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The Enskog kinetic theory is used as a starting point to model a suspension of
solid particles in a viscous gas. Unlike previous efforts for similar suspensions, the
gas-phase contribution to the instantaneous particle acceleration appearing in the
Enskog equation is modelled using a Langevin equation, which can be applied to
a wide parameter space (e.g. high Reynolds number). Attention here is limited to low
Reynolds number flow, however, in order to assess the influence of the gas phase on
the constitutive relations, which was assumed to be negligible in a previous analytical
treatment. The Chapman—Enskog method is used to derive the constitutive relations
needed for the conservation of mass, momentum and granular energy. The results
indicate that the Langevin model for instantaneous gas—solid force matches the form
of the previous analytical treatment, indicating the promise of this method for regions
of the parameter space outside of those attainable by analytical methods (e.g. higher
Reynolds number). The results also indicate that the effect of the gas phase on the
constitutive relations for the solid-phase shear viscosity and Dufour coefficient is
non-negligible, particularly in relatively dilute systems. Moreover, unlike their granular
(no gas phase) counterparts, the shear viscosity in gas—solid systems is found to be
zero in the dilute limit and the Dufour coefficient is found to be non-zero in the elastic
limit.
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1. Introduction

The kinetic-theory-based description of rapid granular flows (i.e. those in which
the role of the interstitial fluid is neglected) has been an active area of research for
the past several decades (Campbell 1990; Goldhirsch 2003; Brilliantov & Pdschel
2004). Sinclair & Jackson (1989) first extended this analogy to rapid gas—solid
flows in vertical tubes to explain the ubiquitous ‘core—annulus’ flow, in which the
solids are observed to have a higher concentration near the pipe wall (annulus),
while the centre of the pipe (core) remains relatively dilute. This extension of
the kinetic-theory analogy to gas—solid systems is appropriate for relatively massive
particles (i.e. high Stokes number) engaging in nearly instantaneous collisions. Such
systems occur in a wide range of engineering operations, including the riser section
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of a circulating fluidized bed, pneumatic conveying systems, and bubbling fluidized
beds. Correspondingly, the further development and application of kinetic-theory-based
models to high-velocity gas—solid systems has mushroomed over the last twenty
years (Gidaspow 1994; Jackson 2000; Koch & Hill 2001; Gidaspow & Jiradilok
2009; Pannala, Syamlal & O’Brien 2011). Important research thrusts have included,
but are not limited to, the effects of gas-phase turbulence, clustering instabilities,
polydispersity, cohesion, non-spherical particles, and friction.

The aim of the current effort is on the fluid—solid interaction force, Fp,q, present
in high-velocity gas—solid flows. Particular emphasis is placed on the incorporation
of Fp,s into the continuum description of the solid phase (which can later be
coupled with gas-phase mass and momentum balances for a complete description
of the gas—solid system). Before describing related previous works, it is worthwhile
to introduce the physical picture associated with this interaction force. Mathematically,
this fluid—solid force is the sum of normal (F,) and tangential (F,) forces experienced
by the particle at its surface. For the case of fluid flow in the z-direction around a
stationary sphere, the z-component of this interaction force is given by

Fﬂuid,z = Fn,z + Ft,z
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where p is the fluid pressure, t is the (Newtonian) fluid stress, and R is the particle
radius. Accordingly, Fp,,, depends on both the pressure and velocity-gradient fields
at the particle surface. As an illustration of the former, the pressure field is given
in figure 1(b), which shows a single motionless particle suspended in mean (far-
away) fluid flow (or, equivalently, a sphere moving in the same direction as mean
fluid flow). For this simple case, the fluid—solid force on the particle is typically
expressed as Fp,;; = B(U, — U), where B is a drag coefficient that depends on the
particle Reynolds number, U, is the mean gas velocity and U is the (mean) particle
velocity. A slightly more complex situation is depicted in figure 1(c), where the
particle is now moving in a different direction than the mean fluid flow, as indicated
by the arrow, but still unaffected by neighbour particle effects. The presence of such
particle motion leads to a change in the pressure field (and velocity-gradient field,
not shown) at the particle surface, thereby causing a change in Fg,;; (equation (1.1)).
An even more complex scenario is shown in figure 1(d), where the presence of
surrounding moving particles causes a continual change in the pressure (and velocity)
field around the particle of interest, resulting in a dynamic gas—solid interaction force.
Accordingly, the fluid—solid force experienced by a single particle can be decomposed
into the contributions arising from mean slip velocity between the solid and gas
phases (figure 1b), instantaneous particle velocity fluctuations with respect to mean
velocity of the solid phase (figure 1c), and the contribution due to neighbour particle
effects (figure 1d). It is worthwhile to note that this last system (figure 1d) best
captures the interactions occurring in the practical gas—solid systems mentioned above
(e.g. fluidized beds).

Early efforts to incorporate the effects of Fp,, into the continuum description of
gas—solids flows took a relatively straightforward approach, while more recent studies
have continued to increase the level of rigour. In particular, the first gas—solid models
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FIGURE 1. (Colour online) (@) Illustration of different contributions to the instantaneous
gas—solid force in a suspension with mean fluid velocity U, and mean particle velocity
U. Pressure contours are shown for (b) a single particle far away from its neighbours and
moving with a velocity equal to the mean particle velocity, (c) a particle moving in a different
direction than the mean fluid flow and far from its neighbours, and (d) a collection of particles
moving in different directions. The pressure contours are obtained from particle-resolved
direct numerical simulations (PR—-DNS) for a gas—solid suspension that corresponds to a solid
volume fraction of 0.2 and mean-flow Reynolds number 0.01.

described the solid phase according to the mass, momentum, and granular energy
balances developed for granular (no fluid) systems, with the only modification being
the addition of a (mean) drag force onto the momentum balance. This drag force
was typically described using empirical relations obtained via settling experiments
(Richardson & Zaki 1954; Wen & Yu 1966; Gidaspow 1994), in which the force is a
function of the relative mean velocity between the two phases and the solid volume
fraction ¢ (i.e. Fpq = B(U, — U), where B is a function of U, — U and ¢). It
is worthwhile to note that with this approach, the granular energy balance does not
contain any new terms arising from fluid-phase effects, nor do any of the constitutive
relations for the solid phase (stress, heat flux, or collisional cooling rate) incorporate
fluid-phase effects. As an example, see the pioneering gas—solid model proposed by
Sinclair & Jackson (1989), who used the governing balances of Anderson & Jackson
(1967) and the granular theory of Lun & Savage (2003). A more exact approach has
since been adopted, in which fluid-phase effects are incorporated at the starting point
of the derivation for the solid-phase balances and their constitutive equations, namely
the kinetic equation (e.g. Boltzmann or Enskog kinetic equation)

v
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where f is the one-particle velocity distribution function, v is the instantaneous
particle velocity, m is the particle mass, g is the gravity vector, and J[f,f] is the
collisional operator. It is important to note here that Fy,,(r, v, t) is a function of the
instantaneous particle velocity and can vary in both time and space. Strictly speaking,
then, Fp,, is an instantaneous force rather than a mean force, where a mean force is
one that depends on the hydrodynamic, or mean, fields. Although not strictly correct,
the treatment of Fp,;; as a mean force is considerably easier since it can be taken
outside the differential in (1.2). Along these lines, and following from the earlier
discussion surrounding figure 1, different approximations for Fp,;, have been made,
leading to differences in the balance equations appearing in the literature.

Consider first the simplest case, where Fp,;, is approximated as a mean force,
namely Fy,q = B(U, — U), where B is a function of hydrodynamic (mean) variables
(figure 1a). For this treatment, a mean drag force will appear in the solid-phase
momentum balance, consistent with the treatment described in the previous paragraph
(Sinclair & Jackson 1989), but no terms appear in the granular energy equation.
Next, consider an approximation which accounts for the fluctuation in particle velocity
(figure 1b) via Fy,q = B(U, — v), and is thus a function of the instantaneous particle
velocity v, though B remains a function of the hydrodynamic (mean) fields only. In
this case, an additional sink term (which is proportional to f) arises in the granular
energy balance due to viscous drag (see e.g. Koch 1990). In a third and improved
approximation, fluctuations in both phases are considered in the fluid-force relation
(figure 1c), namely Fp,; = B(v, — v), where v, is the instantaneous gas velocity and
with B again typically treated as a function of mean variables. This treatment leads to
an additional source term in the granular energy balance arising from fluid-dynamic
interactions (see e.g. Gidaspow 1994). However, this approximation leads to a single-
point fluid-particle velocity covariance that Xu & Subramaniam (2006) have shown to
be inconsistent for finite particle size.

In addition to the aforementioned impact of the Fp,, treatment on the balance
equations, the form of Fy,, will also impact the constitutive relations for the solid-
phase quantities (shear stress, heat flux, and collisional cooling rate), as these are also
derived from the kinetic equation (1.2). The incorporation of such effects into the
constitutive relations has received less attention in the literature. Several groups (Ma &
Ahmadi 1988; Balzer, Boelle & Simonin 1995; Lun & Savage 2003) have derived the
constitutive relations using a description of Fy,;,; which depends on the instantaneous
fluid (v,) and solid (v) velocities. With regard to v,, it is worth noting that these
works have included velocity fluctuations arising from fluid-phase turbulence. Other
groups (Février, Simonin & Squires 2005; Simonin et al. 2006; Zaichik, Simonin &
Alipchenkov 2009) have also incorporated the effect of turbulent gas-phase velocity
fluctuations on the one-particle velocity distribution function in the regime of dilute,
sub-Kolmogorov size particles. The type of fluctuations depicted in figure 1(c),
on the other hand, do not require the presence of turbulent instabilities. More
specifically, for the system of figure 1(c), the presence of numerous particles moving
in different directions will lead to continually changing fluid-dynamic interactions
between particles (i.e. fluctuations in the fluid velocity and pressure fields) even at low
Reynolds number. Finally, and perhaps more importantly, a common assumption in
works that incorporate gas- and/or solid-phase fluctuations is that the basic form of the
mean fluid force (Fp,; = B(U, — U)) also holds for its instantaneous counterpart
by simply replacing the mean hydrodynamic fields with instantaneous ones (e.g.
Fp.q = B(v, — v)). Recent findings by Tenneti et al. (2010b), however, indicate
that such treatments are not appropriate. Figure 2 shows a plot of the streamwise
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FIGURE 2. (Colour online) Scatter plot of streamwise component of particle acceleration
fluctuations A” (normalized by the standard deviation in the particle acceleration distribution
o4) versus the streamwise component of particle velocity fluctuations V' (normalized by
the standard deviation in the particle acceleration distribution o,). Squares (L1) denote the
fluctuations in the particle acceleration obtained from PR-DNS of a freely evolving gas—solid
suspension corresponding to a solid volume fraction of 0.2, mean-flow Reynolds number of
1.0 and solid-to-fluid density ratio of 1000; upper triangles (A) denote the fluctuations in
the particle acceleration predicted by using a model for the fluid-particle force of the form

