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Grad’s moment method for a granular fluid at moderate
densities: Navier-Stokes transport coefficients
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The Navier-Stokes transport coefficients of a granular dense fluid of smooth inelastic
hard disks or spheres are explicitly determined by solving the inelastic Enskog equa-
tion by means of Grad’s moment method. The transport coefficients are explicitly
determined as functions of the (constant) coefficient of restitution and the solid vol-
ume fraction. In addition, the cooling rate is also calculated to first order in the spatial
gradients. The calculations are performed for an arbitrary number of dimensions.
The results are not limited to small dissipation and are expected to apply at moderate
densities. It is found that the expressions of the Navier-Stokes transport coefficients
and the cooling rate agree with those previously obtained from the Chapman-Enskog
method by using the leading terms in a Sonine polynomial expansion. This shows the
equivalence between both methods for granular fluids in the Navier-Stokes approxi-
mation. A comparison with previous results derived from Grad’s moment method for
inelastic disks and spheres is also carried out. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4798824]

I. INTRODUCTION

Granular media under rapid flow conditions admit a hydrodynamic description.1 The essential
difference from that for ordinary fluids is the absence of energy conservation, yielding subtle
modifications of the conventional Navier-Stokes (NS) equations for states with small spatial gradients
of the hydrodynamic fields. To gain some insight into the general description of the dynamics of
grains, a simple model is usually considered for a granular gas: a system constituted by smooth hard
spheres or disks with inelastic collisions. The loss of energy in each binary collision is accounted
for by a constant coefficient of normal restitution α ≤ 1, the case α = 1 corresponding to elastic
collisions.

At a kinetic theory level, the Boltzmann2 and Enskog3, 4 equations conveniently adapted to
account for inelastic binary collisions, have been employed in the past few years as the starting points
to derive the NS hydrodynamic equations from a more fundamental point of view. In particular,
assuming the existence of a normal or hydrodynamic solution5 for sufficiently long space and
time scales, the Chapman-Enskog method6 has been applied to calculate the distribution function
f (r, v, t) through first order in the spatial gradients. Use of this distribution allows one to determine
the dependence of the NS transport coefficients on the coefficient of restitution for dilute7 and
moderately dense8, 9 gases. In contrast to previous attempts,10–12 the results derived in Refs. 7–9
do not impose any constraint on the degree of dissipation and take into account the (complete)
nonlinear dependence of the transport coefficients on α. However, as for elastic collisions,6 the exact
forms of the NS transport coefficients require the solution of a set of linear integral equations and
so the leading terms in a Sonine polynomial expansion (first Sonine approximation) are usually
considered to get explicit expressions for all the above coefficients. In spite of this simple approach,
the corresponding analytical results compare quite well with Monte Carlo simulations,13 except
at high dissipation for the heat flux transport coefficients.14, 15 Motivated by this disagreement a
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modified version of the first Sonine approximation has been recently proposed16, 17 that significantly
improves the α-dependence of the heat flux transport coefficients and corrects the discrepancies
between simulation and theory.

An alternative procedure to solve the Boltzmann equation for a dilute gas is by means of the
moment method. The objective of the method is to evaluate the velocity moments of the distribution
function f (r, v, t) rather than its explicit form as in the Chapman-Enskog method. Those velocity
moments provide an indirect information on f and, additionally, its first few moments (the mass
density ρ, the flow velocity U, the temperature T, the pressure tensor Pij, and the heat flux vector
q) characterize the macroscopic state of the gas. Nevertheless, when one multiplies both sides of
the Boltzman equation by a given set of functions ψ(v) and integrates over the molecular velocity,
in general one obtains an infinite hierarchy of moment equations.5 This infinite hierarchy can be
recursively solved for some specific interactions potentials (such as Maxwell molecules, namely,
when particles repel each other with a force inversely proportional to the fifth-power of the distance)
and/or some special non-equilibrium situations.18 On the other hand, beyond this simple interaction
potential, one has to resort to an approximate method to solve the above hierarchy of moment
equations. The most widely used method was devised by Grad more than 50 years ago.19 The idea of
Grad’s method is to assume f (r, v, t) to be a local Maxwellian fM(r, v, t) times a sum over Hermite
polynomials Hk(v), i.e.,

f (r, v, t) → fM(r, v, t)
N−1∑
k=0

Ck(r, t)Hk(v). (1)

The coefficients appearing in each of the velocity polynomials Hk(v) are chosen by requiring that
the corresponding velocity moments of Grad’s solution (1) be the same as those of the exact
velocity distribution function. There are N arbitrary quantities which may be identified with the
basic (ρ, U, and T) and higher moments (Pi j , q, . . .) and can be determined by recursively solving
the corresponding transfer equations for the above moments. A reasonable choice for a three-
dimensional ordinary dilute gas is N = 13; in such a case the unknowns are the basic hydrodynamic
fields (ρ, U, and T) and the irreversible momentum and heat fluxes (Pij − nTδij and q). In this case,
the method is referred to as Grad’s 13-moment method.5 In the case of a general dimensionality d
the number of involved moments is d(d + 5)/2 + 1. Although Grad’s moment method was originally
proposed for dilute gases, its extension to dense gases is easy since one only has to consider the
kinetic contributions to the fluxes in the trial solution (1).

Grad’s moment method has been also applied to granular gases. In the context of the inelastic
Enskog equation, Grad’s 13-moment method was employed several years ago by Jenkins and
Richman20, 21 to determine the stress tensor, the heat flux, and the cooling rate in the NS approximation
(linear theory). Although the application of Grad’s method to the Enskog kinetic equation is not
restricted to nearly elastic particles (α � 1), the results derived by Jenkins and Richman20, 21 neglect
the cooling effects on the granular temperature T due to the cooling rate. Given that this assumption
can only be justified for nearly elastic systems, their expressions for the NS transport coefficients
differ from those obtained in Refs. 8 and 9 from the Chapman-Enskog method for arbitrary degree
of inelasticity. More recently,22 Grad’s method has been also applied for weakly inelastic dilute
gases with a coefficient of restitution which depends on the relative velocity.23

The aim of this paper is to use Grad’s method to obtain the NS transport coefficients of d-
dimensional granular fluids described by the Enskog kinetic equation. This study extends a previous
work of the author24 for dilute granular gases and so it provides a description of hydrodynamics and
transport at higher densities. With respect to the Jenkins-Richman theory,20, 21 the present results
incorporate two new ingredients not considered in the previous study. First, they are obtained
by accounting for the time dependence of the temperature coming from the inelastic cooling. As a
consequence, the corresponding expressions of the NS transport coefficients hold for arbitrary degree
of dissipation. Second, a new scalar field (the full contracted moment of fourth order c) is added
to the usual 13 moments of mass density, velocity, temperature, and the kinetic contributions to the
pressure tensor and heat flux vector. The inclusion of the fourth moment c in a theory for ordinary
gases that is related to Grad’s moment method was proposed first by Kremer.25 Subsequently, this
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moment has been also considered in some previous works26, 27 on dilute granular gases. As we will
show later, a direct consequence of the presence of the field c is a new contribution to the cooling
rate proportional to the divergence of the flow velocity as well as several new contributions to
the transport coefficients coming from non-Gaussian corrections to the distribution function in the
homogeneous cooling state.28 The question arises then as to whether, and if so to what extent, the
conclusions drawn by Jenkins and Richman20, 21 may be altered when the above two new ingredients
are incorporated in Grad’s solution.

