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Abstract. An overview of recent results pertaining to the hydrodynamic description (both New-
tonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic
Maxwell models is presented. The use of this mathematical model allows us to get exact results
for different problems. First, the Navier–Stokes constitutive equations with explicit expressions
for the corresponding transport coefficients are derived by applying the Chapman–Enskog method
to inelastic gases. Second, the non-Newtonian rheological properties in the uniform shear flow
(USF) are obtained in the steady state as well as in the transient unsteady regime. Next, an exact
solution for a special class of Couette flows characterized by a uniform heat flux is worked out.
This solution shares the same rheological properties as the USF and, additionally, two generalized
transport coefficients associated with the heat flux vector can be identified. Finally, the problem
of small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like method and
generalized (tensorial) transport coefficients are obtained.
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1. Introduction
A simple and realistic physical model of a granular system under conditions of rapid flow consists
of a fluid made of inelastic hard spheres (IHS). In the simplest version, the spheres are assumed to
be smooth (i.e., frictionless) and the inelasticity in collisions is accounted for by a constant coeffi-
cient of normal restitution α ≤ 1 [21]. At a kinetic theory level, all the relevant information about
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the dynamical properties of the fluid is embedded in the one-particle velocity distribution function
f(r,v; t). In the case of dilute gases, the conventional Boltzmann equation can be extended to
the IHS model by changing the collision rules to account for the inelastic character of collisions
[18, 54]. On the other hand, even for ordinary gases made of elastic hard spheres (α = 1), the
mathematical complexity of the Boltzmann collision operator prevents one from obtaining exact
results. These difficulties increase considerably in the IHS case (α < 1). For instance, the fourth
cumulant a2 of the velocity distribution in the so-called homogeneous cooling state is not exactly
known, although good estimates of it have been proposed [22, 65, 76, 80]. Moreover, the explicit
expressions for the Navier–Stokes (NS) transport coefficients are not exactly known, but they have
been approximately obtained by considering the leading terms in a Sonine polynomial expansion
[16, 17, 43, 45, 46, 47, 51, 52, 60].

As Maxwell already realized in the context of elastic collisions [64], scattering laws where the
collision rate of two particles is independent of their relative velocity represent tractable mathemat-
ical models. In that case, the change of velocity moments of order k per unit time can be expressed
in terms of moments of order k′ ≤ k, without the explicit knowledge of the one-particle velocity
distribution function. In the conventional case of ordinary gases of particles colliding elastically,
Maxwell models correspond to particles interacting via a repulsive potential proportional to the in-
verse fourth power of distance (in three dimensions). However, in the framework of the Boltzmann
equation one can introduce Maxwell models at the level of the cross section, without any reference
to a specific interaction potential [31]. Thanks to the use of Maxwell molecules, it is possible in
some cases to find non-trivial exact solutions to the Boltzmann equation in far from equilibrium
situations [31, 49, 70, 72, 79].

Needless to say, the introduction of inelasticity through a constant coefficient of normal resti-
tution α ≤ 1, while keeping the independence of the collision rate with the relative velocity, opens
up new perspectives for exact results, including the elastic case (α = 1) as a special limit. This
justifies the growing interest in the so-called inelastic Maxwell models (IMM) by physicists and
mathematicians alike in the past few years [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 19, 23, 25, 26, 28,
32, 33, 34, 35, 36, 38, 40, 42, 50, 57, 62, 63, 68, 69, 71, 73, 75, 78]. Furthermore, it is interesting
to remark that recent experiments [56] for magnetic grains with dipolar interactions are well de-
scribed by IMM. Apart from that, this mathematical model of granular gases allows one to explore
the influence of inelasticity on the dynamic properties in a clean way, without the need of introduc-
ing additional, and sometimes uncontrolled, approximations. Most of the studies devoted to IMM
refer to homogeneous and isotropic states. In particular, the high-velocity tails [3, 6, 32, 33, 34, 57]
and the velocity cumulants [3, 33, 42, 62, 63, 68] have been derived. Nevertheless, much less is
known about the hydrodynamic properties for inhomogeneous situations.

The aim of this review paper is to offer a brief survey on hydrodynamic properties recently
derived in the context of IMM and also to derive some new results. Traditionally, hydrodynamics
is understood as restricted to physical situations where the strengths of the spatial gradients of the
hydrodynamic fields are small. This corresponds to the familiar NS constitutive equations for the
momentum and heat fluxes. Notwithstanding this, it must be borne in mind that in granular gases
there exists an inherent coupling between collisional dissipation and gradients, especially in steady
states [74]. As a consequence, the NS description might fail at finite inelasticity. This does not
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necessarily imply a failure of hydrodynamics in the sense that the state of the system is still charac-
terized by the hydrodynamic fields but with constitutive relations more complex than the NS ones
(non-Newtonian states). We address in this paper both views of hydrodynamics by presenting the
NS transport coefficients of IMM as well as some specific examples of non-Newtonian behavior.

The organization of this paper is as follows. The Boltzmann equation for IMM and the mass,
momentum, and energy balance equations are presented in section 2. Section 3. deals with the first
few collisional moments. In sections 4.–6. we review the main results referring to the hydrody-
namic properties of the IMM as a mathematical model of a granular gas. First, in section 4. the
Chapman–Enskog method is applied to the Boltzmann equation and the NS transport coefficients
are explicitly obtained without any approximation (such as truncation in Sonine polynomial ex-
pansions). Then, in sections 5. and 6. some shear-flow states where the NS description fails are
analyzed and their non-Newtonian properties are exactly obtained. In section 7. we consider the
generalized transport coefficients describing small spatial perturbations about the uniform shear
flow. Finally, in section 8. the main results are summarized and put in perspective.

2. Inelastic Maxwell models
The Boltzmann equation for IMM [5, 10, 25, 33] can be obtained from the Boltzmann equation for
IHS by replacing the term |g · σ̂| in the collision rate (where g = v1−v2 is the relative velocity of
the colliding pair and σ̂ is the unit vector directed along the centres of the two colliding spheres) by
an average value proportional to the thermal velocity

√
2T/m (where T is the granular temperature

and m is the mass of a particle). In the absence of external forces, the resulting Boltzmann equation
is [33]

(∂t + v · ∇)f(r,v; t) = J [r,v; t|f, f ], (2.1)

where

J [r,v1; t|f1, f2] =
ν(r, t)

n(r, t)Ωd

∫
dσ̂

∫
dv2

(
α−1b̂−1 − 1

)
f1(r,v1; t)f2(r,v2; t) (2.2)

is the IMM Boltzmann collision operator. Here,

n(r, t) =

∫
dv f(r,v; t) (2.3)

is the number density, ν is an effective collision frequency, Ωd ≡ 2πd/2/Γ(d/2) is the total solid
angle in d dimensions, and α < 1 is the coefficient of normal restitution. In addition, b̂ is the
operator transforming pre-collision velocities into post-collision ones:

b̂v1,2 = v1,2 ∓ 1 + α

2
(g · σ̂)σ̂. (2.4)

In Eq. (2.2) the collision rate is assumed to be independent of the relative orientation between the
unit vectors ĝ and σ̂ [33]. In an alternative version [10, 11, 12, 13, 14, 15, 25, 26], the collision rate
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has the same dependence on the scalar product ĝ · σ̂ as in the case of hard spheres. For simplicity,
henceforth we will consider the version of IMM described by Eqs. (2.1) and (2.2).

The collision frequency ν is a free parameter of the model that can be chosen to optimize the
agreement for a given property between the IMM and the IHS model. In any case, one must have
ν ∝ nT 1/2 to mimic the mean collision frequency of IHS, where

T (r, t) =
m

dn(r, t)

∫
dv V 2f(r,v; t) (2.5)

defines the granular temperature and V = v − u is the peculiar velocity,

u(r, t) =
1

n(r, t)

∫
dv vf(r,v; t) (2.6)

being the flow velocity.
In a hydrodynamic description of an ordinary gas the state of the system is defined by the

fields associated with the local densities of mass, momentum, and energy, conventionally chosen
as n, u, and T . For granular gases, even though kinetic energy is not conserved upon collisions,
it is adequate to take these quantities as hydrodynamic fields [29, 30]. The starting point is the
set of macroscopic balance equations which follow directly from Eq. (2.1) by multiplying it by
{1,v, V 2} and integrating over velocity. These balance equations read

Dtn + n∇ · u = 0, (2.7)

Dtu +
1

mn
∇ · P = 0, (2.8)

DtT +
2

dn
(∇ · q + P : ∇u) = −ζT. (2.9)

In these equations, Dt ≡ ∂t + u · ∇ is the material time derivative,

P(r, t) = m

∫
dvVVf(r,v; t) (2.10)

is the pressure tensor,

q(r, t) =
m

2

∫
dv V 2Vf(r,v; t) (2.11)

is the heat flux, and

ζ(r, t) = − m

dn(r, t)T (r, t)

∫
dv V 2J [r,v; t|f, f ] (2.12)

is the cooling rate. The energy balance equation (2.9) differs from that of an ordinary gas by the
presence of the sink term −ζT measuring the rate of energy dissipation due to collisions.

The set of balance equations (2.7)–(2.9) are generally valid, regardless of the details of the
inelastic model and so their structure is common for both IMM and IHS. It is apparent that Eqs.
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(2.7)–(2.9), while exact, do not constitute a closed set of equations. To close them and get a
hydrodynamic description, one has to express the momentum and heat fluxes in terms of the hy-
drodynamic fields. These relations are called constitutive equations. In their more general form,
the fluxes are expressed as functionals of the hydrodynamic fields, namely

P = P[n,u, T ], q = q[n,u, T ]. (2.13)

In other words, all the space and time dependence of the pressure tensor and the heat flux occurs
through a functional dependence on n, u, and T , not necessarily local in space or time. However,
for sufficiently small spatial gradients, the functional dependence can be assumed to be local in
time and weakly non-local in space. More specifically,

Pij = p− ηNS

(
∇iuj +∇jui − 2

d
∇ · uδij

)
, (2.14)

q = −κNS∇T − µNS∇n. (2.15)

In Newton’s equation (2.14) and Fourier’s equation (2.15), p = nT = 1
d
Tr P is the hydrostatic pres-

sure, ηNS is the shear viscosity, κNS is the thermal conductivity coefficient, and µNS is a transport
coefficient that vanishes in the elastic case. When the constitutive equations (2.14) and (2.15) are
introduced into the momentum and energy balance equations, the set (2.7)–(2.9) becomes closed
and one arrives to the familiar NS hydrodynamic equations.

