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Exact Solution of the Boltzmann Equation 
in the Homogeneous Color Conductivity Problem 
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An exact solution of the Boltzmann equation for a binary mixture of "colored" 
Maxwell molecules is found. The solution corresponds to a nonequilibrium 
homogeneous steady state created by a nonconservative external force. 
Explicit expressions for the moments of the distribution function are obtained. 
By using information theory, an approximate velocity distribution function is 
constructed, which is exact in the limits of small and large field strengths. 
Comparison is made between the exact energy flux and the one obtained from 
the information theory distribution. 

KEY WORDS:  Boltzmann equation; Maxwell molecules; nonlinear trans- 
port; information theory. 

1. I N T R O D U C T I O N  

Since its formulation in 1872, (~) the nonlinear Boltzmann equation has 
represented a cornerstone in the kinetic description of dilute simple or 
multicomponent gases. Closely related equations are also used in the study 
of other physical problems, such as the dynamics of electrons and phonons 
in solids or elementary excitations in quantum fluids and plasmas. 

Despite the fundamental importance of the Boltzmann equation, the 
mathematical complexity of its collision term has hindered the discovery of 
exact solutions. Exact solutions are important as means of gaining insight 
into nonequilibrium physical mechanisms and also as tests of approxima- 
tion methods. In the case of spatially homogeneous situations, Bobylev, 
Krook, and Wu (2) found in 1976 and exact explicit solution for Maxwell 
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molecules [particles interacting via a potential g(r)=~cr-4]. This 
stimulated important advances. (3) For an inverse power interaction, 
Nikol'skii (4~ has found a transformation that maps any given spatially 
homogeneous solution onto an inhomogeneous solution. Nevertheless, the 
solutions obtained in this way correspond to the so-called homoenergetic 
dilatational flows (5) and do not account for transport phenomena. 
Physically more interesting are Ikenberry and Truesdell's solution of the 
Boltzmann equation for planar shear flow at uniform temperature and 
density (5~ and Asmolov et al.'s solution for steady energy flow at constant 
pressure. (6) Both solutions are restricted to Maxwell molecules and are 
obtained in terms of the moments of the velocity distribution function. 

The aim of this paper is to present an exact solution of the Boltzmann 
equation for a binary mixture. The only previous exact solution for a multi- 
component gas we are aware of corresponds to a 2D homogeneous and 
isotropic system of so-called "very hard particles. ''(7) On the other hand, we 
shall consider here a steady nonequilibrium state where self-diffusion takes 
place. The system is not driven out of equilibrium by concentration 
gradients, but by the action of a homogeneous, velocity-dependent external 
force. This way of producing macroscopic flows in homogeneous situations 
by means of external nonconservative forces has been recently used in 
molecular dynamics simulations. Shear flow, (s) energy flow, (9) and color 
conductivity(i~ 11) have been generated with this method. 

The organization of this paper is as follows. The homogeneous color 
conductivity state is described in Section 2. In Section 3, exact expressions 
for the first few velocity moments are derived. Since the velocity distribu- 
tion function is not known exactly, information theory is used in Section 4 
to gain some insight into its qualitative features. Finally, some concluding 
remarks are offered in Section 5. 

2. HOMOGENEOUS COLOR CONDUCTIVITY STATE 

In the homogeneous color conductivity problem, ~1~ the system is a 
binary mixture Constituted by particles of species 1 and particles of 
species 2. Both. types of particles are mechanically identical, the only 
distinction being a label or "color charge" each particle carries with it. 
A constant external field is applied that accelerates particles of different 
species in opposite directions. This induces macroscopic fluxes in spite of 
the absence of concentration gradients. A drag force is also added to 
compensate for the increase of temperature, 

Let us assume that a steady homogeneous state has been reached. Let 
fr(v) be the velocity distribution function of particles of species r. The total 
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distribution function is f (v )  =j~(v)  +f2(v).  In the low-density imit, fx and 
f2 satisfy a coupled set of two Boltzmann equations: 