In the NS approximation (namely, when only linear terms in the spatial gradients are retained),
the constitutive equations for the pressure tensor Pij, the heat flux q, and the cooling rate ζ are3, 8, 20, 21

Pi j = pδi j − η

(
∂iU j + ∂ jUi − 2

d
δi j∇ · U

)
− γ δi j∇ · U, (2)

q = −κ∇T − μ∇n, (3)

ζ = ζ0 + ζU∇ · U, (4)

where p is the hydrostatic pressure and n is the number density. In addition, η is the shear viscosity,
γ is the bulk viscosity, κ is the thermal conductivity, μ is a new transport coefficient not present
for elastic collisions, and ζ 0 and ζU are the zeroth- and first-order contributions, respectively, to the
cooling rate. The above NS transport coefficients can be written in reduced forms as

p(α, φ) = nT p∗(α, φ), η(α, φ) = η(1, φ)η∗(α, φ), γ (α, φ) = η(1, φ)γ ∗(α, φ), (5)

κ(α, φ) = κ(1, φ)κ∗(α, φ), μ(α, φ) = T κ(1, φ)

n
μ∗(α, φ), ζ0(α, φ) = nT

η(0, φ)
ζ ∗

0 (α, φ), (6)

where

φ = πd/2

2d−1d
(

d
2

)nσ d (7)

is the solid volume fraction and σ is the diameter of the spheres. The coefficients η(1, φ) and
κ(1, φ) are the values of the elastic shear viscosity and thermal conductivity, respectively, given by
the Enskog equation.29 The results derived in this paper show that the dimensionless coefficients
p∗, η∗, γ ∗, κ∗, μ∗, ζ ∗

0 , and ζU are in general nonlinear functions of the coefficient of restitution
α and the solid volume fraction φ. In addition, the expressions of all the above dimensionless NS
transport coefficients obtained here from Grad’s moment method agree with those derived from the
Chapman-Enskog expansion in the first Sonine approximation.8, 9 This confirms the expected mutual
consistency between both methods for solving the inelastic Enskog equation in the NS domain.

The plan of the paper is as follows. In Sec. II the Enskog kinetic equation and associated
macroscopic conservation laws for a granular fluid are introduced. An overview of Grad’s moment
method used for solving this kinetic equation is given in Sec. III. The explicit results for the NS
transport coefficients are provided in Sec. IV, with the details of the calculations appearing in
Appendixes A–C. A comparison with the results obtained by Jenkins and Richman for disks20 and
spheres21 is done in Sec. V, showing significant discrepancies between both theories especially in
the heat flux transport coefficients. Finally, a short summary of the results derived in the paper is
presented in Sec. VI.

II. ENSKOG KINETIC THEORY AND CONSERVATION LAWS

We consider a granular fluid composed by smooth inelastic disks or spheres of mass m and
diameter σ . The inelasticity of collisions among all pairs is accounted for by a constant coefficient
of normal restitution 0 ≤ α ≤ 1 that only affects to the translational degrees of freedom of grains.
The particular value α = 1 corresponds to elastic collisions (ordinary fluids). At a kinetic theory
level, all the relevant information on the state of the system is given by the one-particle velocity
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distribution function f (r, v, t). For moderate densities, the inelastic Enskog theory4 gives the time
evolution of f (r, v, t). In the absence of an external force, the Enskog equation has the form

(∂t + v · ∇) f (r, v, t) = JE [r, v| f (t)] , (8)

where

JE [r, v1| f (t)] = σ d−1
∫

dv2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)

[
α−2 f (2)(r, r − σ , v′

1, v′
2; t)

− f (2)(r, r + σ , v1, v2; t)
]

(9)

is the Enskog collision operator. In Eq. (9), d is the dimensionality of the system (d = 2 for disks
and d = 3 for spheres), σ = σ σ̂ , σ̂ being a unit vector along the centers of the two colliding spheres,
� is the Heaviside step function, g = v1 − v2 is the relative velocity and

f (2)(r1, r2, v1, v2, t) ≡ χ (r1, r2|n(t)) f (r1, v1, t) f (r2, v2, t). (10)

The primes on the velocities in Eq. (9) denote the initial values {v′
1, v′

2} that lead to {v1, v2} following
a binary collision:

v′
1 = v1 − 1

2

(
1 + α−1

)
(σ̂ · g)σ̂ , v′

2 = v2 + 1

2

(
1 + α−1

)
(σ̂ · g)σ̂ . (11)

Furthermore, χ [r, r + σ |n(t)] is the equilibrium pair correlation function at contact as a functional
of the non-equilibrium density field n(r, t) defined by

n(r, t) =
∫

dv f (r, v, t). (12)

The first d + 2 velocity moments of f (r, v, t) define the number density n(r, t), the flow velocity

U(r, t) = 1

n(r, t)

∫
dv v f (r, v, t), (13)

and the granular temperature

T (r, t) = m

dn(r, t)

∫
dv V 2 f (r, v, t), (14)

where V(r, t) ≡ v − U(r, t) is the peculiar velocity.
The exact macroscopic balance equations for n(r, t), U(r, t), and T (r, t) follow directly from

the Enskog equation (8) by multiplying with 1, mv, and 1
2 mv2 and integrating over v. After some

algebra, one gets8

Dt n + n∇ · U = 0, (15)

ρDtUi + ∂ j Pi j = 0, (16)

Dt T + 2

dn

(
∂i qi + Pi j∂ jUi

) = −ζ T, (17)

where Dt ≡ ∂t + U · ∇ is the material derivative and ρ = mn is the mass density. The cooling rate ζ

is (essentially) proportional to 1 − α2 and is due to dissipative collisions. The pressure tensor P(r, t)
and the heat flux q(r, t) have both kinetic and collisional transfer contributions, i.e., P = Pk + Pc

and q = qk + qc. The kinetic contributions are given by

Pk(r, t) =
∫

dvmVV f (r, v, t), qk(r, t) =
∫

dv
m

2
V 2V f (r, v, t), (18)
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and the collisional transfer contributions are8

Pc(r, t) = 1 + α

4
mσ d

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)2σ̂ σ̂

∫ 1

0
dx f (2)

× [r − xσ , r + (1 − x)σ , v1, v2; t] , (19)

qc(r, t) = 1 + α

4
mσ d

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)2(G · σ̂ )σ̂

∫ 1

0
dx f (2)

× [r − xσ , r + (1 − x)σ , v1, v2; t] , (20)

where f (2) is defined in Eq. (10) and G = 1
2 (V1 + V2) is the velocity of the center of mass. Finally,

the cooling rate is given by

ζ (r, t) =
(
1 − α2

)
4dnT

mσ d−1
∫

dv1

∫
dv2

∫
dσ̂�(σ̂ · g)(σ̂ · g)3 f (2)(r, r + σ , v1, v2; t). (21)

Apart from the balance equations for the hydrodynamic fields n, U, and T, to completely
characterize the macroscopic state of the granular fluid one should also derive the corresponding
balance equations for the pressure tensor and the heat flux. These equations will be derived in
Sec. III by considering an explicit form for the distribution function f (r, v, t).

III. GRAD’S MOMENT METHOD

Needless to say, to close the balance hydrodynamic equations (15)–(17), one needs to know the
functional dependence of the momentum and heat fluxes and the cooling rate on the hydrodynamic
fields n, U, and T. A possible way of obtaining this dependence is solving the Enskog equation
by means of the Chapman-Enskog method.6 This was the procedure followed in Refs. 8 and 9
to determine Pij, q, and ζ to first order in the spatial gradients (NS hydrodynamic order). Here,
a different procedure will be followed: Grad’s method of moments.19 Although the method was
originally devised to solve the Boltzmann equation for monatomic dilute gases, here it will be used
to determine the NS transport coefficients of a granular dense fluid described by the inelastic Enskog
equation (8).

As mentioned in the Introduction, Grad’s moment method is based on the expansion of the
velocity distribution function in a complete set of orthogonal polynomials (generalized Hermite
polynomials), the coefficients being the corresponding velocity moments. However, given that
the (infinite) hierarchy of moment equations is not a closed set of equations, one has to truncate the
above expansion after a certain order. After this truncation, the above hierarchy of moment equations
becomes a closed set of coupled equations which can be solved. This allows one, for instance, to get
the explicit forms of the NS transport coefficients. An interesting question is to assess the differences
between the results derived from the Chapman-Enskog expansion and Grad’s moment method when
only terms up to first order in the spatial gradients are retained in the constitutive equations for Pij,
q, and ζ .