It must be noticed that, in the case of IHS, the cooling rate ζ also has to be expressed as a
functional of the hydrodynamic fields. However, in the case of IMM, ζ is just proportional to the
effective collision frequency ν. More specifically [50, 68],

ζ =
1− α2

2d
ν. (2.16)

This equation allows one to fix ν under the criterion that the cooling rate of IMM be the same as
that of IHS of diameter σ. When the IHS cooling rate is evaluated in the Maxwellian approximation
[54, 80], one gets

ν =
d + 2

2
ν0, (2.17)

where

ν0 =
4Ωd√

π(d + 2)
nσd−1

√
T

m
. (2.18)

The collision frequency ν0 is the one associated with the NS shear viscosity of an ordinary gas
(α = 1) of both Maxwell molecules and hard spheres, i.e., ηNS = p/ν0 ≡ η0 at α = 1. However,
the specific form (2.18) will not be needed in the remainder of the paper.

An important problem in monocomponent systems is the self-diffusion process. In that case
one assumes that some particles are labeled with a tag but otherwise they are mechanically equiv-
alent to the untagged particles. The balance equation reflecting the conservation of mass for the
tagged particles is

Dtx1 +
1

nm
∇ · j1 = 0, (2.19)
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where x1 = n1/n is the mole fraction of the tagged particles and

j1 = m

∫
dVVf1(V) (2.20)

is the mass flux of the tagged particles. Analogously to the case of Eqs. (2.7)–(2.9), one needs a
constitutive equation for j1 to get a closed set of equations. For small spatial gradients, Fick’s law
applies, i.e.,

j1 = −DNS∇x1, (2.21)

where DNS is the self-diffusion coefficient.
The Boltzmann equation for IMM, Eqs. (2.1) and (2.2), refers to a monodisperse gas. The

extension to a multi-component gas is straightforward [7, 38, 42]. Instead of a single collision
frequency ν, one has a set of collision frequencies νij that can be chosen to reproduce the cooling
rates ζij of IHS evaluated in a two-temperature Maxwellian approximation. In that case, the result
is [44]

νij =
Ωd√

π
njσ

d−1
ij

√
2

(
Ti

mi

+
Tj

mj

)
, (2.22)

where σij = (σi + σj)/2 and Ti is the partial granular temperature of species i.

3. Collisional moments
As said in the Introduction, the key advantage of the Boltzmann equation for Maxwell models
(both elastic and inelastic) is that the (collisional) moments of the operator J [f, f ] can be exactly
evaluated in terms of the moments of f , without the explicit knowledge of the latter [79]. More
explicitly, the collisional moments of order k are given by a bilinear combination of moments of
order k′ and k− k′ with 0 ≤ k′ ≤ k. In particular, the second- and third-order collisional moments
are [50]

m

∫
dV ViVjJ [V|f, f ] = −ν0|2(Pij − pδij)− ζpδij, (3.1)

m

2

∫
dV ViVjVkJ [V|f, f ] = −ν0|3Qijk −

ν2|1 − ν0|3
d + 2

(qiδjk + qjδik + qkδij) . (3.2)

In Eq. (3.1), the cooling rate ζ is given by Eq. (2.16) and

ν0|2 = ζ +
(1 + α)2

2(d + 2)
ν. (3.3)

As for Eq. (3.2), one has

ν2|1 =
3

2
ζ +

(1 + α)2(d− 1)

2d(d + 2)
ν, ν0|3 =

3

2
ν0|2. (3.4)
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Moreover,

Qijk =
m

2

∫
dV ViVjVkf(V) (3.5)

is a third-rank tensor, whose trace is the heat flux. In particular, from Eq. (3.2) we easily get

m

2

∫
dV V 2ViJ [V|f, f ] = −ν2|1qi. (3.6)

The evaluation of the fourth-order collisional moments is more involved and their expressions
can be found in Ref. [50]. Here, for the sake of illustration, we only quote the equation related to
the isotropic moment [15, 50]:

m

∫
dV V 4J [V|f, f ] = −ν4|0M4 +

λ1

nm
d2p2 − λ2

nm
ΠijΠji, (3.7)

where
M4 = m

∫
dV V 4f(V) (3.8)

is the isotropic fourth-order moment and Πij = Pij − pδij is the irreversible part of the pressure
tensor. The coefficients in Eq. (3.7) are

ν4|0 = 2ζ +
(1 + α)2 (4d− 7 + 6α− 3α2)

8d(d + 2)
ν, (3.9)

λ1 =
(1 + α)2 (4d− 1− 6α + 3α2)

8d2
ν, (3.10)

λ2 =
(1 + α)2 (1 + 6α− 3α2)

4d(d + 2)
ν. (3.11)

In Eqs. (3.3), (3.4), and (3.9) the collision frequencies ν0|2, ν2|1, and ν4|0 have been decomposed
into a part inherent to the collisional cooling plus a genuine part associated with the collisional
transfers.

In self-diffusion problems it is important to know the first-order collisional moment of J [f1, f2]
with f1 6= f2. After simple algebra one gets [38, 42]

m

∫
dVVJ [V|f1, f2] = −ν0|1 (j1 − j2) , (3.12)

where
ν0|1 =

1 + α

2d
ν (3.13)

and js (s = 1, 2) is defined by Eq. (2.20).
Before studying the hydrodynamic properties of IMM, it is convenient to briefly analyze the

so-called homogeneous cooling state (HCS). This is the simplest situation of a granular gas and,
additionally, it plays the role of the reference state around which to carry out the Chapman–Enskog
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expansion. The HCS is an isotropic, spatially uniform free cooling state [21], so the Boltzmann
equation (2.1) becomes

∂tf(v, t) = J [v|f, f ], (3.14)

which must be complemented with a given initial condition f(v, 0). Since the collisions are in-
elastic, the granular temperature T (t) monotonically decays in time and so a steady state does not
exist. In fact, the mass and momentum balance equations (2.7) and (2.8) are trivially satisfied and
the energy equation (2.9) reduces to

∂tT = −ζT, (3.15)

whose solution is given by Haff’s law [55], namely

T (t) =
T (0)[

1 + 1
2
ζ(0)t

]2 , (3.16)

where we have taken into account that ζ ∝ nT 1/2. The next non-trivial isotropic moment is M4(t).
The evolution equation for the reduced moment

M∗
4 (t) =

M4(t)

nm[2T (t)/m]2
(3.17)

is

∂tM
∗
4 = − (

ν4|0 − 2ζ
)
M∗

4 + λ1
d2

4
. (3.18)

Note that, while Eqs. (3.15) and (3.16) are valid both for IHS and IMM, Eq. (3.18) is restricted to
IMM. The general solution of Eq. (3.18) is

M∗
4 (t) = [M∗

4 (0)− µ4]

[
1 +

1

2
ζ(0)t

]−4(ν4|0/2ζ−1)

+ µ4, (3.19)

where

µ4 ≡ d2

4

λ1

ν4|0 − 2ζ
. (3.20)

In the one-dimensional case, Eq. (3.9) shows that the difference ν4|0 − 2ζ = −(1− α2)2ν/8 is
negative definite for any α < 1, so that, according to Eq. (3.19), the scaled moment M∗

4 diverges
with time. On the other hand, if d ≥ 2, ν4|0− 2ζ > 0 for any α and, consequently, the moment M∗

4

goes asymptotically to the value µ4. In that case, the corresponding fourth cumulant defined by

a2 ≡ 4

d(d + 2)
M∗

4 − 1 (3.21)

is given by

a2 =
6(1− α)2

4d− 7 + 3α(2− α)
. (3.22)

44
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Figure 1: Plot of the fourth cumulant a2 in the HCS for d = 2 (dashed line) and d = 3 (solid line).

The dependence of a2 on the coefficient of restitution α for d = 2 and 3 is displayed in Fig. 1.
It is apparent that a2 is always positive and rapidly grows with inelasticity, especially in the two-
dimensional case. In contrast, the dependence of the IHS a2 on α is non-monotonic and much
weaker [76].

It has been proven [12, 13] that, provided that f(v, 0) has a finite moment of some order higher
than two, f(v, t) asymptotically tends toward a self-similar solution of the form

f(v, t) → n

[
m

2T (t)

]d/2

φh(c(t)), c(t) ≡ v√
2T (t)/m

, (3.23)

where φh(c) is an isotropic distribution. This scaled distribution is only exactly known in the
one-dimensional case [3], where it is given by

φh(c) =
23/2

π

1

(1 + 2c2)2
. (3.24)

All the moments of this Lorentzian form of order higher than two are divergent. This is consistent
with the divergence of M∗

4 (t) found in Eq. (3.19). It is interesting to note that if the initial state
is anisotropic then the anisotropy does not vanish in the scaled velocity distribution function for
long times [50]. As a consequence, while the distribution (3.24) represents the asymptotic form
φh(c) for a wide class of isotropic initial conditions, it cannot be reached, strictly speaking, from
any anisotropic initial state. Whether or not there exists a generalization of (3.24) for anisotropic
states is, to the best of our knowledge, an open problem.

Although the explicit expression of φh(c) is not known for d ≥ 2, its high-velocity tail has been
found to be of the form [6, 32, 33, 57]

φh(c) ∼ c−d−s(α), (3.25)
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where the exponent s(α) is the solution of the transcendental equation

1− 1− α2

4d
s =2F1

[
−s

2
,
1

2
;
d

2
;
3 + 2α− α2

4

]
+

(
1 + α

2

)s Γ( s+1
2

)Γ(d
2
)

Γ( s+d
2

)Γ(1
2
)
, (3.26)

2F1[a, b; c; z] being a hypergeometric function [1]. Equation (3.25) implies that those moments of
order k ≥ s(α) are divergent.

