 and two different
values of the solid volume fraction φ. Significant quantitative discrepancies between the
predictions obtained with and without a thermostat appear at small densities (φ = 0.1), since
the effect of the thermostat is to reduce the size of the BNE region. Much less influence appears
when the density of the gas increases, since the two results are practically indistinguishable at
higher densities (φ = 0.5). With respect to the influence of solid volume fraction, we observed
that in general the role played by the density of the gas is quite important, since the range of
size and mass ratios at which the RBNE exists increases with decreasing φ.

3.4. Inelasticity-driven segregation

In a previous theoretical approach [12] based on a solution of the Boltzmann equation for nearly
elastic particles, it has been found that segregation is induced by inelasticity. In other words,
there is a separation between both species when they differ only by their respective coefficients
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Figure 3. BNE/RBNE phase diagram for inelastic hard spheres (d = 3) with
α ≡ α12 = α22 = 0.8 in the tracer limit case (x1 = 0) for two different values of
the solid volume fraction φ. The solid lines correspond to the values derived
from relation (31), while the dashed line refers to the results obtained when the
gas is driven by an external thermostat, equation (B.12). Points above the curve
correspond to 3 > 0 (BNE), while points below the curve correspond to 3 < 0
(RBNE).

of restitution. The authors explain the phenomenon as a consequence of the temperature gradient
induced in the system by inelastic collisions, and relate the concentration gradient with the
temperature gradient. These results have been subsequently extended to arbitrary degree of
inelasticity [13]. The above novel effect has been confirmed more recently [42, 43] by molecular
dynamics simulations of a 2D binary mixture kept fluidized by a vibrating base.

In order to study the (pure) effect of inelasticity on thermal diffusion segregation, we
consider the case m1 = m2 and σ1 = σ2 but different coefficients of restitution αi j . Clearly, when
all of the coefficients of restitution are equal (α11 = α22 = α12), the system is monodisperse and
so there is no segregation (3 = 0). Figure 4 presents plots of the thermal diffusion factor 3

as function of the concentration x1 for different values of the coefficients of restitution at a
density φ = 0.2. As in the case of dilute gases (φ = 0) [12], segregation in the presence of a
temperature gradient can then occur due to inelasticity alone. In particular, segregation occurs
even when one type of collision is elastic (case (d)). Whereas in this latter case larger particles
tend to accumulate in the warmer region, there is a change in the sign of 3 at a given value of
the concentration in the other cases analyzed. In particular, larger species tend to move towards
the colder plate when they experience more inelastic collisions than the other ones (α11 < α22).
Moreover, although not shown in the figure, our results also indicate a very weak influence of
the volume fraction φ on the segregation process in this special case.

4. Phase diagrams for the Brazil-nut effect/reverse Brazil-nut effect (BNE/RBNE)
transition

Beyond the special limit situations considered in the previous section, the thermal diffusion
factor 3 (or, equivalently, the segregation criterion (21)) depends in general on the following
dimensionless parameters: the mass ratio m1/m2, the diameter ratio σ1/σ2, the concentration x1,
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Figure 4. Plot of the thermal diffusion factor 3 as a function of the concentration
x1 for a solid volume fraction φ = 0.2 and different values of the coefficients of
restitution: (a) α11 = α22 = 0.5, α12 = 0.9; (b) α11 = 0.8, α22 = 0.9, α12 = 0.7;
(c) α11 = 0.9, α22 = 0.8, α12 = 0.7; and (d) α11 = 1, α22 = 0.5, α12 = 0.75. Here,
m1 = m2 and σ1 = σ2.