In the application of the standard Grad moment method for a dense fluid, the retained moments
are the hydrodynamic fields (n, U, and T) plus the kinetic contributions to the irreversible momentum
and heat fluxes (Pk

i j − nT δi j and qk). In the three-dimensional case (d = 3), this implies that there
are 13 moments involved in the form of the velocity distribution function f; hence this method is
referred to as the 13-moment method. On the other hand, since we are interested in comparing the
present results with those obtained for granular dense gases8, 9 from the Chapman-Enskog method,
the full contracted moment of fourth order

c = 8

d(d + 2)

[
m2

4nT 2

∫
dv V 4 f (V) − d(d + 2)

4

]
(22)

will be also included. The inclusion of the scalar field c to the 13 moments of mass density, velocity,
pressure tensor, and heat flux vector will allow us to make a close comparison with the previous
Chapman-Enskog expressions derived for the cooling rate and the NS transport coefficients.8, 9
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Under the above conditions, the explicit form of the non-equilibrium distribution function
f (r, v, t) can be written as

f (V) → fM(V)

[
1 + m

2nT 2
Vi Vj�i j + 2

d + 2

m

nT 2
S(V) · qk + c

4
E(V )

]
, (23)

where

fM(V) = n
( m

2πT

)d/2
e−mV 2/2T (24)

is the local equilibrium distribution function

S(V) =
(

mV 2

2T
− d + 2

2

)
V, E(V ) =

(
mV 2

2T

)2

− d + 2

2

mV 2

T
+ d(d + 2)

4
, (25)

and

�i j = Pk
i j − nT δi j (26)

is the traceless part of the kinetic contribution to the pressure tensor. The coefficients appearing
in each one of the velocity polynomials in Eq. (23) have been chosen by requiring that the basic
hydrodynamics fields (n, U, and T), the kinetic contributions to the pressure tensor and the heat flux
vector, as well as the fourth contracted moment c of the trial function (23) to be the same as those for
the exact velocity distribution function f. As said in the Introduction, only the velocity moments of
the distribution function are present in Grad’s solution. For this reason, the collisional contributions
to the momentum and heat fluxes do not appear in the form (23) and they must be computed from
their definitions (19) and (20) by replacing the (true) one-particle velocity distribution function f by
its Grad’s approximation (23). The collisional contributions to the fluxes have been determined in
Appendix A.

For elastic collisions (α = 1), the coefficient c vanishes and so, one recovers the conventional
form for the trial distribution f in Grad’s 13-moment method.19 Note that, for the sake of simplicity,
in the 14-moment approximation (23) some third-degree moments not included in the kinetic heat
flux qk have been left out.26, 27 The same can be said of the remaining polynomials of the fourth
order. The inclusion of the above moments would modify, for instance, the form of the cooling rate.
However, as mentioned before, since we are interested in a theory with the same degree of accuracy
as the one reported8, 9 by using the Chapman-Enskog method, only the pressure tensor and the heat
flux, as well as the contracted fourth order moment (22), will be included in Grad’s distribution
function (23).

IV. NAVIER-STOKES TRANSPORT COEFFICIENTS

The form of the constitutive equations for the momentum and heat fluxes and the cooling rate
in the NS order are given by Eqs. (2)–(4), respectively. In this section, the NS transport coefficients
and the cooling rate will be explicitly determined by using Grad’s distribution (23). For the sake of
clarity, most of the technical details involved in these calculations are relegated to Appendixes A–C
and only the final expressions for η, γ , κ , μ, ζ 0, and ζU will be displayed here. Let us consider first
the momentum and heat fluxes.

A. Momentum and heat fluxes

The hydrostatic pressure p = Pii/d is given by

p = nT
[
1 + 2d−2(1 + α)φχ

]
, (27)

where the solid volume fraction is defined by Eq. (7). To first order in the gradients, the pressure
tensor Pij is given by Eq. (2). As expected, while the shear viscosity η has kinetic and collisional
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contributions, the bulk viscosity γ has only a collisional contribution. The latter coefficient is

γ = 22d+1

π (d + 2)
φ2χ (1 + α)

(
1 − c0

32

)
η0, (28)

where

η0 = d + 2

8


(

d
2

)
π (d−1)/2

σ 1−d
√

mT (29)

is the low-density value of the NS shear viscosity in the elastic limit. The coefficient c0 appearing
in Eq. (28) characterizes the deviations of the distribution function f from its Gaussian form in the
homogeneous cooling state. It is given by

c0 = 32(1 − α)(1 − 2α2)

9 + 24d − α(41 − 8d) + 30(1 − α)α2
. (30)

This expression coincides with the one derived a few years ago by van Noije and Ernst.28

The shear viscosity η is given by

η = ηk

[
1 + 2d−1

d + 2
φχ (1 + α)

]
+ d

d + 2
γ, (31)

where the subscript k denotes the contributions to the transport coefficients coming from the kinetic
parts of the fluxes. The kinetic part ηk of the shear viscosity is

ηk = nT

νη − 1
2ζ0

[
1 − 2d−2

d + 2
(1 + α)(1 − 3α)φχ

]
, (32)

where the collision frequency νη is

νη = 3ν

4d
χ

(
1 − α + 2

3
d

)
(1 + α)

(
1 − c0

64

)
. (33)

Here, the nominal collision frequency ν is defined by

ν = nT

η0
= 8π (d−1)/2

(d + 2)
(

d
2

)σ d−1n

√
T

m
. (34)

In Eq. (32), the zeroth-order contribution ζ 0 to the cooling rate is

ζ0 = d + 2

4d
(1 − α2)χ

(
1 + 3

32
c0

)
ν. (35)

To first order in the spatial gradients, the heat flux q is given by Eq. (3). The thermal conductivity
κ and the coefficient μ can be written as

κ = κk

[
1 + 3

2d−2

d + 2
φχ (1 + α)

]
+ 22d+1(d − 1)

(d + 2)2π
φ2χ (1 + α)

(
1 + 7

32
c0

)
κ0, (36)

μ = μk

[
1 + 3

2d−2

d + 2
φχ (1 + α)

]
, (37)

where

κ0 = d(d + 2)

2(d − 1)

η0

m
(38)
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is the low-density value of the thermal conductivity of an elastic gas. In addition, the kinetic parts
κk and μk are

κk = d − 1

d
κ0ν (νκ − 2ζ0)−1

{
1 + c0 + 3

2d−3

d + 2
φχ (1 + α)2

[
2α − 1 + c0

2
(1 + α)

]}
, (39)

μk = κ0T ν

n

(
νκ − 3

2
ζ0

)−1 {
ζ ∗

0 κ∗
k

(
1 + φ∂φ ln χ

) + d − 1

2d
c0 + 3

2d−2(d − 1)

d(d + 2)
φχ (1 + α)

×
(

1 + 1

2
φ∂φ ln χ

) [
α(α − 1) + c0

12
(10 + 2d − 3α + 3α2)

]}
. (40)

In Eq. (40), ζ ∗
0 ≡ ζ0/ν, κ∗

k ≡ κk/κ0, and the collision frequency νκ is

νκ = 1 + α

d
νχ

[
d − 1

2
+ 3

16
(d + 8)(1 − α) + 4 + 5d − 3(4 − d)α

1024
c0

]
. (41)

B. Fourth moment and cooling rate

In the first order of the spatial gradients, the fourth moment c is given by

c = c0 + c1∇ · U, (42)

where the coefficient c0 is given by Eq. (30). The first-order contribution c1 is

c1 = −4λ − 2d+1(d + 2)χφ(1 + α) (1 − 3α)
(
1 + c0

2

)
νζ + 19

16 d(d + 2)2χ (1 − α2)
, (43)

where

λ = 2d−3φχ (1 + α)

×
{

5 + 4d(1 − 3α) − 9α + 3α2 − 15α3 − c0

4

[
15α3 − 3α2 + 3(4d + 15)α − (20d + 1)

]}
,

(44)

νζ = −d + 2

32
χ (1 + α)

[
32(d − 1) + 3(1 − α)(10α2 + 10d + 39)

]
. (45)

Finally, to first order in the gradients, the cooling rate ζ is expressed by Eq. (4), where ζ 0 is
given by Eq. (35) and

ζU = − 3

d
χ (1 − α2)

