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ABSTRACT

The objective of this study is to assess the impact of a dense-phase treatment on the hydrodynamic description of
granular, binary mixtures relative to a previous dilute-phase treatment. Two theories were considered for this
purpose. The first, proposed by Garz6 and Dufty (GD) [Phys. Fluids 14, 146 (2002)], is based on the Boltzmann
equation which does not incorporate finite-volume effects, thereby limiting its use to dilute flows. The second,
proposed by Garz6, Hrenya and Dufty (GHD) [Phys. Rev. E 76, 31303 and 031304 (2007)], is derived from the
Enskog equation which does account for finite-volume effects; accordingly this theory can be applied to
moderately dense systems as well. To demonstrate the significance of the dense-phase treatment relative to
its dilute counterpart, the ratio of dense (GHD) to dilute (GD) predictions of all relevant transport coefficients
and equations of state are plotted over a range of physical parameters (volume fraction, coefficients of restitu-
tion, material density ratio, diameter ratio, and mixture composition). These plots reveal the deviation between
the two treatments, which can become quite large (>100%) even at moderate values of the physical parameters.
Such information will be useful when choosing which theory is most applicable to a given situation, since the di-
lute theory offers relative simplicity and the dense theory offers improved accuracy. It is also important to note
that several corrections to original GHD expressions are presented here in the form of a complete, self-contained

set of relevant equations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Polydisperse, rapid solids flows are quite prevalent in both nature
(ie., landslides, avalanches) and industry (i.e., pharmaceutical proces-
sing, high-velocity fluidized beds), though much remains to be under-
stood. Perhaps most importantly, due to differences in size and/or
material density of each particle species, polydisperse mixtures are
well-known to exhibit particle segregation, also known as de-mixing
[1-4]. Such behavior has no monodisperse counterpart. Thus, continu-
um models developed for monodisperse flows cannot be used to predict
the segregation of unlike particles which occurs in polydisperse
systems. Consequently, an accurate continuum model of a polydisperse
solids mixture lends itself to a variety of non-trivial applications, such as
the design of coal gasifiers for energy production.

The scope of the current study pertains to binary mixtures of
inelastic grains (negligible fluid phase) engaging in instantaneous,
binary collisions (rapid flows). Numerous previous contributors
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have proposed continuum theories for such systems (for recent re-
view, see Ref. [5]), and the application of these theories has led to a
better understanding of the mechanisms by which de-mixing occurs
[3,6-16]. Nevertheless, the improvement of existing models remains
an active area of research due to differences in the derivation process.
More specifically, one or both of the following simplifications have
been incorporated in the vast majority of previous models:
(i) Maxwellian velocity distribution [17-21], and/or (ii) an equiparti-
tion of energy [22,23]. (The theories proposed by Rahaman et al. [20]
as well as Iddir and Arastoopour [21] assumed a Maxwellian velocity
distribution between unlike particles only.) The aforementioned as-
sumptions are strictly true for systems of perfectly elastic spheres in a
uniform steady state [24], but not so for inelastic grains. Furthermore,
numerous studies have demonstrated the influence of non-equipartition
on species segregation [7-9, 12-15]. Two continuum models have been
proposed over the past decade in which neither of the above conditions
is assumed. The first theory, developed by Garz6 and Dufty (GD) [25-27]
is based on the Boltzmann equation, and is thus applicable to dilute flows
only. The second theory, developed recently by Garz6, Hrenya and Dufty
(GHD) [28,29], instead uses the Enskog equation as its starting point,
making this theory applicable to moderately dense systems as well.
Hereafter, the acronyms GD will be used to refer to the former, and
GHD will be used to refer to latter. Each theory gives rise to a set of
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zeroth-order closures known as equations of state, as well as constitutive
relations for first-order contributions to fluxes, or more specifically the
associated transport coefficients. The equations of state and transport co-
efficients are functions of the hydrodynamic variables: number densities
(n;), mass-based mixture velocity (U), and number-based mixture gran-
ular temperature (T). Although the predictions for the equations of state
and transport coefficients from the two theories are expected to match at
low volume fractions, a non-negligible difference is expected at higher
concentrations, though the level of discrepancy between the two has
not yet been reported for polydisperse systems.

To build on the previous contributions, the focus of this work is to
analyze binary mixtures, where the two particle species differ in mass
and/or size. Motivation for this study is threefold: (i) to assess impor-
tance of dense-phase corrections to hydrodynamic description of
mixtures proposed by Garz6é and co-workers [28,29] compared to
the previous dilute-phase description [25], and more specifically to
determine rules-of-thumb for the volume fraction at which such
dense-phase descriptions become non-negligible, (ii) to examine the
behavior of the GHD equations of state and transport coefficients
over a range of physical parameters, and (iii) to provide a complete,
self-contained set of the GHD expressions, including several correc-
tions (see Appendix A) for the expressions given in the original GHD
contribution [28,29]. This latter goal also provides an opportunity to
display the expressions in a form more suitable for computational
purposes.

To accomplish the first two objectives, the equations of state and
transport coefficients were evaluated over a range of volume fractions,
coefficients of restitution, and mixture properties (diameter ratio,
mass ratio, and volume fraction ratio). The results indicate that the
discrepancy between transport coefficients and equations of state pre-
dicted by each theory at a volume fraction of ¢ =0.1 can vary from a
factor of 1.05 to a factor of 10. As the volume fraction becomes fairly
dense (¢ =0.5), the predicted discrepancy increases to a factor of at
least 1.7 and as large as a factor of 120. Hence, though the derivation
of the constitutive relations for a dilute flow and the resulting consti-
tutive expressions are simpler than its moderately dense counterpart,
the difference between the two theories is non-negligible at low to
moderate volume fractions. In the upcoming sections, a complete,
self-contained set of the GHD constitutive relations for the mass flux,
heat flux, pressure tensor, and cooling rate are given in Section 2.
Also, a quantitative comparison between the GHD and GD predictions
for the transport coefficients and equations of state illustrates stark
differences between the dilute and dense treatments (Sections 3 and
4). The paper is closed in Section 5 with a brief summary of the main
results obtained here.