Fpa=BU; —v).

component of fluctuations in particle acceleration A” versus the streamwise component
of fluctuations in particle velocity V. The fluctuations in the particle acceleration and
velocity are defined with respect to their corresponding mean values. The particle
acceleration fluctuations are normalized by the standard deviation in the particle
acceleration distribution o,, while the fluctuations in particle velocity are normalized
by the standard deviation in particle velocity distribution oy. Square symbols are
the particle acceleration fluctuations obtained from particle-resolved direct numerical
simulation (PR-DNS) of a freely evolving gas—solid suspension. Triangles are the
fluctuations in the particle acceleration predicted by using a model for the fluid-
particle force of the form Fy,,; = B(U, — v). It is clear that the joint statistics of the
particle acceleration and particle velocity that are crucial for the accurate prediction
of the evolution of granular temperature are not well captured by this simplified
class of instantaneous models for Fp,;;. Although the model Fy,;; = B(U, — v) results
in a sink of granular temperature, it does not account for the source in granular
temperature that is responsible for points in quadrants I and III of the fluctuating
particle acceleration—velocity scatter plot (see Tenneti, Fox & Subramaniam 2010a
for details). Moreover, the scatter observed in the particle acceleration fluctuations
suggests a stochastic contribution to the fluid-particle force that arises due to the
effect of the neighbour particles. For the limiting case of Stokes flow, Koch and
co-workers (Koch 1990; Koch & Sangani 1999) were able to correctly describe the
acceleration—velocity correlation via analytical means (Koch 1990) and through the use
of multipole expansions (Koch & Sangani 1999). Extensions of analytical approaches
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FIGURE 3. (Colour online) Decay of the particle velocity autocorrelation function. (a) The
particle velocity autocorrelation function computed via PR-DNS (symbols) of freely evolving
suspension (volume fraction of 0.2, mean-flow Reynolds number 1.0 and solid-to-fluid
density ratio of 1000) compared with the exponential decay predicted by the Langevin model
(solid line). (b) The same as (a) for a suspension with a solid volume fraction of 0.35.

beyond the Stokes limit are difficult since the governing Navier—Stokes equations
become nonlinear (Koch & Hill 2001). A further assumption of their analysis was
that the influence of gas-phase effects on constitutive relations for the solid phase are
negligible at sufficiently large Stokes number; such effects appeared in the balance
equations only.

A long-term objective of this effort, then, is to develop a framework in which (i) an
accurate instantaneous model for Fy,, is developed over a wide range of conditions;
and (ii) the resulting Fp,;,; model is used to derive solid-phase balance equations
and constitutive relations which fully incorporate gas-phase effects. With regard to
(i), the instantaneous gas—solid force is modelled using a Langevin equation because
the particle velocity autocorrelation decays exponentially for a range of mean-flow
Reynolds numbers (see figure 3). With regard to (ii), the Langevin model for Fy,;, is
then used in the kinetic equation (1.2) to derive the balance equations and constitutive
relations. As a first step in this direction, this two-part process is carried out here
for low Reynolds numbers. It is important to note that the methodology itself is
not restricted to this limit; instead, the focus here is to demonstrate proof-of-concept
by (i) comparing the Langevin model for Fp,; with previous results for the Stokes
limit (Koch 1990; Koch & Sangani 1999), and (ii) using this model to assess the
influence of gas-phase effects on the constitutive relations, which were neglected in the
analytical treatment. For future extensions to higher Reynolds numbers, the coefficients
in the Langevin model can be obtained via PR-DNS, as described by Tenneti et al.
(2010a).

2. Fluid-solid force (Fj,,s) model

As mentioned above, to develop a closed kinetic equation for the one-particle
velocity distribution function f(v) (equation (1.2)), a description of the instantaneous
particle force Fp,q, is needed. As the name implies, this instantaneous force is a
function of the instantaneous velocities of both the gas and solid phases (v, and v,
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respectively), rather than solely the corresponding mean velocities (U, and U).
However, consideration of v, and v for finite particle size would require consideration
of two-point statistics (Sundaram & Collins 1999; Xu & Subramaniam 2006). Note
that fluctuations in particle velocity may arise from particle interactions (collisional)
and/or gas—solid interactions. Although in the special case of Stokes flow the fluid-
dynamic interaction arising from neighbour particles can be treated analytically (Koch
1990) for the general case of finite fluid inertia, this is not feasible here.

Therefore, a generalized Langevin model is proposed for the instantaneous impulse
as follows:

mdv =Fpdi=—B (U —-U,) dt—y -Vdi+mB- dW, 2.1

where V =v — U is the particle fluctuation (or peculiar) velocity, the vector dW is a
Wiener process increment (stochastic term), and the scalar 8 and the tensors y and B
are the model coefficients. The first term on the right-hand side represents the portion
of the drag force arising from the mean motion of particle and solid phase; the second
term is traced to fluctuations in particle velocity; the third term is a stochastic model
for the change in particle momentum due to shear stress and pressure contributions at
the particle surface that arise from the fluid velocity and pressure disturbances caused
by neighbour particles. This is one way to extend the analysis of Koch (1990) for
point particles in the Stokes flow regime to gas—solid flows with finite fluid inertia and
finite particle size. Regarding this third term, note that the instantaneous velocity for
the gas phase can be determined rigorously by considering the distribution function
for the fluid velocity (in addition to that of the particle velocity, (1.2)). However,
such an approach would involve two-point distributions (Sundaram & Collins 1999)
which is beyond the current scope, and thus a stochastic model is adopted here. In
the following section we outline the assumptions made in this work and justify their
validity for the range of physical parameters considered here.

3. Assumptions and their range of validity
3.1. Range of dimensionless variables

The assumptions used in this work are relevant to the range of dimensionless physical
parameters encountered in a circulating fluidized bed (CFB). The relevant independent
set of dimensionless parameters comprises the solid volume fraction ¢, the mean-flow
Reynolds number Re,, the Reynolds number associated with the particle velocity
fluctuations Rer, and the ratio of the densities of the solid and the gas p,/p,. The
mean-flow Reynolds number is defined by

_ (= ¢)p0|AU]
g '

where AU =U — U,, o is the particle diameter and p,, 1, are the mass density and
dynamic viscosity of the gas, respectively. The Reynolds number associated with the
particle velocity fluctuations is defined by

Re,, (3.1

T
Rep =27\ [~ (3.2)

pg Vom
where T is the granular temperature (see equation (4.10)) and m is the mass of
the particle. It is worth noting that some previous works (Koch 1990) on gas—solid
suspensions in the Stokes flow regime cast their results in terms of a Stokes number St
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(rather than Re,, and/or Rer). Here, for a three-dimensional system, we define the two
relevant Stokes numbers as

st, = AU (3.3)
" 6mu R '
JTTm
Sty = MV I/m (3.4)
67 R?

where R = o/2 is the radius of a particle. Thus, the relationship between the Stokes
numbers and corresponding Reynolds numbers is

L ps
Sty = —————Re,, (35)
91 = ¢) pg
L ps
Sty = ~L Rey, (3.6)
9 pe

where p, = 6m/(no?) is the mass density of a particle. Whereas Re,, and Re; are
measures of the fluid inertia (related to mean and fluctuating components of particle
motion, respectively) to viscous effects, the Stokes numbers St,, and Sty are measures
of particle inertia to fluid viscous effects. The results presented in this paper (see
§ 8) will give ranges for each of these parameters for the purpose of greater physical
understanding (even though they are not independent quantities).

3.2. Fluid-solid force model

The most important assumption in this work is that the instantaneous impulse can
be modelled using a Langevin equation (see equation (2.1)). The assumption that is
implicit in using this model is that the change in particle momentum due to neighbour
particle effects occurs on time scales much smaller than those associated with drag due
to the mean slip and particle velocity fluctuations. The validity of the Langevin model
can be justified by examining the decay of particle velocity autocorrelation function
that is computed via PR-DNS (which accounts for all fluid-dynamic interactions
exactly). The particle velocity autocorrelation function p(s) is defined by

o(s) = (Vi(to) Vi(to + 5)) ’ 3.7)
(Vie(20) Vie(10))
where V denotes fluctuations in particle velocity (or peculiar velocity) about the mean
velocity computed by PR-DNS and s is the separation in time. The angular brackets
(---) in (3.7) denote an average over all particle configurations and velocities. The
integral time scale for the autocorrelation function is

T, = /00 p(s)ds. (3.8)
0

If a stochastic process obeys the Langevin equation with an integral time scale of
T;, then its autocorrelation function should decay exponentially (Gardiner 1985),
ie. p(s) =e L. The velocity autocorrelation function computed by PR-DNS of
freely evolving gas—solid suspensions and the exponential decay predicted by the
Langevin model are compared in figure 3. The good agreement of the decay of
the velocity autocorrelation function obtained from PR-DNS with the exponential
decay indicates that the use of the Langevin model is appropriate. In addition to the
velocity autocorrelation function, we have also computed the time scale of decay of
the autocorrelation of neighbour particles’ contribution to the total fluctuating force
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and compared it with the mean time between successive solid body collisions. Note
that it is extremely difficult to isolate the contribution of the neighbour particles to the
total fluctuating force obtained from PR-DNS. So we computed the neighbour particle
contribution to the total fluctuating force indirectly as (mdV + y -V df) in (2.1).
Note that mdV represents the total fluctuating force experienced by a particle, which
is computed directly from PR-DNS. We found that for the highest Stokes number
simulated (St,, = 171), there were only ~2-3 collisions within the time scale of decay
of the autocorrelation. For lower Stokes numbers, the number of collisions decreased
to around 1 per fluid time scale. Note that the collisional time scale we used is valid
for ballistic collisions, whereas in reality the presence of fluid could increase the time
between collisions. From the decay of the velocity autocorrelation function as well as
from the comparison of time scales we conclude that the neighbour particle effects can
be modelled reasonably well by a stochastic Wiener process (Langevin model).