The evolution of moments of order equal to or lower than four for anisotropic initial states has
been analyzed in Ref. [50].

4. Navier–Stokes hydrodynamic description
The standard Chapman–Enskog method [27] can be generalized to inelastic collisions [21] to ob-
tain the dependence of the NS transport coefficients on the coefficient of restitution from the Boltz-
mann equation [16, 17, 45, 48, 51, 52] and from the Enskog equation [43, 46, 47, 60]. Here the
method will be applied to the Boltzmann equation (2.1) for IMM.

In order to get the hydrodynamic description in the sense of Eq. (2.13), we need to obtain
a normal solution to the Boltzmann equation. A normal solution is a special solution where all
the space and time dependence of the velocity distribution function takes place via a functional
dependence on the hydrodynamic fields, i.e.,

f = f [v|n,u, T ]. (4.1)

This functional dependence can be made explicit by the Chapman–Enskog method if the gradients
are small. In the method, a factor ε is assigned to every gradient operator and the distribution
function is represented as a series in this formal “uniformity” parameter,

f = f (0) + εf (1) + ε2f (2) + · · · . (4.2)

Insertion of this expansion in the definitions of the fluxes (2.10) and (2.11) gives the corresponding
expansion for these quantities. Finally, use of these expansions in the balance equations (2.7)–(2.9)
leads to an identification of the time derivatives of the fields as an expansion in the gradients,

∂t = ∂
(0)
t + ε∂

(1)
t + ε2∂

(2)
t + · · · . (4.3)

The starting point is the zeroth order solution. The macroscopic balance equations to zeroth
order are

∂
(0)
t n = 0, ∂

(0)
t u = 0, ∂

(0)
t T = −ζT. (4.4)

Here, we have taken into account that in the Boltzmann operator (2.2) the effective collision fre-
quency ν ∝ nT 1/2, and hence the cooling rate ζ is a functional of f only through the density n and
granular temperature T [see Eq. (2.16)]. Consequently, ζ(0) = ζ . To zeroth order in the gradients
the kinetic equation (2.1) reads

∂tf
(0) = J [V|f (0), f (0)]. (4.5)
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This equation coincides with that of the HCS, Eq. (3.14). Moreover, since f (0) must be a normal
solution, its temporal dependence only occurs through temperature and so it is given by the right-
hand side of Eq. (3.23), except that n → n(r, t) and T → T (r, t) are local quantities and v →
V = v − u(r, t). The normal character of f (0) allows one to write

∂
(0)
t f (0)(V) = −ζT

∂

∂T
f (0)(V) =

ζ

2

∂

∂V
·Vf (0)(V), (4.6)

so that Eq. (4.5) becomes
ζ

2

∂

∂V
·Vf (0)(V) = J [V|f (0), f (0)]. (4.7)

Since f (0) is isotropic, it follows that

P
(0)
ij = pδij, q(0) = 0. (4.8)

Therefore, the macroscopic balance equations to first order give

D
(1)
t n = −n∇ · u, D

(1)
t u = −∇p

mn
, D

(1)
t T = −2T

d
∇ · u, (4.9)

where D
(1)
t ≡ ∂

(1)
t +u · ∇. To first order in the gradients, Eq. (2.1) leads to the following equation

for f (1): (
∂

(0)
t + L

)
f (1)(V) = −

(
D

(1)
t + V · ∇

)
f (0)(V), (4.10)

where L is the linearized collision operator

Lf (1)(V1) = − (
J [f (0), f (1)] + J [f (1), f (0)]

)

= − ν

nΩd

∫
dσ̂

∫
dV2

(
α−1b̂−1 − 1

) [
f (0)(V1)f

(1)(V2) + f (0)(V2)f
(1)(V1)

]
.

(4.11)

Using (4.9), the right-hand side of Eq. (4.10) can evaluated explicitly, so the integral equation
for f (1) can be written as

(
∂

(0)
t + L

)
f (1)(V) = A(V) · ∇ ln T + B(V) · ∇ ln n + C(V) : ∇u, (4.12)

where
A ≡ V

2

∂

∂V
· (Vf (0)

)− T

m

∂

∂V
f (0), (4.13)

B ≡ −Vf (0) − T

m

∂

∂V
f (0), (4.14)

Cij ≡ ∂

∂Vi

(
Vjf

(0)
)− 1

d
δij

∂

∂V
· (Vf (0)

)
. (4.15)
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The structure of Eq. (4.12) is identical to that of IHS, except for the detailed form (4.11) of the
linearized Boltzmann collision operator L. In spite of the advantages of IMM, Eq. (4.12) is math-
ematically rather intricate and its solution is not known. In the case of IHS, a trial function (based
on a truncated Sonine polynomial expansion) for f (1) is proposed. The coefficients in the trial
function, which are directly related to the NS transport coefficients, are obtained in an approxi-
mate way by taking velocity moments. On the other hand, the use of a trial function is not needed
in the case of IMM and the NS transport coefficients can be obtained exactly. The key point is that,
upon linearization of Eqs. (3.1) and (3.6), one has

m

∫
dV ViVjLf (1)(V) = ν0|2P

(1)
ij , (4.16)

m

2

∫
dV V 2VLf (1)(V) = ν2|1q

(1). (4.17)

Now we multiply both sides of Eq. (4.12) by mViVj and integrate over V to obtain

(∂
(0)
t + ν0|2)P

(1)
ij = −p

(
∇iuj +∇jui − 2

d
∇ · uδij

)
. (4.18)

This equation shows that P
(1)
ij is proportional to the right-hand side divided by a collision fre-

quency. Therefore, P
(1)
ij ∝ p/nT 1/2 = T 1/2 and so

∂
(0)
t P(1) = −ζ

2
P(1), (4.19)

where we have taken into account Eq. (4.4). As a consequence, the solution to Eq. (4.18) is

P
(1)
ij = −ηNS

(
∇iuj +∇jui − 2

d
∇ · uδij

)
, (4.20)

where
ηNS =

p

ν0|2 − 1
2
ζ
. (4.21)

Comparison with Eq. (2.14) allows one to identify Eq. (4.21) with the NS shear viscosity of IMM.
Let us consider next the heat flux. Multiplying both sides of Eq. (4.12) by 1

2
mV 2V and inte-

grating over V we get

(
∂

(0)
t + ν2|1

)
q(1) = −d + 2

2
(1 + 2a2)

p

m
∇T − d + 2

2
a2

T 2

m
∇n, (4.22)

where use has been made of Eq. (4.17). Here, a2 is the fourth cumulant of f (0), whose expression
is given by Eq. (3.22). The right-hand side of Eq. (4.22) implies that the heat flux has the structure

q(1) = −κNS∇T − µNS∇n. (4.23)
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By dimensional analysis, κNS ∝ T 1/2 and µNS ∝ T 3/2. Consequently,

∂
(0)
t q(1) =

ζ

2
κNS∇T +

3ζ

2
µNS∇n + κNS∇ζT

= ζ

[
2κNS∇T +

(
3

2
µNS + κNS

T

n

)
∇n

]
, (4.24)

where in the last step we have taken into account that ζ ∝ nT 1/2. Inserting this equation into Eq.
(4.22), one can identify the transport coefficients as

κNS =
p

m

d + 2

2

1 + 2a2

ν2|1 − 2ζ
, (4.25)

µNS =
T

n

κNS

1 + 2a2

ζ + a2ν2|1
ν2|1 − 3

2
ζ

. (4.26)

Equations (4.21), (4.25), and (4.26) provide the NS transport coefficients of the granular gas
modeled by the IMM in terms of the cooling rate ζ , the collision frequencies ν0|2 and ν2|1, and the
HCS fourth cumulant a2. Making use of their explicit expressions, Eqs. (2.16), (3.3), (3.4), and
(3.22), respectively, the α-dependence of the transport coefficients is given by

ηNS = η0
8d

(1 + α) [3d + 2 + (d− 2)α]
, (4.27)

κNS = κ0
8(d− 1) [5 + 4d− 9α(2− α)]

(1 + α) (d− 4 + 3dα) [4d− 7 + 3α(2− α)]
, (4.28)

µNS = κ0
T

n

16(1− α) [2d2 + 8d− 1− 6(d + 2)α + 9α2]

(1 + α)2 (d− 4 + 3dα) [4d− 7 + 3α(2− α)]
, (4.29)

where η0 = (d+2)(p/2ν) = p/ν0 and κ0 = [d(d+2)/2(d− 1)](η0/m) are the NS shear viscosity
and thermal conductivity coefficients in the elastic limit (α = 1), respectively.

It is interesting to rewrite Eq. (4.23) using T and nT 1/2 as hydrodynamic variables instead of
T and n [51, 66]. In fact, both the collision frequency ν and the cooling rate ζ are proportional to
nT 1/2. In these variables, the heat flux becomes

q(1) = −κ′NS∇T − µNST
−1/2∇ (

nT 1/2
)
, (4.30)

where κ′NS = κNS − µNS(n/2T ). Inserting Eqs. (4.25) and (4.26), we easily get

κ′NS =
p

m

d + 2

2

1 + 3
2
a2

ν2|1 − 3
2
ζ

= κ0
8 [1 + 2d− 3α(2− α)]

(1 + α)2 [4d− 7 + 3α(2− α)]
. (4.31)

The presence of the term d − 4 + 3dα in the denominators of Eqs. (4.28) and (4.29) implies
that the heat flux transport coefficients κNS and µNS diverge when α tends (from above) to α0 = 1

3
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and α0 = 1
9

for d = 2 and d = 3, respectively [19, 68]. However, the coefficient κ′NS is finite for
any α and any d > 1.

The one-dimensional case deserves some care. As is known, the thermal conductivity in the
elastic limit, κ0, diverges at d = 1 [67]. Surprisingly enough, the thermal conductivity is well
defined at d = 1 for inelastic collisions (α < 1). Taking the limit d → 1 in Eq. (4.25) one gets
κNS = (18p/mν)/(1− α2). On the other hand, the coefficient µNS vanishes at α = 1 but diverges
for α < 1 if d = 1.
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Figure 2: Plot of the reduced NS shear viscosity ηNS/η0 for d = 2 (dashed line) and d = 3 (solid
line).