2. Enskog kinetic theory for mass, momentum and heat fluxes and
equations of state of a granular binary mixture

The mass, momentum, and granular energy balances for the GHD
theory for an s-component mixture are given in Table 1, along with
the corresponding flux laws. Each balance equation is expressed in
terms of the hydrodynamic variables (n;, U, T), along with the follow-
ing quantities: cooling rate (¢), mass flux (j;), heat flux (q), and pres-
sure tensor (P). Constitutive expressions for these latter quantities,
also given in Table 1, are in terms of {(®) (zeroth-order cooling rate),
&y (transport coefficient associated with first-order cooling rate), Dy
(mutual diffusion coefficients), D] (thermal diffusion coefficients),
Df; (mass mobility), A (thermal conductivity coefficient), Dy, ; (Dufour
coefficients), L; (thermal mobility), p (pressure), 1) (shear viscosity),
and ~ (bulk viscosity). Also, F; refers to the external force on a particle
of species i. To fully close the set of equations, these quantities must be
cast in terms of the hydrodynamic variables. The equations needed to
obtain closures for each expression are detailed in the following sub-
sections; corresponding equation numbers are also listed in Table 1.

Table 1
Hydrodynamic description of a granular mixture from GHD theory.

Balance equations

Mass Bitnvu=-1vj

Momentum p=—V-P+ 3¢ nF .
Granular energy 4nBl — —V-q—P: VU —4nT¢+4TY 5 | 1 vj+ 35 Ll

i=1m; i=1"m;

Flux laws

Mass Ji= =25 mim;EDyV Iny—pD VInT— 35| DLF;  Eq. (2.1)
Heat q=—NVT—2_% | T?Dg;VInn;—>"% | 23, LiF Eq.(22)
Pressure Papp = Pdos—N(Valp + VaUa— 2V Ubyp) —KV Ubgp Eq. (2.22)
Cooling rate (=894, v-U

Equations of state Transport coefficient

Zeroth-Order ¢© Eq. (2.37) First-order & Egs. (2.40), (2.40),
Cooling cooling rate (2.42)
rate
Pressure p  Egs. (2.24),  Shear viscosity n Egs. (2.27),
(2.25) (2.28), (2.30),
(2.34), (235)
Bulk viscosity K Egs. (2.34),
(2.36)
Mutual diffusion Dy Egs. (2.3),
(27), (28)
Thermal diffusion D Egs. (2.3),
(2.6)
Thermal A Egs. (24),
conductivity (2.13), (2.16),
(2.17)
Dufour D, Egs. (24),
; (2.13), (2.15),
(2.19)
Mass mobility Dj;
Thermal L
mobility

2.1. Mass and heat fluxes

We consider a binary mixture (s=2) of inelastic, smooth, hard
disks (d=2) or spheres (d =3) of masses m; and m,, and diameters
07 and 0,. The inelasticity of collision among all pairs is characterized
by three independent constant coefficients of normal restitution o,
3, and oy =y, where o is the coefficient of restitution for
collisions between particles of species i and j. For moderate densities,
it is assumed that the velocity distribution functions of each species
are accurately described by the coupled set of inelastic Enskog kinetic
equations [30,31]. This set of equations has been recently solved in
Refs. [28,29] by means of the Chapman-Enskog method [24] and the
constitutive equations for the mass j; and heat q fluxes have been
obtained up to the Navier-Stokes order (first-order in the spatial gra-
dients). In the absence of external forces (F; = 0), the forms of j; and
q are given, respectively, by

m%n]

ji=—"1Mp Vi nl—%nnvm n,—pDIVIn T, 2.1

q= —T*Dy;Vin n,—T°D,Vin ny—\VT, (2.2)

where p =myn; +myn, and n; refers to the number density of species
i. While the diffusion coefficients D;; and the thermal diffusion coeffi-
cient D] have only kinetic contributions, the transport coefficients D, ;
and A associated with the heat flux have also collisional transfer con-
tributions. Expressions for these transport coefficients in terms of the
coefficients of restitution, the parameters of the mixture (masses,
sizes and composition), and concentration (solid volume fraction)
have been obtained in Ref. [29] by using the leading terms in a Sonine
polynomial expansion.



26 J.A. Murray et al. / Powder Technology 220 (2012) 24-36

The transport coefficients depend upon the temperature, concentra-
tion, and composition of the mixture, as well as the masses, diameters,
and coefficients of restitution. To present the expressions of these
coefficients in a compact form, it is convenient to consider their dimen-
sionless forms:

m%VO

" « m{m-,v T PV, T
Dn = oT Dyy, D12 =—122 ODIZv D1 = n—;Dh (2.3)
2 (Mg +myv « 2 (my +my)vy
Dy = d+2 n Dgir N = d+2 nT N (24)
Here, vo=nof; 'vo is an effective collision frequency,

O12=(07+03)/2, and vy = /2T/m is a thermal velocity where
m=(my +my)/2. Thus, the results given throughout the remain-
der of the paper are given in terms of the mass ratio m,/m, the
size ratio 07/0,, the species number fraction x; =n;/n, the concen-
tration nod, and the coefficients of restitution &1, @, and ;.

2.1.1. Mass flux transport coefficients

In a binary mixture, since j; = —j,, the mass flux contains three
relevant transport coefficients: D11, D;5, and DI. The remaining coeffi-
cients Dy, Doy, and D7 are given by the identities

m m T T
Dy = —m*;Dn? Dy, = _m*;Dw Dy = —Ds. (2.5)

The expressions of the reduced coefficients D], D1, and D], can

be written as [29]

e o e pp, , n? d d
D" = (vp—¢") Xﬁ’l—TinXm”“z [X1X11((71/02) Y1(1+04q)
zar( )

+ 2%12(012/9) My (1 + 0L12)]}~, (2.6)
T P L v,
(vD_ig )D” 7x1v0 On, or" 1on, thtmg on,

2
d X1n0§12 Xu‘(ou/oz)de(l +0yy)
dl"<j> =t

(2.7)
. 1.\ DI 8@ _my 0p oy,
<VD 2° )D” X 2o, ol on, Mo,
/2 42 J
+7dxln022)(1e(0w/02) My (1+ay,)
dr(= =1
()
e + M 26y, +n alnX”JrﬂI
P Y1 m, Ye o0 T 1 an, m, 102
m; 3y,
+ fanz} (2.8)

In these equations, p;=mn;, y; = Ty/T, {* = { O /v, p* =p/(nT), x;
is the pair distribution function at contact, M= m;/(m;+ m;), and

. /anldne

i, B\
Vp = — i X2(1+ 0‘12)( +—) (X1 Mz +X,My). (2.9)
dr(3)

M12 M21

The partial temperatures T; and T, are determined from the condition
Z9 =49 = 0 \where the expression of & is given by Eq. (2.38).
Moreover, an explicit form for y; for disks (d=2) and spheres (d=3)
is given in Appendix B.