(
2d−2φ − d + 2

128
c1

)
. (46)

It must be noted that Navier-Stokes hydrodynamics retains terms up through second order in
the spatial gradients. Since the cooling rate ζ is a scalar, its most general form at this order is

ζ = ζ0 + ζU∇ · U + ζn∇2n + ζT ∇2T + ζnn(∇n)2 + ζT T (∇T )2

+ζnT ∇n · ∇T + ζ1,uu∂iU j∂iU j + ζ2,uu∂ jUi∂iU j . (47)

The first two second-order terms ζ n and ζ T have been determined for dilute granular gases by Brey
et al.,7 while all the set of coefficients {ζ n, ζ T, ζ nn, ζ nT, ζ 1, uu, ζ 2, uu} have been computed for
granular gases of viscoelastic particles by Brilliantov and Pöschel.30 The evaluation of the above set
of coefficients for dense gases is a quite intricate problem. In fact, to the best of my knowledge, no
explicit results for these coefficients have been reported for granular dense gases. However, it has
been shown for dilute gases that the contributions of the second-order terms to the cooling rate ζ

are negligible7, 30 as compared with the corresponding zeroth-order contribution ζ 0 (the first-order
contribution ζU vanishes for dilute gases). It is assumed here that the same holds in the dense case
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and so, for practical applications these second-order contributions can be in principle neglected in
the Navier-Stokes hydrodynamic equations.

C. Dilute granular gas

An interesting particular case corresponds to the low-density limit (φ = 0). In this case, γ

= ζU = 0 and the NS transport coefficients become

η = nT

νη − 1
2ζ0

, (48)

κ = d − 1

d
κ0ν

1 + c0

νκ − 2ζ0
, (49)

μ = T

n

ζ0κ + d−1
2d κ0νc0

νκ − 3
2ζ0

. (50)

Here, νη, ζ 0, and νκ are given by Eqs. (33), (35), and (41), respectively, with χ = 1.
Equations (48)–(50) agree with those recently obtained24 from the Boltzmann equation. In ad-
dition, the results reported here coincide with those derived by Kremer and Marques27 for a dilute
granular gas when one neglects the cooling effects on the granular temperature (i.e., when one
formally takes ζ 0 = 0 in Eqs. (48)–(50)).

V. COMPARISON WITH OTHER RESULTS

The results derived in Sec. IV provide the expressions of the NS transport coefficients and
the cooling rate obtained by solving the inelastic Enskog equation by means of a 14-moment
method. More specifically, the bulk (γ ) and shear (η) viscosities are given by Eqs. (28) and (31),
respectively, the thermal conductivity κ is given by Eqs. (36) and (39), the coefficient μ is given by
Eqs. (37) and (40), and the cooling rate coefficient ζU is given by Eq. (46). It is quite apparent that the
reduced forms η∗, γ ∗, κ∗, and μ∗ of the above transport coefficients [see Eqs. (5) and (6)] present a
complex dependence on both the coefficient of restitution α and the solid volume fraction φ. In order
to get their explicit forms, the dependence of the pair correlation function χ on φ must be chosen. In
the three-dimensional case (d = 3), a good approximation for χ is given by the Carnahan-Starling
expression31

χ (φ) = 1 − 1
2φ

(1 − φ)3
, (51)

while for hard disks (d = 2), χ can be approximated by32

χ (φ) = 1 − 7
16φ

(1 − φ)2
. (52)

A comparison with the results8 obtained from the Chapman-Enskog method for inelastic hard
spheres (d = 3) shows that the expressions of the NS transport coefficients η, γ , κ , and μ are the same
as those obtained here from Grad’s moment method. In the case of arbitrary number of dimensions
d, the above expressions also agree with those obtained first by Lutsko9 and more recently by the
author of the present paper.33, 34 On the other hand, the first order contribution ζU to the cooling
rate [see Eq. (46)] is different from the one derived in the Chapman-Enskog theory. However, a
study of the dependence of ζU on φ and α shows that the results obtained from both methods are
very similar. To illustrate these differences, Fig. 1 shows the magnitude |ζU| versus the solid volume
fraction φ for three different values of the coefficient of restitution (α = 0.9, 0.7, and 0.5) in the
case of hard spheres (d = 3). We observe that the Chapman-Enskog and Grad predictions for |ζU|
are indistinguishable in all the range of values of φ analyzed. A similar behavior is also found for
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FIG. 1. Plot of the magnitude of the first-order contribution ζU to the cooling rate versus the solid volume fraction φ for hard
spheres (d = 3) and three different values of the coefficient of restitution α: α = 0.9, α = 0.7, and α = 0.5. The solid lines
are the results obtained from Grad’s method, while the dashed lines correspond to those obtained from the Chapman-Enskog
method.

a two-dimensional system. Consequently, we can conclude that both methods essentially yield the
same results in the NS regime.

Apart from comparing the present results with those derived from another different method
(Chapman-Enskog expansion), it is quite instructive to make a comparison between the results
of this paper with those previously reported in the literature by employing a different version of
Grad’s method. As mentioned in the Introduction, Grad’s 13-moment method was already used
many years ago by Jenkins and Richman to determine the NS transport coefficients of a dense gas
of inelastic hard disks20 and spheres.21 Their explicit results are displayed in Appendix D for the
sake of completeness. As usual in the conventional Grad’s method, these authors did not include the
fourth order polynomial E(V ) in the trial solution (23) and so the coefficients c0 and c1 vanish in
their approximation.

A careful comparison between the results displayed in Sec. IV with those provided in
Appendix D shows that the expressions for η, γ , κ , and μ are different in both approaches. The
differences are essentially due to the assumptions made in Refs. 20 and 21 since the authors neglect
the time dependence of temperature due to collisional cooling (which is formally equivalent to take
ζ 0 = 0) and, as said before, they do not include the fourth degree polynomial E(V ) in Grad’s
solution (23) (which is equivalent to take c0 = c1 = 0). It is important to remark that, while the latter
simplification is in general not relevant (except for very small values of the coefficient of restitution),
the former assumption turns out to be quite significant beyond the quasielastic limit (i.e., for finite
values of the coefficient of restitution).

In order to illustrate the quantitative differences between the Jenkins-Richman theory20, 21

and the results displayed in Sec. IV, Figs. 2–4 show the α-dependence of the reduced transport

FIG. 2. Plot of the reduced shear viscosity η∗(α, φ) = η(α, φ)/η(1, φ) versus the coefficient of restitution α for two different
values of the solid volume fraction (φ = 0 and φ = 0.2) in the cases of hard disks (a) and hard spheres (b). The solid lines
are the results derived here, while the dashed lines are the results obtained by Jenkins and Richman.20, 21
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FIG. 3. Plot of the reduced thermal conductivity κ∗(α, φ) = κ(α, φ)/κ(1, φ) versus the coefficient of restitution α for two
different values of the solid volume fraction (φ = 0 and φ = 0.2) in the cases of hard disks (a) and hard spheres (b). The solid
lines are the results derived here, while the dashed lines are the results obtained by Jenkins and Richman.20, 21

coefficients η∗(α, φ) ≡ η(α, φ)/η(1, φ), κ∗(α, φ) ≡ κ(α, φ)/κ(1, φ), and μ∗(α, φ) ≡ nμ(α, φ)/
Tκ(1, φ), respectively. Two different values of the solid volume fraction φ have been considered: a
dilute gas (φ = 0) and a moderately dense gas (φ = 0.2). Moreover, for the sake of completeness,
the above reduced transport coefficients have been plotted for disks (d = 2) and spheres (d = 3).