Let us try to understand the origin of the divergence of κNS and µNS when α → α0 for d = 2
and 3. The integral equation (4.12) suggests that its solution has the form

f (1)(V) = A(V )V · ∇T + B(V )V · ∇n + C(V )

(
ViVj − 1

d
V 2δij

)
∇iuj, (4.32)

whereA(V ), B(V ), and C(V ) are unknown functions that only depend on the magnitude of veloc-
ity. The solvability conditions of Eq. (4.12) imply that

∫
dV V 2A(V ) =

∫
dV V 2B(V ) = 0. (4.33)

The transport coefficients are directly related to velocity integrals of A(V ), B(V ), and C(V ).
Specifically,

κNS = −m

2d

∫
dV V 4A(V ), (4.34)

µNS = −m

2d

∫
dV V 4B(V ), (4.35)
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Figure 3: Plot of the reduced NS heat flux coefficients κNS/κ0 (solid lines), µNS/(κ0T/n) (dashed
lines), and κ′NS/κ0 (dash-dotted lines) for d = 2 and d = 3. The quantities κNS and µNS diverge at
α0 = 1

3
(d = 2) and α0 = 1

9
(d = 3).
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Figure 4: Plot of the reduced NS self-diffusion coefficient DNS/D0 for any dimensionality d.
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ηNS = − m

d(d + 2)

∫
dV V 4C(V ). (4.36)

The corresponding expression for the modified thermal conductivity coefficient κ′NS is analogous
to Eq. (4.34), except for the replacement A(V) → A′(V) ≡ A(V) − B(V)(n/2T ). Equations
(4.32)–(4.36) are formally valid for both IMM and IHS. In the former case, however, the algebraic
high-velocity tail f (0) ∼ V −d−s(α) [cf. Eq. (3.25)] implies, according to Eqs. (4.13)–(4.15), that
A ∼ B ∼ V −d−s(α)+1 and C ∼ V −d−s(α). One could therefore expect that the unknown functions
defining f (1) also present algebraic tails of the form A ∼ B ∼ V −d−a(α), A′ ∼ V −d−a′(α), and
C ∼ V −d−c(α). The convergence of ηNS and of κ′NS implies that c(α) > 4 and a′(α) > 4 for all α
and d. However, the divergence of κNS and µNS at α = α0 leads to a(α) ≤ 4 for α ≤ α0 if d = 2
or d = 3. This means that, although f (1)(V) is well defined for any α, its third-order velocity
moments (such as the heat flux) might diverge due to the high-velocity tail of the distribution. This
singular behavior is closely tied to the peculiarities of the IMM since the high-velocity tail of f (0)

in the case of IHS is exponential [20, 37, 80] rather than algebraic.
To close the evaluation of the NS transport coefficients, we now consider the self-diffusion

coefficient defined by Eq. (2.21). It is given by [42]

DNS =
p

ν0|1 − 1
2
ζ

= D0
4

(1 + α)2
, (4.37)

where D0 = dp/ν is the self-diffusion coefficient in the elastic limit and we have made use of
Eqs. (2.16) and (3.13) in the last step. In contrast to the other transport coefficients, the reduced
self-diffusion coefficient DNS/D0 is independent of the dimensionality of the system.

Figures 2–4 depict the α-dependence of the reduced NS transport coefficients ηNS/η0, κNS/κ0,
µNS/(κ0T/n), κ′NS/κ0, and DNS/D0 for d = 2 and d = 3. All of them increase with increasing
dissipation. As for the influence of d, it depends on the transport coefficient under consideration.
While, at a given value of α, the shear viscosity increases with dimensionality, the opposite happens
for the heat flux coefficients. This is especially apparent in the cases of κNS and µNS since their
divergence occurs at a smaller value α = α0 for d = 2 than for d = 3. Finally, as said above,
the reduced self-diffusion coefficient is independent of the dimensionality. It is noteworthy that
the coefficient µNS/(κ0T/n), which vanishes in the elastic case, becomes larger than κNS/κ0 for
sufficiently high inelasticity.

5. Uniform shear flow
The hydrodynamic description in the preceding section applies to arbitrary degree of dissipa-
tion provided that the hydrodynamic gradients are weak enough to allow for a NS theory. The
Chapman-Enskog method assumes that the relative changes of the hydrodynamic fields over dis-
tances on the order of the mean free path are small. In the case of ordinary fluids this can be
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controlled by the initial or boundary conditions. For granular gases the situation is more com-
plicated, especially in steady states, since there might be a relationship between dissipation and
gradients such that both cannot be chosen independently. In spite of the above cautions, the NS ap-
proximation is appropriate in some important problems, such as spatial perturbations of the HCS
for an isolated system and the linear stability analysis of this state. In this section and the two
next ones we obtain in an exact way some non-Newtonian hydrodynamic properties of a sheared
granular gas modeled by the IMM.

The simple or uniform shear flow (USF) state is one of the most widely studied states, both for
ordinary [49] and granular gases [24, 53]. It is characterized by a constant density n, a uniform
granular temperature T , and a linear velocity profile ux = ay, where a is the constant shear rate.
At a microscopic level, the USF is characterized by a velocity distribution function that becomes
uniform in the local Lagrangian frame, i.e.,

f(r,v; t) = f(V, t). (5.1)

In this frame, the Boltzmann equation (2.1) reduces to

∂tf(V)− aVy
∂

∂Vx

f(V) = J [V|f, f ]. (5.2)

Equation (5.2) is invariant under the transformations

(Vx, Vy) → (−Vx,−Vy), (5.3)

Vj → −Vj, Vj → Vk, j, k 6= x, y. (5.4)

This implies that if the initial state f(V, 0) is consistent with the symmetry properties (5.3) and
(5.4) so is the solution to Eq. (5.2) at any time t > 0. Even if one starts from an initial condition
inconsistent with (5.3) and (5.4), it is expected that the solution asymptotically tends for long times
to a function compatible with (5.3) and (5.4).

The properties of uniform temperature and constant density and shear rate are enforced in
computer simulations by applying the Lees–Edwards boundary conditions [49, 59], regardless
of the particular interaction model considered. In the case of boundary conditions representing
realistic plates in relative motion, the corresponding nonequilibrium state is the so-called Couette
flow, where density, temperature, and shear rate are no longer uniform [77].

According to the conditions defining the USF, the balance equations (2.7) and (2.8) are satisfied
identically, while Eq. (2.9) becomes

∂tT = − 2

dn
Pxya− ζT. (5.5)

This balance equation shows that the temperature changes in time due to two competing effects: the
viscous heating term−Pxya and the inelastic collisional cooling term ζT . Depending on the initial
condition, one of the effects prevails over the other one so that the temperature either increases
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or decreases in time. Eventually, a steady state is reached for sufficiently long times when both
effects cancel each other. In this steady state

−Pxy

p
=

d

2

ζ

a
. (5.6)

This relation illustrates the connection between inelasticity (as measured by the cooling rate ζ),
irreversible fluxes (as measured by the shear stress Pxy/p), and hydrodynamic gradients (as mea-
sured by the shear rate a).

The rheological properties are related to the non-zero elements of the pressure tensor consistent
with Eqs. (5.3) and (5.4), namely Pxy, Pxx, Pyy, and p. The remaining d− 2 diagonal elements are
equal, by symmetry, so that Pzz = · · · = Pdd = (dp−Pxx−Pyy)/(d− 2). In order to obtain these
four independent elements, we complement Eq. (5.5) with the equations obtained by multiplying
both sides of Eq. (5.2) by {VxVy, V

2
x , V 2

y } and integrating over velocity. The result is

∂tPxy + aPyy = −ν0|2Pxy, (5.7)

∂tPxx + 2aPxy = −ν0|2 (Pxx − p)− ζp, (5.8)

∂tPyy = −ν0|2 (Pyy − p)− ζp, (5.9)

where we have taken into account Eq. (3.1).

5.1. Steady-state solution
The steady-state solution of Eq. (5.9) is simply

P ∗
yy = 1− ζ

ν0|2

=
d

2

1 + α

d + 1− α
. (5.10)

Here we have introduced the reduced pressure tensor P ∗
ij = Pij/p. Substitution into Eq. (5.7)

yields, again in the steady state,

P ∗
xy = − a

ν0|2

(
1− ζ

ν0|2

)

= −a

ν

d2(d + 2)

2(d + 1− α)2
. (5.11)

Next, Eq. (5.8) gives in the steady state

P ∗
xx = 1− ζ

ν0|2
+ 2

a2

ν2
0|2

(
1− ζ

ν0|2

)

=
d

2

1 + α

d + 1− α
+

a2

ν2

d3(d + 2)2

(d + 1− α)3(1 + α)
. (5.12)
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Equations (5.11) and (5.12) are not closed since the ratio ν/a, which yields the steady-state tem-
perature for a given shear rate a, must be determined. This is done by elimination of P ∗

xy between
Eqs. (5.6) and (5.11) with the result

ν2

a2
=

2

d

ν2

ν0|2ζ

(
1− ζ

ν0|2

)

=
2d2(d + 2)

(1− α2)(d + 1− α)2
. (5.13)

Using this result in Eqs. (5.11) and (5.12), we obtain the α-dependence of P ∗
xy and P ∗

xx:

P ∗
xy = −d

√
(d + 2)(1− α2)

2
√

2(d + 1− α)
. (5.14)

P ∗
xx =

d

2

d + 3− (d + 1)α

d + 1− α
. (5.15)

Equations (5.10), (5.14), and (5.15) provide the explicit expressions of the relevant elements of
the reduced pressure tensor as functions of the coefficient of restitution α and the dimensionality
d. Since ν2 ∝ T , Eq. (5.13) shows that the steady-state temperature is proportional to the square
of the shear rate. Equation (5.13) can also be interpreted as expressing the reduced shear rate a/ν
as a function of α. As a consequence, no matter how large or small the shear rate a is, its strength
relative to the stationary collision frequency ν is fixed by the value of α, so one cannot choose
the steady-state value of a/ν independently of α. It is important to notice that, according to Eqs.
(5.10) and (5.15), P ∗

xx + (d− 1)P ∗
yy = d. This implies that P ∗

zz = P ∗
yy, even though the directions

y and z are physically different in the geometry of the USF.
In order to characterize the rheological properties in the USF, it is convenient to introduce a

generalized shear viscosity η and a (first) viscometric function Ψ by

Pxy = −η
∂ux

∂y
, (5.16)

Pxx − Pyy = Ψ

(
∂ux

∂y

)2

. (5.17)

The second viscometric function vanishes as a consequence of the property Pzz = Pyy. From Eq.
(5.11) one obtains

η = η0

(
d

d + 1− α

)2

, (5.18)

where we recall that η0 = (d + 2)(p/2ν) = p/ν0 is the NS shear viscosity at α = 1. Analogously,
Eqs. (5.10) and (5.12) yield

Ψ = Ψ0
2

1 + α

(
d

d + 1− α

)3

, (5.19)

where Ψ0 = 2η2
0/p is the corresponding Burnett coefficient in the elastic limit [27].
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Figure 5: Plot of the reduced rheological functions η/η0 (solid lines) and Ψ/Ψ0 (dashed lines) in
the steady-state USF for d = 2 and d = 3.
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Figure 6: Plot of the reduced shear rate a/ν0 in the steady-state USF for d = 2 (dashed line) and
d = 3 (solid line).
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Figure 7: Plot of the fourth cumulant a2 in the steady-state USF for d = 3. This quantity diverges
at αc ' 0.046.