Figure 5. BNE/RBNE phase diagram for inelastic hard spheres (d = 3) with
x1 = 1/2, φ = 0.25 and two values of the (common) coefficient of restitution
α ≡ αi j . Points above the curve correspond to 3 > 0 (BNE), while points below
the curve correspond to 3 < 0 (RBNE). The solid lines are the results derived
from equation (31), while the dashed line is the result obtained from equation
(31) for α = 0.7 but assuming energy equipartition (T1 = T2).

the overall volume fraction φ and the coefficients of restitution α11, α22 and α12. For purposes
of simplicity, henceforth the coefficients of restitution will be assumed to be the same for all
combinations of collisions (i.e. α11 = α22 = α12 ≡ α). Moreover, we only consider the physical
case of hard spheres (d = 3). This reduces the parameter space to five parameters.

Next, we illustrate the form of the phase diagrams delineating the regimes between BNE
and RBNE in the {σ1/σ2, m1/m2}-plane as functions of the concentration x1, the overall volume
fraction φ and the (common) coefficient of restitution α. First, figure 5 shows a phase diagram
for an equimolar mixture (x1 = 0.5) at φ = 0.25 (moderate density). Two different values of α
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Figure 6. BNE/RBNE phase diagram for inelastic hard spheres (d = 3) with
φ = 0.25, α ≡ αi j = 0.8 and three different values of the concentration x1: (a)
x1 = 0.1, (b) x1 = 0.4 and (c) x1 = 0.7. Points above the curve correspond to
3 > 0 (BNE), while points below the curve correspond to 3 < 0 (RBNE).

have been considered (α = 0.9 and 0.7). In contrast to what happens in the intruder limit case
(see, for instance, figure 4 of [29]), it is apparent that the main effect of collisional dissipation
is to reduce the size of the RBNE region. We observe that in general the RBNE (large particles
tend to move toward the hot regions) is dominant for both small mass ratio and large size
ratio. Moreover, in order to gauge the impact of the non-equipartition of granular energy on
segregation, we have also included in figure 5 the phase diagram for α = 0.7 obtained from
the segregation criterion (21) but assuming energy equipartition (T1 = T2). This has been the
usual simplification in many previous theoretical works on thermal diffusion in nearly elastic
systems [20, 24]. The comparison indicates good qualitative agreement (at least in the region
shown in the figure) between both results for not too large size ratios. On the other hand,
quantitative discrepancies appear as the size ratio increases. In particular, although not shown
in the phase diagram, when T1 = T2 the mass ratio becomes a two-valued function of the size
ratio for values of σ1/σ2 & 2.6. This means that there exists a threshold value of σ1/σ2 above
which no BNE is predicted. It must be noted that the significant influence of different partial
temperatures Ti on thermal diffusion found here is consistent with the molecular dynamics
findings of Galvin et al [30]. These authors showed that non-equipartition driving forces of
segregation are comparable to other driving forces for systems displaying a comparable level
of non-equipartition. Regarding this point, it must be noted that for systems where segregation
is mainly driven by gravity (molecular dynamics simulations of [30] were carried out in the
absence of gravity), previous theoretical results [24, 26, 29] have clearly shown that non-
equipartition has a weaker influence on segregation for thermalized systems (i.e. when ∂zT → 0)
than in the opposite limit (absence of gravity). This behavior qualitatively agrees with the
experiments carried out by Schröter et al [19].

Let us now analyze the effect of the concentration x1 of the large particles on segregation.
This is one of the main added values of the present paper with respect to previous studies focused
on the tracer limit case (x1 → 0). Figure 6 shows a phase diagram for α = 0.8, φ = 0.25, and
three different values of the mole fraction x1. We observe that the concentration of the mixture
has significant effects in reducing the BNE region as x1 increases. In particular, for a given
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Figure 7. BNE/RBNE phase diagram for an equimolar mixture (x1 = 0.5) of
inelastic hard spheres (d = 3) with α ≡ αi j = 0.7 and three different values of the
solid volume fraction φ: (a) φ = 0.1, (b) φ = 0.2 and (c) φ = 0.4. Points above
the curve correspond to 3 > 0 (BNE), while points below the curve correspond
to 3 < 0 (RBNE).