It is apparent from Fig. 2 that the qualitative dependence of the shear viscosity on dissipation is
relatively well captured by the Jenkins-Richman theory, especially in the three-dimensional case. In
this case (d = 3), both Grad’s solutions predict that while η∗ is an increasing function of dissipation
for dilute gases, the opposite happens at moderate densities. However, at a more quantitative level,
there are important discrepancies between both theories, especially as the coefficient of restitution
α decreases. The differences for the heat flux transport coefficients are much more significant than
those observed for the shear viscosity. In the case of the thermal conductivity, Fig. 3 shows that both
theories predict different qualitative behavior for a dilute gas (φ = 0): while the present theory shows
that the latter coefficient increases with decreasing α, the opposite happens in the Jenkins-Richman
theory. As the density increases, although the differences between both theories are smaller than that
of a low-density gas, they are still large for finite dissipation, especially in the case of hard disks.
As expected, the discrepancies are much more important for the coefficient μ (which vanishes in
the elastic limit). In particular, the coefficient μ becomes negative in the Jenkins-Richman theory
[see Eqs. (D4) and (D8)] for inelastic dense gases (φ 
= 0), but its magnitude is practically zero. This
drawback is not present in our results since μ is always positive for any value of α and φ. In addition,
according to the results presented here, although the magnitude of μ is in general smaller than that

FIG. 4. Plot of the reduced coefficient μ∗(α, φ) = nμ(α, φ)/Tκ(1, φ) versus the coefficient of restitution α for two different
values of the solid volume fraction (φ = 0 and φ = 0.2) in the cases of hard disks (a) and hard spheres (b). The solid lines are
the results derived here, while the dashed lines are the results obtained by Jenkins and Richman.20, 21 Note that the coefficient
μ vanishes in the Jenkins-Richman theory for a dilute gas (φ = 0).
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FIG. 5. Plot of the magnitude of the first-order contribution ζU to the cooling rate versus the coefficient of restitution α for
hard spheres (d = 3) and two different values of the solid volume fraction φ: φ = 0.1 and φ = 0.3. The solid lines are the
results obtained here, while the dashed lines correspond to those obtained by Jenkins and Richman.21

of the thermal conductivity κ , we observe that the influence of μ on the heat transport could not be
considered as negligible as the degree of dissipation increases.

Finally, the dependence of the magnitude of the first order contribution to the cooling rate |ζU|
on the coefficient of restitution is plotted in Fig. 5 for hard spheres and two values of the solid
volume fraction. Note that the results derived by Jenkins and Richman21 for ζU coincide with those
obtained here when one neglects the coefficient c1 defined by Eq. (43). Figure 5 shows that the
agreement between both theories is quite good, indicating that the influence of the coefficient c1 on
|ζU| is relatively small. Thus, in contrast to the behavior observed in some of the previous transport
coefficients, the expression for ζU obtained by Jenkins and Richman21 can be considered as reliable,
even for finite values of dissipation.

VI. CONCLUSIONS

In this paper, the NS transport coefficients of a granular fluid have been determined by solving
the inelastic Enskog equation by means of Grad’s moment method. As in previous works on dilute
granular gases,24, 26, 27 the solution proposed here differs from the conventional 13-moment method
by the inclusion of the full contracted fourth moment c defined by Eq. (22). To first order in the
spatial gradients, this moment can be written as c = c0 + c1ν

−1∇ · U, where ν is an effective collision
frequency defined by Eq. (34), c0 is given by Eq. (30) and the expression of c1 is given by Eq. (43).
While the fourth cumulant c0 takes into account the contributions to the transport coefficients coming
from non-Gaussian corrections to the homogenous cooling state, the presence of c1 gives rise to
a new first-order contribution to the cooling rate. The coefficient c0 vanishes for elastic collisions,
while c1 = 0 in the limits of elastic dense spheres (α = 1 but φ 
= 0) and of dilute inelastic spheres
(α 
= 1 but φ = 0). Thus, although both coefficients are different from zero for inelastic dense fluids,
their impact on the NS transport coefficients is in general quite small and, consequently, one can
neglect their contributions to the NS transport coefficients even for finite degree of dissipation.

On the other hand, in contrast to the previous works20, 21, 26, 27 for granular gases from Grad’s
moment method, the present results also take into account the time dependence of the granular
temperature due to cooling effects. This dependence is accounted for by the zeroth-order cooling
rate ζ 0 given by Eq. (35). In fact, if one neglects the small corrections due to c0 and c1, the present
results agree with the previous ones for dense gases20, 21 when one takes ζ 0 = 0 in the expressions
displayed in Sec. IV. The quantitative variation of the (reduced) transport coefficients on both the
coefficient of restitution and density has been widely illustrated in Figs. 2–4. The comparison with
the Jenkins-Richman theory20, 21 clearly shows that in general the influence of ζ 0 on η∗ (see Fig. 2),
κ∗ (see Fig. 3), and μ∗ (see Fig. 4) is significant and so the cooling effects on granular temperature
cannot be neglected beyond the quasielastic limit (α � 1).

Furthermore, the expressions obtained here for the NS transport coefficients and the cooling
rate agree completely with those obtained several years ago from the Chapman-Enskog expansion
by considering the first Sonine approximation.8, 9 As for ordinary gases,5, 6 this agreement shows the



043301-13 Vicente Garzó Phys. Fluids 25, 043301 (2013)

equivalence between both approximate methods to solve the Enskog equation for granular dense
gases in the NS regime. It must be remarked that the inclusion of more velocity moments (for instance,
all the third and fourth degree velocity moments) would change the final results since, for instance,
there would be likely additional contributions to the cooling rate. Nevertheless, for practical purposes,
the inclusion of those new terms in Grad’s solution (23) makes analytic calculations much more
difficult since higher order collision integrals should be evaluated to compute the new contributions
to the momentum and heat fluxes.

The derivation of explicit expressions for the transport coefficients is perhaps one of the most
important challenges of granular gas research. The theoretical results reported in this paper cover
part of this challenge, at least in the NS domain. Nevertheless, the present results have some
restrictions. First, although the Enskog equation retains spatial correlations arising from volume
exclusion effects, it still assumes uncorrelated particle velocities (molecular chaos hypothesis).
Therefore, it is expected that the results reported here only apply to moderate densities (solid
volume fraction typically smaller than or equal to 0.25). However, in spite of this limitation, there is
substantial evidence in the literature35 on the reliability of the Enskog kinetic theory to accurately
describe macroscopic properties (such as transport coefficients) for a wide range of densities and/or
collisional dissipation. Another important limitation is the accuracy of the results obtained here for
quite extreme values of dissipation. As mentioned in the Introduction, although the approximate
expressions for the NS transport coefficients displayed in Sec. IV compare in general quite well with
computer simulations,13 there are significant discrepancies for the heat flux transport coefficients
for small values of α (say, for instance, α � 0.7). Therefore, the reliability of the expressions
(36) and (37) for the thermal conductivity κ and the coefficient μ, respectively, can be questionable
for this range of small values of the coefficient of restitution. In the context of the Chapman-Enskog
solution, the above discrepancies between theory and simulation can be in part mitigated16, 36 when
one uses the homogeneous cooling state distribution instead of the Maxwellian distribution as the
weight function in the corresponding first-Sonine approximation. Finally, the evaluation of the
second-order contributions (defined in Eq. (47)) to the cooling rate from Grad’s moment method
could be a possible future work. This would allow us to assess their impact on the cooling rate
for finite densities. In addition, the knowledge of these second-order terms along with the transport
coefficients derived in this paper would provide us the complete set of transport coefficients needed
to solve the nonlinear Navier-Stokes hydrodynamic equations.
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APPENDIX A: COLLISIONAL CONTRIBUTIONS TO THE FLUXES

The collisional transfer contributions to the pressure tensor and heat flux are determined from
Eqs. (19) and (20), respectively. In order to get these collisional contributions to first order in gradi-
ents, it is convenient to express first the contracted fourth moment c to linear order. Thus, based on
previous results derived in the NS order for dense gases,8 it is expected that in the linear theory the
trial distribution function (23) must depend on the divergence of flow velocity through the moments
acting as coefficients. Given that the tensor �ij is traceless, the only contribution proportional to
∇ · U in Grad’s solution (23) comes from the fourth moment c. This necessarily implies (as we will
show later in Appendix C) that the coefficient c can be decomposed as

c = c0 + c1ν
−1∇ · U, (A1)

where ν is defined by Eq. (34). According to the decomposition (A1), while the coefficient c0

characterizes the deviations of f from its Gaussian form in the homogenous cooling state, the
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coefficient c1 gives rise to a new first-order contribution to the cooling rate ζ . This new contribution
was not accounted for in previous results20, 21 based on Grad’s method.