Figure 5 shows the α-dependence of the rheological quantities η/η0 and Ψ/Ψ0 for d = 2 and
d = 3. It is apparent that η/η0 is a monotonically decreasing function of inelasticity, this effect
being more pronounced in the two-dimensional case than in the three-dimensional one. This de-
crease contrasts dramatically with the behavior of the NS shear viscosity, as seen in Fig. 2. This
confirms that the transport properties in the steady-state USF are inherently different from those of
the NS description [74]. Another non-Newtonian feature is the existence of normal stress differ-
ences in the shear flow plane. What is interesting is that the viscometric coefficient Ψ measuring
this effect strongly deviates (in general) from its elastic Burnett-order value Ψ0. We observe from
Fig. 5 that this effect is again more significant for d = 2 than for d = 3. Moreover, in the former
case Ψ/Ψ0 monotonically decreases with decreasing α, while it reaches a minimum at α = 0.25
in the three-dimensional case. To complement this discussion, it is worth plotting the steady-state
reduced shear rate a∗ ≡ a/ν0 versus α. This is done in Fig. 6 for d = 2 and d = 3. Since
a = ∂ux/∂y is the only gradient present in the USF, the ratio a/ν0 measures the relative strength
of the hydrodynamic gradients and thus the departure from the homogeneous state. Therefore, it
plays the role of the Knudsen number. Figure 6 shows that a∗ increases with inelasticity, having
an infinite slope at α = 1. The influence of dimensionality on this quantity is much weaker that in
the cases of η/η0 and Ψ/Ψ0.

Although all the previous results in this section are exactly derived from the Boltzmann equa-
tion (5.2) for IMM, the solution to this equation is not known. However, we can get some indirect
information about the distribution function f(V) through its moments. In principle, the hierarchy
of moment equations stemming from Eq. (5.2) can be recursively solved since the equations for
moments of order k involve only moments of the same and lower order. Equations (5.10) and
(5.12)–(5.15) give the second-order moments. The next non trivial moments are of fourth-order.
They were obtained (for d = 3) in Ref. [73] as the solution of a set of eight linear, inhomogeneous
equations. The results show that the fourth-order moments are finite for α > αc, where αc ' 0.046
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is a critical value below which the fourth-order moments diverge. This implies that the distribution
function exhibits a high-energy tail of the form f(V) ∼ V −d−s′(α), so that s′(α) < 4 if α < αc for
d = 3. This tail in the USF is reminiscent of that of the HCS [see Eq. (3.25)]. On the other hand,
the fourth-order moments are finite in the HCS for d ≥ 2 and any value of α [see Eq. (3.22)]. This
suggests that s′(α) < s(α), i.e., the shearing enhances the overpopulation of the high-velocity tail.
As an illustration, Fig. 7 displays the fourth cumulant a2 of the USF, defined by Eq. (3.21), as a
function of α for d = 3. Comparison with Fig. 1 shows that this quantity is much larger in the USF
than in the HCS.

5.2. Unsteady hydrodynamic solution
The interest of the USF is not restricted to the steady state. In general, starting from an arbitrary
initial temperature T (0), the temperature T (t) changes in time according to Eq. (5.5) either by
increasing (if the viscous heating term dominates over the collisional cooling term) or decreasing
(in the opposite case). After a short kinetic stage (of the order of a few mean free times) and
before reaching the steady state, the system follows an unsteady hydrodynamic regime where the
reduced pressure tensor P ∗

ij(t) depends on time through a dependence on the reduced shear rate
a∗(t) = a/ν0(t), in such a way that the functions P ∗

ij(a
∗) are independent of the initial condition

[2, 74].
Taking into account that ν0 ∝ T 1/2, one has

∂ta
∗ = − a∗

2T
∂tT

=
a∗

2

(
ζ +

2a

d
P ∗

xy

)
, (5.20)

where in the last step use has been made of Eq. (5.5). As a consequence,

∂tPij = P ∗
ij∂tp + p

(
∂a∗P

∗
ij

)
∂ta

∗

= −p

(
ζ +

2a

d
P ∗

xy

)(
1− a∗

2
∂a∗

)
P ∗

ij. (5.21)

Insertion of this property into Eqs. (5.7)–(5.9) yields

∂a∗P
∗
xy =

2

a∗

(
P ∗

xy −
ν∗0|2P

∗
xy + a∗P ∗

yy

ζ∗ + 2a∗
d

P ∗
xy

)
, (5.22)

∂a∗P
∗
yy =

2

a∗

[
P ∗

yy −
ν∗0|2

(
P ∗

yy − 1
)

+ ζ∗

ζ∗ + 2a∗
d

P ∗
xy

]
, (5.23)

∂a∗P
∗
xx =

2

a∗

[
P ∗

xx −
ν∗0|2 (P ∗

xx − 1) + ζ∗ + 2a∗P ∗
xy

ζ∗ + 2a∗
d

P ∗
xy

]
, (5.24)

where we have called ν∗0|2 ≡ ν0|2/ν0 and ζ∗ ≡ ζ/ν0.
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Equations (5.22) and (5.23) constitute a set of two coupled nonlinear first-order differential
equations for the elements P ∗

xy and P ∗
yy. Their numerical solution, with appropriate boundary con-

ditions [74], provides the hydrodynamic functions P ∗
xy(a

∗) and P ∗
yy(a

∗). Moreover, it is straightfor-
ward to check that Eqs. (5.23) and (5.24) are consistent with the relationship P ∗

xx +(d−1)P ∗
yy = d.

This means that the knowledge of P ∗
yy(a

∗) suffices to determine P ∗
xx(a

∗) and that P ∗
zz(a

∗) =
P ∗

yy(a
∗). This generalizes the analogous relations (in particular, a vanishing second viscometric

function) obtained above in the steady state. Once P ∗
xy(a

∗) and P ∗
yy(a

∗) are known, the shear-rate
dependence of the generalized shear viscosity η and (first) viscometric function Ψ, defined by Eqs.
(5.16) and (5.17), can be obtained. These two functions are plotted in Fig. 8 for α = 0.6, α = 0.8,
and α = 1 in the three-dimensional case. The top panel clearly shows that the shear viscosity
exhibits shear thinning, i.e., it decays with increasing reduced shear rate. As a∗ increases the in-
fluence of inelasticity on the shear viscosity becomes less important. The top panel of Fig. 8 also
shows that the NS value (i.e., the value at a∗ = 0) of the shear viscosity increases with increasing
inelasticity, in agreement with Fig. 2. On the other hand, the steady-state values (which correspond
to different values of a∗) decrease as inelasticity increases, in agreement with Fig. 5. Analogous
features are presented by the viscometric function plotted in the bottom panel.

Although the determination of P ∗
xy(a

∗) and P ∗
yy(a

∗) involves numerical work, one can obtain
analytically those functions in the vicinity of the steady state by means of the derivatives ∂a∗P

∗
xy

and ∂a∗P
∗
yy evaluated at the steady state. This requires some care because the fractions on the right-

hand side of Eqs. (5.22) and (5.23) become indeterminate in the steady state since the numerators
and the denominator vanish identically. This difficulty can be solved by means of L’Hôpital rule
[39]. Therefore, in the steady-state limit Eqs. (5.22) and (5.23) become

∂a∗P
∗
xy =

2

a∗

(
P ∗

xy −
d

2

ν∗0|2∂a∗P
∗
xy + P ∗

yy + a∗∂a∗P
∗
yy

P ∗
xy + a∗∂a∗P ∗

xy

)
, (5.25)

∂a∗P
∗
yy =

2

a∗

(
P ∗

yy −
d

2

ν∗0|2∂a∗P
∗
yy

P ∗
xy + a∗∂a∗P ∗

xy

)
. (5.26)

Elimination of ∂a∗P
∗
yy gives a cubic equation for ∂a∗P

∗
xy,

a∗3
(
∂a∗P

∗
xy

)3
+ 2dν∗0|2a

∗ (
∂a∗P

∗
xy

)2
+

[
d2

ν∗0|2
2

a∗
+ 3a∗

(
dP ∗

yy − P ∗
xy

2
)
]

∂a∗P
∗
xy

+2dP ∗
xyP

∗
yy +

(
dP ∗

yy − 2P ∗
xy

2
) (

P ∗
xy + d

ν∗0|2
a∗

)
= 0, (5.27)

with coefficients that are known functions of α. The real root of Eq. (5.27) gives the physical
solution. From it we simply get

∂a∗P
∗
yy = 2P ∗

yy

P ∗
xy + a∗∂a∗P

∗
xy

a∗P ∗
xy + dν∗0|2 + a∗2∂a∗P ∗

xy

. (5.28)
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Figure 8: Plot of the reduced generalized shear viscosity η/η0 (top panel) and of the reduced
generalized viscometric function Ψ/Ψ0 (bottom panel) versus the reduced shear rate a/ν0 in the
unsteady USF for d = 3 and three coefficients of restitution: α = 0.6 (dotted curves), α = 0.8
(dashed lines), and α = 1 (solid lines). The circles denote the steady-state values.