value of the concentration, the transition from BNE to RBNE may occur following two paths:
(i) along constant mass ratio m1/m2 with increasing size ratio σ1/σ2, and (ii) along constant
size ratio σ1/σ2 with decreasing mass ratio m1/m2. Finally, figure 7 illustrates the influence of
the volume fraction on the phase diagram for an equimolar mixture (x1 = 0.5) at a moderate
level of collisional dissipation (α = 0.7). It is apparent that the role played by the density is
quite important, especially for large size ratios. Surprisingly, and in contrast to the intruder limit
case (see for instance figure 5 of [29]), the dependence on the solid fraction φ is not monotonic:
while the range of size and mass ratios at which the RBNE exists decreases with decreasing φ

at moderate densities (lines corresponding to φ = 0.1 and 0.2), the opposite happens at higher
densities. Thus, at a given value of the size ratio, one has Mcr(0.1) < Mcr(0.4) < Mcr(0.2),
where Mcr(φ) denotes the critical mass ratio where the transition from RBNE to BNE occurs at
a density φ.

5. Comparison with molecular dynamics simulations

To the best of our knowledge, one of the very few molecular dynamics simulations in which
thermal diffusion has been isolated from the remaining segregation mechanisms is the one
reported by Galvin et al [30]. These authors have considered a binary granular mixture
constituted by frictionless inelastic spheres subject to an imposed temperature gradient. As
expected, their results show in general segregation of particles according to their size and/or
density (species segregation). Since these authors are interested mainly in assessing the role
played by non-equipartition of energy in segregation, no external forces such as gravity are
present in their simulations, and hence the system is characterized by zero mean flow.

In the steady state, the granular temperature gradient between walls drives the segregation
process. As in other experiments [17, 44], the temperature profile demonstrates nonlinear
behavior and exhibits a global minimum near the cold wall. In addition, Galvin et al [30] also
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Table 1. Thermal diffusion factor as obtained from molecular dynamics
simulations (3MD) and the Enskog theory (3) for different values of volume
fraction φ and concentration x1 for a granular binary mixture constituted by
spheres with σ1/σ2 = 2, m1/m2 = 16 and α = 0.9. Molecular dynamics results
were obtained by Galvin et al [30].

φ x1 3MD 3

0.33 0.43 1.09 0.60
0.45 0.63 1.21 1.25
0.50 0.70 1.02 1.71
0.51 0.71 0.83 1.76
0.48 0.68 0.90 1.49
0.41 0.58 1.03 0.96
0.30 0.39 1.26 0.54
0.20 0.21 1.80 0.47
0.10 0.07 2.44 1.22
0.08 0.04 2.29 1.79
0.06 0.03 2.19 2.39

examined the profiles of solid volume fraction φ(z) and partial densities ni(z) across the system
to provide a quantitative measure of segregation (see, for instance, figure 7 of [30]).

Although a direct comparison between the theoretical results derived here with those
obtained in [30] for the partial density profiles ni(z) would require the numerical solution of
the condition j1,z = 0 along with the energy balance equation (5) (in its steady state version),
we will restrict our comparison to the thermal diffusion factor 3. In fact, this quantity provides
a more qualitative property of ni since its sign gives the tendency of each species to move
upwards or downwards. In order to make a close comparison between theory and simulation for
the thermal diffusion, let us consider the simulation data reported in figure 7 of [30] for a binary
mixture with mechanical parameters σ1/σ2 = 2, m1/m2 = 16 and a (common) coefficient of
restitution α = 0.9. According to the results displayed in this figure, it is quite apparent that 3

is a non-uniform function since it depends on z through its dependence on the volume fraction
φ(z) and the concentration x1(z) = n1(z)/n(z). Therefore, one can determine 3(φ(z), x1(z))
from equation (20) by using the local values of φ(z) and x1(z) provided by the simulation as
input parameters. This will give us the theoretical prediction of thermal diffusion across the
system. The corresponding (local) value of 3 predicted by the simulations can be estimated
from the temperature and species density profiles by numerically computing the derivatives
∂z ln(n1/n2) and ∂z ln T at each point of the system. In this case, according to equation (10), the
value 3MD given by the simulation is

3MD = −
∂z ln (n1/n2) |MD

∂z ln T |MD
, (32)

where the subscript MD means that these derivatives are obtained from the simulation data.
The theoretical and molecular dynamics simulation results on 3 are shown in table 1.