3.3. Anisotropy in fluid and solid phases

Although fluid motions even in homogeneous gas—solid flows are anisotropic in
general, it is found that under the conditions considered in this work they still result in
a nearly isotropic (particle) granular temperature. Consequently, we focus here on the
simpler isotropic Langevin model for the particle velocity increment, since the already
complex derivations of the transport coefficients would be even more involved for the
more general anisotropic Langevin model. Therefore, although the quantities y and B
in (2.1) are given as tensors in the most general case, as a first approximation we take
vij = y8; and B;; = B§;; to obtain a distribution function which is isotropic in velocity
space for the homogeneous flow, and in addition provide analytical expressions for all
the transport coefficients and the collisional cooling rate. We verify this assumption
of isotropy by computing the state of anisotropy of the particle-phase Reynolds stress
(RS), defined as the average (V;V;), from PR-DNS. The invariants of the deviatoric
part of the normalized particle-phase RS, &gs and ngs, are plotted on the Lumley
plane (Lumley & Newman 1977) to characterize the state of anisotropy. In the three-
dimensional case, the deviatoric part of the normalized particle-phase RS is defined by
(Viv) 1

by = - 28 39
ERRA R G2

and the invariants are defined following Lumley & Newman (1977) as 65z, = b;b; and
6&5s = b;byby. The state of anisotropy of the particle-phase RS is studied by plotting
ngs versus &gs. The origin of this plane denotes an isotropic state, while the point
(1/3, 1/3) denotes a one-component axisymmetric state of the particle-phase RS. The
evolution of the invariants obtained from PR-DNS for ¢ = 0.35, p,/p, = 1000 and
two different Reynolds numbers (Re,, = 1.0 and Re,, = 0.5) is plotted in figure 4. The
results show that the state of anisotropy in the solid phase is small for the range of
physical parameters considered in this work, and hence the assumption of isotropic
coefficients is justified. The results also indicate that the effect of collisions isotropizes
the anisotropy introduced by fluid-dynamic interactions in the particle-phase RS.

This mechanism can be understood by analysing the evolution equation of the
normalized deviatoric part of the particle-phase RS b;; for a statistically homogeneous
suspension, which is given by

db; Dy b;;

b5 _ Puc oy bi 3.10
dr 3T( v j) Teoll ( )
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FIGURE 4. (Colour online) Evolution of the invariants of the deviatoric part of the
normalized particle-phase RS in time. Dark (blue in colour online) symbols denote earlier
time and light (red in colour online) symbols denote later time. These results are obtained
from PR-DNS of freely evolving suspensions corresponding to a solid volume fraction of
0.35 and solid-to-fluid density ratio of 1000 for mean-flow Reynolds numbers (a) 1.0 and
(b) 0.5.

where @ = (A]V)) is the rate of change of particle granular temperature 7, b;f
is the normalized deviatoric part of the acceleration—velocity covariance tensor
(ATV) + (A;’V,) and 7,y is the collisional time scale. Here the A]{’ denote fluctuations
in particle acceleration. When the suspension reaches a statistically stationary state, the
rate of change of granular temperature is zero, i.e. @y =0, and hence the particle-
phase RS returns to isotropy due to collisions. It is also worthwhile to note that this
assumption is consistent for a homogeneous system, since the homogeneous (zeroth-
order) solution to the kinetic equation (1.2) will be isotropic as no spatial gradients
exist for a homogeneous system. Note that if the acceleration—velocity covariance
tensor (AV;) + (Aj’/V,») is decomposed into a source S;;, and sink term I, as in Koch
(1990) and Koch & Sangani (1999), the source term in the particle-phase RS can be
anisotropic in general. However, based on the low level of anisotropy in the particle
velocity covariance, we conclude that an isotropic source term is a reasonable first
approximation for the regime we are interested in. The description of the general case
for y and B is an interesting problem to be addressed in the future.

3.4. Low Knudsen number

The final assumption made in this work is related to the Chapman—Enskog expansion
(see §5 for further details), which is essentially a perturbation method about a small
Knudsen number. The Knudsen number Kn is defined as the ratio of the mean free
path of the particles to a length scale that characterizes the distance over which
gradients in the hydrodynamic variables occur. The mean free path is a function of
the solid volume fraction only, while the length scale associated with the gradients
depends on the specific gas—solid flow system. Since the results in this work are
applicable to any geometry and flow situation, assessment of this low-Kn assumption
is not possible a priori.

4. Kinetic equation for gas-solid flows

We consider a suspension of solid particles of mass m and diameter o immersed
in a gas. Under rapid flow conditions, particles are usually modelled as a gas of
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inelastic hard spheres. In the simplest model, the spheres are completely smooth so
that the inelasticity of collisions is characterized by a (constant) coefficient of normal
restitution 0 < o < 1. As described in § 2, the influence of the gas phase on particles is
accomplished by the inclusion of three new quantities (see (2.1)) in the instantaneous
particle force: 8, y and B.

Under the above conditions and in the presence of the gravitational force mg, the
Enskog kinetic equation (Brey, Dufty & Santos 1997; Brilliantov & Pdschel 2004) for
the one-particle velocity distribution function f(r, v, f) of grains reads

3 5 3
of +v - Vf—éAU %_ZW f—ifavzf-F £=J5[r,v[f,f], @.1)

where
Jelr olff] = 0! / dv, / 45 (5 -£,)(5 -g1)

x [a 2 x(r,r — o)f(r,v}; Df (r — o, vy 1)
—xr,r+o)fr,v; )fr+o,v,;1)] 4.2)

is the Enskog collision operator. Here, d is the dimensionality of the system (d =2 for
disks and d = 3 for spheres), 0 =00, ¢ being a unit vector pointing in the direction
from the centre of particle 1 to the centre of particle 2, o is the particle diameter, &
is the Heaviside step function, g,, = v, — v, and x[r,r 4 o|{n(#)] is the equilibrium
pair correlation function at contact as a functional of the non-equilibrium density field
n(r, t) defined by

n(r,t) :/dvf(r, v, 1). “4.3)

For the case of spheres (d = 3) considered in this work, the Carnahan—Starling
approximation (Carnahan & Starling 1969) for yx is given by

-2
x (@)= (4.4)
(1—-¢) ¢)
The primes on the velocities in (4.2) denote the initial values {v},v,} that lead to
{vy, v,} following a binary collision:

vi=vi—3 (I4+a7") (08,0, vi=v,+3(l+a')(a-gp0. (45
Moreover, in (4.1), B> =& and

U(r,1) = rlz/dv vf(r,v,1) 4.6)

is the mean particle velocity. As said before, the scalar coefficients B8, y and &
appearing in (4.1) are associated with the instantaneous gas—solid force. Recall that
B appears in the mean portion of this drag force (first term on the right-hand side
of (2.1)), and the terms y and & are associated with the fluctuating solid velocity
and particle momentum change caused by neighbour particles, respectively (Abbas,
Climent & Simonin 2009).

The macroscopic balance equations for the system are obtained when one multiplies
the Enskog equation (4.1) by {1, mV,mV?} and integrates over velocity. After some



140 V. Garzo, S. Tenneti, S. Subramaniam and C. M. Hrenya
lengthy algebra one gets

Din+nV -U =0, 4.7
D,U—i—(mn)_lV-P:—gAU +g, (4.8)
D,T+£(V-q+P:VU):—2—Ty+m§—{T. 4.9)

In the above equations, D, = 9, + U -V is the material derivative and
T(r,t) = é / dvmV3f(r,v, t) (4.10)

is the granular temperature. This quantity is a measure of the mean square fluctuating
particle velocity. The collisional cooling rate ¢ is proportional to 1 — «® and is due
to dissipative collisions. The pressure tensor P(r, t) and the heat flux q(r, r) have both
kinetic and collisional transfer contributions, i.e. P = P* + P° and g = ¢* + ¢°. The
kinetic, or streaming, contributions stem from the particles carrying momentum and
granular energy with them as they travel from one part of the domain to another,
while the collisional contributions arise from a transfer of momentum and granular
energy between particles as they collide. The kinetic contributions P* and ¢* are given,
respectively, by

Pi(r, 1) =/dvmVVf(r,v, D, 4, t)=/dv’;V2Vf(r,v, 1, 4.11)
and the collisional transfer contributions are (Brey et al. 1997; Garzé & Dufty 1999)

. 1+Ol d ~ —~ PN
P(r,t) = mo dv, [ dv, [ d6O(0-g,)(0-g) 00

/ dxf@ [r—xo,r+ (1 —x)o, vy, v 1], 4.12)

q(r, t): ma /dv1/dvz/d0 @0 -g) (0 - gu)z(Glz-(?)(?

X / dxf? [r—xo,r + (1 — )0, vy, V2 1]. (4.13)
0
Here, G, = (V| + V;,)/2 is the velocity of centre of mass and

f(z)(rl,rz, Vi, Uy, 1) = X (1, 12 n(0)f (r1, vy, Df (12, 02, ). (4.14)

Finally, the collisional cooling rate is given by

_ (1 _0‘2) d-1
é‘(r, t) = Wma /dv1 /dUz

% /d&\@(a\ .glz)(6\'g12)3f(2)(r7r+avvlv V)] t) (415)

For a statistically homogeneous suspension undergoing elastic collisions (¢ = 1),
¢ =0 and the granular energy equation (4.9) becomes

dT 2T
dr m
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Comparing this equation with the granular energy equation given for spheres (d = 3)
by Koch & Sangani (1999),

3dT

2dr
we see that there is a one-to-one correspondence between the coefficients y and & and
the dissipation [ and source S in Koch & Sangani (1999), respectively. Therefore,
for Stokes flow we can use the existing analytical closure from Koch (1990) for solid
volume fraction ¢ < 0.1. For ¢ > 0.1, Koch & Sangani (1999) used simulations based
on multipole expansions to propose source and dissipation terms as a function of solid
volume fraction. It must be noted that the correlation used for the drag coefficient does
not include the effect of forces such as buoyancy, shear lift or spin lift. Accordingly,
these coefficients depend on constant parameters (particle mass and diameter, gas
viscosity) as well as the hydrodynamic (mean) variables (solids concentration, gas and
solid velocities, and granular temperature); explicit dependences are given in § 8.

The macroscopic balance equations (4.7)—(4.9) are not entirely expressed in terms
of the hydrodynamic fields due to the presence of the collisional cooling rate ¢,
the pressure tensor P and the heat flux ¢, which are given as functionals of the
distribution function f(r, v, t). However, if this distribution function can be expressed
as functionals of the hydrodynamic fields, then the collisional cooling rate and the
fluxes will also become functionals of the hydrodynamic fields through (4.11)—(4.13)
and (4.15). Such expressions are called constitutive relations and are the link between
the exact balance equations and a closed set of equations for the fields n, U and T.
This hydrodynamic description can be derived by looking for a normal solution to
the Enskog equation by means of the Chapman—Enskog (CE) method (Chapman &
Cowling 1970) adapted to inelastic collisions, as detailed in § 5.

