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Impurity in a sheared inelastic Maxwell gas
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The Boltzmann equation for inelastic Maxwell models is considered in order to investigate the dynamics of an
impurity (or intruder) immersed in a granular gas driven by a uniform shear flow. The analysis is based on an exact
solution of the Boltzmann equation for a granular binary mixture. It applies for conditions arbitrarily far from
equilibrium (arbitrary values of the shear rate a) and for arbitrary values of the parameters of the mixture (particle
masses mi , mole fractions xi , and coefficients of restitution αij ). In the tracer limit where the mole fraction of
the intruder species vanishes, a nonequilibrium phase transition takes place. We thereby identify ordered phases
where the intruder bears a finite contribution to the properties of the mixture, in a region of parameter space that
is worked out in detail. These findings extend previous results obtained for ordinary Maxwell gases, and further
show that dissipation leads to new ordered phases.
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I. INTRODUCTION

Inelastic hard spheres (IHS) provide a useful theoretical,
computational, and experimental framework for studying
granular gases [1–3]. In the simplest version, the spheres are
assumed to be smooth (i.e., frictionless) and the inelasticity
in collisions is specified in terms of a constant coefficient
of normal restitution α � 1 [1]. At a kinetic theory level,
the essential information about the dynamical properties of
the fluid is embedded in the one-particle velocity distribution
function. For sufficiently low densities, the conventional
Boltzmann equation can be extended to IHS by changing
the collision rules to account for the inelastic character of
the interactions [4,5]. However, the complex mathematical
structure of the Boltzmann collision operator prevents one
from obtaining exact results, so that most of the analytical
progress for IHS has been achieved by using approximated
methods and/or simple kinetic models [6]. For instance, the
explicit forms of the Navier-Stokes transport coefficients have
been approximately determined by considering the leading
terms in a Sonine polynomial expansion [7].

Needless to say, the difficulties of solving the Boltzmann
equation increase considerably when one considers far from
equilibrium situations, such as shear flow problems. Although
good estimates for nonlinear transport properties of IHS have
been obtained [8], the search of exact results has stimulated
the use of model interactions simpler than hard spheres. One
possibility is to consider a mean field version of the hard
sphere system, where randomly chosen pairs of particles
inelastically interact with a random impact direction. This
assumption yields a Boltzmann equation where the collision
rate is independent of the relative velocity of the two colliding
particles [9]. This interaction model is usually referred to as
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the inelastic Maxwell model (IMM). It must be noted that
in the conventional case of ordinary gases colliding elasti-
cally, Maxwell models correspond—-in three dimensions—to
particles interacting via a repulsive potential proportional to
the inverse fourth power of distance [10]. Nevertheless, in
the framework of the Boltzmann equation, one can introduce
Maxwell models at the level of the cross section, without any
reference to a specific interaction potential [11,12]. Thanks
to the simplifications introduced by IMM in the kernel of the
Boltzmann collision operator, it is possible in some particular
situations to find nontrivial exact solutions to the Boltzmann
equation [13–18]. Apart from their academic interest, it has
also been shown in some cases that the results derived from
IMM [13] agree well with those obtained analytically for IHS
from Grad’s method [19,20] and by means of Monte Carlo sim-
ulations [19]. We will substantiate this point in the concluding
section. In addition, even recent experiments [21] for magnetic
grains with dipolar interactions are qualitatively well described
by IMM. All of these results clearly show the utility of IMM
as a toy model to unveil in a clean way the influence of the in-
elasticity of collisions in granular flows, especially in far from
equilibrium situations where simple intuition is not enough.

The aim of this paper is to investigate the dynamics of
an intruder or impurity immersed in an inelastic Maxwell
gas subject to the simple or uniform shear flow (USF). This
state is perhaps one of the most widely studied states in
granular gases [22]. From a macroscopic point of view, the
USF is characterized by constant partial densities nr , a uniform
granular temperature T , and a linear velocity field ux = ay, a

being the constant shear rate. Because the only hydrodynamic
gradient is that of flow velocity, the mass and heat fluxes vanish
by symmetry and the pressure or stress tensor Pij is the only
relevant flux in the problem. The knowledge of the elements of
Pij gives access to the rheological properties of the mixture. In
the context of IMM, the above transport properties have been
recently obtained [18] in terms of the shear rate and the param-
eters of the mixture. Our goal now is to consider the tracer limit.
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Since this case corresponds to a situation in which the mole
fraction x1 = n1/(n1 + n2) of the tracer species is negligible,
one expects that the properties of the excess species (granular
gas) are not affected by the presence of the impurity particle. In
particular, the relative contribution of the impurity to the total
energy of the system, E1/E, is expected to be proportional to
x1 when x1 � 1 (here, E denotes the total kinetic energy of
the system and E1 is the kinetic energy of the impurity). Con-
sequently, the contribution of the impurity to the total energy is
likely to be negligible. However, as in the elastic case [23], we
present in this paper a violation of the above expectation, that
is ascribable to a nonequilibrium phase transition. Specifically,
we found that the impurity particle has a finite contribution to
the total energy of the system (impurity plus granular gas)
either for light impurities under conditions that depend criti-
cally on the asymmetry of collisional dissipation (impurity-gas
against gas-gas collisions), or conversely, for heavy impurities
provided the shear rates are not too large. This phenomenon
is akin to a phase transition, where the order parameter is
given by the ratio of the impurity kinetic energy over the total
kinetic energy of the system. We borrow here the terminology
of equilibrium phase transitions; it should nevertheless be
stressed that the kind of ordering under discussion is not spa-
tial, but refers to a specific, kinetic, order parameter (E1/E);
as such, the “ordering” scenario specifically belongs in
nonequilibrium. Moreover, we found that ordering always sets
in at large enough shear rates (i.e., for shear rates larger than
a certain critical value), provided the impurity is sufficiently
light compared to the grains of the host gas. While this feature
is common to elastic [23] and inelastic systems, the possibility
of what we refer to below as heavy tracer ordering, is specific
to inelastic gases. A preliminary account of part of this work
has appeared in Ref. [24].

The plan of the paper is as follows. The Boltzmann equation
for IMM is introduced in Sec. II and the collisional moments
needed to get the pressure tensor are explicitly evaluated. In
Sec. III, the USF problem is presented and the rheological
properties are obtained in terms of the shear rate, the masses,
the concentration, and the coefficients of restitution. The main
results are derived in Sec. IV. Specifically, the tracer limit is
considered in detail, which shows the existence of the above
nonequilibrium transition. Finally, the paper concludes in
Sec. V with a brief discussion.

II. THE INELASTIC MAXWELL MODEL

Let us consider a binary mixture of inelastic Maxwell gases
at low density. In the absence of external forces, the set of
nonlinear Boltzmann equations for the mixture reads(

∂

∂t
+ v · ∇

)
fr (r,v; t) =

∑
s

Jrs[v|fr (t),fs(t)], (1)

where fr (r,v; t) is the one-particle distribution function of
species r (r = 1,2) and the Boltzmann collision operator
Jrs[v|fr,fs] describing the scattering of pairs of particles is

Jrs[v1|fr,fs] = ωrs

ns�d

∫
dv2

∫
dσ̂

[
α−1

rs fr (r,v′
1,t)fs(r,v′

2,t)

−fr (r,v1,t)fs(r,v2,t)
]
. (2)

Here,

nr =
∫

dv fr (v) (3)

is the number density of species r , ωrs is an effective collision
frequency (to be chosen later) for collisions of type r-s,
�d = 2πd/2/�(d/2) is the total solid angle in d dimensions,
and αrs � 1 refers to the constant coefficient of restitution for
collisions between particles of species r with s. In addition,
the primes on the velocities denote the initial values {v′

1,v
′
2}

that lead to {v1,v2} following a binary collision:

v′
1 = v1 − μsr

(
1 + α−1

rs

)
(σ̂ · g12)σ̂ , (4)

v′
2 = v2 + μrs

(
1 + α−1

rs

)
(σ̂ · g12)σ̂ , (5)

where g12 = v1 − v2 is the relative velocity of the colliding
pair, σ̂ is a unit vector directed along the centers of the
two colliding spheres, and μrs = mr/(mr + ms). From the
densities nr , we define the mole fractions xr = nr/(n1 + n2).