Regarding the sign of 3, the comparison between theory and simulation reveals good agreement
since both predict positive values for 3 in all of the range of parameters (φ, x1) analyzed.
Consequently, the more massive particles segregate preferentially toward the cool region, in
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qualitative agreement with the snapshot shown in figure 4 of [30]. At a more quantitative
level, although theory and simulation compare well in the case of points near the minimum of
temperature, there are in general discrepancies between theory and simulation. This quantitative
disagreement can be due to the fact that while expression (20) for 3 has been obtained up to
the NS order (first order in the spatial gradients), the molecular dynamics simulations carried
out in [30] clearly show strong gradients in the solid fraction. Presumably, the numerical
solution (beyond the NS domain) of the Enskog equation via the direct simulation Monte Carlo
method [45] would give better quantitative agreement with molecular dynamics simulations
than the NS results reported here. This is quite an interesting problem to be addressed in the
near future.

6. Summary and discussion

The mechanism of particle segregation within polydisperse, rapid granular flows is still not well
understood. The reason is perhaps twofold: first, there is a large number of relevant parameters
involved in the description of the granular mixture; and second, there is a wide array of
complexities that arise during the derivation of kinetic theory models. As previously mentioned,
the two most common simplifications used in previous theoretical works on segregation
have been to consider systems constituted by nearly elastic particles and an equipartition of
granular energy. This paper has addressed the problem of segregation by thermal diffusion in
a binary granular mixture described by the inelastic Enskog equation. The analysis has been
based on a solution of the Enskog equation that covers some of the aspects not accounted
for in previous studies. Specifically, (i) it takes into account the nonlinear dependence of
the transport coefficients on collisional dissipation (and thus the theory is expected to be
applicable for a wide range of coefficients of restitution); (ii) it considers the influence of
non-equipartition of granular energy on segregation; and (iii) it is applicable for to moderate
densities. Consequently, the theory subsumes all previous analyses for dilute [12, 13, 17, 18] and
dense [20], [23–25] gases, which are recovered in the appropriate limits. The results presented
here generalize to arbitrary concentration previous results [27–29] obtained in the tracer limit
(x1 → 0).

Among the different mechanisms involved in segregation, thermal diffusion (segregation
induced by a temperature gradient) becomes the most relevant one when the granular system
behaves like a granular gas. In the steady state with gradients only along a given direction,
the sign of the thermal diffusion factor 3 (defined by equation (10)) provides information
about the tendency of each species to move towards the colder or hotter plate. In this paper,
the factor 3 has been evaluated by following two complementary approaches. First, by using
the momentum balance equation (14) (in the absence of gravity) along with the constitutive
equation (6) for the mass flux, 3 has been expressed (see equation (20)) in terms of the pressure
p (and its derivatives with respect to the partial densities ni ) and the transport coefficients D11,
D12 and DT

1 associated with the mass flux. Then, the forms of the pressure and the diffusion
transport coefficients have been explicitly obtained from a Chapman–Enskog solution of the
Enskog equation [31, 32]. This finally gives 3 as a function of the mass and size ratios,
the concentration, the solid volume fraction and the coefficients of restitution. In particular,
the condition 3 = 0 (see equation (21)) provides the segregation criterion for the transition
BNE ⇔ RBNE.
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In general, the segregation criterion (21) presents a complex dependence on the parameter
space of the system. To disentangle the impact of different parameters on thermal diffusion
segregation, some special cases (dilute gas, tracer limit, etc) have been separately studied. An
interesting new case corresponds to the segregation of a binary mixture of granular particles
that differ only in their coefficients of restitution. This novel effect was first predicted by Serero
et al [12, 13] from the Boltzmann equation (low-density gas) and has recently been confirmed by
molecular dynamics simulations of hard discs [42]. The results obtained here for dense granular
binary mixtures confirm also the existence of segregation induced by an inelasticity difference
(see figure 4). Moreover, our results also show in general a weak influence of the volume fraction
on thermal diffusion for this special situation.