8 [F~v)f~(v)l=j[f~ f~]+J[f , , f2]  
8v 

= JEff, f ]  (1) 

and a similar equation for f2. In Eq. (1), Fr(v) is the external force acting 
on particles of species r, and J is the Boltzmann collision operator, which 
in standard notation reads (13) 

S~fr, fs] = f  dvl f dO Iv - -v i i  O-(Iu , o)[fr(v') fs(v~) (2) 

At the kinetic level, the external force that produces color diffusion is (1~ a2) 

Fr(v) = -- kB Ter -- ~v (3) 

where T is the temperature, er = Gx is a constant vector that mimics a 
chemical potential gradient, and 7 is a thermostat parameter identical for 
all the particles. Conservation of total momentum (taken to be zero) and 
energy imposes the constraints 

where 

F/IG 1 -}- H2 ~2 ~-- 0 

m j~ �9 e~ 

3 n 2 

m J2 �9 ~2 
3 nl 

is the number density and 

(4) 

(5) 

f, 
Jr = j dv vfr(v ) (7) 

is the particle flux (or color current) of species r. Taking into account 
Eqs. (3) and (4), it is easy to obtain the coupled set 

kB T ~_ ot 
----F'I'FFI ~V fl---~v'(Vfl)=J[f~m ' f ]  (8) 

kBTn I ~ ( ~ ) ~ 0 
~1 f - -  -- " m n2 "~vv f l  m~vv ( v f ) = g [ f , f ]  (9) 

where n=nl+n 2. Notice that the total distribution f does not obey a 
closed equation. 

nr ---- f dv fr(V) (6) 
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3. N O N L I N E A R  T R A N S P O R T  

In general, the set of equations (8) and (9) can only be solved by 
means of the Chapman-Enskog method. (~3) In this method, the solution is 
expressed as a perturbation expansion around the state of local equi- 
librium. Truncation of the expansion at the level of the first, second, 
or third order provides the Navier-Stokes, Burnett, or super-Burnett 
approximation, respectively. The corresponding expressions for the fluxes 
are generally not reliable far from equilibrium. 

However, the set of equations (8) and (9) can be solved by the 
moment method if one restricts oneself to Maxwell molecules. In that case, 
a moment of order k of the collision operator only involves moments of 
order less than or equal to k. For instance, (14/ 

f dv vJ[L, L] 

f dv m v v J [ f ,  s  

= - 2(nsjr - nrj,) (10) 

E( 2 ) = 2 '  n ,p ,  + n r P s + - ~ m j ~ ' j ,  

(n, P~ + nr P,) + m(j~jr + jrj,) 1 

- 2 ( n s P ~ - n r P s )  (11) 

rn 4 , 
J ~ dv ~- v2vJ[fr,  f~] = - ~ ~ nrq r (12) 

In these equations, 

are constants 

2 = 1.197c(~/m) ~/2 (13) 

2' = 0.925rc( ~/m ) 1/2 (14) 

Pr = f dv mvvf~(v) (15) 

is the pressure tensor, Pr = �89 tr P r is the hydrostatic pressure, and 

q r=  I dv2v2vfr(v ) (16) 

is the energy flux. The moment equations obtained from Eqs. (8) and (9) 
can be solved following a recursive scheme: if all the moments o f f  and fr  
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of order less than k are known, Eq. (9) allows one to obtain the moments 
o f f  of order k; once these moments are known, Eq. (8) gives the moments 
off,. of order k. As a starting point, the moments of order zero, n~ and n, 
and the moment of first order j =]1 + j 2 = 0  are assumed to be given. The 
first nontrivial moment is Jl. Multiplying both sides of Eq. (8) by v and 
integrating, one gets 

k B T  ~ . 
- - / 1 / 1 1 ; 1  -/- - - J l  = -)~nJl (17) 

m m 

Due to the'coupling between c~ and Jl, Eq. (5), Eq. (17) is a quadratic 
equation for Jl- Its physical solution is 