6. Couette flow with uniform heat flux. LTu flow
The planar Couette flow corresponds to a granular gas enclosed between two parallel, infinite
plates (normal to the y axis) in relative motion along the x direction, and kept at different temper-
atures. The resulting flow velocity is along the x axis and, from symmetry, it is expected that the
hydrodynamic fields only vary in the y direction.

Despite the apparent similarity between the steady planar Couette flow and the USF, the former
is much more complex than the latter. In contrast to the USF, the temperature is not uniform and
thus a heat flux vector q coexists with the pressure tensor Pij [77]. In general, inelastic cooling
and viscous heating are unbalanced, their difference dictating the sign of the divergence of the heat
flux [77, 83]. More explicitly, the energy balance equation (2.9) in the steady state reads

−∂qy

∂y
=

d

2
ζnT + Pxya, (6.1)
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where we have again called a ≡ ∂ux/∂y. However, in contrast to the USF, the shear rate a is not
uniform, i.e., the velocity profile is not linear. Conservation of momentum implies [see Eq. (2.8)]
Pxy = const and Pyy = const.

The key difference between the balance equations (5.6) and (6.1) is the presence of the diver-
gence of the heat flux in the latter. Therefore, Eq. (6.1) reduces to Eq. (5.6) if ∂yqy = 0, even if
qy 6= 0 and ∂yT 6= 0. This yields a whole new set of steady states where an exact balance between
the viscous heating term and the collisional cooling term occurs at all points of the system. This
class of Couette flows has been observed in computer simulations of IHS and studied theoretically
by means of Grad’s approximate method and a simple kinetic model [81, 82]. Interestingly, an ex-
act solution of the Boltzmann equation for IMM supports this class of Couette flows with uniform
heat flux [75].

In the geometry of the planar Couette flow, the Boltzmann equation (2.1) becomes

vy∂sf =
1

ω0|2
J [f, f ], (6.2)

where we have particularized to the steady state and have introduced the scaled variable s as

ds = ω0|2dy, (6.3)

where

ω0|2 ≡ ν0|2 − ζ =
(1 + α)2

2(d + 2)
ν. (6.4)

An exact normal solution of Eq. (6.2) exists characterized by the following hydrodynamic profiles
[75]:

p = const,
∂ux

∂s
= ã = const,

∂T

∂s
= const. (6.5)

Note that ã = a/ω0|2 ∝ a/ν. Thus, it is of the order of the Knudsen number associated with the
shear rate. It is important to bear in mind that, since ã = const, the ratio a/ν is spatially uniform
even though neither the shear rate a nor the collision frequency ν are. Apart from ã, there is another
Knudsen number, this time associated with the thermal gradient. It can be conveniently defined as

ε̃ =
√

2T/m
∂ ln T

∂s
. (6.6)

This quantity is not constant since ∂sT = const implies ε̃ ∝ T−1/2. As will be seen, the consistency
of the profiles (6.5) is possible only if ã takes a certain particular value for each coefficient of
restitution α. In contrast, the reduced thermal gradient ε̃ will remain free and so independent of α
[75].

From Eqs. (6.5) and (6.6) we get

∂T

∂ux

=
ε̃
√

mT/2

ã
= const. (6.7)
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This means that when the spatial variable (y or s) is eliminated to express T as a function of ux

one gets a linear relationship. For this reason, the class of states defined by Eq. (6.5) is referred to
as the LTu class [75, 75, 82]. In terms of the variable s, the temperature profile is

T (s) = T0

(
1 +

ε̃0

v0

s

)
, v0 ≡

√
2T0/m, (6.8)

where T0 and ε̃0 are the temperature and Knudsen number at a reference point s = 0.
In order to get the pressure tensor and the heat flux in the LTu flow, it is convenient to introduce

the dimensionless velocity distribution function

φ(c; ε̃) =
T (s)

p

[
2T (s)

m

]d/2

f(s,v), c =
v − u(s)√
2T (s)/m

. (6.9)

As a normal solution, all the dependence of f on s must occur through the hydrodynamic fields T
and ux. Consequently,

∂f

∂s
=

∂T

∂s

∂f

∂T
+

∂ux

∂s

∂f

∂ux

. (6.10)

Taking into account Eq. (6.9), and after some algebra, one gets [75]

−cy

[
ε̃

2

(
2 +

∂

∂c
· c + ε̃

∂

∂ε̃

)
+ ã

∂

∂cx

]
φ =

2(d + 2)

(1 + α)2Ωd

∫
dc1

∫
dσ̂

[
α−1φ(c′)φ(c′1)

−φ(c)φ(c1)]

≡ J [c|φ, φ]. (6.11)

We consider now the following moments of order k = 2r + `,

M2r|`,h(ε̃) =

∫
dc c2rc`−h

y ch
xφ(c; ε̃), 0 ≤ h ≤ `. (6.12)

By definition, M0|0,0 = 1, M0|1,0 = M0|1,1 = 0, and M2|0,0 = d
2
. According to Eq. (6.11), the

moment equations read

ε̃

2

(
2r + `− 1− ε̃

∂

∂ε̃

)
M2r|`+1,h+ã

(
2rM2r−2|`+2,h+1 + hM2r|`,h−1

)
= J2r|`,h, (6.13)

where
J2r|`,h ≡

∫
dc c2rc`−h

y ch
xJ [c|φ, φ] (6.14)

are the corresponding collisional moments. In the case of IMM, J2r|`,h is given as a bilinear
combinations of the form M2r′|`′,h′M2r′′|`′′,h′′ such that 2r′ + `′ + 2r′′ + `′′ = 2r + `. Therefore,
only moments of order equal to or smaller than 2r + ` contribute to J2r|`,h.

It can be verified that the hierarchy (6.13) is consistent with solutions of the form [75]

M2r|`,h(ε̃) =
2r+`−2∑

j=0

µ
(2r|`,h)
j ε̃j, µ

(2r|`,h)
j = 0 if j + ` = odd, (6.15)
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i.e., the moments M2r|`,h(ε̃) of order 2r + ` ≥ 2 are polynomials in the thermal Knudsen number
ε̃ of degree 2r + `− 2 and parity `.

It is important to remark that, when ε̃ = 0, the hierarchy (6.13) reduces to that of the (station-
ary) USF problem for IMM, i.e., the hierarchy obtained from Eq. (5.2). In other words, the USF
moments provide the independent terms of the corresponding LTu moments. On the other hand,
the hierarchy (6.13) reduces to that of the conventional Fourier flow problem for elastic Maxwell
particles when α = 1 (which, as will be seen below, implies ã = 0) [49, 70]. The general problem
(ε̃ 6= 0, ã 6= 0) is much more difficult since it combines both momentum and energy transport.
The interesting point is that, although the moment hierarchy (6.13) couples moments of order k to
moments of a higher order k + 1, it can be exactly solved via a recursive scheme. This is possible
because the coefficient µ

(2r|`+1,h)
j with j = 2r + `− 1 of the moment M2r|`+1,h do not contribute

to Eq. (6.13). In the following, we will focus on the moments of second order (pressure tensor)
and third order (heat flux).

Since the moments of order k are polynomials in ε̃ of degree k − 2, it turns out that the ele-
ments of the pressure tensor are independent of the reduced thermal gradient ε̃. Therefore, they
coincide with those obtained in the steady-state USF, being given by Eqs. (5.10), (5.14), and (5.15).
Moreover, the reduced shear rate a/ν is again given by Eq. (5.13), so that

ã =
d + 1− α

d(1 + α)2

√
2(d + 2)(1− α2). (6.16)

This confirms that, as said above, the value of ã in the LTu flow is enslaved to the coefficient of
restitution α. If one defines the rheological functions η and Ψ by Eqs. (5.16) and (5.17), their
expressions in the LTu flow are the same as those in the USF [see Eqs. (5.18) and (5.19)].

The third-order moments (absent in the USF) are linear functions of ε̃ that cannot be evaluated
autonomously. However, they can be obtained from Eq. (6.13) in terms of the independent terms
of the fourth-order moments [75]. The explicit forms for the two third-order moments defining the
x and y components of the heat flux are

M2|1,0(ε̃) = −2dε̃

X

{
4d(2d− 2 + 3dζ̃)ζ̃µ

(0|4,0)
0 + 8dζ̃µ

(0|4,2)
0 + (18d− 18 + 19dζ̃)µ

(2|2,0)
0

−6

√
2dζ̃

[
(2d− 2 + 3dζ̃)µ

(0|4,1)
0 + µ

(2|2,1)
0

] }
, (6.17)

M2|1,1(ε̃) =
2dε̃

3X

{√
2dζ̃

[
4d(7d− 2 + 9dζ̃)ζ̃µ

(0|4,0)
0 + 6(6d− 6 + 5dζ̃)µ

(0|4,2)
0

+3(9d + 6 + 17dζ̃)µ
(2|2,0)
0

]− 12dζ̃(7d− 2 + 9dζ̃)µ
(0|4,1)
0

−9(6d− 6 + 5dζ̃)µ
(2|2,1)
0

}
, (6.18)

where
X ≡ 36(d− 1)2 − d

(
76− 56d− 9dζ̃

)
ζ̃ (6.19)
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and
ζ̃ ≡ ζ

ω0|2
=

d + 2

d

1− α

1 + α
. (6.20)

The coefficients µ
(0|4,0)
0 , µ(0|4,2)

0 , µ(2|2,0)
0 , µ(0|4,1)

0 , and µ
(2|2,1)
0 are not but the momentsM0|4,0,M0|4,2,

M2|2,0, M0|4,1, and M2|2,1, respectively, evaluated in the USF [73]. This completes the determi-
nation of M2|1,0 and M2|1,1.