A systematic study of the form of the phase diagrams BNE/RBNE in the mass and size
ratio plane has been carried out in section 4 for hard spheres in the case αi j = α. Regarding the
influence of collisional dissipation on the form of the phase diagrams, the results indicate that
the influence of α on 3 is quite important, the main effect of dissipation being to increase the
size of the BNE region (see figure 5). In addition, we also conclude that the role played by the
non-equipartition of granular energy on segregation is quite relevant, especially as the disparity
of masses and/or sizes increases. This result is consistent with recent molecular dynamics
simulations [30]. With respect to the influence of the concentration x1, our results show that
in general the main effect of x1 is to reduce the BNE region as the concentration of the large
particles increases (see figure 6). Finally, we also observe that the form of the phase diagrams
changes significantly with the volume fraction φ, especially at large size ratios (see figure 7).

By extending the intruder limit analysis [27, 29] to arbitrary values of concentration x1,
comparisons with molecular dynamics simulations become practical and this allows one to
assess the reliability of the Enskog kinetic theory to characterize thermal diffusion segregation.
To make some contact with the molecular dynamics results of Galvin et al [30], we have
compared the kinetic theory predictions for the thermal diffusion factor 3 for different values
of the concentration x1 and volume fraction φ (for the system σ1/σ2 = 2, m1/m2 = 16 and
α = 0.9) with those obtained from the simulation data by numerically evaluating the derivatives
∂z ln(n1/n2) and ∂z ln T at the points of the system corresponding to the same values of x1 and
φ. The comparison between theory and simulation shows good qualitative agreement since both
predict the same sign of 3 for the different points analyzed. In addition, at a more quantitative
level, although molecular dynamics simulations show strong gradients in the bulk region (and
so they go beyond the linear domain of the NS description), the theory compares reasonably
well with simulation, especially in the region close to the minimum of granular temperature. It
is important to remark again that the quantitative discrepancies between theory and molecular
dynamics simulations are essentially due to the limitations of the NS results rather than the
assumptions inherent to the Enskog kinetic equation (molecular chaos hypothesis).

Certainly, the derivation of kinetic theory models of segregation flows in polydisperse
systems is perhaps one of the most important open challenges of granular gas research. The
theoretical results reported in this paper cover part of this challenge, at least in the case of
the thermal diffusion segregation. On the other hand, the present theory has some important
restrictions. First, given that the Enskog equation still assumes uncorrelated particle velocities
(molecular chaos hypothesis), it is expected that the kinetic theory for thermal diffusion only
applies to moderate densities (solid volume fraction typically smaller than or equal to 0.25).
However, despite this limitation, there is substantial evidence in the literature [46] on the
reliability of the Enskog theory to accurately describe macroscopic properties (such as transport
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coefficients) for a wide range of densities and/or collisional dissipation. Another important
limitation is that the segregation criterion derived here has been obtained by using the first
Sonine approximation for the diffusion transport coefficients. Recent results [28] for the tracer
limit clearly show that the accuracy of the first Sonine solution can be questionable in the case of
small values of the coefficients of restitution and/or disparate values of the mass and size ratios.
The influence of the second Sonine correction to the transport coefficients is an interesting open
problem to be studied in the near future. This will allow us to offer a segregation theory that
will be reliable even for extreme values of dissipation or mass and size ratios.
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Appendix A. Expressions for the mass flux transport coefficients and pressure

In this appendix, we provide the expressions for the (reduced) transport coefficients D∗

11, D∗

12
and DT ∗

1 associated with the mass flux and the hydrostatic pressure p∗. These quantities are
involved in the evaluation of the thermal diffusion factor 3.