The effective collision frequencies ωrs are independent of
the relative velocities of the colliding particles but depend in
general on space and time through its dependence on density
and temperature. In previous works on multicomponent gran-
ular systems [13,18,25], ωrs was chosen to guarantee that the
cooling rate for IMM be the same as that of the IHS. With this
choice (“improved Maxwell model”), the collision rates ωrs

are functions of the temperature ratio γ ≡ T1/T2, that is itself
a function of the (reduced) shear rate in the USF problem.
A consequence of this choice is that one has to numerically
solve a set of nonlinear equations in order to get the shear
rate dependence of the temperature ratio [13,18]. Since we
wish to obtain in this paper analytical results for arbitrary
spatial dimensions in a quite complex problem that involves
a delicate tracer limit, we will consider here a simple version
of IMM where ωrs is independent of the partial temperatures
of each species (“plain vanilla Maxwell model”). Thus, one
defines ωrs as

ωrs = xsν0, ν0 = An, (6)

where the value of the constant A is irrelevant for our purposes.
Here, n = ∑

r nr is the total number density of the mixture.
The form of ωrs is closer to the original model of Maxwell
molecules for elastic mixtures. This plain vanilla model has
been previously used by several authors [26–29] in some
problems pertaining to granular mixtures, and we will argue
in Sec. V that it is capable of capturing the essential physical
effects at work here.

At a hydrodynamic level, the relevant quantities in a
binary mixture are, apart from nr , the flow velocity u, and
the “granular” temperature T . They are defined in terms of
moments of the distribution fr as

ρu =
∑

r

ρrur =
∑

r

∫
dv mrvfr (v), (7)

nT =
∑

r

nrTr =
∑

r

∫
dv

mr

d
V 2fr (v), (8)

where ρr = mrnr , ρ = ∑
r ρr is the total mass density, and

V = v − u is the peculiar velocity. Equations (7) and (8) also
define the flow velocity ur and the partial temperature Tr
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of species r , the latter measuring the mean kinetic energy
of species r . Computer simulations [30], experiments [31],
and kinetic theory calculations [32,33] indicate that the global
granular temperature T is in general different from the partial
temperatures Tr . The mass, momentum, and energy fluxes are
characterized by the mass flux

jr = mr

∫
dv V fr (v), (9)

the pressure tensor

P =
∑

r

∫
dvmrVVfr (v), (10)

and the heat flux

q =
∑

r

∫
dv

1

2
mrV

2V fr (v), (11)

respectively. Finally, the rate of energy dissipated due to
collisions among all species defines the cooling rate ζ as∑

r,s

mr

∫
dv V 2Jrs[v|fr,fs] = −dnT ζ. (12)

The key advantage of the Boltzmann equation for Maxwell
models (both elastic and inelastic) is that the (collisional)
moments of Jrs[fr,fs] can be exactly evaluated in terms of the
moments of fr and fs without the explicit knowledge of both
velocity distribution functions [34,35]. This property has been
recently exploited [36] to obtain the detailed expressions for all
the second-, third-, and fourth-degree collisional moments for
a monodisperse gas. In the case of a binary mixture, only the
first- and second-degree collisional moments have also been
explicitly obtained. In particular [13],∫

dv mrVVJrs[fr,fs]

= − ωrs

ρsd
μsr (1 + αrs)

{
2ρsPr

− (jr js + jsjr ) − 2

d + 2
μsr (1 + αrs)

×
[
ρsPr + ρrPs − (jr js + jsjr )

+
[
d

2
(ρrps + ρspr ) − jr · js

]
1

] }
, (13)

where

Pr =
∫

dv mrVV fr, (14)

pr = nrTr = tr Pr/d is the partial pressure of species r , and 1
is the d × d unit tensor. It must be remarked that, in general,
beyond the linear hydrodynamic regime (Navier-Stokes order),
the above property of the Boltzmann collision operator is not
sufficient to exactly solve the hierarchy of moment equations,
due to the free-streaming term of the Boltzmann equation.
Nevertheless, there exist some particular situations (such as the
simple shear flow problem) for which the above hierarchy can
be recursively solved. The cooling rate ζ defined by Eq. (12)

can be easily obtained from Eq. (13) as

ζ = 2

d

∑
r,s

xrωrsμsr (1 + αrs)

[
γr − 1 + αrs

2
(γrμsr + γsμrs)

+ γr

μsr (1 + αrs) − 1

dρspr

jr · js

]
, (15)

where γr ≡ Tr/T .

III. UNIFORM SHEAR FLOW

We consider a binary mixture of inelastic Maxwell gases
under USF. As mentioned in the Introduction, the USF state is
macroscopically defined by constant densities nr , a spatially
uniform temperature T (t), and a linear velocity profile u(y) =
u1(y) = u2(y) = ay x̂, where a is the constant shear rate. Since
nr and T are uniform, then jr = q = 0, and the transport of mo-
mentum (measured by the pressure tensor) is the relevant phe-
nomenon. At a microscopic level, the USF is characterized by a
velocity distribution function that becomes uniform in the local
Lagrangian frame, i.e., fr (r,v; t) = fr (V,t). In this frame, the
Boltzmann equation (1) for the distribution f1(V,t) reads [35]

∂

∂t
f1 − aVy

∂

∂Vx

f1 = J11[f1,f1] + J12[f1,f2], (16)

while a similar equation holds for f2. The properties of
uniform temperature and constant densities and shear rate
are enforced in computer simulations by applying the
Lees-Edwards boundary conditions [37], regardless of the
particular interaction model considered. In the case of
boundary conditions representing realistic plates in relative
motion, the corresponding nonequilibrium state is the
so-called Couette flow, where densities, temperature, and
shear rate are no longer uniform [38,39].

As alluded to above, the rheological properties of the
mixture are obtained from the pressure tensor P = P1 + P2,
where the partial pressure tensors Pr (r = 1,2) are defined
by Eq. (14). The elements of these tensors can be obtained
by multiplying the Boltzmann equation (16) by mrVV and
integrating over V. The result can be written as

∂

∂t
P1,ij + aikP1,kj + ajkP1,ki + B11P1,ij + B12P2,ij

= (A11p1 + A12p2)δij , (17)

where use has been made of Eq. (13) (with jr = 0). In Eq. (17),
aij = aδixδjy and we have introduced the coefficients

A11 = ω11

2(d + 2)
(1 + α11)2 + ω12

d + 2
μ2

21(1 + α12)2, (18)

A12 = ω12

d + 2

ρ1

ρ2
μ2

21(1 + α12)2, (19)

B11 = ω11

d(d + 2)
(1 + α11)(d + 1 − α11) + 2ω12

d(d + 2)
×μ21(1 + α12) [d + 2 − μ21(1 + α12)] , (20)

B12 = − 2

d
A12. (21)
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Adequate change of indices (1 ↔ 2) provide the equations
pertaining to P2. The evolution equation for the temperature
can be obtained from Eq. (17) and reads

ν−1
0

∂

∂t
ln T = −ζ ∗ − 2a∗

d
P ∗

xy. (22)

Here, the following reduced quantities have been introduced:
ζ ∗ = ζ/ν0, a∗ = a/ν0, P ∗

xy = Pxy/p, and p = nT being the
hydrostatic pressure. The expression for ζ ∗ can be derived
from Eq. (15) when one takes jr = 0. The result is

ζ ∗ = 2

d

∑
r,s

xrxsμsr (1 + αsr )

[
γr − 1 + αrs

2
(γrμsr + γsμrs)

]
.

(23)

As can be seen in Eq. (22), the temperature changes in
time due to the competition of two opposite mechanisms:
viscous heating (shearing work) and energy dissipation in
collisions. The reduced shear rate a∗ is the nonequilibrium
relevant parameter of the USF problem since it measures the
distance of the system from the homogeneous cooling state [1].
In general, since a∗ does not depend on time, there is no steady
state unless a∗ takes the specific value given by the steady-state
condition

a∗
s P

∗
s,xy = −d

2
ζ ∗, (24)

denoting a∗
s and P ∗

s,xy the steady-state values of the (reduced)
shear rate and the pressure tensor. Beyond this particular case,
the (reduced) shear rate and the coefficients of restitution can
be considered as independent and so, one can analyze the
combined effect of both control parameters on the rheological
properties of the mixture. This is one of the main advantages of

the interaction model used in this paper, in contrast to previous
works [13]: our goal is to disentangle the effects of dissipation
from those of forcing through shear. For comparison to a real
system or with simulation data, which are generally studied in
the steady state where collisional cooling and viscous heating
equilibrate, one should, however, specifically work with an
α-dependent (reduced) shear rate, given by the solution of
Eq. (24). We shall come back to this point in Sec. V.