It is worthwhile to note that the macroscopic equations given in (4.7)—(4.9) differ
from their granular (no gas phase) counterparts (Garzé6 & Dufty 1999) via the
appearance of three additional terms arising from the presence of the gas phase,
and more specifically the instantaneous drag force (equation (2.1)). The first of these
contains B and appears in the momentum balance (equation (4.8)); this term represents
the mean drag force between the two phases. The other two terms stemming from the
gas phase appear in the granular energy balance (equation (4.9)); the term containing
y represents the sink due to viscous drag while the term containing & represents
the source arising from the change in particle momentum due to neighbour particles.
Similar effects of the gas phase on the constitutive expressions for the pressure tensor
P, the heat flux ¢ and the collisional cooling rate ¢ will be presented in §§6 and 7.

_E)is +Sa (417)

5. Chapman-Enskog solution

The CE method assumes the existence of a normal solution such that all space and
time dependence of the distribution function occurs through the hydrodynamic fields

fr,v, t)=fvla@, 1), T, 1), Ur, 1] 5.1

The notation on the right-hand side indicates a functional dependence on the density,
temperature and flow velocity. For small spatial variations (i.e. low Knudsen numbers),
this functional dependence can be made local in space through an expansion in
gradients of the hydrodynamic fields. To generate it, f is written as a series expansion
in a formal parameter € measuring the non-uniformity of the system,

f =f(0) + Ef(l) + €2f(2) 4+, 5.2)
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where each factor of € means an implicit gradient of a hydrodynamic field. The
uniformity parameter € is related to the Knudsen number Kn defined as the ratio of
the mean free path of the particles to a length scale that characterizes the distance
over which gradients in the hydrodynamic variables occur. Note that while the strength
of the gradients can be controlled by the initial or boundary conditions in the case
of elastic collisions, the problem is more complicated for granular fluids since in
some cases, e.g. steady states such as simple shear flow (Goldhirsch 2003; Santos,
Garzé & Dufty 2004), there is an intrinsic relation between dissipation and some
hydrodynamic gradient. In these situations the Navier—Stokes approximation (first-
order in the expansion) only applies for nearly elastic systems (Goldhirsch 2003).
Here, however, we consider situations where the spatial gradients are sufficiently small
(low Knudsen number) (Hrenya, Galvin & Wildman 2008). Moreover, in ordering the
different level of approximations in the kinetic equation, one has to characterize the
magnitude of the external forces relative to the gradients as well. The scaling of the
forces depends on the conditions of interest. Here, we assume that the external forces
(gravity and drag forces) do not induce any flux in the system and only modify the
form of the transport coefficients. As a consequence, g, 8, y and & are taken to be of
zeroth order in gradients.

According to the expansion (5.2) for the distribution function, the Enskog collision
operator and time derivative are also given in the representations

Je=JD +el +-, 3,=00+ed +.... (5.3)

The coefficients in the time derivative expansion are identified by a representation of
the fluxes and the collisional cooling rate in the macroscopic balance equations as a
similar series through their definitions as functionals of f. This is the usual CE method
(Chapman & Cowling 1970; Garzé & Santos 2003) for solving kinetic equations. The
main difference here with respect to previous works (Brey et al. 1998; Garzé &
Dufty 1999) is that the reference state f© has a time dependence associated with the
fluid phase terms y and & apart from the one associated with the collisional cooling
rate that is not proportional to the gradients. As a consequence, terms from the time
derivative 3’ are not zero as expected. In addition, given that collisional dissipation
and gradients are uncoupled, the different approximations f® are nonlinear functions
of «, regardless of the applicability of the corresponding hydrodynamic equations
truncated at that order.

To summarize, the Chapman—Enskog expansion is carried out up to first order
(Navier—Stokes order), resulting in constitutive equations which are proportional to the
first-order spatial derivatives in the hydrodynamic fields. This first-order expansion is
strictly valid for small Knudsen number Kn. Because the length scale for variations
of the hydrodynamic fields depends on the local flow field, the assumption of small
Kn (also known as the ‘small gradient’ assumption) may be valid for some flow
geometries and invalid for others. Since our results are presented below in a general
form (prior to the application for any specific flow geometry), assessment of this
low-Knudsen assumption is not possible a priori. Nonetheless, it is worth noting that
for ordinary fluids, the Navier—Stokes hydrodynamic equations work well beyond their
range of validity expected from a strict application of their assumptions. The same has
also been found to be true for granular fluids; namely, the range of applicability of
the Navier—Stokes description, based on comparisons with experimental data, is often
much wider than expected (Rericha ef al. 2002; Wildman et al. 2008).
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6. Local homogeneous state: zeroth-order solution
To zeroth order in €, the Enskog equation (4.1) becomes
p Yy 9

530¢0 _ P Ay . _r o_ L o 4
S m aV  mav Vi 2€8V2f

3 f(O)

= JO[FO 01 (6.1
"oV e 7] (6.1)

where
IO [FO,£O] = xot! /dvz/dc?@)(z? -20,)(5 -21)
x [a2 Q)W) — O w)] . (6.2)

Here, x = x[r,r + o |n(®)]|,=nr is the pair functional evaluated with all density fields
at the local point r. The collision operator (6.2) can be recognized as the Boltzmann
operator for inelastic collisions multiplied by the factor x. Note that in (6.1) all spatial
gradients are neglected at this lowest order. Moreover, as discussed before, upon
writing (6.1) it has been assumed that the gravity field and the external parameters
accounting for the effects of the gas phase are taken to be of zeroth order in spatial
gradients. The macroscopic balance equations at this order are

0% =0, 90U = NG +g, (6.3)
m

2T
30T = ——y +mé - O, (6.4)

where ¢© is determined by (4.15) to zeroth order, namely, by using the distribution
F©. Since f© qualifies as a normal solution, then

If© If© IO

at(O)f(O) - 8(0) 4 50 a(O)U 4 57 a(O)T
p oo (2w _m o
—(Cau-g) -2 — (L Zgyp0) 7 6.5
<m §) v "\ 75T oT 65)

where in the last step we have taken into account that f® depends on U through its
dependence on V. Substitution of (6.5) into (6.1) yields

2 m of® 9
| =y - = (0) y 0 _ 0 _ J(O) ©0) £(0) . (6.6
(m)’ Tf"‘{ ) T mav -Vf 2§8V2f e 7] (6.6)

Since the solution to (6.6) is isotropic in V, dimensional analysis requires that f©
has the scaled form

fOW) =nv,w (:;) , 6.7)

where ¥ is an unknown function of V /vy, where vy = /2T /m is the thermal speed.
Therefore, according to (6.7), the temperature dependence of f© can occur only
through vy and the dimensionless velocity V /vy so that

f O 19
T = VO, 6.8
aT 29V f 6.8)
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Taking into account (6.7) and (6.8), the Enskog equation (6.6) for the zeroth-order
distribution function finally becomes

1 0 mé d . (0) 1, o 0 — O e©) £0)
: (g - ) oy VI = el =TT ). (6.9)
Note that (6.9) is independent of the parameters 8 and y. In fact, when & =0, one
recovers the kinetic equation defining the homogeneous cooling state (HCS), whose
solution has been previously worked out by several authors (van Noije & Ernst 1998;
Montanero & Santos 2000; Poschel & Brilliantov 2006; Santos & Montanero 2009).

In terms of the (scaled) distribution ¥, (6.9) can be rewritten as

| . o 0 1 *82 .
5(5 —& )% ¥ — 15 @W:JE[W, ], (6.10)
where ¢ = V /vy,
. Eé'(o) . m&L . Lo
(= E= Je= e ©.11)

and £ = 1/(no?") is the (local) mean free path for hard spheres. It must be noted that
upon deriving (6.7)—(6.10) we have assumed that the reduced parameters y* and &* do
not depend on the granular temperature. This assumption will be confirmed later when
we express y* and £* in terms of the Reynolds numbers (see (8.9) and (8.10) for y*
and &%, respectively).

In the case of elastic particles (¢ = 1), ¢* =0 and the solution of (6.10) is a
Maxwellian distribution Koch (1990):

W(c) = e, (6.12)

However, if the particles collide inelastically (¢ < 1), the exact form of ¥(c) is not
known, even in the dry granular case (§* = 0). However, a very good approximation
can be obtained from an expansion in Sonine polynomials (van Noije & Ernst 1998).
In particular, since the distribution function is isotropic, the zeroth-order pressure
tensor and heat flux are found from (4.11)—(4.13) to be

Py =ps;, ¢ =0, (6.13)
where the hydrostatic pressure p is
p=nT[1 4221+ a)x¢l, (6.14)
where
d/2
p=—" no (6.15)

d
2otar (5)
2

is the solid volume fraction. Note that the presence of the gas phase does not enter the
constitutive relation for pressure.

The deviation of ¥ (c¢) from its Maxwellian form is measured through the kurtosis or
fourth-cumulant (van Noije & Ernst 1998)

4

j— 4 p—
) (-1, (6.16)

(25)
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where

() = / de fw (¢). (6.17)

In order to determine a,, we multiply both sides of (6.10) by ¢*

velocity. The result is

and integrate over

d(d+2)

5 [0+ @) —§a] =, (6.18)

where
i = —/dcckjg[q/, vl (6.19)

Upon writing (6.18) use has been made of the partial result

2
/dc c % =p(p+d—2)(c"?) (6.20)

with p =4 and (c?) =d/2.