The parameters Ij; are chosen to recover the results derived by
Lopez de Haro et al. for elastic mixtures [32]. These quantities are the or-
igin of the primary difference between the standard Enskog theory and
the revised version for elastic collisions [33]. They are zero if i = ¢, but
otherwise are not zero. They are defined through the relation [29]

dln n oy 8
Z n, qul( j a Kit +Ii[j) = ﬁ (aﬁ) B
2 i/ Ty, 2

J

200§, (2.10)

U7

where B, =n%?/dI(d/2) [I refers to Gamma function, such that B, =T
for d =2 (disks) and B, =2n/3 for d =3 (spheres)] and y; is the chemi-
cal potential of species i. Taking into account Eq. (2.9), the nonzero pa-
rameters I1»; and I;5; appearing in Egs. (2.11) and (2.12) are given by

L5 :; n <%> —Tl=2 nlofXH _ n%(j;j 011
By, 07, %12 Ony) ., 08312 0812 0my
_ﬂaXlz_

X1z Oy’ (2.11)
d

1122:+(aﬂ) o (‘711“1 01 _ 1y Ot (2.12)

TB,0%, 1, \0n; T 01, 0Ny X1z Omy

Explicit forms of y; for disks (d=2) and spheres (d =3) are given
in Appendix B.

2.1.2. Heat flux transport coefficients

The heat flux requires going up to the second Sonine approximation.
Its constitutive equation is given by Eq. (2.2) where the transport
coefficients Dg ; and A have kinetic and collisional contributions

Dyi=Dhi+D5; N=N42" (2.13)

q,i>

The corresponding reduced forms DE;, DS, A*", and A" are defined

as
kox 2 (M +my)Vy ke kex 2 (Mg +my)Vg, ke
Dii =gi5 —n Dai» N =g N (214

The kinetic parts D¥; and A*" can be written, respectively, as

I* Y Y s
Dy =dy g +d;o + (Mlz—M;>x1Dw D, (2.15)
Y Y
dq 2T dq]Z + <M112 M221>X2D127
Y1 Y2 \ T
)\ 7)\ +)\ +< —)D 2.16
M, My )P 219)

where the expressions for the (dimensionless) coefficients d;,,-j and \;
are displayed in Appendix B. In Egs. (2.15) and (2.16), the coefficients
DI", Di; and D3, are given by Eqgs. (2.6), (2.7), and (2.8), respectively
(first Sonine approximation).
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Let us consider now their collisional transfer contributions. In the
case of the thermal conductivity, A" is given by [29]

d2

G :% m nOzXZ: ijxl( U/OZ)quMU (1 + ocij)

% { [ (5ot )My— (10t My + (my +m)D]”
x [;{11«5 o )My — (1 au)Mﬁ)+%‘i((3+aij)1v1ﬁ_(7+%)mij>}

16 xm
+mml+m2 (012/0,) ( ]/012) u}

I

(2.17)

where
G = (0+0;) " (00)) 3/2{255 + 0,6+ (6+9;)

]t (7]

{ i+ B (0+ 6 1}

(ei + ej)MUMﬁ
+ By(1+
(2.18)

Here, ;= (m;T/mT;) and [3;; = M;;6;— M;;6);. In the case of the coeffi-
cients Dgf‘,-, they can be written as [29]

% % % * % *
Dyy =Dg11 +Dga1. Dy =Dgip+ Do, (2.19)
where the coefficients D’;; have the explicit forms

. 3 mi? d
Dg.ij :jidnobzx ( ip/OIZ) XipMip (1 +Ocip)
d(d+2)r<§>

&
x{ (S—aij)M,»p—(l—a,»j)Mp,} dy i + (My + my)x,Dy;
x {ﬁ ((S—aip>Mip— (1 —oc,-p)Mp,-) + %‘l ((3 + OL,-p)Mpi

(00 ) = S o))
(2.20)

=

M, (ei + ep) —zaip}

G = (9,- + ep) 12 (0,9p) 372 {sjpp,ip (e,. + 9p) - %e,-ep 5,

alny, 1 6;+6, 32 3 0; alnyp
* Qinn; } +4_l(1 _ail’) (M”i_MiI’)< 6,9, B 20,10, +6, dlnn;

(2.21)

1+

2.2. Pressure tensor

The overall constitutive relation for the pressure tensor is a combi-
nation of the zeroth (P?) and first-order (P") contributions, which
is given by

p=pP?4+p" (2.22)

where

0
P} = Pbggs. (2.23)

The zeroth-order contribution to the pressure tensor is proportional
to the mixture granular pressure p. The equation of state that defines p
is given by

p=p"+p° (2.24)

where the kinetic (p¥) and the collisional (p€) contributions are [28]

d/2
k c T[/

p =nT, p X!Xj(()ij/()z)dl\/lﬁ(l +0¢fj)Xiﬂf~

(2.25)

k di 2
=—p* no
ar@” "5 A

The constitutive equation for the pressure tensor Pfx};), proportional
to the velocity gradients, is

2
Pyl =—n (vauﬁ + VUy— —V-Uaaﬁ) —KV Udyg.

5 (2.26)

Here, 1)is the shear viscosity and kis the bulk viscosity. The coefficient
1) has kinetic and collisional contributions while ~ only has a collisional
contribution K (and so, vanishes for dilute gases)
n=n4n, K=k (2.27)

The kinetic part n* is

N =+, (2.28)
where the partial contributions 1¥ can be written as
k NT s
n=gon (2229)
0
The reduced coefficients 1" are given by
K 2(275, =28, =477,
T]l = *2_2 % (* 22 * )néll * ]Eni * % ’ (230)
g T(Th +Tp) +4(T1 T —T1T)
o 2(275, =28 )My —475, 1),
= ( 11 )712 21"h (231)

§2 =287 (Thy 4+ Ty) +A(T T~ T o)

where the expressions of the (reduced) collision frequencies T,] can
be found in Appendix A of Ref. [29]. In Eq. (2.30), we have introduced
the quantities

M =XY1 +Ey +E1p, Mo = XY, + Epp + By, (2.32)
where
d2
L d d
Ej = a 102%iX; <0,j/02) Xﬂl\/lji(l + ocl-j>
d(d+ 2)r<—>
2 (2.33)

X |:IVI]1 (3%‘—1) (Vi + %Vj) —4M; <'Yi_'Yj):| .