The expressions for the reduced coefficients DT ∗

1 , D∗

11 and D∗

12 can be written as [37]

DT ∗

1 =
(
ν∗

D − ζ ∗
)−1

{
x1γ1 −

p∗ρ1

ρ
+

π d/2

2d0
(

d
2

)x1nσ d
2 [x1χ11(σ1/σ2)

dγ1(1 + α11)

+ 2x2χ12(σ12/σ2)
d M12γ2(1 + α12)]

}
, (A.1)
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In these equations, γi = Ti/T , ζ ∗
= ζ (0)/ν0, p∗

= p/(nT ), χi j is the pair distribution function
at contact, Mi j = mi/(mi + m j), and

ν∗

D =
2π (d−1)/2

d0
(

d
2

) χ12(1 + α12)

(
θ1 + θ2

θ1θ2

)1/2

(x1 M12 + x2 M21), (A.4)

where θi = mi T/m0Ti and m0 ≡ (m1 + m2)/2. The partial temperatures T1 and T2 are
determined from the condition ζ

(0)

1 = ζ
(0)

2 = ζ (0), where the expression for ζ
(0)

i is

ζ (0)
= ζ

(0)

i =
4π (d−1)/2

d0
(

d
2

) ν0

2∑
j=1

χi j x j M j i(σi j/σ12)
d−1

(
θi + θ j

θiθ j

)1/2

(1 + αi j)

×

[
1 −

M j i

2
(1 + αi j)

θi + θ j

θ j

]
, (A.5)

where ν0 = nσ d−1
12

√
2T/m0. The reduced pressure p∗ is given by [31]
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The explicit form of the transport coefficients D∗

11 and D∗

12 requires a knowledge of the the
quantities Ii`j . These parameters are given in terms of the functional derivative of the (local)
pair distribution function χi j with respect to the (local) partial densities n` (see equation
(C.11) of [31]). Given the mathematical difficulties involved in the determination of the above
functional derivatives, for the sake of simplicity, the parameters Ii`j are chosen here to recover
the results derived by López de Haro et al for elastic mixtures [47] (see appendix C of [32]). The
quantities Ii`j are the origin of the primary difference between the standard Enskog theory and
the revised version for elastic collisions [48]. They are zero if i = `; they are nonzero otherwise.
These quantities are defined through the relation [32]

2∑
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n j
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n j
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d
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where µi is the chemical potential of species i and B2 = π d/2/d0(d/2) (B2 =
π

2 for discs (d =

2) and B2 =
2π

3 for spheres (d = 3)). Since granular fluids lack a thermodynamic description,
the concept of chemical potential could be questionable. As mentioned before, the presence
of µi in our theory is essentially due to the choice of the quantities Ii`j . Given that the explicit
form of the chemical potential must be known to evaluate the diffusion transport coefficients, for
practical purposes, the expression considered here for µi is the same as the one obtained for an
ordinary mixture of gases (αi j = 1). Although this evaluation requires the use of thermodynamic
relations that are applicable only for elastic systems, we expect that this approximation could be
reliable for not too strong values of dissipation. More comparisons with computer simulations
are needed in order to support the above expectation.

Taking into account equation (A.7), the nonzero parameters I121 and I122 appearing in
equations (A.2) and (A.3) are given by
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I122 =
1

TB2σ
d
12χ12

(
∂µ1

∂n2

)
T,n1

− 2 −
σ d

1 n1

σ d
12χ12

∂χ11

∂n2
−

n2

χ12

∂χ12

∂n2
. (A.9)

Note that for mechanically equivalent particles (m1 = m2, σ1 = σ2), I121 = I122 = 0, as expected,
since the standard and revised versions of the Enskog equation lead to the same NS transport
coefficients for a monocomponent gas [48, 49].