Equation (6.18) is still exact. To get an approximate expression for the quantities
¢*=Q2/d)pu, and pu4, we consider the first Sonine approximation for ¥; then we
insert this expansion into (6.19) and neglect terms nonlinear in a,. The results are

po = w4+ pnar, s — )+ uas, (6.21)
where (van Noije & Ernst 1998)
d=D/2 3
wy'=———oex(—ah), =, (6.22)
e (3)
2
3

g = <d +5+ oﬂ) sy, (6.23)

3 d—1
) = | =(10d + 39 + 10a?) + —— | u”, (6.24)

32 l—«a

and in (6.22), I' refers to the Gamma function. With the use of the approximations
(6.21) and retaining only linear terms in a,, the solution to (6.18) is

e’ —(d+2u”
19 d )
e’ —@d+2) ( 2 - 25*)

a, = — (6.25)
E'M

In terms of a,, the zeroth-order expression ¢ for the collisional cooling rate can be

written as
2 w@-b/2 3 T
¢© = 74 (1 —a®y (1 + 16a2> nad_l\/;. (6.26)
" (3)

2

Note that the effects of the interstitial gas on the zeroth-order collisional cooling rate
¢© is only through the dependence of the kurtosis a, on &* (equation (6.25)).
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7. First-order solution: Navier-Stokes transport coefficients

The analysis to first order in the expansion parameter is similar to that worked
out by Garzé & Dufty (1999) and Lutsko (2005) in the dry granular case. We only
display here the final expressions for the fluxes and the collisional cooling rate, with
some details being given in appendices A and B. The form of the first-order velocity
distribution function " is given by

fO=AW).-VInT+B(V)-Vinn

1 2
+ (V) 5 (ain + U~ 28,V - U) +2(V)V .U, (7.1)

where the quantities A(V), B(V), €;(V) and Z(V) are the solutions of the
linear integral equations (A 18)—(A21), respectively. With the distribution function
f1 determined by (7.1), the pressure tensor, the heat flux and the collisional cooling
rate can be calculated to first order in the spatial gradients. It is worthwhile to
note that the spatial dependence of & with respect to |AU| (see (8.2) below) has
been neglected in these calculations (unlike the spatial dependence with respect
to the density n and the granular temperature 7). This assumption is due to the
applications which motivate this work. Namely, in circulating fluidized beds (CFBs),
the solid concentration and granular temperature vary considerably in space, whereas
the relative velocity AU remains relatively constant (~ terminal velocity of single
particle). Accordingly, AU is treated as a constant here, which also has the benefit of
greatly simplifying the calculations. It is also important to remark that our results have
been derived systematically from the inelastic Enskog equation by the CE procedure,
and consequently there is no a priori limitation on the degree of inelasticity. Thus,
the results apply to a wide range of values of the coefficient of restitution. Moreover,
since the transport coefficients and the collisional cooling rate are given in terms
of the solutions of the coupled linear integral equations (A 18)—(A 21), for practical
purposes these integral equations have been solved by truncated expansions in Sonine
polynomials.

The forms of the collisional contributions to the momentum and heat fluxes are
exactly the same as those obtained in the absence of the gas phase (Garz6 & Dufty
1999; Lutsko 2005), except that a, depends on &*. Thus, we will focus our attention
on evaluation of the kinetic parts of the transport coefficients and the collisional
cooling rate. Some technical details of this calculation are provided in appendix B. Let
us consider each flux separately.

7.1. Pressure tensor
To first order, the pressure tensor is given by

2
Py =—p (a,-Uj + U = 28,V -U> —A8;V .U, (7.2)

where 7 is the shear viscosity and A is the bulk viscosity. While the shear viscosity
has kinetic and collisional contributions, the bulk viscosity has only a collisional
contribution. The shear viscosity is

n =+ . (7.3)
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The collisional contribution 7. to the shear viscosity n is given by (Garzé & Dufty
1999; Lutsko 2005)

d—1 d
e = 1 —A, 7.4
e = ¢x( +oz)nk+d 3 (7.4)
and the bulk viscosity is
2d+1 , a
- (1 - 7) . 7.5
n:(d+2)¢ x(1+oa) 6) (7.5)
Here,
d
d+?2 r (2>
o' mT (7.6)

o= "¢ L@-np

is the low-density value of the shear viscosity in the elastic limit. The kinetic part »;
of the shear viscosity is

nT d—2

2
= l_ 1 1_ .
Mk ) —1(5(0)—’”5—2)/) [ d+2( + a)( 30‘)¢X], (1.7)

where the collision frequency v, is (Garzd, Santos & Montanero 2007¢)

3\)() 2 7
v, = 4d 1—a+§d 14+a) 1+ Eaz . (7.8)

Here, vy = nT/no. The shear viscosity can finally be written as

d—1 d
1 —A. 7.9
a1 271 +“)]+d+2 79
Thus, in addition to the presence of a, (which depends on &) in (7.5) for the bulk
viscosity, gas-phase effects appear explicitly in the kinetic part 5, of the shear viscosity
via the appearance of y and & in (7.7) and implicitly via the appearance of v,, which
also depends on a, (see (7.8)).

n=n [1+

7.2. Heat flux
The constitutive form for the heat flux in the Navier—Stokes approximation is

gV = —«VT — uVn, (7.10)

where « is the thermal conductivity and p is the Dufour coefficient, which is not
present in the granular case (no gas phase) when particles collide elastically (o = 1).
The thermal conductivity « is given by

K =K + K. (7.11)

The collisional contribution k. to the thermal conductivity « is (Garzé & Dufty 1999;
Lutsko 2005)

2d_2¢ (A +a) +22d+l(d_1)¢2 A+a) 1+ ! (7.12)
a)K - o —a, | ko, .
d+2 X k d+2)’n X 1672 ) <0

Ke=73
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where

_dd+2) o

T 2d—1m

is the thermal conductivity coefficient of an elastic dilute gas. The expression of the
kinetic part k; is

Ko (7.13)

d—1 Imé o 2T B
K= kovo| Ve + s — — 207 — —yr + mér
2T m
d-3
X {1+2a2+3d+2¢x(1—|—oz)2[205—1+a2(1—|—a)]}, (7.14)
where
y &
=<, =—, 7.15
yr 9T &r oT ( )
and the collision frequency v, is given by (Garz6 et al. 2007¢)
l+a [d-1 3
e = — 4+ —([d+ 81 —
v, VOdX[2+16(+)( o)
296 + 217d — 3(160 + 11d
ik 256( * )aaz} . (7.16)

The (combined) thermal conductivity « can finally be written as

432 g+ >]+2M+'(d_1)¢2 1+ )(1+ ! ) 7.17)
K=K o —_— o —a | k. .

k d+2 X d+2)7n X 1672 ) 0

The Dufour coefficient is given by

M= Ui+ Hes (7.18)

where the expression for the collisional contribution w. is (Garzé & Dufty 1999;
Lutsko 2005)

d—2
d+2

The kinetic contribution p, is given by

-1
= kovoT |:])K 3 ({(O) _ mé)] {K" [Znyn _ %gﬂ +c© (1 + 0, ln)()

n 2 T KoVp | m

pe=3 dx (14 o). (7.19)

441 +32H(d_1)¢ (1+a) 1—|—1¢81
— n
d T dayo VT 2P0 X
ar b
x [a(oz—l)+g(10+2d—3a+3a )} } (7.20)
where
9 9
Vn = la ";:n = j (721)
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The (combined) Dufour coefficient u can be written as
d-2
d+2

In the granular case (no gas phase, and so § =y =& = 0), the Dufour coefficient
vanishes for elastic collisions (¢ = 1). On the other hand, (7.22) shows that u # 0
when the gas phase is accounted for, even for elastic collisions. In this case (¢ = 1),
a, = 0 and the Dufour coefficient w is given by (7.22) with

K T 3 mé ' /2n P
— o =2, 7.23
= — (v +3 T) ol 75 (7.23)

where «; is given by (7.14) with @ =1, and a, = ¢© = 0.

Again, similar to the pressure tensor, gas-phase effects appear implicitly in the
thermal conductivity and Dufour coefficients via the appearance of the cumulant
a, (which depends on &) in (7.14), (7.17) and (7.20). Furthermore, such effects
are explicit in the kinetic contributions to the thermal conductivity and the Dufour
coefficient (see (7.14) and (7.20)) through the terms containing y and &.

= [1+3 ¢X(1+oz)}. (7.22)

7.3. Collisional cooling rate

The collisional cooling rate ¢ is given by

(=09 + V.U, (7.24)

where ¢© is defined in (6.26). At first order in gradients, the proportionality constant
{y 1s a new transport coefficient for granular fluids. This coefficient is given by

Sv = &0+ S, (7.25)
where
2d—2
Cio= —37)((15(1 —a?), (7.26)
27(d+2)" 2%, )
A e A — 1—
1" ELYE ¢x (1 —a)

3a, 1) 1 a
1+22) |2 g )l
< +128> [2(d+2) ( +°‘)”°<3 “) 2}
X v 3mé 3 '
s e (V)
ot o T2

In the above expression, the collision frequencies w and v, are given by (Garzdé &
Dufty 1999; Lutsko 2005)

(7.27)

o=+, {(1 —aHGa—1) — % [150° — 302 + 3(4d + 15)a — (20d + 1)] } ,
(7.28)
1+«
v, = —
192
The presence of the gas phase impacts ¢;; via the explicit appearance of y and &
(see (7.27)) as well as an implicit dependence via the cumulant a,.

xVo [30a” — 30a® + (105 + 24d)a — 56d — 73] . (7.29)
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8. Results and discussion
8.1. Drag model: low mean-flow Reynolds numbers

The expressions derived in §§6 and 7 for the (reduced) transport coefficients and the
collisional cooling rate depend on the coefficient of restitution «, the solid volume
fraction ¢ along with the external parameters y and & and their derivatives with
respect to the density n and the granular temperature 7. Thus, to show the explicit
forms of 1, A, k, u and ¢y, one has to provide relations for y and &. As described
in §4, these quantities are derived from the Stokes flow closures for the source and
dissipation of granular energy given by Koch (1990) and Koch & Sangani (1999).
Recall that attention here is limited to low mean-flow Reynolds numbers in order to
compare with previous analytical results (Koch 1990; Koch & Sangani 1999) and to
assess the impact of the gas phase on the constitutive relations, the latter of which was
neglected in the analytical treatment.

We consider here the physical case of hard spheres (d = 3). For the case of low
mean-flow Reynolds numbers, the expressions of y and & are given by

m
Y= ;Rdm((ﬁ), (81)
1 o|AU)

:6ﬁ ) [T
‘[ —
m

where v =m/(3nu,o) is the characteristic time scale over which the velocity of a
particle of mass m and diameter o relaxes due to viscous forces. Here, i, is the gas
viscosity.

In the case of dilute suspensions (0 < ¢ < 0.1), the expressions for the functions
Ryiss () and S*(¢) are (Koch 1990)

3 S (@), (8.2)

Raiss (@) =1 + 3\/3 S*(¢) =1. (8.3)

For moderately dense suspensions (0.1 < ¢ < 0.4), the functions Ryi(¢) and S*(¢)
can be well approximated by (Sangani et al. 1996; Koch & Sangani 1999)

Russ(@)=1+3 ¢, 135 1
dissd)— + 2+64¢n¢
+11.26¢ (1 —5.1¢ + 16.57¢* — 21.77¢°) — ¢ x (¢) In€,, (8.4)
() = Rirg (8.5)
"~ x(@) (1+3.5/6+599)° '

where the function R, is given by

¢ 135
1434/ =+ —0¢l 17.14

1+ 0.681¢ — 8.48¢2 + 8.164°

In (8.4), ¢,0 can be interpreted as a length scale characterizing the importance of
non-continuum effects on the lubrication force between two smooth particles at close
contact. Typical values of the factor ¢, are in the range 0.01-0.05. However, given
that this term only contributes to R;(¢) through a weak logarithmic factor, its explicit

Rdmg (¢) = (86)
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value does not play a significant role in the final results. Here, we take the typical
value ¢,, = 0.01.