The collisional contribution 7)° to the shear viscosity and the bulk
viscosity ~ have the forms

nT e nT
C C K=—

n=-",

o 0" (2.34)
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5

2 2 d o d
= 1_(%) d(d+2)n02 Z > xj<0,-j/02) x,-]-Mj,-(l +0Lij>'l’]i +d+—2K ,
(2.35)

2
— — 1/2
- :4n<d 1)/2 (ncrz) 2 2 o m;m, 01dz 101ﬂ+1 X.4(1+a”> 0, +6; /
d X mpemg o34 M U\ 66 ’

(2.36)

It must be remarked that the predictions of the shear viscosity 1)
compare quite well with Monte Carlo simulations of a heated granular
binary mixture, even for strong dissipation [34].

2.3. Cooling rate

The overall cooling rate can be written as the sum of the zeroth-
order (¢®) and first-order contributions (&)
(=9 4¢vuU (2.37)
The zeroth-order cooling rate of each species ({{?) defines the

rate of kinetic energy loss for that species, and is given by the follow-
ing relation

an(@=12 - 2 a-1(8;+6,\ "
= WVOJ‘; XiXiMi (0,7/012) 19,—9,] <1 + ocij>
2

M; 0 +6;
_Mi ) it
* {1 7 (14 ) 6

(O — ¢
1

(2.38)

As shown in Eq. (2.38), the zeroth-order cooling rate for each species
is equivalent (i.e., (% = &), Because Eq. (2.38) is an implicit expres-
sion that depends on individual species granular temperatures, the
following equation is needed
nT = nyT; + n,Ty. (2.39)

The expressions given in Eqs. (2.38) and (2.39) form a set of two
non-linear algebraic equations that can be solved for 6; and 6,
(using the relation 6;=m;T/mT;), and then species temperatures T;
and T, can subsequently be found. The equation of state defining
£1® was first proposed by Garzé and Dufty [35].

At first order in gradients, there is a contribution to the cooling rate
from V- U. The proportionality coefficient ¢, is a new transport coeffi-
cient for granular fluids. Two different contributions can be identified

G =+t (2.40)
The coefficient {9 is given by
d/2 2 2
a0 __ 3m d d 5
<M = — g L LM (03/02) i (1= ) wi (2.41)
The contribution ¢V can be written as
(d=1)/2 5 : —
a1 3m m; d—1 )
= X:X: [ 0::/O- M 1—o
. B ()
x 6,720/ (0,4-6)eip, (2.42)

where

¢l o= 224 =3¢ ) e p—4Upexp (2.43)
790 =68 (W + Uny) + 4(U s — 50, )
. 2(2411—3¢") e, p—4l3 €1 p (2.44)

e = .
20902 —60" (g + W) + A(U U5, —Uip 0y )

Here, the collision frequencies s;; have been determined in Appendix
A of Ref. [29] and the coefficients é; p are given by

_ 72

€ip = d) nﬁgixj (O_ij'/o_lz)dXileji(] + aij)

2d4%(d + 2)r<j =

x [8(d+2)(My—1) | +4(13 +2d + 9y ) M; —48M;6; '

x (0,+6;) (1+ a,—,-)z +15M70 2 (6, + ej)z (1+ o(ij)ﬁ.
(2.45)

The results displayed along this section give the explicit forms for
the equations of state, the transport coefficients and the cooling rate
of a moderately dense granular binary mixture. The corresponding
expressions for a low-density binary mixture can be easily obtained
from their dense forms by taking the limit nos — 0. These explicit
expressions are displayed in the Appendix C and agree with those
previously derived from the Boltzmann equation [25,27].

3. Quantitative approach: comparison of dilute and dense-phase
expressions for hard spheres

In order to assess the importance of dense-phase corrections to
the continuum theory for rapid granular flows of binary mixtures,
the equations of state and transport coefficients obtained from the
GHD and GD theories were compared over a range of volume fractions
and coefficients of restitution for a given set of mixture properties
(diameter ratio, size ratio, and volume fraction ratio). To illustrate the
differences in a straightforward manner, each quantity is examined as
a ratio of the GHD value (dilute through moderately dense) to the GD
value (dilute limit), giving rise to a non-dimensional quantity. These
non-dimensional ratios were plotted as functions of volume fraction
and coefficients of restitution, holding all other mixture properties con-
stant. Representing the transport coefficients and equations of state in
this manner reveals the relative magnitudes of the dense- and dilute-
phase predictions. Recall the complete set of equations of state and
transport coefficients for GHD theory are given in Table 1 (%, &, Dy,
DI, D, \, Dy L, p, 1, K).

It is important to note that some transport coefficients (L;, Df;) were
not considered in the dilute theory (GD), and thus these quantities are
not considered here. Moreover, two of the transport coefficients, name-
ly ¢, and K, are zero in the dilute limit, and thus the corresponding
ratios of the moderately dense (GHD) value to the dilute (GD) value
diverge. Accordingly, only the GHD predictions of these quantities are
shown. Thus, the comparison between the GHD and GD theory predic-
tions presented here involves the seven remaining quantities: £, p, n,
Dy, DI\, Dy

3.1. Mixture parameters

The continuum description of a binary mixture of inelastic hard
spheres (d = 3) is a function of the following dimensional parameters:
species masses (mq,m,), species diameters (0, 03), species 1 volume
fraction (¢1), overall volume fraction (¢ = ¢ + ¢,), and coefficients
of restitution (o1,00,012=0k). (Note that the number densities
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and volume fractions are related by ¢; = n;m07/6.) The subscripts 1 and
2 denote the two species in the binary mixture. For purposes of sim-
plicity, the coefficients of restitution have been assumed to be the
same for all combinations of collisions (i.e., a1 =0 =2=q). In
terms of the ratio of moderately dense (GHD) to dilute (GD) predic-
tions for each quantity, the parameter space is reduced to the follow-
ing dimensionless inputs: mass ratio (m;/m;), diameter ratio (0/0),
overall volume fraction (¢), volume fraction ratio of species 1 relative
to the total (¢1/¢), and coefficient of restitution c.. Hereafter, the ratio
#1/¢d will be referred to as the (mixture) composition of species 1.
Recall that the GHD and GD theories allow for a non-equipartition of
energy, and thus several of the aforementioned closures (see, for ex-
ample, Eq. (2.15)) involve the species granular temperatures, T; and
T». It is important to point out that these quantities are not hydrody-
namic variables (i.e., they do not require the solution of species energy
balances; for a detailed explanation, see Ref. [29]) and instead are de-
termined by the set of equations defining the zeroth-order cooling
rate (Egs. (2.37) and (2.38)).

3.2. Parameter space evaluated

Table 2 summarizes the three cases (equal size and different mass,
equal mass and different size, and different size and mass) used to
compare the GHD and GD theories, and the wide ranges of input pa-
rameters used in each case study. Though the transport coefficients
and equations of state may vary quantitatively from case to case,
the general trends show little variation. For sake of brevity, the up-
coming section will focus on one representative case, namely that of
different size and equal material densities (i.e., different mass) in
order to quantify how the newly acquired GHD predictions differ
from the dilute-phase counterpart (GD).