We are interested in obtaining the explicit forms of the
scaled pressure tensors P ∗

r,ij = Pr,ij /p in the long-time limit.
The relevant elements of these tensors are P ∗

r,xx = p∗
r − (d −

1)P ∗
r,yy , P ∗

r,yy , and P ∗
r,xy with r = 1,2 [13,18]. Here, p∗

r =
pr/p = xrγr . As in the monocomponent granular case [15],
one can check that, after a certain kinetic regime lasting
a few collision times, the scaled pressure tensors P ∗

r,ij =
Pr,ij /p reach well-defined stationary values (non-Newtonian
hydrodynamic regime), which are nonlinear functions of the
(reduced) shear rate a∗ and the coefficients of restitution. In
terms of these scaled variables and by using matrix notation,
Eq. (17) can be rewritten as

LP = 0, (25)

where P is the column matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P ∗
1,xx

P ∗
1,yy

P ∗
1,xy

P ∗
2,xx

P ∗
2,yy

P ∗
2,xy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

and L is the square matrix,

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B∗
11 + λ − 1

d
A∗

11 − d−1
d

A∗
11 2a∗ B∗

12 − 1
d
A∗

12 − d−1
d

A∗
12 0

− 1
d
A∗

11 B∗
11 + λ − d−1

d
A∗

11 0 − 1
d
A∗

12 B∗
12 − d−1

d
A∗

12 0

0 a∗ B∗
11 + λ 0 0 B∗

12

B∗
21 − 1

d
A∗

21 − d−1
d

A∗
21 0 B∗

22 + λ − 1
d
A∗

22 − d−1
d

A∗
22 2a∗

− 1
d
A∗

21 B∗
21 − d−1

d
A∗

21 0 − 1
d
A∗

22 B∗
22 + λ − d−1

d
A∗

22 0

0 0 B∗
21 0 a∗ B∗

22 + λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

Here, A∗
rs = Ars/ν0 and B∗

rs = Brs/ν0. In addition, it has been
taken into account that for long times the temperature T (t)
behaves as

T (t) = T (0)eλν0t , (28)

where λ is also a nonlinear function of a∗, αrs , and the
parameters of the mixture. The (reduced) total pressure tensor
P ∗

ij = Pij /p of the mixture is defined as

P ∗
ij = P ∗

1,ij + P ∗
2,ij . (29)

Equation (25) has a nontrivial solution if

det L = 0. (30)

Equation (30) is a sixth-degree polynomial equation with
coefficients depending on a and ξ ≡ {x1,μ,α11,α22,α12}. Here,
μ ≡ m1/m2 is the mass ratio. In general, this equation must
be solved numerically. Figure 1 shows the real part Re[λ]
of the roots of Eq. (30) versus a∗ for hard disks (d = 2) in
the case x1 = 0.2, m1/m2 = 0.5, and αrs = 0.8. Obviously,
exactly the same curves are obtained in the case m1/m2 = 2
and x1 = 0.8. At a given value of the shear rate, the difference
between the two largest values of ν0λ gives the inverse of the
relaxation time of the transient regime. It can be proved that
this difference does not vanish if x1 �= 0.

According to Eq. (28), the largest root of the sixth-
degree equation (30) governs the time evolution of the global
temperature T (t) in the long-time limit. Thus, the upper curve
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in Fig. 1 gives the value of λ of Eq. (28) for the case x1 = 0.2,
m1/m2 = 0.5, and αrs = 0.8.

The stationary forms of P1 and P2 are obtained by solving
the homogeneous equation (25) since det L = 0. This equation
has a nontrivial solution that can be written as

P ′ = L′−1Q, (31)

where

P ′ =

⎛⎜⎜⎜⎜⎜⎝
p∗

1

P ∗
1,yy

P ∗
2,yy

P ∗
1,xy

P ∗
2,xy

⎞⎟⎟⎟⎟⎟⎠ , (32)

L′ =

⎛⎜⎜⎜⎜⎜⎝
B∗

11 + λ − A∗
11 + A∗

12 − B∗
12 0 0 2

d
a∗ 0

A∗
12 − A∗

11 λ + B∗
11 B∗

12 0 0

A∗
22 − A∗

21 B∗
21 λ + B∗

22 0 0

0 a∗ 0 λ + B∗
11 B∗

12

0 0 a∗ B∗
21 B∗

22 + λ

⎞⎟⎟⎟⎟⎟⎠ , (33)

and

Q =

⎛⎜⎜⎜⎜⎜⎝
A∗

12 − B∗
12

A∗
12

A∗
22

0

0

⎞⎟⎟⎟⎟⎟⎠ . (34)

The expressions of p∗
1 and P ∗

r,ij can be obtained from Eq. (31).
In particular, the explicit form of p∗

1 = x1γ1 can be found in
Appendix A. This quantity gives the ratio between the energy
of the species 1 and the total energy of the mixture.

It is important to recall that, although the scaled pressure
tensors P ∗

r,ij achieve stationary values, the binary mixture is
not, in general, in a steady state since the granular temperature
changes in time. In fact, since P ∗

xy < 0, according to Eq. (22)
the temperature T (t) grows exponentially if −2a∗P ∗

xy > dζ ∗,
namely, when the imposed shear rate is large enough to
make the viscous heating effect dominate over the collisional
cooling. The opposite occurs when dζ ∗ > −2a∗P ∗

xy and so,
the temperature decreases in time.

To illustrate the non-Newtonian behavior [40] of the
temperature ratio and the pressure tensor, Figs. 2 and 3 show
γ1 and P ∗

rs , respectively, as functions of the (reduced) shear

FIG. 1. Shear rate dependence of the real part of the roots of
Eq. (30) for hard disks (d = 2) in the case x1 = 0.2, m1/m2 = 0.5,
and α11 = α12 = α22 = 0.8. The solid lines refer to the real roots,
while the dashed lines refer to the complex roots.

rate a∗ for an equimolar mixture (x1 = 0.5) of inelastic hard
spheres (d = 3) with m1/m2 = 8. Two different values of
the (common) coefficient of restitution αrs ≡ α have been
considered. The temperature ratio T1/T measures the lack
of equipartition of kinetic energy. As expected for driven
granular mixtures [27,30], the lighter particles have a smaller
temperature for moderate shear rates, while the opposite
happens at high shear rates. Figure 3 shows the dependence
of the relevant elements of the total pressure tensor P ∗

rs on
a∗. A signal of the non-Newtonian behavior is the existence
of normal stress differences in the shear flow plane. It is also
apparent that the influence of collisional dissipation on the
rheological properties (measured through the elements P ∗

rs) is
not quite significant, especially at high shear rates. It must be
remarked that the trends observed for this plain vanilla IMM
turn out to be very similar to those previously obtained from
the improved model of IMM [18].

IV. TRACER LIMIT (x1 → 0)

The results derived in the preceding section have shown that
the time dependent solution for the second-degree velocity
moments is given in terms of the roots of the sixth-degree

FIG. 2. Shear rate dependence of the temperature ratio T1/T in
three dimensions (d = 3), for an equimolar mixture (x1 = 0.5) with
m1/m2 = 8. Two values of the (common) coefficient of restitution
αrs ≡ α have been considered: α = 1 (solid line) and α = 0.8
(dashed-dotted line).
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FIG. 3. Shear rate dependence of the (reduced) elements of the
pressure tensor P ∗

xx (a), P ∗
yy (b), and P ∗

xy (c). Two values of the
(common) coefficient of restitution αrs ≡ α have been considered:
α = 1 (solid lines) and α = 0.8 (dashed lines).

polynomial equation (30). For long times, the dominant
behavior is described by the two real roots, λ1 and λ2. In
particular, the energy ratio E1/E = x1γ1 can be written as

E1

E
= Ap∗

1(λ2,a,ξ ) + Bp∗
1(λ1,a,ξ )e−(λ2−λ1)ν0t

A + Be−(λ2−λ1)ν0t
, (35)

where A and B are constants depending on the initial condi-
tions and the explicit expression of p∗

1 is given by Eq. (A1).
After a relaxation time of the order of |(λ2 − λ1)ν0|−1, the
energy ratio E1/E reaches a steady-state value p∗