According to (8.1) and (8.2), the derivatives of y and & with respect to n and T are
given by

ny, = y$og In Ry (p), yr=0, (8.7)
Tér=—1&, n&, =£¢d; InS* (). (8.8)

In particular, n§, =0 for a dilute suspension since $*(¢) = 1. To make a connection
with the ranges of dimensionless parameters which are of practical relevance for the
gas—solid flows, it is convenient to express the reduced parameters y* = (y{€)/(muvy)
and &* = (mé&l)/(Tvy) in terms of the mean-flow Reynolds number Re, and the
Reynolds number associated with particle velocity fluctuations Rey.

The expressions of y* and £* as functions of Re, and Rer can easily be obtained
when one takes into account (3.1), (3.2), (8.1) and (8.2). The result is

* 3w Pg Rdiss (¢)

— 2 8.9
Y \/§¢ Ps ReT ( )

9 5P Re
£ _2¢2n<ps> ¢(1_¢)2Re§8(¢). (8.10)

8.2. Impact of gas phase on the constitutive relations

To assess the influence of the gas phase on the constitutive relations derived in §§5
and 6 for the continuum equations given by (4.7)—(4.9), the zeroth- and first-order
contribution to these relations (¢©, ¢y, n, A, k and ) have been examined for spheres
(d =3) over a wide dimensionless parameter space: {¢, a, p,/ps, Re,, Rer}. Here, we
consider a range of dimensionless parameters relevant to a CFB: ¢ = 0-0.5, o = 0.5-1,
ps/ pe = 800-2500, Re,, = 0.1-1 (Stokes flow), and Re; = 0.5-5.

It is worthwhile to note that the results presented below are not specific to any
one flow system (e.g. simple shear flow), but instead are generally applicable. In
other words, all the transport coefficients are displayed as a function of the full
set of dimensionless parameters, which depend on both material properties (particle
mass, radius, ...) and hydrodynamic variables (granular temperature, mean relative
velocity between gas and solids, ...) alike. Finally, since a primary contribution of
this paper is to assess the effect of the gas phase on transport properties, the transport
coefficients plotted below are non-dimensionalized with respect to their ‘dry’ values
(those obtained when the interstitial fluid is neglected).

Recall that the gas-phase effects appear in the collisional cooling rate and transport
coefficients explicitly via the appearance of y and & and/or implicitly via the
appearance of the kurtosis a,, which depends on & via (6.25). Hence, it is worthwhile
to first consider the effect of the gas phase on a,, as is displayed in figure 5
for the representative case of ¢ = 0.1, Re, = 0.5, Rey =2, and p,/p, = 1500. It
is observed that the gas phase plays a negligible role in the kurtosis a, since
both curves (granular case and gas—solid suspension) are practically indistinguishable.
Accordingly, it follows that the quantities that only have an implicit dependence on
the gas phase through the appearance of a, also indicate a negligible role for the gas
phase. These quantities include the zeroth-order collisional cooling rate ¢©® (equation
(6.26)) and the bulk viscosity (equation (7.5)), which are not shown, for the sake of
brevity. It is also worthwhile to note that although the first-order contribution to the
collisional cooling rate ¢y (equations (7.25)—(7.27)) and the thermal conductivity «
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FIGURE 5. (Colour online) Fourth cumulant a, versus « for hard spheres with ¢ = 0.1,
0s/pg = 1500, Re,, = 0.5 (St,, = 93), and Rey =2 (St;y = 330). The dashed line corresponds
to the results obtained in granular case (no gas phase).
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FIGURE 6. Plot of the ratio n/n,, versus the volume fraction ¢ for (a) a dilute and (b) a
moderately dense suspension for p,/p, = 1000, Re,, = 0.1, Rer = 0.5 (St7 = 56) and three
different values of the coefficient of restitution «: from bottom to top, « = 0.5, 0.7 and 0.9.

(equations (7.14) and (7.17)) also contain an explicit dependence on y and &, the
gas phase shows a similarly negligible impact (<0.1 %) over the range of parameters
examined. Again, for the sake of brevity these plots are not shown.

Thus, of the six constitutive quantities derived, the two for which the gas phase does
exert a considerable influence are the shear viscosity 1 and the Dufour coefficient u.
Henceforth, the subscript dry refers to the value of the corresponding quantity in the
absence of the gas phase (i.e. when 8 =y =& = 0). The shear viscosity is displayed
in figures 6 and 7. Here, the shear viscosity is shown as a function of the solid
fraction ¢ for both the dilute and dense expressions (figures 6a and 6b, respectively),
the density ratio p,/p, (figure 7a), the mean Reynolds number Re, (figure 7b), and
the Reynolds number based on particle velocity fluctuations Rer (figure 7c¢). For each
figure, only the quantity displayed along the abscissa is varied while all others are
kept constant. Note also from figure 6 that the dilute- and dense-phase expressions
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FIGURE 7. Plot of the ratio n/n,, for ¢ = 0.1 and three different values of the coefficient of
restitution oz from bottom to top, & = 0.5, 0.7 and 0.9. In (a) n/na, is plotted versus p,/p, for
Re,, = 0.1 and Rer = 0.5, in (b) n/ny is plotted versus Re,, for p,/p, = 1000 and Rer = 0.5
(Sty = 56) and in (c) n/nq4 is plotted versus Rey for p,/p, = 1000 and Re,, = 0.1 (St,, = 12).

for n/n4, are roughly similar in value at the boundary of ¢ = 0.1 used between the
two sets of expressions.

Regarding the dependence of shear viscosity on concentration (figure 6a,b), it is
observed that the dampening influence of the gas phase increases (1/n4, decreases
further below unity) as the system becomes more dilute (¢ decreases), with this effect
being stronger at stronger dissipation levels (lower «). The physical explanation for
this behaviour is due to the increased mean free path of the particles in dilute systems,
over which the gas phase serves to buffer the kinetic transport of particles. From
a mathematical perspective, recall that the collisional contributions to the transport
coefficients were only modified by the presence of the gas phase via the appearance
of a,, which is negligibly changed by the inclusion of a gas phase (see figure 5).
On the other hand, the kinetic contribution to the shear viscosity, which dominates at
more dilute conditions, has an additional dependence on the gas phase via the explicit
appearance of y and & (see (7.7)). It is also worthwhile to point out that the shear
viscosity n — 0 in the dilute limit, as previously reported by Tsao & Koch (1995) and
Sangani et al. (1996). The same is not true for the granular counterpart 74, which
is well known to take on a finite value in the dilute limit. Again, this behaviour can
be traced to the buffering effect (viscous forces) of the interstitial gas which serves to
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continually reduce the random component of particle motion in the dilute limit (the
gas-phase sink of granular temperature being much larger than the gas-phase source).

Regarding the dependence of the shear viscosity on the other system parameters,
figure 7(a) demonstrates an increased influence of the gas phase on shear viscosity
as p,/p, decreases, which can be explained by the decreased role of particle inertia
relative to gas-phase viscous forces. As displayed in figure 7(b), however, the shear
viscosity is essentially independent of Re, over the small range of (low) Re,,
investigated here. However, as illustrated in figure 7(c), the gas phase displays a
larger impact on the shear viscosity for lower Re; due to the decreased role of random
particle motion. At the other extreme of higher Rer, the granular limit (n/n4, — 1)
is approached, as expected. Finally, for all of these system parameters (figure 7a—c),
the gas-phase effect on shear viscosity is again more pronounced for higher dissipation
levels (lower ).

As discussed previously, the Reynolds numbers Re, and Rer can be converted
to Stokes numbers St,, and Sty via (3.5) and (3.6), respectively. In figure 7, the
relevant Stokes numbers both cover the range of O(10)-0(100), though results are
observed to be more sensitive to the value of Str than St, (i.e. figure 7¢ compared
to 7b). In figure 7(c), the x-axis corresponds to the value of Sty ~ 80 — 500. At
the higher Sty (higher Re; of figure 7¢), the shear viscosity results approach those
of the dry granular limit, as expected (the fluid phase becomes negligible). However,
the differences are non-negligible for Sty of O(10) (lower Rer in figure 7c¢). This
observation is particularly true for more dilute systems, as illustrated in figure 6(a). In
this figure, the Stokes number is constant at St ~ 60, yet the shear viscosity n varies
greatly from its dry counterpart 7n,,. For example, n is ~40% of n,, at the volume
fraction ¢ = 0.01. Since the core of a CFB riser is often characterized by solid volume
fractions of the order of a few per cent, gas-phase modifications to the shear viscosity
are not negligible for practical systems, even at finite St.

Now switching to the Dufour coefficient u, the influence of the gas phase is
presented in figures 8 and 9 over similar ranges of system parameters. However, it
is important to recall that @ = 0 in the granular case when o = 1. When o # 1,
Hary 7 0 but its magnitude is small for weak dissipation (for instance, 4, > 0.207
for « = 0.9 and ¢ = 0.2). In stark contrast to the shear viscosity (figures 6 and 7),
the gas phase serves to increase the Dufour coefficient relative to its dry counterpart
(i.e. w/pmay > 1), and these effects are more noticeable at lower dissipation levels
(higher o). Nonetheless, similar to the shear viscosity, the influence of the gas phase
is greater at more dilute conditions since the kinetic contributions dominate over their
collisional counterparts (figure 8a,b). Also similar is the increased role of the gas
phase for lower density ratios due to the decreased role of particle inertia (figure 9a).
Finally, the impact of Rey and Re, on the Dufour coefficient is analogous to that of
the shear viscosity, where the influence of the gas phase is relatively independent of
Re,, (see figure 9b) over the range of low Re, considered, but does depend on Rer
(see figure 9c).