3.3. Case presented: different-sized particles with equal material densities

Many industrial and natural granular flows are comprised of one
material (i.e., same material density), but different-sized particles.
In the case presented here, the diameter of species 1 was twice that
of species 2 (i.e., 01/0, =2), and both species had the same material
density (i.e., m;/m, =8). For the sake of consistency, the composition
of each species was held constant at 50% by volume for this analysis
(i.e., &1/ =2/ =0.5). The ratio of GHD to GD predictions of each
quantity evaluated was plotted over a range of volume fractions
from dilute to moderately dense (¢=10"8—0.5) while holding the
coefficient of restitution constant. Also, each quantity was varied
over a range of coefficients of restitution from relatively inelastic to
nearly elastic (0.5-0.99) while holding the overall volume fraction
constant. The results of this case study are presented in the upcoming
section.

4. Results and discussion

The overall objective was to analyze each transport coefficient and
equation of state over a range of parameters for the newly-developed
GHD theory. By comparing these results to the predictions from the
dilute (GD) theory, it was possible to demonstrate the need for a
moderately dense-phase correction, as detailed below.

Table 2

Range of input parameters used in analysis of binary mixture via GHD theory.
Case description 01/02  my/my  bi/d e
Equal sizes 1 1-10 0.25-0.75  0.50-0.99
Equal masses 1-10 1 0.25-0.75 0.50-0.99
Different diameters, different masses 2 0.10-10 0.50 0.75
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Fig. 1. Zeroth-order cooling rate: ratio of moderately dense (GHD) to dilute (GD) pre-
dictions as a function of (a) overall volume fraction and (b) coefficient of restitution.

4.1. Cooling rate: zeroth-order and first-order contributions

As indicated by Fig. 1, the dense-to-dilute ratio of the zeroth-order
cooling rate (¢(?%) is much more sensitive to changes in volume frac-
tion than coefficient of restitution. Such behavior can be explained via
the dependency of the zeroth-order cooling rate (Eq. (2.38)) on the
pair correlation function at contact, jy; (Egs. (B14) and (B17)). This
factor accounts for the volume exclusion effects between like parti-
cles (y11) and unlike particles ( y12). In the dilute limit, the spatial
correlation factor equals one (i.e., y11= y12=1). When the zeroth-
order cooling rate of GHD theory is then divided by its dilute counter-
part, the resulting function is strongly dependent on the spatial corre-
lation factor. Because ; is sensitive to changes in overall volume
fraction, it is then reasonable that the dimensionless zeroth-order
cooling rate ratio exhibits the same sensitivity. More specifically, the
results shown in Fig. 1a indicate that {® predicted by GHD theory
is more than 5 times greater than its dilute counterpart for a fairly
dense system (¢=0.5) and more than 2 times greater for ¢ =0.3.
Even at ¢ =0.2, a discrepancy of 27% is found between the dilute-
and dense-phase predictions.

Unlike the zeroth-order contribution to the cooling rate, the trans-
port coefficient associated with the first-order contribution is zero in
the dilute limit. Therefore, a ratio comparison of the dense-to-dilute
predictions is not possible. The results given in Fig. 2 represent the
first-order contribution to the cooling rate (which is non-dimension-
al), which approaches zero as volume fraction diminishes. As evident
from this figure, ¢, is quite sensitive to changes in both volume frac-
tion (Fig. 2a) and coefficient of restitution (Fig. 2b). Also, the results
for this case indicate that the magnitude of the first-order contribu-
tion increases as the system becomes denser and less elastic.

4.2. Momentum flux: pressure, shear viscosity and bulk viscosity

Now moving on to results associated with the momentum flux,
Fig. 3 indicates that the dense-to-dilute ratio of granular pressure is
more sensitive to changes in volume fraction (Fig. 3a) than coefficient
of restitution (Fig. 3b). Also, this ratio increases monotonically with
both volume fraction and coefficient of restitution. For a moderately
dense system (¢~0.4), GHD theory predicts that the granular pres-
sure is about 5 times greater than dilute (GD) theory. Even at lower
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Fig. 2. Transport coefficient associated with first-order cooling rate: moderately dense
(GHD) predictions as a function of (a) overall volume fraction and (b) coefficient of
restitution. See legends presented in Fig. 1.

volume fractions (¢~0.1), the moderately dense-phase prediction is
greater than its dilute counterpart by 40%.

Shear viscosity, results of which are given in Fig. 4, behaves in a
similar manner to granular pressure (Fig. 3). A monotonic increase is
exhibited with respect to both volume fraction (Fig. 4a) and coefficient
of restitution (Fig. 4b). The GHD prediction is about 5 times larger than
the GD prediction for moderately dense systems (¢~ 0.4). However, the
discrepancy at lower volume fractions (¢~0.1) decreases to approxi-
mately 5% (Fig. 4a).

As mentioned previously, the bulk viscosity is zero in the dilute limit.
Therefore the results for bulk viscosity, given in Fig. 5, are those
obtained from the moderately dense theory (GHD) alone, instead ratios
of dense-to-dilute predictions. Furthermore, these GHD-based bulk
viscosities are non-dimensionalized according to Eqs. (2.34) and
(2.36). It is evident from this figure that the prediction of bulk viscosity
via GHD theory increases significantly in magnitude as the system

P/Paiute

P/Paitte
N w - w o ~

Fig. 3. Pressure: ratio of moderately dense (GHD) to dilute (GD) predictions as a func-
tion of (a) overall volume fraction and (b) coefficient of restitution. See legends pre-
sented in Fig. 1.
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Fig. 4. Shear viscosity: ratio of moderately dense (GHD) to dilute (GD) predictions as a
function of (a) overall volume fraction and (b) coefficient of restitution. See legends
presented in Fig. 1.

becomes moderately dense, whereas little variation results from
changes in particle elasticity.