1(λmax,a,ξ )
where λmax = max(λ2,λ1). As long as x1 �= 0, one has λ1 �= λ2

for any value of the shear rate and ξ .
Let us assume now that the mole fraction of one of the

species (say for instance, species 1) becomes negligible. In
the tracer limit (x1 → 0), the sixth-degree equation (30) for λ

factorizes into two cubic equations (see Appendix B, where the
quantities used below are defined), with the following largest
roots:

λ
(0)
2 = 2F

(
a∗/A(0)

22

)
A

(0)
22 − (

B
(0)
22 − A

(0)
22

)
= (1 + α22)2

d + 2
F (̃a) − 1 − α2

22

2d
, (36)

where

F (x) ≡ 2

3
sinh2

[
1

6
cosh−1

(
1 + 27

d
x2

)]
(37)

and

ã = a∗

A
(0)
22

= 2(d + 2)

(1 + α22)2
a∗. (38)

The above root λ(0)
2 rules the dynamics of the host fluid (excess

component) while the evolution of the impurity is governed
by the root

λ
(0)
1 = 2F

(
a∗/A(0)

11

)
A

(0)
11 − (

B
(0)
11 − A

(0)
11

)
= 2μ2

21

d + 2
(1 + α12)2F

(
ã

2μ2
21

(1 + α22)2

(1 + α12)2

)
− 2

d
μ21(1 + α12)

[
1 − μ21

2
(1 + α12)

]
. (39)

As seen above, the largest of all roots, λmax, is the relevant
one to obtain the asymptotic energy ratio E1/E. We now

show that the behavior of the system is qualitatively very
different depending on λmax = λ

(0)
1 or λmax = λ

(0)
2 . For x1 �= 0,

the expression of p∗
1 (that corresponds to the long-time value

reached by E1/E) is given in Appendix A by Eq. (A1). If
x1 → 0, the energy ratio p∗

1 becomes

p∗
1(λ,a∗,ξ ) ≈ x1

D(λ,a∗)

�0(λ,a∗) + �1(λ,a∗)x1
, (40)

where the dependence on μ, α11, α22, and α12 is implicitly
assumed on the right-hand side. The general expressions of D,
�0, and �1 can be found in Appendix C.

Equation (40) holds for both λ = λ2 and λ = λ1. These two
possibilities turn out to differ in that λ

(0)
1 (the value of λ1 at

x1 = 0) is a root of �0. It is then important to keep track of the
finite x1 correction to λ

(0)
1 that is present in λ1. To first order in

x1, we have

λ2(a∗,x1) ≈ λ
(0)
2 (a∗) + λ

(1)
2 (a∗)x1 (41)

and

λ1(a∗,x1) ≈ λ
(0)
1 (a∗) + λ

(1)
1 (a∗)x1, (42)

where λ
(0)
2 and λ

(0)
1 are given by Eqs. (36) and (39), respectively.

The expressions of λ
(1)
2 and λ

(1)
1 can be obtained from the

general sixth-degree polynomial equation (30); they are given
in Appendix C. It can be checked that if λ = λ

(0)
2 in Eq. (40),

then [according to Eqs. (C1) and (C2)] D(λ(0)
2 ) �= 0, �0(λ(0)

2 ) �=
0, and so the energy ratio E1/E vanishes when x1 → 0, as
may have been expected. However, if λ = λ

(0)
1 in Eq. (40),

�0(λ(0)
1 ) = 0, which implies that E1/E �= 0. Therefore, by

taking the tracer limit in Eq. (40), one gets

lim
x1→0

1

x1
p∗

1(λ2(a∗,x1),a∗,x1) = D
(
λ

(0)
2 (a∗),a∗)

�0
(
λ

(0)
2 (a∗),a∗) , (43)

lim
x1→0

p∗
1(λ1(a∗,x1),a∗,x1) = D

(
λ

(0)
1 (a∗),a∗)

�01(a∗) + �1
(
λ

(0)
1 (a∗),a∗)

�= 0, (44)

where

�01(a∗) ≡
(

∂�0(λ,a∗)

∂λ

)
λ=λ

(0)
1 (a∗)

λ
(1)
1 (a∗). (45)

Equation (43), where λ2 is the argument of p∗
1 , is relevant for

the case λ
(0)
2 > λ

(0)
1 while conversely, Eq. (44) applies when

λ
(0)
2 < λ

(0)
1 . In Eq. (44), use has been made of the fact that

�0(λ(0)
1 ,a∗) = 0.

In conclusion, if λmax = λ
(0)
2 , the right-hand side of Eq. (43)

is the temperature ratio T1/T and so, the energy ratio
E1/E = 0. On the other hand, if λmax = λ

(0)
1 , the temperature

ratio diverges to infinity and the energy ratio becomes finite.
The change from one behavior to the other is akin to a
nonequilibrium transition between disordered (E1/E = 0,
finite temperature ratio) and ordered (E1/E �= 0, diverging
temperature ratio) phases [23]. The task now boils down to
identifying the regions of parameter space where λ

(0)
1 = λ

(0)
2 ,

from which the domains of existence of the ordered and
disordered phases can be obtained. It is important to note here
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that although our procedure leads to tracer limit quantities
that a priori depend on the intruder-intruder coefficient of
restitution α11, such a parameter turns out to disappear from
the final expressions, which is intuitively expected. We could
not analytically show this property [the computer package
of symbolic calculations (MATHEMATICA) used was not able
to provide a manageable expression], that is nevertheless a
systematic numerical observation. We will henceforth drop
α11 from the relevant parameters in the tracer limit.

A. Absence of shear rate (homogeneous cooling state)

Before analyzing the physical consequences of the above
mathematical treatment in the shear flow problem (a �= 0), it
is instructive to consider the particular case of vanishing shear
rates. This state is referred to as the homogeneous cooling state
(HCS). Such a situation has been analyzed in detail in a recent
work [41]. Here, for the sake of completeness, we summarize
the most relevant results in the HCS.

When a∗ = 0, the roots λ
(0)
2 and λ

(0)
1 simply reduce to

λ
(0)
2 = −1 − α2

22

2d
, (46)

λ
(0)
1 = − 2

d
μ21(1 + α12)

[
1 − μ21

2
(1 + α12)

]
. (47)

It is apparent that, even in the HCS, there are two different
regimes of behavior depending if λ

(0)
2 is smaller or larger than

λ
(0)
1 . Equating λ

(0)
2 and λ

(0)
1 leads to two critical mass ratios

μ
(−)
HCS =

α12 −
√

1+α2
22

2

1 +
√

1+α2
22

2

and μ
(+)
HCS =

α12 +
√

1+α2
22

2

1 −
√

1+α2
22

2

,

(48)

with μ
(−)
HCS < μ

(+)
HCS. When μ

(−)
HCS < μ < μ

(+)
HCS, we have λ

(0)
2 >

λ
(0)
1 and the temperature ratio T1/T remains finite (disordered

phase). It is given by [41]

T1

T
= 2μ12μ21(1 + α12)2

4μ21(1 + α12)
[
1 − μ21

2 (1 + α12)
] − 1 + α2

22

. (49)

The expressions of μ
(+)
HCS and T1/T coincide with the ones

previously derived by Ben-Naim and Krapivsky [28] in their
analysis on the velocity statistics of an impurity immersed
in a uniform granular fluid. When μ > μ

(+)
HCS or μ < μ

(−)
HCS,

λ
(0)
2 < λ

(0)
1 , so that T1/T → ∞ but the energy ratio E1/E is

finite. This is a new result together with the identification of
the bound μ

(−)
HCS. The explicit expression of E1/E is [41]

E1

E
= α2

22 − 1 + 4μ21(1 + α12)
[
1 − μ21

2 (1 + α12)
]

α2
22 − 1 + 2μ21

(
1 − α2

12

) . (50)

Three remarks are in order here:
(1) While the upper bound μ

(+)
HCS is well defined for all

values of α12 and α22, the lower one is meaningful (i.e.,
positive) only when α12 >

√
(1 + α2

22)/2. Such a constraint
cannot be met when α12 = α22 nor when α12 <

√
2/2, and

requires “asymmetric” coefficients of restitution (the above
inequality implies α12 > α22, i.e., more dissipative interhost
gas collisions than cross intruder-gas encounters).

(2) A similar extreme breakdown of the energy equipartition
has been found [42] for inelastic hard spheres since, in the
ordered phase (T1/T → ∞), the ratio of the mean square
velocities for the impurity and gas particles m2T1/m1T

becomes finite for an extremely heavy impurity particle
(m1/m2 → ∞). Our Maxwell approach hence captures robust
effects, but at the same time exaggerates the trend of more
refined models.