In the case of hard discs (d = 2), a good approximation for the pair distribution function
χi j is [50]

χi j =
1
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+

9

16
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, (A.10)

where φ =
∑

i niπσ 2
i /4 is the solid volume fraction for discs and
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n
s . (A.11)

The expression for the chemical potential µi of species i consistent with the approximation
(A.10) is [51]
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4M2

[
9φ

1 − φ
+ ln(1 − φ)

]
σi

−
1

8

[
M2

1

M2
2

φ(1 − 10φ)

(1 − φ)2
−

8

M2

φ

1 − φ
+

M2
1

M2
2

ln(1 − φ)

]
σ 2

i , (A.12)

where λi(T ) is the (constant) de Broglie’s thermal wavelength [52]. In the case of hard spheres
(d = 3), we take for the pair distribution function χi j the following approximation [53],

χi j =
1

1 − φ
+

3

2

φ

(1 − φ)2

σiσ j M2

σi j M3
+

1

2

φ2

(1 − φ)3

(
σiσ j M2

σi j M3

)2

, (A.13)

where φ =
∑

i niπσ 3
i /6 is the solid volume fraction for spheres. The chemical potential

consistent with (A.13) is the following [52],

µi

T
= ln(λ3

i ni) − ln(1 − φ) + 3
M2

M3

φ

1 − φ
σi + 3

[
M2

2

M2
3

φ

(1 − φ)2
+

M1

M3

φ

1 − φ
+

M2
2

M2
3

ln(1 − φ)

]
σ 2

i

−

[
M3

2

M3
3

φ(2 − 5φ + φ2)

(1 − φ)3
− 3

M1 M2

M2
3

φ2

(1 − φ)2
−

1

M3

φ

1 − φ
+ 2

M3
2

M3
3

ln(1 − φ)

]
σ 3

i .

(A.14)

According to equations (A.1)–(A.3), the diffusion transport coefficients are given in terms
of the derivatives of γi with respect to the partial densities ni . In terms of the temperature ratio
γ = T1/T2, the partial temperatures γi are defined as

γ1 =
γ

1 + x1(γ − 1)
, γ2 =

1

1 + x1(γ − 1)
. (A.15)
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The dependence of the temperature ratio γ on n1 and n2 is through its dependence on the
concentration x1 and the volume fraction φ. As a consequence,

n1
∂γ

∂n1
= φ1

∂γ

∂φ
+ x1(1 − x1)

∂γ

∂x1
, (A.16)

n2
∂γ

∂n2
= φ2

∂γ

∂φ
− x1(1 − x1)

∂γ

∂x1
, (A.17)

where φi is defined by equation (18). The derivatives ∂φγ and ∂x1γ can be obtained by taking
the derivatives with respect to φ and x1 under the condition ζ ∗

1 = ζ ∗

2 . This yields the relations

∂γ

∂φ
=

(
∂ζ ∗

1
∂φ

)
γ
−

(
∂ζ ∗

2
∂φ

)
γ(

∂ζ ∗

2
∂γ

)
−

(
∂ζ ∗

1
∂γ

) ,
∂γ

∂x1
=

(
∂ζ ∗

1
∂x1

)
γ
−

(
∂ζ ∗

2
∂x1

)
γ(

∂ζ ∗

2
∂γ

)
−

(
∂ζ ∗

1
∂γ

) . (A.18)

This allows us to express the derivatives ∂φγ and ∂x1γ in terms of the temperature ratio γ and
the parameters of the mixture.