Jl = - a l ( e l )  n1~1 (18) 

where 

al(el)=~2n--  1 + 82 - 1 (19) 
nl 81 3 mn2)~ 2 n 2 

Nonequilibrium molecular dynamics simulations corresponding to this 
state (I~ are used to measure the self-diffusion coefficient D as the 
zero-field limit of the color conductivity coefficient a~(81): 

D =  lim 0"1(81) (20) 
gl ~ 0  

This represents an efficient alternative to molecular dynamics methods 
based on the Green-Kubo formula. On the other hand, the system may 
ex]hibit interesting physical properties beyond the linear response regime. ~11~ 
Here, we will study the nonlinear response of the system, as measured by 
the dependence of the main fluxes on the field strength, in the case of a 
dilute gas of Maxwell molecules. 

It is convenient to define a dimensionless color conductivity 
a * =  al/D, where D =kBT/mn2 is the self-diffusion coefficient of Maxwell 
molecules, ~13) and a dimensionless field strength 

8 , = ( 2  k B T  //1) 1/2 

\3  mn222 ~ll 82 (21) 

In terms of dimensionless quantities, Eq. (19) becomes 

a*(8*) = 8 " - 2 [ ( 1  +28*2) ~/2- 1] (22) 
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This is the most important transport coefficient of the problem. It exhibits 
a highly nonlinear dependence on the nonequilibrium parameter e*. Its 
power series expansion (Chapman-Enskog expansion) is 

(2~)! ~,2~ (23) 
a*(~*) = ( -1 )~  2~kl (k+ 1)! 

k = O  

This series is convergent for e ,2<  1/2. Thus, the Chapman Enskog 
expansion is adequate only for states near equilibrium. For instance, the 
super-Burnett approximation, a* ~ 1- !~*~ underestimates the exact 2 ~ 

value of a* at e* = 1 by about 32%. 
The function a*(e*) is plotted in Fig. 1. As the intensity of the external 

field increases, the conductivity coefficient decreases. This was also 
observed by Hoover (15) in his exact solution of the two-body Boltzmann 
equation for hard particles diffusing under the action of the same external 
field as considered here. Equation (22) shows that a * ~ x / 2  [~*l 1 in the 
large-field limit. Thus, the color current Jr grows (in absolute value) with 
le*l until reaching a saturation value .s~t Ilr 1= (3nln2kBT/m) 1/2. This upper 
bound to the mean velocity of a given species is imposed by the conserva- 
tion of total energy. 

Now, let us turn our attention to the pressure tensors. Equation (9) 
yields 

1_ p (1~1Jl + Jl gl)-t- ~-- P = - ) ~ ' n ( P -  p { )  (24) 
2 n 2 m 

O.E 

O. 

0. 

O. 

2 4 6 B 10 

Eo 2 

Fig. 1. Plots of the dimensionless color conductivity coefficient a*(e*) (solid line) and the yy 
element of the dimensionless pressure tensor P*y(e*) (dotted line). 
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where use has been made of Eq. ( l l ) .  The dimensionless tensor P * =  Pip 
is diagonal with elements 

P~*~ (~*) = Pz*= ( ~* ) 

= 1 + 5 ~ e * z a * ( e  *) (25) 

P*,(e* ) = 3 - 2P*y(e* ) (26) 

The function P*y(e*) is also plotted in Fig. 1. We observe that the contribu- 
tion to the kinetic energy associated with motion orthogonal to the field 
decreases as the field strength increases. In the large-field limit, Py* ~ 
( , / 2  ;0'/;~) I~*1-1 

The equation for the pressure tensor of species 1 is obtained from 
Eq. (8): 

kBT(e.lj l  + j ~ )  + 2 ~ P1 = -2(nP~ - n l  P) 
m 

+ 2 ' [ ( n p ~ + n l p ) ~ - ( n P x + n l P ) ]  (27) 

Let us introduce the dimensionless pressure tensor P* = P1/x lp ,  where 
Xr = n, /n is the molar fraction of species r. Thus, we get 

1 + (x2 /x l )  e*2a*(e *) 
p~(e*) - 1 + e*2a*(e *) (28) 

p* Io*~=pl,zz(e ) 1, yyt~ ~' ] 