The behaviour of the Dufour coefficient in the elastic limit (¢ = 1) is further
explored in figure 10. Recall that for the dry granular case (no gas phase) u =0
at @ = 1, so the discovery of a non-zero value for the gas—solid suspension may
appear surprising. However, the appearance of a non-zero Dufour coefficient is also
observed in granular mixtures (i.e. more than one solid species) at the elastic limit
(see e.g. Garzd, Dufty & Hrenya 2007a; Garz6, Hrenya & Dufty 2007b), so the
gas phase plays an analogous role to an additional solid species in this regard. As
illustrated in figure 10, p increases with solid fraction but decreases with Rer; note
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FIGURE 8. Plot of the ratio p/p4, versus the volume fraction ¢ for (a) a dilute and (b) a
moderately dense suspension for p,/p, = 1000, Re,, = 0.1, Re; = 0.5 (St; = 56) and three
different values of the coefficient of restitution ¢: from bottom to top, @ = 0.5, 0.7 and 0.9.
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FIGURE 9. Plot of the ratio u/ .y for ¢ = 0.2 and three different values of the coefficient
of restitution «: from bottom to top, «=0.5, 0.7 and 0.9. In (a) ©/pay is plotted versus
ps/pg for Re,, = 0.1 and Rer = 0.5, in (b) 1/nq is plotted versus Re,, for p,/p, = 1000 and
Rer = 0.5 (Sty = 56) and in (c) w/ayy is plotted versus Rer for p,/p, = 1000 and Re,, = 0.1

(St = 14).
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FIGURE 10. Plot of the Dufour coefficient i versus ¢ for hard spheres with « = 1 (elastic
collisions), Re,, = 0.5, p,/p, = 1000, and three different values of the Reynolds number Rey:
(a) Rer = 0.5 (St7 = 56), (b) Rer =2 (Sty =222), and (¢) Rer = 5 (St; = 556).
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FIGURE 11. Plot of the ratios (a) n/nar, and (b) k /K4, as a function of the solid fraction ¢ for
Re,, = 0.1, Rer = 0.5 (St7 = 56) and different values of the coefficient of restitution . The
solid lines are the results derived here while the dashed lines are based on the model used by
Agrawal et al. (2001).

that this trend cannot be compared with that of figure 8 directly since the latter is
non-dimensionalized with the dry case and figure 10 is not to avoid division by zero.
Although the previous analytical works of Koch and co-workers in the Stokes flow
limit (Koch 1990; Sangani et al. 1996; Koch & Sangani 1999) ignore the impact of
the gas phase on the solid-phase constitutive relations, other groups have included such
effects (Ma & Ahmadi 1988; Balzer et al. 1995; Lun & Savage 2003). Expressions
including such effects for shear viscosity and thermal conductivity are given by
Agrawal et al. (2001), and are compared with those derived here in figures 11(a)
and 11(b), respectively. For the shear viscosity (figure 1la), the qualitative nature
of the gas-phase influence is similar in that it is more apparent at dilute conditions,
though the expression derived here shows a stronger gas-phase influence. On the other
hand, for the case of the thermal conductivity (figure 11b), the expression derived
here displays essentially no impact from the gas phase, whereas previous expressions
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FIGURE 12. Plot of reduced shear viscosity u, = 4n/(ps¢yc?) as a function of Sty,ear/Ruiss
in the case of hard spheres with « = 1 for two different values of the solid volume fraction:
(a)  =0.01 and (b) ¢ = 0.1. The solid lines are the theoretical results and the circles are the
simulation results obtained by Sangani et al. (1996).

show a dampening of the thermal conductivity relative to the (dry) granular case. It
is worth noting, however, that this comparison is not apples-to-apples due to two key
differences between the previous treatments and the current one. Namely, as described
in § 1, the previous treatments have incorporated the effects of gas-phase turbulence
and have used a form of the instantaneous drag force that mimics the form of the
mean force, neither of which is implemented in our expressions.

Finally, our predictions for the shear viscosity and the steady granular temperature
are compared in figures 12 and 13, respectively, with the numerical simulations
performed by Sangani et al. (1996). The shear viscosity and the (steady) granular
temperature were obtained from simulations in the simple shear flow state, and thus
Re,, = 0. Consistent with this work (Sangani et al. 1996), the results here are plotted
against a Stokes number Sty., based on the shear rate y = dU,/dy. This Stokes
number is defined by (Sangani et al. 1996)

my

St shear = . (8.11)
3no u,
The reduced shear viscosity u; is defined by
4n
Mg = —"FT>T—7, (8.12)
pspyo?
while the (steady) granular temperature 6 is
4T
9 = ﬁ' (8.]3)
mo?y

In the simple shear flow state, the granular temperature 7 is determined by applying
the steady-state condition to the balance equation of the temperature. The shear
viscosity u, and the square root of temperature /6 are plotted in figures 12 and
13, respectively, as functions of St,.../R4s for hard spheres with o = 1. (Note that
the reduced shear viscosity u, is also defined differently than shown in Sangani
et al. (1996). The results presented here correct the error contained in the original
publication; D. L. Koch, personal communication.) It is apparent that our theoretical
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FIGURE 13. Plot of the square root of granular temperature /6 = /4T/m (yo)™" as a
function of St .., /Ry, in the case of hard spheres with o« = 1 for two different values of the
solid volume fraction: (a) ¢ = 0.01 and (b) ¢ = 0.1. The solid lines are the theoretical results
and the circles are the simulation results obtained by Sangani et al. (1996).

predictions slightly overestimate the shear viscosity and granular temperature for dilute
conditions (¢ = 0.01 in figures 12a and 13a) while exhibiting close agreement at more
moderate volume fractions (¢ = 0.1 in figures 12b and 13b). This observation can
be explained via the assumption of low Knudsen number Kn used in our derivation.
In particular, previous work in granular systems (no fluid phase) has shown that the
simple shear flow state contains higher-order effects (beyond Navier—Stokes order: see
Santos et al. 2004) and that such effects become more important in dilute flows
(Hrenya et al. 2008). Nonetheless, the agreement here is encouraging and bodes well
for the extension of the PR-DNS-based acceleration model used here to higher Re,,
and its subsequent incorporation into Navier—Stokes-order hydrodynamics, especially
considering the complexities associated with deriving higher-order hydrodynamics and
associated boundary conditions.

9. Summary

In this work, a rigorous incorporation of the gas phase into the starting kinetic
(Enskog) equation has been demonstrated via an instantaneous model for the drag
force. A unique aspect of this work is the use of a Langevin model for the
instantaneous gas-phase force on a particle. Here we have focused on a parameter
space consistent with the conditions of a CFB (i.e. ¢ =0-0.5,a = 0.5-1, p;/p, =
800-2500, Re,, = 0.1-1 and Rey = 0.5-5). The coefficients of the Langevin model are
related to the dissipation and source of granular energy and can be obtained from
analytical expressions (for Stokes flow and ¢ < 0.1: Koch 1990) or from simulations
(multipole expansions for Stokes flow and ¢ > 0.1: Koch & Sangani 1999) or from
PR-DNS (for higher Reynolds numbers). For proof-of-concept purposes, attention here
is limited to low Reynolds numbers in order to allow for direct comparisons with
previous analytical treatments. It is found that the additional terms appearing in the
balance equations due to the presence of the gas phase are the same regardless of
treatment. Furthermore, the Chapman—Enskog method is used to derive Navier—Stokes-
order constitutive relations for balance equations. The results indicate a non-negligible
influence of the gas phase on the shear viscosity and the Dufour coefficient, whereas
such effects had been ignored in previous analytical treatments for Stokes flow.
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FIGURE 14. (Colour online) Plots showing the verification of the Langevin model. (a)
The particle velocity autocorrelation function extracted from PR-DNS of freely evolving
suspension (volume fraction of 0.2, mean-flow Reynolds number 20 and solid-to-fluid density
ratio of 100) compared with the exponential decay predicted by the Langevin model. (») The
same as (a) for a suspension with solid-to-fluid density of 100.

Specifically, the presence of the gas phase lowers the shear viscosity and increases
the Dufour coefficient relative to the granular (no gas phase) case, with the degree of
influence larger in more dilute systems. This non-negligible influence persists even for
finite Stokes number of O(10). Moreover, the shear viscosity in gas—solid suspensions
is found to approach to zero in the dilute limit (consistent with previous findings
of Tsao & Koch 1995 and Sangani et al. 1996 for simple shear flow), unlike its
granular counterpart which takes on a finite value in the same limit. Also, the Dufour
coefficient in gas—solid systems is found to be non-zero in the elastic limit, which is
not the case for (dry) granular systems but is the case for granular mixtures (i.e. more
than one solid species).

The Langevin model for the instantaneous gas—solid force is applicable to a much
wider parameter space than that explored here, including higher Reynolds numbers
and polydisperse systems. For instance, figure 14 shows that the decay of the particle
velocity autocorrelation function p(s) (see equation (3.7)) computed by PR-DNS of
freely evolving gas—solid suspension at a mean-flow Reynolds number of 20 matches
the exponential decay predicted by the Langevin equation. Therefore, fluid—solid force
models of the form given by (2.1) can be extended seamlessly to gas—solid systems
at higher Reynolds numbers. The model coefficients for such systems are attainable
via PR-DNS, which are not limited to a narrow parameter space as is their analytical
counterpart. Such work is expected to be important for a wide range of practical
applications and physical phenomena, such as systems in which the interstitial gas
has been shown to have an impact on the stability of the homogeneous state (Koch
1990; Garzé 2005) or on species segregation (Mobius er al. 2001; Naylor, Swift &
King 2003; Yan et al. 2003; Sanchez, Swift & King 2004; Mobius et al. 2005; Wylie
et al. 2008; Zeilstra, van der Hoef & Kuipers 2008; Idler et al. 2009; Clement et al.
2010). Finally, this work serves as a proof-of-concept for the use of PR-DNS-based
models for instantaneous particle acceleration in the starting kinetic equation; this
approach can in principle be extended to more complex flows such as those requiring
an anisotropic Langevin model.
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Appendix A. Chapman-Enskog method

The velocity distribution function £V obeys the kinetic equation

Iy y 0
90 4+ 2 _ (P ap_g). m_ 2 0
(0" +2)f m &) oy “mav Y 2§av2f

=— (8" +v-V) O - 11 (A1)

Here, Jg)[f] means the first-order contribution to the expansion of the Enskog collision
operator and .Z is the linear operator

L10 == (B O IO 0) (A2)

The macroscopic balance equations to first order in the gradients are

2
DOn=—nV.U, DOU=—(mn)"'Vp, DOT= _chV U -¢OT, (A3)
n

where DV =9 + U - V. Use of (A3) in (A1) and taking into account the form of
J,(fl)[f] obtained by Garzé & Dufty (1999) for a dry granular gas, one gets

Yy 9
50 1+ oy 0 _ (B ap _r m_ 2L M
0" +2)f m &) v “mav 2§8V2f

2
=A-VInT+B-Vinn+Cyz (ailfj+ajUi— S8V -U) +DV .U, (A4)

where the expressions of A, B, C;; and D are the same as those obtained by Garz6 &
Dufty (1999). They are given by

A (V) = 1vvv VFO — 1; aavf<°>+ SH Vv - (VFO)] (A5)
. — _vrO _ i Oy _ e -~ [£(0)
B (V)=-Vf p(1+¢ ¢lnp> _f ) <+2¢3¢lnx>%{[f |. A6)
Cy(V)= f“” + [ if“”} , (A7)
J
p=1v -(Vf“”)—1 ¢ +3 4 -(Vf(o))+l<)£‘[8 SO (A8)
= v ) U dp 1% i A .