(3) In the present unforced situation, the results are
independent of the space dimension d.

B. Nonzero shear rate

We now wish to assess the influence of the shear rate on
the transition observed in the absence of shear (HCS). When
a∗ = 0, we have seen that an ordered phase exists for heavy im-
purities, while asymmetric dissipation may open a window for
a light impurity ordered phase, provided α12 >

√
(1 + α2

22)/2.
On the other hand, it is known for elastic systems that an
ordered phase sets in for μ <

√
2 − 1 [43] (which can be seen

as a light impurity condition), provided the shear rate a∗ is
larger than a certain critical value a∗

c (μ). To see how these
two limiting cases are connected, we first show in Fig. 4 how
the shear rate affects the HCS scenario, and how collisional
dissipation modifies the results obtained for ordinary gases
(αrs = 1) [23]. Since we have chosen symmetric dissipation
parameters (α12 = α22) in Fig. 4, the light tracer ordered phase
is precluded on the a∗ = 0 axis. It can be seen that this phase
exists, in the shear rate versus mass ratio plane, provided
a∗ > a∗

c and μ < μ
(−)
th , which defines a domain that is rather

insensitive to the value of the coefficient of restitution. On
the other hand, the heavy tracer ordered phase is much more

0.01 0.1 1 10 100 1000

μ 

0.001

0.01

0.1

1

10

100

1000

10000

a*

α12 = α22 = 0.99
α12 = α22 = 0.5
α12 = α22 = 0

μ
HCS

(+)

μ
th
(-)

Disordered phase

Ordered phase

Ordered phase

μ
HCS

(+)

a*(+)

light tracer

heavy tracer

FIG. 4. Phase boundaries discriminating, in the tracer limit x1 →
0 and for hard spheres (d = 3), between ordered and disordered
phases. In the ordered phases, the energy ratio E1/E (impurity
over total energy) is finite—hence a diverging temperature ratio
T1/T —whereas in the disordered phase, the order parameter E1/E

vanishes with a corresponding finite temperature ratio. The vertical
arrows in the lower panel indicate the threshold μ

(+)
HCS as given by

Eq. (48). The values of μ
(−)
th = √

2 − 1 [here, common to all three
parameter sets; see Eq. (51)] and of a∗(+) [given by Eq. (53)] are also
indicated.
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sensitive to collisional dissipation. At variance with the light
tracer phase, it has an enhanced domain of existence for more
dissipative systems, and disappears in the elastic limit, as
suggested by Fig. 4 (see the dashed line corresponding to
α12 = α22 = 0.99, squeezed in the lower right corner of the
graph). We also note that the heavy impurity ordered phase is
destroyed by a sufficiently vigorous shear rate, see below.

The characteristic features seen in Fig. 4—with two distinct
ordering pockets—may be rationalized by further analytical
results. In particular, the threshold μ

(−)
th may be obtained by

the condition λ
(0)
1 = λ

(0)
2 when a∗ → ∞. Following that route,

we find

μ
(−)
th =

√
2

1 + α12

1 + α22
− 1, (51)

which does not depend on space dimension, as the thresholds
pertaining to the HCS. As expected, we recover the threshold
value μ

(−)
th = √

2 − 1 for elastic systems. Likewise, the upper
shear rate a∗(+) beyond which the heavy impurity ordered
phase disappears may be derived from enforcing the limit μ →
∞ in the equality λ

(0)
2 = λ

(0)
1 . Since μ21 → 0, then λ

(0)
1 → 0

so that λ
(0)
2 = 0. This implies [see Eq. (36)]

F (̃a) = d + 2

2d

1 − α2
22

1 + α2
22

. (52)

Equation (52) yields

a∗(+) = 1 + d − α22

d

√
1 − α2

22

2(d + 2)
, (53)

where use has been made of the relation

F (1 + 2F )2 = x2

d
, (54)

where F (x) is given by Eq. (37). The identity (54) allows for
a convenient expression of ã [and hence a∗ through Eq. (38)],
once λ [and hence F (̃a)] is known. Since the value of a∗(+) has
been obtained from the condition λ

(0)
2 = 0 (constant tempera-

ture in the ordered phase), the expression (53) also gives the
α dependence of the shear rate in the steady USF state [18].

The quantities μ
(−)
th and a∗(+) are indicated by arrows in

Fig. 4. Consistent with the disappearance of the heavy impurity
ordered phase for elastic systems, is the vanishing of a∗(+)

when α22 → 1. It can also be noted that a∗(+) is only a host
property, and does not depend on α12. Finally, Fig. 5 shows
that the behavior in two and three dimensions is similar.

We now turn to asymmetric collisional dissipation cases,
so that the light impurity ordered phase may exist even for
vanishing shear rates. Such a scenario is illustrated in Fig. 6,
which corroborates the analytical predictions. The boundary
of the light impurity ordered phase in a shear-mass ratio phase
diagram is nontrivial, and indicates the existence of an interval
of μ values, below μ

(−)
HCS, with a reentrance feature. Indeed,

starting from the ordered phase at a∗ = 0, and increasing a∗
at fixed μ, one first meets a transition from order to disorder,
followed by a subsequent ordering transition. Similarly, and
again for α12 >

√
(1 + α2

22)/2, the following series order →
disorder → order occurs when μ is increased at fixed reduced
shear rate, provided a∗ < a∗(+).

0.01 0.1 1 10 100 1000
μ

0.001

0.01

0.1

1

10

100

1000

10000

a*

μ
HCS
(+)

μ
th
(-)

Disordered phase
Ordered phase

Ordered phase

FIG. 5. Same as Fig. 4, for hard disks (d = 2). Here, α12 =
α22 = 0.9.

To substantiate the phase diagram reported above, we show
in Fig. 7 the shear rate dependence of the order parameter
E1/E, for different values of the (common) coefficient of
restitution and mass ratios. The light impurity ordering is
seen to be enhanced by increasing the shear rate, while the
reverse behavior is, in general, observed for heavy impurities
(see the inset). The critical thresholds observed in Fig. 7 are
fully compatible with those appearing in Fig. 4. Focussing
next on the light impurity ordered phase, we report the
order parameter variation in cases of asymmetric collisional
dissipation. To this end, we return to the set α12 = 0.9 and
α22 = 0.55 addressed in Fig. 7. For such quantities, one has
μ

(−)
HCS � 0.051. As can be seen in Fig. 8, when μ < μ

(−)
HCS,

the order parameter is nonvanishing at small shear rates, while
when μ

(−)
HCS < μ < μ

(−)
th , ordering sets in only beyond a critical

shear rate (note that μ
(−)
th � 0.733, so that the light impurity

10
-2

10
0

10
2 μ

0.001

0.01

0.1

1

10

100

1000

10000

a*

α12 = 0.9 ; α22 = 0.9
α12 = 0.9 ; α22 = 0.55
α12 = 0.9 ; α22 = 0

μ
HCS

(-)

Disordered phase

Ordered phase

Ordered phase

μ
HCS

(+)

light tracer

heavy tracer

FIG. 6. Tracer limit phase diagram, in three dimensions. The
values of μ

(−)
HCS and μ

(+)
HCS predicted by Eq. (48) are shown by

the arrows. For α12 = 0.9 as chosen here, the constraint α12 >√
(1 + α2

22)/2 for the existence of a light impurity ordering at
vanishing shear, reads α22 < 0.787. The dashed line therefore does
not reveal any light impurity ordered phase at zero shear rate (this
was also the case in Fig. 4).
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FIG. 7. Order parameter E1/E as a function of the reduced shear
rate a∗, for different values of α ≡ α12 = α22. The main graph is for
μ = 0.1 (light impurity). In the inset, where the results for μ = 20
are displayed with the same convention for the different curves as in
the main graph, the value of α = 0.9 is not shown, since with such a
parameter, μ

(+)
HCS > μ, hence no ordering is possible. In other words,

the counterpart of the dashed-dotted line of the main graph is simply
E1/E = 0 in the inset.

ordered phase does exist in some shear domain, for all the mass
ratios used in Fig. 8). The figure clearly shows the reentrance
of order alluded to above (see the curves for μ = 10−2 and
μ = 3 × 10−2), where an intermediate interval of a∗ values
leads to a disordered phase with E1/E = 0. For μ = 10−3

(dashed-dotted line), all shear rates lead to phase ordering
(E1/E �= 0), but there is a fingerprint of the reentrant behavior
in the nonmonotonicity of the order parameter with a∗.