= 1 +p*(e*) + (2/2' - 1) P*y(e*) (29) 
+ (;/,~')[1 + ~ ,2~, (~ , ) ]  

p* lo*~ 1 , x x ~ t ,  1=-'-- 3p*(e*)--2P*y~(e*) (30) 

* ~ ()~'/)o x/2 xl) le*l 1. Notice In the large-field limit, p* ,,~ Xz/Xl and PI yy 
that we have (v 2) = ( v )  2 for particles of each species in the limit of 16"1 
going to infinity. Therefore, 

( lim f , ( v ) = n r ~  v - - ~ - /  (31) 

The difference between the pressure tensors P* and P* is of second order 
in e* and vanishes in the case of an equimolar mixture (xl =x2). This 
suggests to define the tensor 

fl(a*) : ~ *-2 x 2 - 1  [ P * ( e * ) -  P*(~*)] (32) 
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which does not depend on the molar fractions. Its elements are 

1 ,~*(~*) 
co(~*) ~ tr Q -  1 + e*2~r*(e *) (33) 

co(~*) 

1 + (,~/;') ~*(e*)/co*(~*) 
(34) 

The functions co(~*) and f2yy(e*) are plotted in Fig. 2. 
The next moment we are going to evaluate is the energy flux of the 

whole system q = q~ + q2. From Eqs. (9) and (12) one gets 

p - - - p 1  ~ z + ~ "  P---PI + q : - ~ - 2 ' n q  (35) 
nl m 

whose solution is given by 

2 1 f x l  
q = P  ~ k Z  - 1 )  e*2~ rx (36) 

:3.0 

Fig. 2. 

Z . S .  

2 . 0  

1 . S  

0 . 0 , I  l i i 

O.D O. fi; 1.0 1 , 5  
Eo 2 

2 . 0  

Plots of the dimensionless functions s co(e*)= �89 tr fl(~*), 7(~), and ,/Irr)(e*), 
defined by Eqs. (32), (36), and (48), respectively. 
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where 

3 (9/2) co(e*)- 2(2),y(e*) (37) 
7(~*)-4  1 + (9/8)(2/2')e*2~r*(e *) 

In the limit I~*1 ~ , ? ~ ( 3 2 ' / x / 2 2 ) I ~ * J  -3, which is consistent with 
Eq, (31). The dimensionless function 7(e*) is also plotted in Fig. 2. Notice 
that the energy flux q vanishes in the particular case of an equimolar 
mixture. 

4. INFORMATION THEORY VELOCITY DISTRIBUTION 

Proceeding in a way similar to the one followed in the previous 
section, we can also obtain higher-order moments. However, we have 
not been able to obtain an explicit expression for the velocity distribution 
function. In order to get insight into its qualitative features, we are going 
to use information theory (~6~ to construct an approximate velocity 
distribution function f~m(v) that maximizes the entropy 

S t = - k B f d v f ~ ( v ) l n I ~ ( ~ ) 3 / 2 f ~ ( v ) l  (38) 

subject to the constraints given by Eqs. (6), (7), and (15). The result is 

f~IT)(v) = nr~- 3/21Frll/2 exp [--rr: (V--~) (V--~)  ] (39) 

where 

( )-' 1 m Jr Jr (40) r r=~mnr  Pr nr 

Substitution of Eq. (39) into Eq. (38) yields 

 {IE ( 
S ~lr~ = 2 nkB 1 + 5 In P*!~ P*l,xx - - - -  3x2 )1} 2 Y 1 g '20" '2  (41) 

This expression represents an upper bound to the entropy corresponding to 
the actual distribution function. As expected, the nonequilibrium entropy 
monotonically decreases as we move farther from equilibrium. 