Let us evaluate now the collisional contributions. Consider first the pressure tensor which
becomes up to first order in the gradients

Pc
i j = 1 + α

4
mσ dχ

∫
dV1

∫
dV2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)2σ̂i σ̂ j [ f0(V1) f0(V2) + f1(V1) f0(V2)

+ f0(V1) f1(V2) − 1

2
f0(V2)σ̂ · ∇ f0(V1) + 1

2
f0(V1)σ̂ · ∇ f0(V2)

]
, (A2)

where

f0(V) = fM(V)
(

1 + c0

4
E(V )

)
, (A3)

is the part of the trial distribution (23) of zeroth-order in spatial gradients and

f1(V) = fM(V)

[
m

2nT 2
Vi Vj�i j + 2

d + 2

m

nT 2
S(V) · qk + c1

4
E(V )ν−1∇ · U

]
(A4)

is the part of the trial distribution (23) of first-order in spatial gradients. Upon writing Eqs. (A2)–(A4)
use has been made of Eq. (A1). The integration over solid angle in Eq. (A2) yields

Pc
i j = 1 + α

4

B2

d + 2
mσ dχ

∫
dV1

∫
dV2 [ f0(V1) f0(V2) + 2 f1(V1) f0(V2)]

(
2gi g j + g2δi j

)
−∂kU�

1 + α

4

B3

d + 3
mσ d+1χ

∫
dV1

∫
dV2 f0(V1)

∂ f0(V2)

∂V2�

g−1

× [
gi g j gk + g2

(
gkδi j + giδ jk + g jδik

)]
, (A5)

where the coefficients Bn are defined by28

Bn ≡
∫

dσ̂ �(σ̂ · g)(σ̂ · g)n = π (d−1)/2 
(

n+1
2

)


(
n+d

2

) . (A6)

The expression (A5) can be more explicitly written when one takes into account the forms of f 0 and
f 1. After some algebra, the result is

Pc
i j = B2

1 + α

2
nσ dχnT + B2

d + 2
(1 + α)nσ dχ�i j

+ ∂kU�

1 + α

4

B3

d + 3
mσ d+1χ

∫
dV1

∫
dV2 f0(V1) f0(V2)

∂

∂V2�

× {
g−1

[
gi g j gk + g2

(
gkδi j + giδ jk + g jδik

)]}
= B2

1 + α

2
nσ dχnT + B2

d + 2
(1 + α)nσ dχ�i j

− B3
d + 1

4d2
mσ d+1

∫
dV1

∫
dV2 f0(V1) f0(V2)g

×
[

d

d + 2

(
∂ jUi + ∂iU j − 2

d
δi j∇ · U

)
+ δi j∇ · U

]
= B2

1 + α

2
nσ dχnT + B2

d + 2
(1 + α)nσ dχ�i j

− B3
d + 1

2d2


(

d+1
2

)


(
d
2

) n2σ d+1
√

mT χ (1 + α)
(

1 − c0

32

)
×

[
d

d + 2

(
∂ jUi + ∂iU j − 2

d
δi j∇ · U

)
+ δi j∇ · U

]
. (A7)
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Note that in the last term of Eq. (A7) nonlinear terms in c0 have been neglected. From Eq. (A7),
one can easily identify the collisional transfer contributions to the hydrostatic pressure pc, the shear
viscosity ηc and the bulk viscosity γ . They are given by

pc = 2d−2(1 + α)φχnT, (A8)

γ = 22(d−1)
(

d
2

)
π (d+1)/2

φ2χ (1 + α)
(

1 − c0

32

)
σ 1−d

√
mT , (A9)

ηc = 2d−1

d + 2
φχ (1 + α)ηk + d

d + 2
γ, (A10)

where use has been made of the definition (7) of the solid volume fraction φ.
The collisional transfer contribution to the heat flux to first order in the gradients can be obtained

in a similar way. The result is

qc
i = 1 + α

2
mσ dχ

∫
dV1

∫
dV2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)2(σ̂ · G)̂σi

×
[

f1(V1) f0(V2) + 1

2
f0(V1)σ̂ · ∇ f0(V2)

]
= 3

2

B2

d + 2
nσ dχqk

i − ∂i T
B3

8d

mσ d+1

T
χ (1 + α)

∫
dV1

∫
dV2 f0(V1) f0(V2)

×
[

g−1(g · G)2 + gG2 + 3

2
g(g · G) + 1

4
g3

]

= 3

2

B2

d + 2
nσ dχqk

i − ∂i T
B3

2d


(

d+3
2

)


(
d
2

) (
1 + 7

32
c0

)
n2σ d+1

√
T

m
χ (1 + α). (A11)

From Eq. (A11), one may identify the collisional contributions κc and μc to the thermal conductivity
κ and the coefficient μ, respectively. They are given by

κc = 3
2d−2

d + 2
φχ (1 + α)κk + 22d−3

(
d
2

)
π (d+1)/2

φ2χ (1 + α)

(
1 + 7

32
c0

)
σ 1−d

√
T

m
, (A12)

μc = 3
2d−2

d + 2
φχ (1 + α)μk . (A13)

APPENDIX B: KINETIC CONTRIBUTIONS TO THE FLUXES

The kinetic contributions to the momentum and heat fluxes are defined by Eq. (18). To obtain
them in the NS approximation, one has first to expand the collision operator JE[ f, f ] to first order
in the gradients. To do so the following results are needed:

χ (r, r ± σ |n) → χ

(
1 ± 1

2
n
∂ ln χ

∂n
σ · ∇ ln n

)
, (B1)

f (r ± σ , V, t) → f0(r, V, t) + f1(r, V, t) ± σ · ∇ f0(r, V, t), (B2)

where f 0 and f 1 are defined in Eqs. (A3) and (A4), respectively, and χ is obtained from the functional
χ (r, r ± σ |n) by evaluating all density fields at n(r, t). The collision operator to first order then
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becomes8

JE[ f, f ] → −
(

1 + 1

2
φ

∂ ln χ

∂φ

)
K[ f0] · ∇ ln n + 1

2
K

[
∂

∂V
· (V f0)

]
· ∇ ln T

+1

2
Ki

[
∂ f0

∂Vj

]
�i j + 1

d
Ki

[
∂ f0

∂Vi

]
∇ · U − L f1, (B3)

where

�i j ≡ ∂ jUi + ∂iU j − 2

d
δi j∇ · U, (B4)

and we have introduced the operators

LX = − (
J (0)[ f0, X ] + J (0)[X, f0]

)
, (B5)

J (0) [X, Y ] = χσ d−1
∫

dv2

∫
dσ̂�(σ̂ · g)(σ̂ · g)

[
α−2 X (v′

1)Y (v′
2) − X (v1)Y (v2)

]
, (B6)

and

K[X ] = σ dχ

∫
dv2

∫
dσ̂�(σ̂ · g)(σ̂ · g)̂σ

[
α−2 f0(v′

1)X (v′
2) + f0(v1)X (v2)

]
. (B7)

Here, v′
1 and v′

2 are defined by Eq. (11).
We consider the kinetic contributions to the shear viscosity η. Multiply both sides of Eq. (8) by

mVi Vj and integrate over velocity to get

∂t Pk
i j + Pk

i j∇ · U + U�∂� Pk
i j + Pk

�j∂�Ui + Pk
�i∂�U j + 2

d + 2
∂�(qk

i δ j� + qk
j δi� + qk

� δi j )

=
∫

dvmVi Vj JE[ f, f ], (B8)

where use has been made of the result∫
dv mVi Vj V� f (V) = 2

d + 2
(qk

i δ j� + qk
j δi� + qk

� δi j ). (B9)

The integral on the right-hand side of Eq. (B8) can performed by using the definition (B3)∫
dv mVi Vj JE[ f, f ] = −