It is apparent that the (reduced) transport coefficients have a complex dependence on the
mass and size ratios, the concentration, the volume fraction and the coefficients of restitution.
A simple but non-trivial case corresponds to a binary system constituted by mechanically
equivalent particles (m1 = m2, σ1 = σ2, α11 = α22 = α12). In this case, χi j = χ , γi = γ = 1,
p∗

= 1 + 2d−2χφ(1 + α), and the parameters Ii j` = 0. As a consequence, equations (A.1)–(A.3)
simply reduce to DT ∗

1 = 0 and

D∗

12 = −
x1

x2
D∗

11, D∗

11 =

(
ν∗

D −
1

2
ζ ∗

)−1

[1 − x1(p∗ + φ∂φ p∗) + 2x1(p∗
− 1)

(
1 + φ∂φ ln χ

)
],

(A.19)

where

ν∗

D =

√
2π (d−1)/2

d0
(

d
2

) χ(1 + α), ζ ∗
=

√
2π (d−1)/2

d0
(

d
2

) χ(1 − α2). (A.20)

Appendix B. The tracer limit case

The explicit forms of the diffusion transport coefficients in the tracer limit case (x1 → 0) are
displayed in this appendix. In this limit, γ2 = 1, γ1 = γ (φ) and p∗

= 1 + 2d−2χ22φ(1 + α22).
Moreover, since the dependence of ζ (0), p and γ on the partial densities is only through the
volume fraction φ, one gets the simple relations ∂n1ζ

(0)
= ∂n1 p = ∂n1γ = 0,

n2
∂ζ (0)

∂n2
= ζ (0)

(
1 + φ

∂ ln χ22

∂φ

)
, (B.1)

∂p

∂n2
= p∗

(
1 + φ

∂ ln p∗

∂φ

)
, (B.2)

n1
∂γ

∂n2
= x1φ

∂γ

∂φ
. (B.3)
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The explicit expressions for the transport coefficients in the tracer limit can be easily obtained
from equations (A.1)–(A.3) when one takes into account the identities (B.1)–(B.3). The result
is

D∗

11 =
γ

ν∗

D −
1
2ζ

∗
, (B.4)

DT ∗

1 = x1(ν
∗

D − ζ ∗)−1

[
γ − Mp∗ +

(1 + ω)d

2

M

1 + M
χ12φ(1 + α12)

]
, (B.5)

D∗

12 = x1

(
ν∗

D −
1

2
ζ ∗

)−1
[(

1 + φ∂φ ln χ22

)
ζ ∗DT ∗

1 − Mβ + φ
∂γ

∂φ

+
1

2

γ + M

1 + M

φ

T

(
∂µ1

∂φ

)
T,n2

(1 + α12)

]
. (B.6)

Here, β = p∗ + φ∂φ p∗, µ1 is the chemical potential of the tracer particles and

ζ ∗
=

π (d−1)/2

d0
(

d
2

) (
2

1 + ω

)d−1

M−1/2
21 χ22(1 − α2

22), (B.7)

ν∗

D =

√
2π (d−1)/2

d0
(

d
2

) χ12 M1/2
21

√
M + γ

M
(1 + α12). (B.8)

As stated in section 3, in order to maintain the granular medium in a fluidized state,
previous works [27, 29] considered the presence of a stochastic external thermostat. The
corresponding expressions for the transport coefficients are1

D∗

11 =
γ

ν∗

D

, (B.9)

DT ∗

1 = x1ν
∗−1
D

[
γ − Mp∗ +

(1 + ω)d

2

M

1 + M
χ12φ(1 + α12)

]
, (B.10)

D∗

12 = x1ν
∗−1
D

[
φ

∂γ

∂φ
− Mβ +

1

2

γ + M

1 + M

φ

T

(
∂µ1

∂φ

)
T,n1

(1 + α12)

]
. (B.11)

Taking into account equations (9)–(11), the segregation criterion (30) becomes

φ

(
p∗

∂γ

∂φ
− γ

∂p∗

∂φ

)
+

(1 + ω)d

2
M12φχ12(1 + α12)

[
p∗(1 + ω)−d

T χ12

γ + M

M

(
∂µ1

∂φ

)
T,n1

− β

]
= 0.

(B.12)

1 The term proportional to ∂φγ in equation (B.11) was neglected in the expression for D∗

12 given in [27] and [29].
The expression displayed here for D∗

12 corrects this result. Given that the influence of this term is in general small,
the general conclusions made in the above references are not altered by the presence of this new term.
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