The distribution given by Eq. (39) contains all the orders in ~* and is 
exact up to ~.2 (super-Burnett order): 

f l (V  ) ___..=_ f~O)(v) [ 1 2r - I ~ I ) ( v $ )  ~:* ~._ ~ 2 ) ( u  ~.2 jr. (~(~:1,:3)] (42)  
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where 
, (  m "~3/2 

f]~ = n \2~kB T /  e--mv212kBr (43) 

~ I ) (V*)=  -- (3X2~ t/2xl/  V* (44) 

+~2)(v*)=(l-X2~(3-v*2)+[2@-(1-x2)' ' 2 - ~ ' ] ( 3 v * 2 - v * 2 ) x i ) \ 2  xs) 2+2 J (45) 

v * = \ ~ }  v (46) 

Also, Eq. (39) reduces to the exact form (31) in the limit le*l --* oo. Thus, 
one can expect Eq. (39) to give a fair picture of the actual distribution for 
finite e*. 

In order to plot the distribution function, it is convenient to introduce 
the dimensionless quantity 

= - -  dry dG f~IT)(v) (47) 
(P, ( x )  nl oo -oo 

Figures 3 and 4 show ~0 lIT) @(IT) and @(IT) = Xl ~0 lIT) q_ X2 (p (2IT) for several 
values of s* and x t / x 2 .  We can see that for s* large enough, the total 
function q)(~T) exhibits two maxima. Also, q)(~T) is symmetric around v* = 0 
in the equimolar case. 

As a quantitative test of the usefulness of the information theory 
method, let us compare the energy flux obtained from Eq. (39) with the 
exact one, Eqs. (36) and (37). After some algebra one gets 

where 

q(IT) : f du 2 V2u165 f(2IT)(u 

= p 2  1 , (48) 

2' [~ oJ(e ) - 2 nyy(s*) y(1T)(~*)=-~0-*(8*) 9 * --~0-*2(g*)] (49) 

Comparison between 7 and 7 (~T> in Fig. 2 shows that 7 (Iv) underestimates 
the exact value at s * =  0 by a factor (4/3)(3 + 2/2')/(5 + 92/,V)= 0.61. This 
is a measure of the degree of approximation of Eq. (39) up to third order 
in s*. On the other hand, 7 m) tends to approach 7 as Le*I increases. 
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Fig. 3. Plots of the information theory distributions q)~lT)(/)x* ) (left solid line), tp(2m(v *) (right 
solid line), and ~0(~a)(v *) (dotted line), defined by Eq. (47), for a value of the field strength 
e* = 1. The values of the molar fractions are (a) xt = xz = 1/2 and (b) xj = 2x2 = 2/3. 
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5. C O N C L U S I O N S  

In summary, the hierarchy of moments of the Boltzmann equation for 
a binary mixture of mechanically identical Maxwell molecules has been 
exactly solved. It corresponds to a nonequilibrium homogeneous stationary 
state generated by introducing a homogeneous, velocity-dependent external 
force. This force accelerates particles of different "colors" along opposite 
directions, but keeps the temperature constant. The solution shows a highly 
nonlinear dependence of the fluxes on the field strength. Here, we have 
obtained the flux of particles, the pressure tensor, and the energy flux 
vector. Higher-order moments can also be obtained in a recursive way. The 
Chapman-Enskog expansion of the fluxes is convergent for states close to 
equilibrium (e .2 < 1/2), but fails otherwise. 

In an attempt to construct a velocity distribution function, the 
information theory method has been used. In the two-body problem, (~5) 
qualitative differences are apparent between the exact and the information 
theory distributions at moderate fields. However, the approximate distribu- 
tion obtained here is expected to share the main qualitative aspects with 
the exact distribution, since it becomes exact up to the super-Burnett order 
and also in the large-field limit. Comparison between the exact and the 
approximate energy fluxes shows a good agreement for large field strengths. 
In order to check the accuracy of the information theory distribution 
function, one would need to numerically solve the Boltzmann equation. 
Work is in progress along this line. 

We think that the search for exact solutions of the Boltzmann equa- 
tion, such as the one reported here, is useful in order to improve our 
understanding of nonequilibrium phenomena outside the linear regime. 
Moreover, exact solutions play an essential role to test approximation 
methods, simulation techniques, or model kinetic equations. 
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