4.3. Mass flux: mutual diffusion, thermal diffusion

The mutual and thermal diffusion coefficients (Dy,Df) are elements
of the constitutive equation for the mass flux. Based on the identities
given by Eq. (2.5), the dimensionless mutual diffusion can be described
by two quantities (D11/D11, ditute a0d D22/D22 i), Whereas the dimen-
sionless thermal diffusion can be described by a single quantity
(DY/DT gituce). Note that the dilute (GD) mutual and thermal diffusion co-
efficients presented by Garz6 and Dufty [25] are defined using different
spatial gradients than those used in the dense (GHD) theory and shown
in Eq. (2.1). Nonetheless, a conversion is made such that both dense and

x*
w

04 05 06 07 08 09 1 11
a

Fig. 5. Bulk viscosity (non-dimensional): moderately dense (GHD) predictions as a
function of (a) overall volume fraction and (b) restitution coefficient. See legends pre-
sented in Fig. 1. The dimensionless inputs are as follows: m;/m, =38, 07/0,=2, and
&1/ =0.5.
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Fig. 6. Mutual diffusion (D;;): ratio of moderately dense (GHD) to dilute (GD) predic-
tions as a function of (a) overall volume fraction and (b) coefficient of restitution. See
legends presented in Fig. 1.

dilute theories use the same representations for the fluxes, namely
those shown in Section 2 of this paper, thereby ensuring an apples-to-
apples comparison.

An examination of the dense-to-dilute ratio of the mutual diffusion
coefficient elements (Figs. 6 and 7) reveals a more complicated behavior
of these quantities. Because D11, gine approaches zero for inelastic sys-
tems (at a~0.52), the coefficient of restitution was varied between 0.6
and 0.99 (Fig. 6b). As shown in Fig. 6a, D11/D11, dilute iS NON-monotonic
with respect to the volume fraction in less elastic systems (a=0.5),
reaching a maximum ratio between the dense and dilute predictions of
20 at a volume fraction of 0.37. As the system becomes more elastic,
D11/D11, dituee Shifts from positive to negative. A change in the sign, as
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Fig. 7. Mutual diffusion (D5): ratio of moderately dense (GHD) to dilute (GD) predic-
tions as a function of (a) overall volume fraction and (b) coefficient of restitution. See
legends presented in Fig. 1.

well as magnitude, between dense and dilute predictions of the mutual
diffusion coefficient D;; may provide insight into counter intuitive spe-
cies segregation [7,9,14,15].

The results for Dy3/D23 gices Which are displayed in Fig. 7, reveal
increasing discrepancies between predictions as volume fraction in-
creases and restitution coefficient decreases. In other words, GHD
and GD theories display a larger discrepancy in denser, less elastic
systems. For a relatively inelastic and dense system (a=0.5 and
¢=0.5), the GHD prediction is about half of its dilute counterpart
(Fig. 7a). However, it is significant to note the minor differences
that exist between the dense and dilute predictions for the mutual
diffusion coefficient D, near the elastic limit (a¢=10.9) over a range of
volume fractions from ¢ =10"2 to 0.5 (Fig. 7a, D2>/D2>~1). GHD and
GD theories display a larger discrepancy in denser, less elastic systems.
For a relatively inelastic and dense system (= 0.5,¢=0.4), the mod-
erately dense-phase theory prediction is about half of its dilute counter-
part (Fig. 7a). Comparing dense- and dilute-phase predictions for the
individual elements D;; and D,, shows the relative importance of
each contribution to the mutual diffusion. At a moderately low volume
fraction and high coefficient of restitution (¢=0.1,0=0.9), the
discrepancies for GHD and GD theory predictions are about 70% and
5% for D11 and D5, respectively. The dilute theory does not consider
the finite size of the particles, which is the main difference between
dense and dilute predictions. The discrepancy between D11 and D11, ginte
is larger than the discrepancy between D, and Dy, gijure because Dy is
directly related to the size of species 1, whereas D, is proportional to
the size of species 2 (recall o;/0, =2 for the case examined). Neither
dilute quantities contains species size, therefore, the self-diffusion
coefficient of a relatively large particle compared to its dilute counter-
part will be greater than that of its smaller counterpart.

The results for thermal diffusion (Fig. 8) indicate that the ratio of
dense-to-dilute predictions is extremely sensitive to changes in vol-
ume fraction compared to the coefficient of restitution. These general
trends were also observed in the cooling rate and momentum flux re-
lations (Figs. 1, 3-5). The quantity DT/D] 4 is nearly linear when
plotted as a function of volume fraction, regardless the restitution co-
efficient (Fig. 8a). In a moderately dense system (¢ = 0.4), the results
of Fig. 8a indicate that the dilute (GD) theory prediction of DT is 5
times larger than predicted by GHD theory. At a much lower volume
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Fig. 8. Thermal diffusion: ratio of moderately dense (GHD) to dilute (GD) predictions
as a function of (a) overall volume fraction and (b) coefficient of restitution. See leg-
ends presented in Fig. 1.
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Fig. 9. Thermal Conductivity: ratio of moderately dense (GHD) to dilute (GD) predictions
as a function of (a) overall volume fraction and (b) coefficient of restitution. See legends
presented in Fig. 1.

fraction of 0.1, the dilute (GD) theory prediction is larger than the
moderately dense-phase (GHD) theory prediction by 20% (Fig. 8a).

4.4. Heat flux: thermal conductivity, Dufour coefficients

Heat flux is characterized by the thermal conductivity A and the
Dufour coefficients Dy ;. Fig. 9 shows that the dense-to-dilute ratio
of thermal conductivity increases monotonically with respect to
both volume fraction and coefficient of restitution. In an elastic, mod-
erately dense system (¢~0.4), results (Fig. 9a) indicate that the
prediction of thermal conductivity from GHD theory is 4 times larger
than that of its dilute (GD) counterpart. For systems of lower densi-
ties (¢=0.1), the discrepancies range from 1% (a¢=0.9) to 6%
(a=0.5) (Fig. 9a).

Similar to the mutual diffusion coefficient, the dilute form of the
Dufour coefficient takes on a zero value at certain ¢, thereby making
the dense-to-dilute value diverge at this value of . Because this value
occurs at a practical value of «=0.63 (whereas D11 gine diverges at
a=0.52), the dense and dilute predictions of the dimensionless Dufour
coefficient Dj ; were instead plotted separately against the coefficient
of restitution (Fig. 10b and c), with the non-dimensionalization defined
in Eq. (2.4). As expected, the dilute prediction of the Dufour coefficient
is independent of the volume fraction (Fig. 10c).