∫
dv mVi VjL f1 + 1

2

∫
dv mVi VjK�

[
∂ f0

∂Vp

]
��k

+ 1

d

∫
dv mVi VjK�

[
∂ f0

∂V�

]
∇ · U. (B10)

The collision integrals appearing in Eq. (B10) can be evaluated by considering the explicit forms of
f 0 and f 1. The first integral is given by8, 24, 33∫

dv mVi VjL f1 = νη�i j + nT ζ0δi j , (B11)

where νη and ζ 0 are given by Eqs. (33) and (35), respectively. Note that nonlinear terms in c0, �ij,
and qk have been neglected in Eq. (B11) when f 0 and f 1 are replaced by their Grad’s approximations
(A3) and (A4), respectively. The remaining two integrals can be performed using the definition of K
in Eq. (B7). The first integral is∫

dv mVi VjK�

[
∂ f0

∂Vp

]
��p = σ dχ

∫
dV1

∫
dV2 mV1i V1 j

∫
dσ̂�(σ̂ · g)(σ̂ · g)̂σ�

×
[
α−2 f0(V′

1)
∂ f0(V′

2)

∂V ′
2p

+ f0(V1)
∂ f0(V2)

∂V2p

]
��p. (B12)
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A simpler form of this integral is obtained by changing variables to integrate over V′
1 and V′

2
instead of V1 and V2 in the first term of Eq. (B12). The Jacobian of the transformation is α and
σ̂ · g = −ασ̂ · g′. Also, V1(V′

1, V′
2) ≡ V′′

1 = V1 − 1
2 (1 + α)σ̂ (σ̂ · g). The integral then becomes∫
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) − (1 + α)(σ̂ · g)̂σi σ̂ j σ̂�

]
��p

= mχ
1 + α

4
σ d

∫
dV1

∫
dV2 f0(V1) f0(V2)

∫
dσ̂�(σ̂ · g)(σ̂ · g)

× [
4
(
V1i σ̂ j σ̂�σ̂p + V1 j σ̂i σ̂�σ̂p

) − 3(1 + α)(σ̂ · g)̂σi σ̂ j σ̂�σ̂p
]
��p

= 2d−1

d + 2
nT φχ (1 + α)(1 − 3α)�i j , (B13)

where in the last step use has been made of the angular integrals∫
dσ̂�(σ̂ · g)(σ̂ · g)̂σi σ̂ j σ̂� = B2

d + 2

(
δi j g� + δi�g j + δ j�gi

)
, (B14)

∫
dσ̂�(σ̂ · g)(σ̂ · g)2σ̂i σ̂ j σ̂�σ̂p = B2

(d + 2)(d + 4)

[
2
(
gi g jδ�p + gi g�δpj + gi gpδ�j + g�g jδi p

+ gpg jδi� + g�gpδi j
) + g2

(
δi jδ�p + δi�δ j p + δi pδ j�

)]
. (B15)

The last integral appearing in Eq. (B10) can be performed by using similar mathematical steps. It is
given by ∫

dv mVi VjK�

[
∂ f0

∂V�

]
= δi j 2

d−2nT χφ(1 + α)(1 − 3α). (B16)

We are interested in the solution to Eq. (B8) in the NS approximation. Thus, in order to solve
(B8), one needs to make use of the balance equations (15)–(17) up to first order in the spatial
gradients

∂t n → −U · ∇n − n∇ · U, ∂t U → −U · ∇U − ρ−1∇ p, ∂t T → −U · ∇T − 2

dn
p∇ · U − ζ T,

(B17)
where the pressure p is given by Eq. (27) and the cooling rate can be written as (see Appendix C),

ζ → ζ0 + (ζ10 + ζ11c1) ∇ · U. (B18)

According to Eq. (2), the kinetic contribution ηk to the shear viscosity is defined as

�i j = −ηk�i j . (B19)

The coefficient ηk can be easily obtained from Eq. (B8) when one takes into account Eqs. (B10),
(B11), (B13), and (B16). The corresponding equation for ηk is

(
∂t + νη

)
ηk = nT

[
1 − 2d−2

d + 2
χφ(1 + α)(1 − 3α)

]
, (B20)
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where the time derivative ∂ tηk must be evaluated at zeroth-order in spatial gradients. From dimen-
sional analysis ηk ∝ T1/2 and so

∂tηk = 1

2
ηk∂t ln T = −1

2
ζ0ηk . (B21)

The solution to Eq. (B20) is given by Eq. (32) when one takes into account the result (B21).
Apart from obtaining ηk, the coefficients in Eq. (B8) proportional to the divergence of the flow

velocity allows one to determine ζ 10. It is given by

ζ10 = −3
2d−2

d
χφ(1 − α2). (B22)

This first-order contribution to the cooling rate will be also determined in Appendix C by following a
different route. Moreover, the coefficient c1 = 0 at this level of approximation. A nonzero contribution
to c1 will be obtained when we determine the (contracted) fourth degree velocity moment of f.

The kinetic parts of the thermal conductivity κ and the coefficient μ are obtained in a similar
way. Multiplication of Eq. (8) by m

2 V 2Vi and integration over the velocity yields

∂t q
k
i + d + 2

2

[
nT ∂tUi + c0

2m
∂i (nT 2)

]
+ d + 2

2m
∂i

(
nT 2) + d + 2

2
nT U · ∇Ui

=
∫

dv
m

2
V 2Vi JE[ f, f ], (B23)

where only linear terms in the spatial gradients have been considered on the left-hand side of
Eq. (B23). In addition, I have assumed that c0 is uniform (see Eq. (30)) and have used the relation∫

dv
m

2
V 2Vi f (V) = d + 2

4

nT 2

m
δi j

(
c0 + c1ν

−1∇ · U
) + T

m

(
d + 4

2
Pk

i j − nT δi j

)
. (B24)

Equation (B23) can be more explicitly written when one takes into account the balance
equations (B17). The result is

∂t q
k
i + d + 2

2

T 2

m

(
1 + c0

2
− p∗ − φ

∂p∗

∂φ

)
∂i n + d + 2

2

nT

m

(
2 + c0 − p∗) ∂i T

=
∫

dv
m

2
V 2Vi JE[ f, f ], (B25)

where

p∗ ≡ p

nT
= 1 + 2d−2φχ (1 + α). (B26)

The collision integral on the right side of (B25) can be evaluated by using similar mathematical
steps as those made before in Eqs. (B11)–(B16). After a tedious and long algebra, one gets8, 24, 33∫

dv
m

2
V 2Vi JE[ f, f ] = −

∫
dv

m

2
V 2ViL f1 −

(
1 + 1

2
φ

∂ ln χ

∂φ

)
∂ j ln n

∫
dv

m

2
V 2 Vi K j [ f0]

+1

2
∂ j ln T

∫
dv

m

2
V 2 Vi K j

[
∂

∂V
· (V f0)

]
= −νκqk

i − 2d−3φχ (1 + α)
nT 2

m

(
1 + 1

2
φ

∂ ln χ

∂φ

)
×

[
2(d + 2) + 3α(α − 1) + c0

4
(10 + 2d − 3α + 3α2)

]
∂i ln n

−2d−4φχ (1 + α)
nT 2

m

[
2(d + 2) + 3(1 + α)(2α − 1)

+3

2
c0(1 + α)2

]
∂i ln T, (B27)
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where νκ is given by Eq. (41). As before, linear terms in c0, �ij, qk , and c1 have been only retained
in Eq. (B27).