Once the non-zero components of the heat flux qy and qx are known, one can define an effective
thermal conductivity κ and a cross coefficient Φ, respectively, by

qy = −κ
∂T

∂y
, qx = Φ

∂T

∂y

∂ux

∂y
. (6.21)

In the three-dimensional case the expressions of κ and Φ are

κ = κ0
36

(4− α)2(829− 162α− 91α2)

A(α)

C(α)
, (6.22)

Φ = Φ0
864

35(1 + α)(4− α)3(829− 162α− 91α2)

B(α)

C(α)
, (6.23)

where the functions A(α), B(α), and C(α) are polynomials in α of degrees 26, 26, and 24, re-
spectively, whose coefficients are given in Table 1 of Ref. [75]. In Eq. (6.23), Φ0 = 7

2
κ0η0/p is the

corresponding Burnett coefficient in the elastic limit for d = 3 [27].
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Figure 9: Plot of the reduced heat flux coefficients κ/κ0 (solid line) and Φ/Φ0 (dashed line) in the
LTu flow for d = 3. These quantities diverge at αc ' 0.046.

While the coefficient κ is an extension of the conventional NS thermal conductivity, the coef-
ficient Φ is absent at NS order and thus it can be seen as an extension of a Burnett-order transport
coefficient. Figure 9 depicts the α-dependence of the reduced coefficients κ/κ0 and Φ/Φ0. In-
terestingly, both reduced coefficients are quite similar for the whole range αc ≤ α ≤ 1, where
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αc ' 0.046, the relative difference being smaller than 10%. As expected, these coefficients di-
verge when α → αc as a consequence of the similar divergence of the fourth-order moments in the
USF. An important non-Newtonian effect (not directly observed in Fig. 9), is that, as α decreases,
the magnitude of the streamwise component qx grows more rapidly than that of the crosswise com-
ponent qy, so that the former becomes larger than the latter for α . 0.9, what represents a strong
far-from-equilibrium effect. Finally, comparison between the generalized thermal conductivity κ
and the NS coefficient κNS shows that, in contrast to the cases of η and ηNS, both coefficients be-
have in a qualitatively similar way. In the range 0.475 ≤ α < 1, κ > κNS (the relative difference
being smaller than 20%), while κ < κNS for α < 0.475.

7. Small spatial perturbations around the USF
The LTu flow described in the preceding section can be seen as the USF perturbed by the existence
of a thermal gradient parallel to the velocity gradient (y axis) under the constraints of uniform
pressure and heat flux. However, the perturbation is not small in the sense that the thermal gradient
(as measured by the Knudsen number ε̃) is arbitrarily large. In this section, we will adopt a com-
plementary approach. On the one hand, the perturbations from USF will be assumed to be small,
but, on the other hand, they will affect all the hydrodynamic fields.

Let us assume that the USF is disturbed by small spatial perturbations. The response of the
system to these perturbations gives rise to additional contributions to the momentum and heat
fluxes, which can be characterized by generalized transport coefficients [40]. Since the unperturbed
system is strongly sheared, these generalized transport coefficients are highly nonlinear functions
of the shear rate. The goal here is to determine the shear-rate dependence of these coefficients for
IMM.

To analyze this problem, one has to start from the Boltzmann equation (2.1) with a general time
and space dependence. First, it is convenient to keep using the relative velocity V = v−u0, where
u0 = ayx̂ is the flow velocity of the undisturbed USF state. On the other hand, in the disturbed
state the true flow velocity u is in general different from u0, i.e., u = u0 + δu, δu being a small
perturbation to u0. As a consequence, the true peculiar velocity is now W ≡ v− u = V− δu. In
the Lagrangian frame moving with velocity u0, the Boltzmann equation (2.1) reads

∂

∂t
f − aVy

∂

∂Vx

f + (V + u0) · ∇f = J [V|f, f ], (7.1)

where the gradient ∇f in the last term of the left-hand side must be taken at constant V.
The goal is to find a normal solution to Eq. (7.1) that slightly deviates from the USF. For this

reason, let us assume that the spatial gradients of the hydrodynamic fields

A(r, t) ≡ {n(r, t), T (r, t), δu(r, t)} (7.2)

are small. Under these conditions, it is appropriate to solve Eq. (7.1) by means of a generalization
of the conventional Chapman–Enskog method [27], where the velocity distribution function is
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expanded about a local shear flow reference state. This type of Chapman–Enskog-like expansion
has been considered in the case of elastic gases to get the set of shear-rate dependent transport
coefficients in a thermostatted shear flow problem [49, 58] and has also been considered in the
context of inelastic gases [39, 40, 41, 61].

As said in section 4., the Chapman–Enskog method assumes the existence of a normal solution
in which all space and time dependence of the distribution function occurs through a functional
dependence on the fields A(r, t), i.e.,

f = f [V|A]. (7.3)

This functional dependence can be made local by an expansion of the distribution function in
powers of the hydrodynamic gradients:

f(V) = f (0)(V|A) + εf (1)(V|A) + · · · , (7.4)

where, as in Eq. (4.2), ε is a bookkeeping parameter that can be set equal to 1 at the end of the
calculations. The reference zeroth-order distribution function corresponds to the unsteady USF
distribution function but taking into account the local dependence of the density and temperature
and the change V → W = V − δu(r, t). It is important to note that, as seen in section 5.1., in
the stationary USF the temperature is fixed by the shear rate and the coefficient of restitution [cf.
Eq. (5.13)]. Therefore, in order to have T as an independent field, one needs to solve the time-
dependent USF problem, as discussed in section 5.2. As a consequence, the associated solution
f (0), in dimensionless form, is a function of α and a∗ ≡ a/ν0 separately. Apart from this difficulty,
a new feature of the Chapman–Enskog-like expansion (7.4) (in contrast to the conventional one) is
that the successive approximations f (k) are of order k in the gradients of n, T , and δu, but retain
all the orders in the reduced shear rate a∗ [40].

The expansion (7.4) yields the corresponding expansions for the fluxes:

P = P(0) + εP(1) + · · · , q = εq(1) + · · · , (7.5)

where P
(0)
ij = pP ∗

ij(α, a∗) is the pressure tensor in the unsteady USF and we have taken into
account that q(0) = 0. A careful application of the Chapman–Enskog-like expansion to first order
gives the following forms for the generalized constitutive equations [40]:

P
(1)
ij = −ηijk`∇`δuk, (7.6)

q
(1)
i = −κij∇jT − µij∇jn. (7.7)

In general, the set of generalized transport coefficients ηijk`, κij , and µij are nonlinear functions of
the coefficient of restitution α and the reduced shear rate a∗. The anisotropy induced in the system
by the presence of shear flow gives rise to new transport coefficients, reflecting broken symmetry.
The momentum flux is expressed in terms of a viscosity tensor ηijk`(a

∗, α) of rank 4 which is
symmetric and traceless in ij due to the properties of the pressure tensor P

(1)
ij . The heat flux is

expressed in terms of a thermal conductivity tensor κij(a
∗, α) and a new tensor µij(a

∗, α). Of
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course, for a∗ = 0 and α = 1, the usual NS constitutive equations for ordinary gases are recovered
and the transport coefficients become

ηijk` → η0

(
δikδj` + δjkδi` − 2

d
δijδk`

)
, κij → κ0δij, µij → 0. (7.8)

The elements of the tensor ηijk` obey a set of coupled linear first-order differential equations
in terms of a∗, P ∗

ij , and ∂a∗Pij . Those differential equations become algebraic equations when one
specializes to the steady-state condition (5.6). In that case one gets

a∗
(
δixη

∗
jyk` + δjxη

∗
iyk` − δkyη

∗
ijx`

)
+ ν∗0|2η

∗
ijk` = δk`a

∗∂a∗P
∗
ij + δikP

∗
j` + δjkP

∗
i`

−2

d

(
P ∗

k` − a∗η∗xyk`

) (
1− a∗

2
∂a∗

)
P ∗

ij,

(7.9)

where η∗ijk` ≡ ηijk`/η0. In Eq. (7.9), a∗, P ∗
ij , and ∂a∗P

∗
ij are functions of α given by Eqs. (5.11),

(5.13)–(5.15), (5.27), and (5.28). As a simple test, note that in the elastic limit (a∗ = 0, ν∗0|2 = 1,
P ∗

ij = δij), Eq. (7.9) becomes Eq. (7.8). Also, it must be noted that, on physical grounds, the
elements of the form ηijxy are directly related to the unperturbed transport coefficients η and Ψ
defined by Eqs. (5.16) and (5.17). The rationale is that the particular case of a perturbation in the
velocity field of the form δu = (δa)yx̂ is totally equivalent to an unperturbed USF state with a
shear rate a + δa. As a consequence, one has

P ∗
xy(a

∗ + δa∗) = −η∗(a∗ + δa∗) (a∗ + δa∗)

= −η∗(a∗)a∗ − δa∗ (1 + a∗∂∗a) η∗(a∗) + · · · , (7.10)

P ∗
yy(a

∗ + δa∗) = P ∗
zz(a

∗ + δa∗) = 1− 1

d
Ψ∗(a∗ + δa∗) (a∗ + δa∗)2

= 1− 1

d
Ψ∗(a∗)a∗2 − δa∗

2a∗

d

(
1 +

a∗

2
∂∗a

)
Ψ∗(a∗) + · · · ,

(7.11)

P ∗
xx(a

∗ + δa∗) = d− (d− 1)P ∗
yy(a

∗ + δa∗). (7.12)

This implies that
η∗xyxy(a

∗) = (1 + a∗∂∗a) η∗(a∗), (7.13)

η∗yyxy(a
∗) = η∗zzxy(a

∗) =
2a∗

d

(
1 +

a∗

2
∂∗a

)
Ψ∗(a∗), (7.14)

η∗xxxy(a
∗) = −(d− 1)η∗yyxy(a

∗). (7.15)

Here, η∗ ≡ η/η0, δa∗ ≡ δa/ν0, and Ψ∗ ≡ Ψ/(η2
0/p). Equations (7.13)–(7.15) hold both for the

steady and unsteady USF. It can be checked that they are consistent with Eq. (7.9) in the steady
state, in which case ∂a∗η

∗ and ∂a∗Ψ
∗ are obtained from Eqs. (5.27) and (5.28). The elements of the
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steady-state shear viscosity tensor η∗ijk` with k 6= x and ` 6= y must be obtained by solving the set
of algebraic equations (7.9).