The differences in magnitude between dilute and moderately
dense predictions are non-trivial for both D, ; and Dy . More specifi-
cally, the discrepancies that exist between the predictions of Dg ;
and Dy 1 giluee are up to 2 orders of magnitude in some cases
(Fig. 10). For a moderately dense, inelastic system (¢ =0.5,¢=0.7),
the dense-phase prediction is over 100 times greater than its dilute
counterpart (Fig. 10a). Even at a much lower volume fraction
(¢=0.01), the discrepancy between dense and dilute predictions is
at least 30%. The differences between dense and dilute predictions of
Dg,», shown in Fig. 11, are less pronounced than D, ;, however, still
quite significant. In fact, results indicate at least a 20% discrepancy
between predictions at a volume fraction ¢ =0.1 (Fig. 11a). As for
the mutual and thermal diffusion coefficients, the dilute (GD) Dufour
coefficient presented in Ref. [25] is defined using different spatial
gradients than those used in the dense (GHD) theory and shown in
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Eq. (2.2). As done before, a conversion has been applied to compare
the Dufour coefficients by using the same representation for the heat
flux.

5. Summary

To date, the understanding of particle segregation within polydis-
perse, rapid granular flows is somewhat limited due to a wide array of
complexities that arise during the associated derivation of continuum
theories. As previously mentioned, the two most common simplifica-
tions used in previous theories have been a Maxwellian velocity dis-
tribution and an equipartition of energy. This study focuses on two
particular theories, neither of which assumes the above conditions.
The first was proposed by Garzé and Dufty [25,26] for binary, dilute
mixtures (referred to as GD theory), and the second was recently pro-
posed by Garz6, Hrenya and Dufty [28,29] for binary, moderately
dense mixtures (referred to as GHD theory). In order to gage the
importance of this dense-phase extension, the transport coefficients
and equations of state predicted by GHD theory were compared to
their dilute counterparts (GD theory). Furthermore, although not
the focus of this study, it is worthwhile to mention that the CPU
time required to evaluate the dense-phase coefficients was typically
three times the requirement for its dilute counterpart.

A systematic comparison was carried out for three different cases
(equal size and different mass, equal mass and different size, and dif-
ferent size and mass) over a range of mixture parameters (diameter
ratio, mass ratio, and volume fraction ratio), the details of which are
listed in Table 2. Though this study focuses on a case of different-
sized species with the same material density, similar trends were
observed for all other cases analyzed. Results indicate that transport
coefficients and equations of state predicted by GHD theory are sub-
stantially different than those predicted by dilute (GD) theory. Also,
significant differences between predictions were reported for fairly
dilute systems (¢=0.1). In particular, the discrepancy between pre-
dictions was found to be as large as an order of magnitude. Certain
coefficients, namely the mutual diffusion coefficient D, revealed
that the magnitude and sign were different for the two theories.
Naturally, the level of desired accuracy may vary between users of
the theories. If, for example, 5% deviation between the GHD and GD
predictions is deemed acceptable, then the need for a dense-phase
correction is quite evident since the vast majority of quantities pre-
dicted by GHD theory are either larger or smaller than GD theory pre-
dictions by the 5% limit. Nonetheless, it is worthwhile to point that the
comparison of dense- and dilute-phase predictions for a binary mix-
ture presented here are independent of flow geometry. It is expected
that is some flow geometries, one or more of the transport coefficients
may dominate, while in other geometries another coefficient(s) may
dominate. Such differences are system-dependent and should be
taken into account when using the results contained herein.

Given the importance of the dense-phase corrections on the equa-
tions of state and transport coefficients, several follow-on studies are
warranted: application of the theory to segregating systems in order
to better understand the dominant segregation mechanisms (some
previous studies have been carried in the tracer limit [14-16]), com-
parison with experimental and/or molecular-dynamics simulation
data for purposes of validation, and application of the theory to a con-
tinuous particle size distribution. It is worthwhile to note that the GHD
theory has been incorporated recently into the open-source, public
MFIX code (https://mfix.netl.doe.gov/) for the case of binary mixtures,
thereby increasing its availability to a wider class of researchers.
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Appendix A. Corrections to previous results

In this Appendix we explicitly state some changes we have made
in the original papers [28] and [29] to correct several errors and/or
misprints we have found while working the present manuscript.
With these changes, the interested reader can easily obtain the com-
plete set of equations for the mass, heat and momentum fluxes and
the cooling rate displayed along Section 2.

Now, we list the changes affecting both papers:

(0)
* In Eq. (6.18) of Ref. [28], the term n; o nx appearing in the
)
second lme of the right hand side of this equation must be replaced
by n; o ":“ This change affects to Eq. (C6) of Ref. [29] so that, its left

hand snde should read

dlny!
§ n, y < it +I-->
| 11/ Oj) anj ilj

Equations (2.7) and (2.8) can be derived after considering these
changes.

* Afactor “3” and the diameter oy are missing in the expression (F25)
of Ref. [28] in the collisional contribution to the heat flux. Thus, the
third and fourth lines of the right hand side of this equation become

24B, (2 79
P (Bl (-wy

+0UC i VInT + oy Z CWVInn }

where ;=m;/(m;+m;). These changes also affect to Egs.
(7.14)-(7.16) of Ref. [28] and to Eqgs. (3.37)-(3.39) of Ref. [29] (col-
lisional contributions to the heat flux transport coefficients). Taking
into these changes, one gets Eqs. (2.16) and (2.19) of the present
paper.

* The first line of the right hand side of Eq. (3.61) of Ref. [29] must be
corrected. It should be given by

1 0InT;
T dT; on; > *

) of the present paper can be obtained after this

dq,ij =

d+2nn; mp s il— § 2 mT
2 mT (721 i d+2niT,.3)\i

Equation (B9
change.
* In Eq. (2.16) of Ref. [29], the right hand side should read

2 4
d(d+2)n; P

» A minus sign lacks on the second line of Eq. (2.19) of Ref. [29]. Thus,
this line should read

i

- 4dT()Z""XU

* In Eq. (2.19) of Ref. [29], the term e; p should be inside the summa-
tion sign. Moreover, the partial densities n;n; must be also included
inside the summation sign. Thus, the first line of Eq. (2.19) should
read

Ipld=1/23 s s d—1 (0
0 Z Z n,»nje,'D(I,»j Xl(j ).

§(1,1>: Yo
4dT(%) TJ 1j=1
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Equation (2.42) of the present paper can be easily obtained after
taking account these changes for the cooling rate.

* The summation ZS , is missing on the right hand side of Eq. (3.34)
of Ref. [29].

 On the right hand side of Eqs. (A28) and (A29) of Ref. [29], the term
1+« should be changed to 1+ oy

* The ratiom,/m; on the left hand side of Eq. (3.21) of Ref. [29] should
be removed.

* In Eq. (A12) of Ref. [29], the factor d + 5 near the end of the second
line should be replaced by the factor d + 3.