The constitutive equation for qk is

qk = −κk∇T − μk∇n. (B28)

Dimensional analysis shows that κk ∝ T1/2 and μk ∝ T3/2. Thus, according to Eq. (B28), to first order
in the gradients the time derivative of the kinetic contribution to the heat flux can be written as

∂t q
k
i = 2ζ0κk∂i T + ζ0

[
T κk

n

(
1 + φ

∂ ln χ

∂φ

)
+ 3

2
μk

]
∂i n, (B29)

where use has been made of the relation

∂i (∂t T ) → −∂i (ζ0T ) = −ζ0T

(
1 + φ

∂ ln χ

∂φ

)
∂i ln n − 3

2
ζ0T ∂i ln T . (B30)

Substitution of Eqs. (B27) and (B29) into Eq. (B25) leads to the following set of equations when one
equates coefficients pertaining to the density and temperature gradients

2ζ0κk + d + 2

2

nT

m

(
2 + c0 − p∗) = νκκk − 2d−4φχ (1 + α)

nT

m

[
2(d + 2) + 3(1 + α)(2α − 1)

+3

2
c0(1 + α)2

]
, (B31)

ζ0

[
T κk

n

(
1 + φ

∂ ln χ

∂φ

)
+ 3

2
μk

]
+ d + 2

2

T 2

m

(
1 + c0

2
− p∗ − φ

∂p∗

∂φ

)
= νκμk

−2d−3φχ (1+α)
T 2

m

(
1+ 1

2
φ

∂ ln χ

∂φ

) [
2(d +2)+3α(α − 1)+ c0

4
(10+2d − 3α+3α2)

]
. (B32)

The solution to Eqs. (B31) and (B32) gives the expressions (39) and (40) for κk and μk, respec-
tively, once the explicit form (B26) for p∗ is considered.

APPENDIX C: COOLING RATE ζ AND FOURTH MOMENT c

In this Appendix, the cooling rate ζ and the fourth moment c are determined to first order in
gradients. The cooling rate ζ is defined by Eq. (21). Up to the first order in gradients, ζ is

ζ = 1 − α2

4dnT
mσ d−1χ

∫
dV1

∫
dV2

∫
dσ̂ �(σ̂ · g)(σ̂ · g)3 f0(V1) f0(V2)

−1 − α2

4dnT
mσ dχ

∫
dV1

∫
dV2 f0(V1) f0(V2)

∫
dσ̂ �(σ̂ · g)(σ̂ · g)3

(
∂ ln f0(V2)

∂V2i

)
(σ̂ · ∇)Ui

+1 − α2

4dnT
mσ d−1χ

∫
dV1

∫
dV2 [ f0(V1) f1(V2) + f1(V1) f0(V2)]

∫
dσ̂ �(σ̂ · g)(σ̂ · g)3

= ζ0 + ζ10∇ · U + ζ11c1∇ · U, (C1)

where in the last step use has been made of the form (A1) of the fourth moment c. In Eq. (C1),

ζ0 ≡ B3
1 − α2

4dnT
mσ d−1χ

∫
dV1

∫
dV2 g3 f0(V1) f0(V2), (C2)

ζ10 ≡ −3B2

d

1 − α2

4dnT
mσ d−1χ

∫
dV1

∫
dV2 g2 f0(V1) f0(V2), (C3)

ζ11 ≡ B3
1 − α2

8dnT
mσ d−1χν−1

∫
dV1

∫
dV2 g3 E(V2) f0(V1) f0(V2). (C4)
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Here, the coefficients Bn are defined by Eq. (A6) and ν is given by Eq. (34). The integration over
velocity can be carried out in Eqs. (C2)–(C4) when one takes into account the expression (A3) of
f 0. Neglecting nonlinear terms in c0, the coefficients ζ 0 and ζ 10 are given by Eqs. (35) and (B22),
respectively, while ζ 11 is

ζ11 = 3(d + 2)

128d
(1 − α2)χ

(
1 + 3c0

64

)
. (C5)

The complete determination of the cooling rate and the NS transport coefficients still requires
to get the quantities c0 and c1. To evaluate them, one multiplies both sides of Eq. (8) by V 4 and
integrates over velocity. In the NS order, one gets

d(d + 2)

m2

(
1 + c0

2
+ c1

2ν
∇ · U

) [
∂t (nT 2) + d + 4

d
nT 2∇ · U + U · ∇(nT 2)

]
=

∫
dvV 4 JE[ f, f ].

(C6)
The left-hand side of Eq. (C6) can be simplified when one takes into account the balance
equations (B17). To first order in spatial gradients, the result is

−2d(d + 2)
nT 2

m2

{(
1 + c0

2

) [
ζ0 +

(
2

d
(p∗ − 1) + ζ10 + ζ11c1

)
∇ · U

]
+ ζ0

2ν
c1∇ · U

}
=

∫
dvV 4 JE[ f, f ]. (C7)

The collision integral on the right side can be computed by using similar mathematical steps as those
made before. Neglecting nonlinear terms in c0 and c1 and after a tedious algebra, one gets∫

dvV 4 JE[ f, f ] = −d +2

2

nT 2

m2
(1 − α2)

[
d + 3

2
+α2 + c0

2

(
3

32
(10d +39+10α2)+ d − 1

1 − α

)]
ν

+
(c1

4
νζ + λ

) nT 2

m2
∇ · U, (C8)

where λ and νζ are given by Eqs. (44) and (45), respectively. Upon deriving Eq. (C8), use has been
made of the partial results ∫

dv V 4L f1 = νζ

nT 2

m2
, (C9)

∫
dv V 4K�

[
∂ f0

∂V�

]
= dλ

nT 2

m2
. (C10)

Substitution of Eq. (C8) into Eq. (C7) allows one to explicitly determine c0 and c1. They are given
by Eqs. (30) and (43), respectively. Note that in Eqs. (30) and (43) nonlinear terms in c0 and c1 (such
as c2

0, c0c1, and c2
1) have been neglected.

APPENDIX D: JENKINS AND RICHMAN EXPRESSIONS

The expressions obtained years ago by Jenkins and Richman20, 21 for the NS transport coefficients
of a dense gas of inelastic hard diks20 and spheres21 are displayed in this Appendix. These authors
solved the Enskog kinetic equation from Grad’s 13-moment method.

In the case of smooth hard disks (d = 2), their results are20

η = 8η0

χ (7 − 3α)(1 + α)

[
1 − 1

4
(1 + α)(1 − 3α)φχ

] [
1 + 1

2
(1 + α)φχ

]
+ 1

2
γ, (D1)

γ = 8

π
φ2χ (1 + α)η0, (D2)
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κ = 2κ0

χ (1 + α)
[
1+ 15

4 (1−α)
] [

1+ 3

8
(1+ α)2(2α− 1)φχ

] [
1 + 3

4
(1 + α)φχ

]
+ 2

π
φ2χ (1 + α)κ0,

(D3)

μ = − 3T κ0

2nχ (1 + α)
[
1 + 15

4 (1 − α)
]φχ

(
1 + 1

2
φ

∂ ln χ

∂φ

)
α(1 − α2)

[
1 + 3

4
φχ (1 + α)

]
. (D4)

Here, η0 and κ0 are given by Eqs. (29) and (38), respectively.
In the case of smooth hard spheres (d = 3), their results are21

η = 4η0

χ (3 − α)(1 + α)

[
1 − 2

5
(1 + α)(1 − 3α)φχ

] [
1 + 4

5
(1 + α)φχ

]
+ 3

5
γ, (D5)

γ = 128

5π
φ2χ (1 + α)η0, (D6)

κ = 2κ0

χ (1+α)
[
1+ 33

16 (1−α)
] [

1+ 3

5
(1 + α)2(2α − 1)φχ

] [
1 + 6

5
(1+α)φχ

]
+ 256

25π
φ2χ (1+α)κ0,

(D7)

μ = − 12T κ0

5nχ (1 + α)
[
1 + 33

16 (1 − α)
]φχ

(
1 + 1

2
φ

∂ ln χ

∂φ

)
α(1 − α2)

[
1 + 6

5
φχ (1 + α)

]
. (D8)
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Proc. 762, 797–802 (2005); V. Garzó and F. Vega Reyes, “Mass transport of impurities in a moderately dense granular
gas,” Phys. Rev. E 79, 041303 (2009).

14 J. J. Brey and M. J. Ruiz-Montero, “Simulation study of the Green–Kubo relations for dilute granular gases,” Phys. Rev.
E 70, 051301 (2004); J. J. Brey, M. J. Ruiz-Montero, P. Maynar, and M. I. Garcı́a de Soria, “Hydrodynamic modes,
Green-Kubo relations, and velocity correlations in dilute granular gases,” J. Phys.: Condens. Matter 17, S2489 (2005).
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