For completeness, we now show how the tracer limit is
approached. For μ < μ

(−)
th and α12 = α22, ordering occurs

when the system is driven sufficiently far from equilibrium
(a∗ > a∗

c ). To illustrate how the abrupt transition observed

0.001 0.01 0.1 1 10 100 1000
a*

0

0.2

0.4

0.6

0.8

E
1 / 

E

μ = 10−3

μ = 10−2

μ = 3.10−2

μ = 10−1

FIG. 8. Order parameter for d = 3, α12 = 0.9, and α22 = 0.55
(see the dotted line in Fig. 6). The value μ = 10−1 leads to a
disordered phase at zero shear rate (thick continuous curve), while
the smaller values of μ reported here are associated with small shear
ordering, with the possibility of an intermediate disordered phase
(see text).
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1
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1
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FIG. 9. Shear rate dependence of E1/E for hard spheres (d = 3)
in the case μ = 0.2 and α22 = α12 = 0.9. Three different values of the
mole fraction x1 have been considered: x1 = 0.1 (circles), x1 = 0.01
(squares), and x1 = 0 (solid line).

in the tracer limit is blurred by finite concentration, Fig. 9
shows E1/E versus the (reduced) shear rate a∗ for d = 3,
m1/m2 = 0.2, α11 = α22 = α12 = 0.9, and x1 = 10−1, 10−2,
and 0. It is apparent that the curves tend to collapse to the
exact tracer limit result as the mole fraction x1 vanishes. This
is indicative of the consistency of the analytical results derived
at x1 = 0. Moreover, since the impurity particle is sufficiently
lighter than the particles of the gas (μ = 0.2 < μ

(−)
th � 0.414),

the energy ratio E1/E is nonvanishing in the tracer limit if
a∗ > a∗

c � 7.557 in the present case (see the figure). It can
also be noted that at finite x1, the energy ratio for small shear
rates is of the order of x1, since the temperature ratio is quite
close to unity in that limit (see, e.g., Fig. 2).

Although we have focused our attention on the energy
ratio, it is clear that similar features can be analyzed when
considering other quantities. An interesting candidate is the
nonlinear shear viscosity η∗ defined as

η∗(a∗) = −P ∗
xy

a∗ , (55)

where the shear stress P ∗
xy = P ∗

1,xy + P ∗
2,xy . The rheological

function η∗ characterizes the nonlinear response of the system
to the action of strong shearing. In terms of p∗

1 and for finite
values of x1, the expressions of P ∗

1,xy and P ∗
2,xy are given by

Eqs. (A6) and (A7), respectively. As expected, in the tracer
limit (x1 → 0) and in the disordered phase, the total shear
viscosity η∗ of the mixture coincides with that of the solvent
gas η∗ → η∗

s , where η∗
s is given by Eq. (C18). However, in the

ordered phase, there is a finite contribution to the total shear
viscosity coming from the tracer particles [see Eq. (C19)].
To illustrate it, Fig. 10 shows the shear rate dependence of
the intrinsic shear viscosity [44] [η∗] = limx1→0(η∗ − η∗

s )/η∗
s

for the mass ratio m1/m2 = 0.1 (light impurity) and different
values of the (common) coefficient of restitution. We observe
that the intrinsic viscosity [η∗] is clearly different from zero
for shear rates larger than its corresponding critical value. On
the other hand, its magnitude is smaller than the one obtained
for the order parameter E1/E (see Fig. 7).
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FIG. 10. Shear rate dependence of the intrinsic viscosity [η∗] for
hard spheres (d = 3) in the case m1/m2 = 0.1. Three different values
of the (common) coefficient of restitution α ≡ α12 = α22 have been
considered: α = 0.5 (solid line), α = 0.7 (dashed line), and α = 1
(dotted line).

V. DISCUSSION AND CONCLUSION

In this paper we have analyzed the dynamics of an impurity
immersed in a granular gas subject to USF. The study has
been performed in two successive steps. First, the pressure
tensor of a granular binary mixture of inelastic Maxwell gases
under USF has been obtained from an exact solution of the
Boltzmann equation. This solution applies for arbitrary values
of the shear rate a and the parameters of the mixture, namely,
the mole fraction x1 = n1/n, the mass ratio μ ≡ m1/m2

and the coefficients of restitution α11, α22, and α12. Then,
the tracer limit (x1 → 0) of the above solution has been
carefully considered, showing that the relative contribution
of the tracer species to the total properties of the mixture
does not necessarily vanish as x1 → 0. This surprising result
extends to inelastic gases some results derived some time
ago for ordinary gases [23]. The above phenomenon can be
seen as a nonequilibrium phase transition, where the relative
contribution of the impurity to the total kinetic energy E1/E

plays the role of an order parameter [45].
The transition problem addressed here has been analyzed

in the framework of the Boltzmann equation with Maxwell
kernel. The key advantage of inelastic Maxwell models, in
comparison with the more realistic inelastic hard sphere model,
is that the collisional moments of the Boltzmann collision
operators Jrs[fr,fs] can be exactly evaluated in terms of
the velocity moments of fr and fs , without the explicit
knowledge of these velocity distribution functions. Here, we
have explicitly determined the collisional moments associated
with the second-degree velocity moments to get the pressure
tensor of the mixture. In addition, the collision rates ωrs

appearing in the operators Jrs[fr,fs] have been chosen to be
time independent so that the interaction model allows one to
disentangle the effects of collisional dissipation (accounted
for by the coefficients of restitution) from those of boundary
conditions (embodied in the reduced shear rate a∗ defined
as a∗ = a/ν0, ν0 being a characteristic collision frequency).
Consequently, within this model, collisional dissipation and
viscous heating generally do not compensate, so that the
granular temperature increases (decreases) with time if viscous
heating is larger (smaller) than collisional cooling.

In our system, the temperature T2 of the gas particles
(T2 � T in the disordered phase when x1 → 0) changes in

time due to two competing effects: the viscous heating term
(−aPxy) and the inelastic cooling term (ζT2). In fact, for long
times, T2(t) ∼ exp[λ(0)

2 ν0t] where λ
(0)
2 = −ζ ∗ − (2a∗/d)P ∗

xy

(here, ζ ∗ = ζ/ν0 and P ∗
xy = Pxy/p). Since P ∗

xy < 0, the cool-
ing rate ζ ∗ can be interpreted as the “thermostat” parameter
needed to get a stationary value for the temperature T2 of
the gas particles. At a given value of the shear rate, the
cooling rate increases with dissipation and so, T2 decreases
as αrs decreases. The tracer particles are also subject to two
antagonistic mechanisms. On the one hand, T1 → ∞ due to
viscous heating and on the other hand, collisions with the
gas particles tend to “thermalize” T1 to T2. Both effects are
accounted for by the root λ

(0)
1 that governs the behavior of T1

for long times, i.e., T1(t) ∼ exp[λ(0)
1 ν0t]. When λ

(0)
1 > λ

(0)
2 , the

temperature ratio T1/T2 grows without bounds. The parameter
ranges where such a requirement is met define the ordered
“pockets” of the phase diagram, and where the energy ratio
E1/E—explicitly worked out here—reaches a finite value.
We have found that two different families of ordered phase
can be encountered.

(1) A light impurity phase, provided that the mass ratio μ

does not exceed the threshold μ
(−)
th given by Eq. (51). Such

a phase always exists for shear rates larger than a certain
critical value, but can also be observed at vanishing shear in
cases of asymmetric collisional dissipation, whenever gas-gas
collisions are sufficiently more dissipative that intruder-gas
collisions [α12 >

√
(1 + α2

22)/2].
(2) A heavy impurity phase, which—unlike the light im-

purity phase—cannot accommodate large shear, and requires
a∗ < a∗(+), where the threshold a∗(+) is given by Eq. (53).