* The right hand side of Eq. (3.54) of Ref. [29] should read

Appendix B. Some explicit expressions

The kinetic part of the transport coefficients D, ; and A are given by
Egs. (2.15) and (2.16), respectively. The (dimensionless) Sonine coeffi-
cients X; are defined by the matrix equation

oz v ) () (X o
( Y ¥e—2¢ )\ ) (B1)
where
NoMtm, Z U ‘SUD*T+ n'/? noMox (0_/0 )dx--ﬁA--

1T, Z Xy, O dd+2rd) 2\t Ay T )

(B2)

The expressions of the (reduced) collision frequencies yj; and wj
can be found in Appendix A of Ref. [29]. Moreover, in Eq. (A2) we
have introduced the quantity

= (d+2)(M;—1) + (2d—5-9 ) MyM; (B3)

it Vi
M}‘; (1 + ocl-j)z.

The solution to Eq. (A1) is elementary and gives

2\ p 12 m;T;
+(d—1 + 30+ Gaij)Mﬂ + ij_r

N = (V2=28 )N —Vi2 ) (B4)
452 =2(Yi1 + ¥52) & — Vi Va1 + Yi1 Ve

N, — (Y11 —2) N =¥ Ny .
452 =2(Vi1 +¥32)8 —Yi2 Va1 + Vi1 ¥

With these results the kinetic part A" can be written as

ke NV —28 —=Ya1) + N (¥11=26" V1) | (V1 _ Yo \ -
N = 2 N k) o* gt~k P Dy
482 =2(Vi1 +¥52) 8 —Vi2 Va1 + Vi1 Vo My My,
(B5)
The kinetic part of the transport coefficients D(’,‘,*,- is given in terms

of the Sonine coefficients dj ;. By using matrix notation, the coupled
set of four equations for the coefficients

{ oy dpan dyan } (B6)
can be written as

A Xy =Yy (B7)

Here, X, is the column matrix defined by the set (A6) and Ay is
the square matrix

3

Yii— 55* 0 Yi2 0
3 * *
0 Yii—5¢ 0 Y12
Ny = i 2 Ny . (B8)
Y21 0 Y22 — §§ 0
* * 3 *
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The column matrix Y is
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In Eq. (A10), Aj is defined by Eq. (B3) and By is given by

(B10)
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The solution to Eq. (A7) provides the expressions of dg.;The
result is

(1)
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The kinetic part D can be easily obtained when one takes into
account Egs. (2.15) and (A10). The result is

D 4y, (_d;.Zl + _d;;z) + 2(_61;,11 + _d:].12) (38" —27v3)
o 41 Y51 + (2771 —387) (38" —23,)

Y1 Y2 )
(L XD}
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The expressions of d , di»; and D, can be obtained from
Egs. (B12) and (B13), respectively, by interchanging 1—2.

(B13)
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In order to get the dependence of the transport coefficients on the
parameters of the system, one needs to know the explicit forms of y;
and ;. For hard disks (d=2), a good approximation for the pair cor-
relation function y;; is [17]

_ 1 9 ¢ oogM,
Xij 1— (f)+_6(] d)) O'l-jMz ) (B14)
where
2
M, =Y x0! (B15)
s=1

The expression of the chemical potential ; of the species i consis-
tent with the approximation (B14) is [36]

%:ln()x?n) In(1—¢) + éi\I/IVIl 19¢¢+1n(1 ¢)}

__—J’__

_1[Mi¢(1-104) 8 &  Mi,
8 (M3 (1—¢)? M1-¢ M3

_ 2
1 d))}o (B16)

where \;(T) is the (constant) de Broglie's thermal wavelength [37]. In
the case of hard spheres (d = 3), we take for the pair correlation func-
tion y; the following approximation [38]

2

1 3 ¢ ooM, 1 ¢ O;0;M,
o2 - _ B17
BT 21— oM T2(1-9 \ oM (B17)
The chemical potential consistent with (B17) is [37]

M

*T'i In(\n;) —In(1—g) + M21¢d>0+3

M ¢ b M 2

{M% M] —5 g " _d’)}(’f

M3¢(2 5‘“"’) MM, &1 6 M ;

{W o Mg (-ap M- lmy 1Y)

(B18)

Appendix C. Expressions for a low-density granular binary mixture

In this Appendix we include the explicit expressions of the transport
coefficients and the cooling rate for a dilute binary granular mixture.
These expressions can be easily obtained from the results derived in
Section 2 for a moderately dense binary mixture by taking the limit

nod— 0.
1. Mass and heat flux transport coefficients

The expressions of the reduced coefficients D]", Dy}, and Dj>are
given by

DY = (=) " (=), (1)
" L1\ T(Dr %Y Vs
Dy, = <VD—§§ ) (mnla—n]_FHl +ny o= an, (€2)

" R P o [ TR
D12:<VD—§§> (m”za—nz_g*‘”la—nz7 (€3)

where vj is given by Eq. (2.9) with y;=1. Upon deriving
Egs. (C1)-(C3), use has been made of the identities p*=1 and
dp/on;=

The collisional transfer contributions to the heat flux transport co-
efficients vanish in the low density limit (no?— 0). Thus, only their
kinetic contributions must be considered. In dimensionless forms,
the thermal conductivity A* and the Dufour D ; coefficients are

Y1 Y2 \ T+
N =N N +< —)D , c4
(R Vi v L (C4)

Y Y o * *
q1 = dq 11+ dq 21+ <M112 - M;)Xan Dy =dgyn +dg1n (C5)

where the coefficients Aj and d ; are given by Egs. (B4) and (B12),
respectively, with

N my +my 2 g 61] «T
N = T M XiY; ; <5q X, D; (C6)
= myp+m, oy, my+my, 2 -7,
S T L
n; 8¢
Vo On; N (€7)

The dilute forms of the collision frequencies ®j; and 7j; can be
obtained from their dense counterparts (Appendix A of Ref. [29]) by
simply taking y;=1.

2. Pressure tensor

In the low-density limit, the hydrostatic pressure p=nT, the bulk
viscosity k=0 and the shear viscosity 1 has only kinetic contribu-
tions. It is given by = (p/vo)n* where n* =ni +15. The partial contri-
butions 7;* are given by Eqgs. (2.30) and (2.31) with

M=% M =%XY,. (C8)

As before, the (reduced) collision frequencies 7j; can be easily
obtained from their corresponding dense forms by considering
Xij= 1.

3. Cooling rate

The first-order contribution ¢, to the cooling rate { vanishes in the
dilute case [see Egs. (2.40)-(2.45)]. The dilute expression for the co-
efficient {1 =¢{? can be obtained from Eq. (2.38) by taking y;=1.
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