Here, Vy =9/0V,

=L 142720 4 ayxe, (A9)
nT
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¢ is defined by (6.15), ¢y is defined by (7.24) and (7.25) and %, is the operator

%[X]zadx/dvz/da@((?-glz)(a-glz)a

x [a 2 QW)X + P w)X )], (A 10)

where v/ =v; — (1 +a ') (0 -g,)6/2) and v =v, + (1 + ') (0 - g,,)0/2).

The solution to (A4) can be written in the form (7.1). The unknown functions of
the peculiar velocity, A, B, €; and 2 appearing in f) are determined by solving
(A4). By dimensional analysis, A(V) = vy~ ?A*(V*), B(V) = v, 0" B*(V"),
G(V) = v, GV and 2(V) = vy V0D (VY), where € = 1/no?"! s
the mean free path for hard spheres and A*(V*), B*(V"), €;(V"), and Z; (V") are
dimensionless functions of the reduced velocity V* =V /vy, vy = +/2T/m being the
thermal speed. Consequently,

oA (V) =" TIrA (V) = —%VV S(VA V) (3T
=—%VV'(VA(V)) (ms—ZTy —é“”T>, (ATD)
m
"B (V)= (3" T)3;B (V) = —%VV -(VB (V) 3T

= _LVV (VB (V)) (mé - Zly - Z(O)T> , (A12)
2T m

0,7 (V) = 3" T)or6; (V) = —% (Vv - (VG (V) + %] 0°T)

1
_ﬁ[

Vy - (V& (V) + %] (ms - %Ty - §<°>T> VN E)

3092 (V)= (0"T)0r2 (V) = —% [Vy - (V2 (V) + 2] 3°T)
S (Vv - (V2 (V) + 7] (mé - Z—Ty - g<°>T> . (A14)
2T m

In addition,

2
3OVInT=vo"InT=V (’"5 — Iy - §<o>>
T m

2n
_ {my" _ %gn +¢O (1 +¢3¢111X)} Vinn

2T m 1 ©
-\ —vr+ 6§ —mér+ 07 ) VInT, (A15)
m T 2
where
dy dy
W=t yr=or, A16
Vi an Yr 9T ( )
0§ 0§
= —, = A17
& ™ T=or ( )
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Upon deriving (A 14), use has been made of the explicit form of ¢©@. Since the
gradients of the fields are all independent, (A4) can be separated into independent
equations for each coefficient. This leads to the following set of linear, inhomogeneous
integral equations:

! (2)/ e {(0)> -(VA) — <2mTVT + Tf — mér + ;C(o)> A

2\ m
B a3 y d 82
1 /2y mé © B a
- — B —AU — .—3B
Z(m +e VB~ m U-s A%
y 0 1 82
- =~— . VB - B B=B
moV v 258 2 +Z
2
+ |:n’;yn_110.,§_n+§(0) (1+¢3¢1HX)} A, (A19)
1 [2y mé& o ] B d
il el A IR AN A g
Z(m 7t ) [t gy (V) U=g) 5y %
1 2
A N A N (A20)

maoV Y279V

L(Zy _mé o o, Bav_q). 2L
2<m s e )[@Jr (V@)} (mAU g> v 7

2 g L%V G ga-p. (A21)
maV 27 9V?

Equations (A 18)—(A 21) reduce to those previously obtained for dry granular fluids (no
gas phase) (Garzé & Dufty 1999; Lutsko 2005) when g =y =& =0.

Appendix B. Kinetic contributions and collisional cooling rate

In this appendix we give some details of the evaluation of the kinetic contributions
to the transport coefficients n, « and p and the first-order contribution ¢y to the
collisional cooling rate.

Let us start with the shear viscosity 7. Its kinetic part 7, is given by

= ! dvD;6:(V B1
nk__(Ci_l)M/vUU( ), B1)

where D = m(V;V; — (1 /d)V26,;,-). To obtain it, we multiply (A 19) by D;; and integrate
over velocity to get

1 /2y mé 2y
< -t 4(0)) M+ —m + vy =nT
m T m

S ©)
(d—l)(d+2)/dv U(V)%/{ av/ ] ©2
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where

/ dv D;(V).ZL€;(V)

vy = , (B3)
[ w0
and use has been made of the results
0 0
dVD,—%,; =0, dVD,;,—V,6; =2(d — 1)(d + 2)n, B4
/ igy, 0 / gy, (O ( )(d + 2)ni (B4)
82

The first identity in (B4) and (BS5) follow from the solubility conditions of the
Chapman—Enskog method:

/dv{l, v, VY P(V) = (0,0, 0. (B 6)

The collision integral of the right-hand side of (B2) has been evaluated in previous
works (Garzé & Dufty 1999; Lutsko 2005). Thus, the kinetic part 7, is given by

nT d-2

2
= 7 p 5 [1—d+2(1—|—a)(1—3a)¢x . B7)

Y 2 Té m
In order to get an explicit expression for 7, one has to consider the leading terms in
a Sonine polynomial expansion of the distribution function. Here, we have considered
a recent modified version of the standard method (Garzé et al. 2007¢; Garzd, Vega
Reyes & Montanero 2009) that yields good agreement with computer simulations even
for quite strong values of dissipation (Montanero, Santos & Garzé 2007). The final
form of n, is given by (7.7).

The kinetic parts «; and u; of the transport coefficients characterizing the heat flux
are defined, respectively, as

1
k== [ QSIV) AW, (B8)
,U«k=—1/dvs(V)°3(V), B9

dn

where
S(V) = (Z’V2 — d;LZT> V. (B 10)

We obtain first the kinetic part k. It is obtained by multiplying (A 18) by S(V) and
integrating over V. The result is

3 /2 mé 2T m 1
) (n)z/ - T C(O)> K — (mVT + ?5 —mér + 25(0)> Kk

3y _ 1 [avsw).a B1l
+ + v, Kk——dT/ (V) -A, ( )

m
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where
/dv S(V) - LZAV)
Ve = , B12)
/dv S(V)AV)
and use has been made of the results
0 0
/dVSiJZZ» =0, /dVS,-Ve&Z» = 3dT «, (B13)
aV, aV,
32
/dVS,-JzZ =0. (B 14)
V2

The right-hand side of (B 11) has already been evaluated for dry granular fluids (Garzé
& Dufty 1999; Lutsko 2005) so the final form of «; can easily be obtained from
(B 11). It is given by (7.17). The evaluation of u; follows mathematical steps similar
to those made in the calculation of «;. Its explicit form can be written as

kovoT 3 mé - . _1|2n P
= —— [Vu_(g(o)_)} {Kk‘)ol[mVn—T§n+§(O)(1+¢3¢lnX)

n 2 T
d—1 32"—2(01—1) 1 )<1 131 )
+ 7 a + ddi2) ox(1+« +2¢¢nx
x [a(a— 1)+%(1o+2d—3a+3a2)} } (B 15)

where

/de(V) - ZBV)
b= . (B 16)
/de(V)ﬁ(V)

As in the case of the shear viscosity, to get the explicit forms of v, and v,, one has to
consider the leading terms in the (modified) Sonine polynomial expansion (Garzd et al.
2007¢, 2009). To leading order the results yield v, = v,, where u, is given by (7.22).

We consider finally the first-order contribution ¢y to the collisional cooling rate. It is
given by (7.25), where ¢, is defined by

| -
=g — ot i =) [ vy [avaghrOwnaws. @ 17)
ar (432
2

where the unknown functions Z(V) are the solutions to the linear integral
equation (A21). An approximate solution to this integral equation (A21) can be
obtained by taking the leading Sonine approximation

V) = epfu(VIF(V), (B 18)

where

> d+2 dd+2
m) pr_dr2m,  dd+2) (B 19)
2 T 1

FV) = (57
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The coefficient ep is given by

-2 1 / dV 2(V)F(V) (B20)
C= dd+2)n '
Substitution of (B 19) into (B 17) gives
3(d+2) 3
L= WX(l —a?) (1 + 128a2> Voep. (B21)

The coefficient ep is determined by substituting (B22) into the integral
equation (A 21), multiplying by F(V) and integrating over V. The result is

3 2)/ "l§ (0) 14 2 1/
= 24 + 4% ey + =———— [ dVF(V)D(V), B22
< T ¢ €p meD Vyép dd+2)n (V)D(V) ( )

where the term ¢j;;a; has been been neglected in accordance with the present
approximation. Moreover, the terms proportional to a, coming from v, and ¢ must
also be neglected by consistency. In (B 22), we have introduced the collision frequency

/ AVE(V) LI (V)F(V)]
b = . (B23)
/ AV (V)E(V)F(V)

As before, the right-hand side of (B 22) has been previously evaluated for dense dry
granular fluids (Garzé & Dufty 1999; Lutsko 2005). Taking these results into account,
the expression for ep can be written as

(o 4 2 3mE 30 o2
( a2t VAR

e e (! - (B24)
—_— = a)|l-—a| =],
2(d+2) 3 2
where »* and v, are given by (7.28) and (7.29), respectively. With this result one gets
the expression (7.27) for ¢&y;.

Appendix C. Another theory for suspensions

In this appendix we display the explicit expressions for n and « used by Agrawal
et al. (2001). They can be written as n = non* and x = ko™, where the (reduced)
coefficients n* and «* are given by

n*:12{“°(l+8¢>8x) {1+83(35—2)¢X]+7688¢2x} ChH

. )\0{( 12 ){ 12, } 64 222}
=00 sy ) |1+ —8248 — x| + — (@41 — 338)8%% x2S . (C2)
X 5 5 257

Here, we have introduced the quantities

_ Sﬁ CDF(¢) &Rem
B 128 ¢X Ps ReT ,
8

T 5(41 — 335) + 368

po=(1+297", p* (C3)

(C4)

Ao
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1+«
, F@=0- $)*, (C5)
Cp = (24/Re,)(1 + 0.15Re%®*"),  Re,, <1000, Cp=0.44, Re, > 1000. (C6)

§ =
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