The fact that a∗ and αrs are independent parameters [unless
a∗ takes the specific value a∗

s given by the steady-state
condition (24)] allows one to carry out a clean analytical
study of the combined effect of both control parameters on the
properties of the impurity particle. It is, however, important
to bring to the fore the precise coupling between shear and
collisional dissipation that the steady-state condition Eq. (24)
implies. The answer depends on the phase considered, ordered
or disordered, and the energy balance embodied in Eq. (24)
can be expediently expressed as max(λ(0)

1 ,λ
(0)
2 ) = 0. In other

words, a∗
s follows from enforcing λ

(0)
2 = 0 in the disordered

state, and likewise λ
(0)
1 = 0 in the ordered regime. The solution

a∗
2,s of the first equation has already been displayed in Eq. (53):

a∗
2,s = a∗(+). On the other hand, the solution a∗

1,s to λ
(0)
1 = 0

can be obtained along similar lines and reads

a∗
1,s = β

3/2
12

√
1 − 1

2β12

d + 2

[
1 + d + 2

d

(
2

β12
− 1

)]
, (56)

where we have introduced the notation β12 ≡ μ21(1 + α12).
Finally, the steady-state condition implies a∗ = a∗(+) (respec-
tively, a∗ = a∗

1,s) in the disordered (respectively, ordered) case.
The corresponding line in the shear versus mass ratio plane is
shown in Fig. 11, for a given set of dissipation parameters
that corresponds to one of the situations analyzed in Fig. 6. It
appears that remaining on the steady-state line shown by the
thick curve, one spans the three possible regimes: light tracer
ordering at small μ, disordered phase at intermediate values,

011302-10
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FIG. 11. Same plot as Fig. 6, where only the curves pertaining
to the values α12 = 0.9 and α22 = 0.55 have been retained. The
ordered pockets are shown by the hatched areas. The steady-state
condition (24) of equal viscous heating and collisional dissipation,
implies a coupling between a∗ and μ, which corresponds to the thick
continuous line. The bell shaped dashed curve shows the locus of
points where λ

(0)
1 = 0. It therefore coincides with the thick continuous

line in the ordered phase. However, it does not yield the steady-state
condition in the disordered case, where the reduced shear rate is given
by a∗

2,s = a∗(+), which does not depend on μ (hence the horizontal
sector in the thick continuous line).

and heavy tracer order at larger μ. We conclude here that the
scenario uncovered in our analysis is not an artifact of having
decoupled shear from dissipation, and we emphasize that from
a practical point of view, studying the transient regime (before
the steady state occurs) anyway offers the possibility to enforce
the above decoupling.

In addition, we would like to stress here that, in spite of
the approximate nature of our plain vanilla Maxwell model,
the results obtained for binary mixtures under steady USF [13]
compare quite well with Monte Carlo simulations of inelastic
hard spheres [19]. This can be seen in Fig. 12 for the (reduced)
elements of the pressure tensor P ∗

ij in the steady shear flow
state defined by the condition (24). Therefore, we expect that
the transition found in this paper is not artifactual and can be
detected in the case of hard sphere interaction.

It is quite natural—when analyzing the dynamics of an
impurity immersed in a background of mechanically different
particles—to invoke two assumptions. First, that the state of the
solvent (excess component 2) is not affected by the presence
of the tracer (solute) particles 1. Second, that the effect on
the state of the solute due to collisions among the tracer
particles themselves can be neglected. We have seen that the
second expectation is correct (the coefficient of restitution α11

is immaterial in the tracer limit, a property that is not obvious
from the cumbersome analytical formulas reported here), but

FIG. 12. (Color online) Plot of the reduced elements of the
pressure tensor as functions of the (common) coefficient of restitution
α = α11 = α12 = α22 for a three-dimensional system (d = 3) in
the steady USF. The predictions of the inelastic Maxwell model
(solid line, present work) are tested against Monte Carlo simulation
data (symbols, taken from Ref. [19]). The parameters are x1 = 0.5
(equimolar mixture) and μ = 2. It should be noted that for a
meaningful comparison, a∗ and α need to be coupled [see Eq. (24)],
since inelastic hard spheres enjoy a steady state for a precise value
of the reduced shear rate, which depends on the coefficient of
restitution α.

the first expectation is invalidated in the regions where the
ordered phase sets in. Consequently, the seemingly natural
“Boltzmann-Lorentz” point of view—with the one-particle
velocity distribution function f2 of the granular gas obeying
a (closed) nonlinear Boltzmann kinetic equation while the
one-particle velocity distribution function f1 of the impurity
particle obeys a linear Boltzmann-Lorentz kinetic equation—
breaks down. Our results show that collisions of type 2-1 affect
f2, despite being much less frequent than collisions of type
2-2. We conclude here that, rather unexpectedly, the tracer
problem is as complex as the general case of a binary mixture
at arbitrary mole fractions.
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APPENDIX A: ENERGY RATIO p∗
1

AND SHEAR STRESS P∗
x y

The expression of the energy ratio p∗
1 can be obtained from

Eq. (31). It can be written as

p∗
1 = Ka∗2 + L

Ra∗2 + S
, (A1)

where

K = −2A∗
12λ

2 + 4(A∗
22B

∗
12 − A∗

12B
∗
22)λ + 2A∗

22B
∗
12(B∗

11 + B∗
22) − 2A∗

12

(
B∗

12B
∗
21 + B∗2

22

)
, (A2)

L = d(B∗
12 − A∗

12)[λ2 + (B∗
11 + B∗

22)λ + B∗
11B

∗
22 − B∗

12B
∗
21]2, (A3)
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R = 2(A∗
11 − A∗

12)λ2 − 4[B∗
12(A∗

21 − A∗
22) + B∗

22(A∗
12 − A∗

11)]λ + 2B∗
12(B∗

11 + B∗
22)(A∗

22 − A∗
21) + 2(A∗

11 − A∗
12)

(
B∗

12B
∗
21 + B∗2

22

)
,

(A4)

S = d(A∗
11 − A∗

12 − B∗
11 + B∗

12 − λ)[λ2 + (B∗
11 + B∗

22)λ + B∗
11B

∗
22 − B∗

12B
∗
21]2. (A5)

Once the energy ratio is known, the remaining relevant elements of the pressure tensor can be easily obtained from
Eqs. (31)–(34). In particular, the shear stress P ∗

xy is given by P ∗
xy = P ∗

1,xy + P ∗
2,xy , where

P ∗
1,xy = d[A∗

12 − B∗
12 − (B∗

11 + λ − A∗
11 + A∗

12 − B∗
12)p∗

1]

2a∗ , (A6)

P ∗
2,xy = d[A∗

21 − B∗
21 − (B∗

22 + λ − A∗
22 + A∗

21 − B∗
21)(1 − p∗

1)]

2a∗ . (A7)

APPENDIX B: DERIVATION OF λ
(0)
1 AND λ

(0)
2

When x1 → 0, the sixth-degree equation (30) for the rates λ factorizes into two cubic equations given by

2a∗2A
(0)
22 + d

(
A

(0)
22 − B

(0)
22 − λ

)(
B

(0)
22 + λ

)2 = 0, (B1)

2a∗2A
(0)
11 + d

(
A

(0)
11 − B

(0)
11 − λ

)(
B

(0)
11 + λ

)2 = 0, (B2)

where A(0)
rs and B(0)

rs denote the zeroth-order contributions to the expansion of A∗
rs ≡ Ars/ν0 and B∗

rs ≡ Brs/ν0, respectively, in
powers of x1. They are given by

A
(0)
22 = (1 + α22)2

2(d + 2)
, (B3)

B
(0)
22 = (1 + α22)(d + 1 − α22)

d(d + 2)
, (B4)

A
(0)
11 = μ2

21

d + 2
(1 + α12)2, (B5)

B
(0)
11 = 2

d(d + 2)
μ21(1 + α12)[d + 2 − μ21(1 + α12)]. (B6)

Equation (B1) is associated with the time evolution of the excess component. Its largest root is given by Eq. (36). On the other
hand, Eq. (B2) gives the transient behavior of the impurity. Its largest root is given by Eq. (39).