It turns out that there are two classes of terms. Class I is made of those coefficients η∗ijk` with
(k, `) = (xx), (xy), (yx), (yy), and (zz). The complementary class II includes the coefficients
with (k, `) = (xz), (yz), (zx), and (zy). Of course, class II (as well as the elements η∗ijzz of class
I) are meaningless if d = 2. The coefficients of the form η∗xzk` and η∗yzk` vanish in class I, while
those of the form η∗xxk`, η∗xyk`, and η∗yyk` vanish in class II. The remaining elements in class II are

η∗xzxz = η∗, η∗yzxz = 0, (7.16)

η∗xzyz = 0, η∗yzyz = η∗, (7.17)

η∗xzzx = η∗
[

P ∗
xx

P ∗
yy

+

(
P ∗

xy

P ∗
yy

)2
]

, η∗yzzx = η∗
P ∗

xy

P ∗
yy

, (7.18)

η∗xzzy = 2η∗
P ∗

xy

P ∗
yy

, η∗yzzy = η∗. (7.19)

Some of the above results might have been anticipated from simple arguments, as shown on p. 138
of Ref. [49].

The expressions for the non-zero elements of class I include the derivatives ∂a∗η
∗ and ∂a∗Ψ

∗.
Those expressions are much more involved than those of class II and so they will not be explicitly
given here, except for the cases of Eqs. (7.13)–(7.15). As Eq. (7.15) shows, the combination
η∗xxk` + (d− 1)η∗yyk` vanishes for (k, `) = (xy). It also does for (k, `) = (xx), while for the other
cases of class I one simply has

η∗xxyx + (d− 1)η∗yyyx = 2(d− 2)η∗
P ∗

xy

P ∗
yy

, (7.20)

η∗xxyy + (d− 1)η∗yyyy = 2(d− 2)η∗, (7.21)

η∗xxzz + (d− 1)η∗yyzz = −2η∗. (7.22)

Figure 10 shows the steady-state values of two elements of class I (η∗xyxy and η∗yyxy) and two
elements of class II (η∗xzzx and η∗yzzx) in the three-dimensional case. We recall that the first two
coefficients measure the deviations of Pxy and Pyy with respect to their unperturbed USF values
due to a perturbation of the form ∂δux/∂y. Analogously, the two coefficients η∗xzzx and η∗yzzx

measure the presence of non-zero values of Pxz and Pyz, respectively, due to a perturbation of the
form ∂δuz/∂x. We observe that, at a given value of α, the largest influence occurs on Pxz. It is
also interesting to note that η∗xyxy becomes negative at strong values of dissipation, while η∗yzzx is
always negative.

The evaluation of the heat flux coefficients κij and µij is more involved than that of the shear
viscosity tensor ηijk`. In the general unsteady case, κij and µij obey coupled linear first-order
differential equations where, in addition to a∗, P ∗

ij , and ∂a∗Pij , the fourth-order moments of the
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Figure 10: Plot of the reduced generalized transport coefficients ηxyxy/η0 (solid line), ηyyxy/η0

(dashed line), ηxzzx/η0 (dash-dotted line), and ηyzzx/η0 (dotted line) in the steady-state USF for
d = 3.

USF and their first derivatives with respect to a∗ are also involved [40]. For steady-state conditions,
the set of equations becomes algebraic. For further analysis, let us rewrite Eq. (7.7) as

q
(1)
i = −κ̃ij∇jT − µ̃ij∇jn + γij∇a∗, (7.23)

so that
κij = κ̃ij +

a∗

2T
γij, µij = µ̃ij +

a∗

n
γij. (7.24)

In Eq. (7.23) we have disentangled the contributions to the heat flux directly associated with
the temperature and density gradients from those due to the local spatial dependence of a∗ ∝
n−1T−1/2. Whereas the coefficients κ̃ij and µ̃ij are given in terms of the second- and fourth-order
moments of USF, but not of their derivatives with respect to a∗, the coefficients γij are linear func-
tions of those derivatives. The equations for κij and µij are not reproduced here and the interested
reader is referred to Ref. [40].

It is illuminating to connect the elements κ̃ij and µ̃ij in the steady state with the LTu transport
coefficients κ and Φ defined by Eq. (6.21). The key point is the realization that the LTu (see Sec. 6.)
can be interpreted as a special perturbation of the USF such that (a) the only non-zero temperature
and density gradients are ∂yT and ∂yn, (b) those gradients are not independent but are related by
the constant-pressure condition ∂yn = −(n/T )∂yT , and (c) the reduced shear rate a∗ is constant.
Although in the LTu the strength of the “perturbation” ∂yT is arbitrary, we have seen that the heat
flux is linear in the thermal gradient, so that the effective coefficients defined by Eq. (6.21) must
be related to those defined by (7.23) as

κ = κ̃yy − n

T
µ̃yy, −Φa = κ̃xy − n

T
µ̃xy. (7.25)
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We have checked that the above relations are indeed satisfied, what shows the consistency of our
results.

8. Concluding remarks
Exact solutions in nonequilibrium statistical mechanics are scarce. In order to overcome this limi-
tation, two possible alternatives can be envisaged from a theoretical point of view. On the one hand,
one can consider a realistic and detailed description but make use of approximate (and sometimes
uncontrolled) techniques to get quantitative predictions. On the other hand, one can introduce an
idealized mathematical model (which otherwise captures the most relevant physical properties of
the underlying system) and solve it by analytical and exact methods. Here we have adopted the
second strategy.

In this review we have offered an overview of some recent exact results obtained in the context
of the Boltzmann equation for a granular gas modeled as inelastic Maxwell particles. Although
most of the results reviewed in this paper have been reported previously, some other ones are
original and presented here for the first time.

We have focused on the hydrodynamic properties of the system, where here the term ‘hydro-
dynamics’ has been employed in a wide sense encompassing both Newtonian and non-Newtonian
behavior. More specifically, the Navier–Stokes (NS) transport coefficients ηNS, κNS, µNS, and DNS

have been obtained from the Chapman–Enskog method in Sec. 4. As a common feature, it is ob-
served that the collisional inelasticity produces an increase of all the NS transport coefficients,
especially those related to the heat flux. In fact, the latter coefficients diverge (in two and three
dimensions) for sufficiently small values of the coefficient of restitution α. This is a consequence
of the algebraic high-velocity tail of the distribution function in the homogeneous cooling state.

As an example of non-Newtonian hydrodynamics, the study of the paradigmatic uniform shear
flow (USF) has been addressed in Sec. 5. The analysis includes both the steady and (transient)
unsteady states. While the former has been extensively studied in the literature, the hydrodynamic
transient toward the steady state has received much less attention. We have studied the rheological
properties (generalized shear viscosity η and viscometric function Ψ), thus assessing the influence
of inelasticity on momentum transport. Additionally, the α-dependence of the fourth-order velocity
cumulant a2 in the steady state has been shown. Again, an algebraic high-velocity tail of the USF
distribution function gives rise to a divergence of a2 for quite small values of α (α . 0.046 for
d = 3).

Next, a more complex state has been analyzed in Sec. 6. This state (referred to as LTu) is
actually a class of planar Couette flows characterized by a uniform heat flux, as a consequence of
an exact balance between viscous heating and collisional cooling contributions. In contrast to the
USF (where only momentum flux is present) and to the Fourier flow for an ordinary gas (where
only heat flux is present), both momentum and heat fluxes coexist in this class of states. It turns
out that the rheological properties coincide with those of the USF. The most interesting result is
that the heat flux is exactly proportional to the thermal gradient with coefficients κ and Φ that are
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highly nonlinear functions of α.
Finally, the problem of arbitrary (but small) spatial perturbations to the USF has been con-

sidered in Sec. 7. Taking the USF as a reference state and carrying out a Chapman–Enskog-like
expansion about it, a generalized shear viscosity tensor ηijk` and generalized heat-flux tensors κij

and µij are determined. The α-dependence of ηxyxy, ηyyxy, ηxzzx, and ηyzzx has been explicitly
given.

It is worth emphasizing that all the results reviewed in this paper are exact in the context of
the Boltzmann equation for IMM, regardless of the degree of dissipation. Moreover, all the results
are explicit, with the exception of those displayed in Fig. 8, which are obtained from a numerical
solution of the set of coupled differential equations (5.22) and (5.23). This contrasts with the case
of inelastic hard spheres, which requires the use of approximations and/or numerical methods. The
price to be paid is that, in general, the quantitative predictions obtained from IMM significantly
enhance the influence of dissipation on the dynamical properties of a granular gas. However,
the IMM is very useful to unveil in a clean way the role played by inelasticity in granular flows,
especially in situations, such as highly non-Newtonian states, where simple intuition is not enough.
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Pöschel, S. Luding, eds. Lecture Notes in Physics 624, Springer, Berlin, Germany, 2003,
65–94.

[9] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows.
Clarendon Press, Oxford, UK, 1994.

[10] A. V. Bobylev, J. A. Carrillo, I. M. Gamba. On some properties of kinetic and hydrodynamic
equations for inelastic interactions. J. Stat. Phys., 98 (2000), Nos. 3–4, 743–773.

[11] A. V. Bobylev, C. Cercignani. Moment equations for a granular material in a thermal bath.
J. Stat. Phys., 106 (2002), Nos. 3–4, 547–567.

[12] A. V. Bobylev, C. Cercignani. Self-similar asymptotics for the Boltzmann equation with in-
elastic and elastic interactions. J. Stat. Phys., 110 (2003), Nos. 1–2, 333–375.

[13] A. V. Bobylev, C. Cercignani, G. Toscani. Proof of an asymptotic property of self-similar
solutions of the Boltzmann equation for granular materials. J. Stat. Phys., 111 (2003), Nos. 1–
2, 403–416.

[14] A. V. Bobylev, I. M. Gamba. Boltzmann equations for mixtures of Maxwell gases: Exact
solutions and power like tails. J. Stat. Phys. 124 (2006), Nos. 2–4, 497–516.

[15] F. Bolley, J. A. Carrillo. Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys.,
276 (2007), No. 2, 287–314.

[16] J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. Granular Gases.
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