APPENDIX C: SOME EXPLICIT EXPRESSIONS IN THE TRACER LIMIT

In this Appendix, we provide some of the expressions used along the text in the tracer limit. First, the quantities D, �0, and
�1 appearing in Eq. (40) are given by

D(λ) = d
(
B

(1)
12 − A

(1)
12

)(
B

(0)
11 + λ

)2(
B

(0)
22 + λ

)2 + 2a∗2
[
A

0)
22B

(1)
12

(
B

(0)
11 + B

(0)
22 +2λ

)−A
(1)
12

(
B

(0)
22 +λ

)2]
, (C1)

�0(λ) = (
B

(0)
22 + λ

)2[
2a∗2A

(0)
11 + d

(
A

(0)
11 − B

(0)
11 − λ

)(
B

(0)
11 + λ

)2]
, (C2)

�1 = d
(
B

(0)
11 + λ

)(
B

(0)
22 + λ

){(
A

(1)
11 − A

(1)
12 − B

(1)
11 + B

(1)
12

)(
B

(0)
11 + λ

)(
B

(0)
22 + λ

) + 2
(
A

(0)
11 − B

(0)
11 − λ

)
× [

B
(1)
22

(
B

(0)
11 + λ

) + B
(1)
11

(
B

(0)
22 + λ

) − B
(0)
21 B

(1)
12

]} + 2a∗2
{(

A
(0)
22 − A

(0)
21

)
B

(1)
12

(
B

(0)
11 + B

(0)
22 + 2λ

)
+ (

B
(0)
22 + λ

)[(
B

(0)
22 + λ

)(
A

(1)
11 − A

(1)
12

) + 2A
(0)
11 B

(1)
22

] + A
(0)
11 B

(0)
21 B

(1)
12

}
. (C3)

In these equations, A(0)
rr and B(0)

rr are given by Eqs. (B3)–(B6) and

A
(0)
21 = A

(1)
12 = μ12μ21

(d + 2)
(1 + α12)2, B

(0)
21 = B

(1)
12 = − 2

d
A

(0)
21 , (C4)

A
(1)
11 = 1

2(d + 2)
(1 + α11)2, (C5)

B
(1)
11 = 1

d(d + 2)
(1 + α11)(d + 1 − α11), (C6)

B
(1)
22 = 2

d(d + 2)
μ12(1 + α12) [d + 2 − μ12(1 + α12)] . (C7)
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The expressions of the coefficients λ
(1)
i (a) can be written as

λ
(1)
i = Xi

(
λ

(0)
i

)
Yi

(
λ

(0)
i

) , (C8)

where

Xi

(
λ

(0)
i

) = 4X
(4)
i a∗4 + 2dX

(2)
i a∗2 + d2

(
B

(0)
11 + λ

(0)
i

)(
B

(0)
22 + λ

(0)
i

)
X

(0)
i , (C9)

Yi

(
λ

(0)
i

) = d
(
B

(0)
22 + λ

(0)
i

)[
2a∗2A

(0)
11 d

(
A

(0)
11 − B

(0)
11 − λ

(0)
i

)(
B

(0)
11 + λ

(0)
i

)2][
2A

(0)
22 − 3

(
B

(0)
22 + λ

(0)
i

)]
+ d

(
B

(0)
11 + λ

(0)
i

)[
2a∗2A

(0)
22 + d

(
A

(0)
22 − B

(0)
22 − λ

(0)
i

)(
B

(0)
22 + λ

(0)
i

)2][
2A

(0)
11 − 3

(
B

(0)
11 + λ

(0)
i

)]
. (C10)

Here, we have introduced the quantities

X
(4)
i = A

(1)
12 A

(0)
21 − A

(1)
11 A

(0)
22 − A

(1)
22 A

(0)
11 , (C11)

X
(2)
i = B

(0)
11

[
B

(0)
11

(
A

(1)
22 B

(0)
11 + 3B

(1)
11 A

(0)
22 − B

(1)
12 A

(0)
21

) + 2B
(1)2
12 A

(0)
22

] − B
(1)
12 B

(0)
22

[
A

(0)
21

(
B

(0)
22 + B

(0)
11

) − A
(0)
22 B

(0)
21

]
+A

(1)
11

[
B

(0)3
22 − A

(0)
22

(
B

(0)2
22 + B

(0)2
11

)]
+A

(0)
11

[
B

(1)2
12

(
B

(0)
11 + 2B

(0)
22

) − A
(1)
22

(
B

(0)2
11 + B

(0)2
22

) + 3B
(0)2
22 B

(1)
22 − 2A

(0)
22

(
B

(1)
11 B

(0)
11 + B

(1)2
12 + B

(1)
22 B

(0)
22

)]
−A

(1)
12

{
B

(0)
21

[(
B

(0)
11 + B

(0)
22

)(
B

(0)
11 + 3λ

(0)
i

) + B
(0)2
22 + 3λ

(0)2
i

] − A
(0)
21

[
B

(0)
11

(
B

(0)
11 + 2λ

(0)
i

) + B
(0)2
22 + 2λ

(0)
i

(
B

(0)
11 + λ

(0)
i

)]}
+ λ

(0)
i

{
3B

(0)
11

[
A

(1)
22

(
B

(0)
11 + λ

(0)
i

) + 2A
(0)
22 B

(1)
11 − B

(1)
12 A

(0)
21

] − 3B
(1)
12

[
A

(0)
21

(
B

(0)
22 + λ

(0)
i

) − A
(0)
22 B

(0)
21

] + 3A
(0)
22 B

(1)
11 λ

(0)
i + A

(1)
22 λ

(0)2
i

+A
(1)
11

[
3B

(0)
22

(
B

(0)
22 + λ

(0)
i

) + λ
(0)2
i − 2A

(0)
22

(
B

(0)
11 + B

(0)
22 + λ

(0)
i

)]
+A

(0)
11

[
3B

(0)
21 B

(1)
12 − 2A

(0)
22

(
B

(1)
11 + B

(1)
22

) − 2A
(1)
22

(
B

(0)
11 + B

(0)
22 + λ

(0)
i

) + 3B
(1)
22

(
2B

(0)
22 + λ

(0)
i

)]}
, (C12)

X
(0)
i = 2

(
A

(0)
11 − B

(0)
11 − λ

(0)
i

)(
A

(0)
22 − B

(0)
22 − λ

(0)
i

)[
B

(0)
21 B

(1)
12 − B

(1)
22

(
B

(0)
11 + λ

(0)
i

) − B
(1)
11

(
B

(0)
22 + λ

(0)
i

)]
+ (

B
(0)
11 + λ

(0)
i

)(
B

(0)
22 + λ

(0)
i

)[(
A

(0)
21 − B

(0)
21

)(
A

(1)
12 − B

(1)
12

) + (
B

(1)
22 − A

(1)
22

)(
A

(0)
11 − B

(0)
11 − λ

(0)
i

)
+ (

A
(1)
11 − B

(1)
11

)(
B

(0)
22 − A

(0)
22 + λ

(0)
i

)]
, (C13)

where

A
(1)
22 = 1

d + 2
μ2

12(1 + α12)2. (C14)

With respect to the shear stress P ∗
xy , in the disordered phase (λ(0)

2 > λ
(0)
1 and so, p∗

1 = 0) one has P ∗
1,xy = 0 while P ∗

2,xy is given
by [see Eq. (A7)]

P ∗
2,xy = − A

(0)
22(

B
(0)
22 + λ

(0)
2

)2 a∗. (C15)

In the ordered phase (λ(0)
1 > λ

(0)
2 and so, p∗

1 = finite), Eqs. (A6) and (A7) yield, respectively,

P ∗
1,xy = d

2a∗
(
A

(0)
11 − B

(0)
11 − λ

(0)
1

)
p∗

1, (C16)

P ∗
2,xy = d

2a∗
[
A

(0)
21 − B

(0)
21 − (

B
(0)
22 + λ

(0)
1 − A

(0)
22 + A

(0)
21 − B

(0)
21

)
(1 − p∗

1)
]
, (C17)

where p∗
1 is given by Eq. (44). Consequently, according to Eq. (55), the nonlinear shear viscosity η∗ in the disordered phase is

η∗ = A
(0)
22(

B
(0)
22 + λ

(0)
2

)2 , (C18)

while in the ordered phase the result is

η∗ = d

2a∗2

{
B

(0)
22 + λ

(0)
1 − A

(0)
22 −

[
d + 2

d
A

(0)
21 − d

(
B

(0)
22 − A

(0)
22 − B

(0)
11 + A

(0)
11

)]
p∗

1

}
. (C19)
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[18] V. Garzó and E. Trizac, J. Non-Newtonian Fluid Mech. 165, 932

(2010).
[19] J. M. Montanero and V. Garzó, Physica A 310, 17 (2002).
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(1996).
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J. B. Swift, and H. L. Swinney, Phys. Rev. E 74, 011307 (2006).

[31] R. D. Wildman and D. J. Parker, Phys. Rev. Lett. 88, 064301
(2002); K. Feitosa and N. Menon, ibid. 88, 198301 (2002).

[32] J. Jenkins and F. Mancini, J. Appl. Mech. 54, 27 (1987).
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