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The mass flux of a low-density granular binary mixture obtained previously by solv-
ing the Boltzmann equation by means of the Chapman-Enskog method is considered
further. As in the elastic case, the associated transport coefficients D, D,,, and D’ are
given in terms of the solutions of a set of coupled linear integral equations which are
approximately solved by considering the first and second Sonine approximations. The
diffusion coefficients are explicitly obtained as functions of the coefficients of resti-
tution and the parameters of the mixture (masses, diameters, and concentration) and
their expressions hold for an arbitrary number of dimensions. In order to check the ac-
curacy of the second Sonine correction for highly inelastic collisions, the Boltzmann
equation is also numerically solved by means of the direct simulation Monte Carlo
(DSMC) method to determine the mutual diffusion coefficient D in some special sit-
uations (self-diffusion problem and tracer limit). The comparison with DSMC results
reveals that the second Sonine approximation to D improves the predictions made
from the first Sonine approximation. We also study the granular segregation driven
by a uni-directional thermal gradient. The segregation criterion is obtained from the
so-called thermal diffusion factor A, which measures the amount of segregation par-
allel to the temperature gradient. The factor A is determined here by considering the
second-order Sonine forms of the diffusion coefficients and its dependence on the
coefficients of restitution is widely analyzed across the parameter space of the system.
The results obtained in this paper extend previous works carried out in the tracer limit
(vanishing mole fraction of one of the species) by some of the authors of the present
paper. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4800775]

. INTRODUCTION

It is well established that granular matter under rapid flow conditions admits a hydrodynamic-
like description. At sufficiently low density, the Boltzmann kinetic equation conveniently adapted
to account for the inelastic character of collisions'~ has been used as the starting point to derive
the corresponding hydrodynamic equations. The essential assumption to get those equations is the
existence of a normal solution,* defined to be one for which all the space and time dependence
occurs through a functional dependence on the hydrodynamic fields. In the case of small spatial
gradients, the Chapman-Enskog method* provides a constructive means to get this normal solution
and in particular, to obtain the Navier-Stokes (NS) constitutive equations in the first order of the
expansion. In this context, the study of hydrodynamics for granular gases follows similar steps as
those made for ordinary gases.

On the other hand, as in the elastic case,* the explicit form of the corresponding NS transport
coefficients requires the solution of a set of linear integral equations. The standard procedure of
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solving these integral equations consists of expanding the solutions in Sonine polynomials.* For
simplicity, usually only the lowest Sonine polynomial (first Sonine approximation) is retained.
However, in spite of this simple approximation, the results obtained from this approach compare
in general well with Monte Carlo simulations>’ for mild degrees of inelasticity. Although most
of the theoretical results®~'> have been devoted to monocomponent gases, some progresses have
been made in the past few years in the case of granular mixtures (namely, systems composed by
grains of different masses, diameters, and concentrations). In particular, in the context of granular
mixtures at low density, Garzé and Dufty'? have developed a kinetic theory which covers some
aspects not completely covered in previous works.!*"'” Specifically, (i) the Garz6-Dufty theory
goes beyond the weak dissipation limit so that it is expected to be applicable to a wide range of
coefficients of restitution and (ii) it takes into account the effects of nonequipartition of granular
energy on the NS transport coefficients. As in the case of simple granular gases, the accuracy of
the predictions of the Garzé-Dufty theory (which are based on the first Sonine approximation) has
been confirmed by numerical solutions of the (inelastic) Boltzmann equation by means of the direct
simulation Monte Carlo (DSMC) method?? in the cases of the tracer diffusion coefficient*'-2% and the
shear viscosity coefficient of a driven mixture.?>?} However, and contrary to the monocomponent
case, discrepancies between theory and simulation appear to be important at strong dissipation for
disparate mass and/or disparate size binary mixtures. Recently, the Garz6-Dufty theory has been
extended to moderately dense binary mixtures’* and the theoretical predictions compare also quite
well with computer simulations.?>2

A possible way of reducing the discrepancies between theory and DSMC results is to consider
higher-order terms in the Sonine polynomial expansion. In fact, recent works>® analyzing diffusion of
impurities in a granular gas have shown that the second Sonine approximation to the tracer diffusion
coefficient yields a dramatic improvement (up to 50°%) over the first Sonine approximation when
impurities are lighter than the surrounding gas in the range of large inelasticity. The results also show
that the differences between the second Sonine approach and computer simulations are in general
small (less than 4%) for arbitrarily large inelasticity. This good agreement stimulates the evaluation
of the complete set of NS transport coefficients of a granular binary mixture (with arbitrary relative
concentration) by retaining terms up to the second Sonine approximation. On the other hand, needless
to say, the above goal is quite intricate due to the large number of collision integrals involved in the
calculation. In this paper, we will cover partially this ambitious project by addressing the evaluation
of the transport coefficients associated with the mass flux.

We consider a binary mixture composed by smooth inelastic disks (d = 2) or spheres (d = 3)
of masses m; and my, and diameters o and o,. The inelasticity of collisions among all pairs is
characterized by three independent constant coefficients of restitution'® a1y, a2, and ajp = oy,
where a;; < 1 is the coefficient of restitution for collisions between particles of species i and j. The
case a;; = 1 corresponds to elastic collisions. To first order in the spatial gradients, the constitutive
equation for the mass flux j; (with i = 1, 2) is given by'?

miymon
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p
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where D is the (mutual) diffusion coefficient, D), is the pressure diffusion coefficient, and D’ is
the thermal diffusion coefficient. Here, n = n; + n, is the total number density (#; is the number
density of species i), p = mn; + myn, is the total mass density, x; = n;/n is the concentration
(or mole fraction) of species i, T is the granular temperature of the mixture, and p = nT is the
hydrostatic pressure. One of the goals of this paper is to determine the diffusion coefficients D, D,,
and D’ of a dilute granular mixture in terms of the coefficients of restitution a1y, a2,, and &, and
the parameters of the mixture (relative masses, diameters, and concentration). As said before and
in contrast to our previous works,'*?%?7 the diffusion coefficients will be explicitly obtained by
considering contributions up to the second Sonine approximation.

There are several reasons to address the above calculation. First, given that the results reported
in Refs. 26 are limited to the tracer limit (x; — 0), the question arises then as to whether (and
if so, to what extent) the conclusions drawn before?:?® may apply when one considers arbitrary
concentrations. This goal is not only academic since, from a practical standpoint, many computer
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simulations®®?° and experiments® in flowing granular mixtures involve finite concentrations. As a

second reason, it must be noted that previous results®!' obtained for ordinary mixtures (i.e., when the
collisions are elastic) have clearly shown that while the first Sonine approximation can accurately
describe the shear viscosity and the thermal conductivity coefficients, it cannot achieve the same
degree of accuracy for the mutual and thermal diffusion coefficients. In this latter case, Kincaid
et al.*>' concluded that the second Sonine approximation is much better approximation than the first
one for a wide range of values of masses and sizes. A third motivation to improve the evaluation
of the NS transport coefficients lies in the fact that the reference homogeneous cooling state (HCS)
is known to be unstable against long wavelength spatial perturbations, leading to vortex and cluster
formation. Since this instability can be well characterized®?> through a linear stability analysis of
the hydrodynamic equations,** a more accurate evaluation of the NS transport coefficients for large
inelasticity may help to understand the physical mechanisms involved in this instability. Finally,
as a fourth motivation and given that the second Sonine approach is expected to differ from the
first one at strong dissipation, the results reported here can be of practical interest since the range
of high inelasticities has growing interest in experimental works>* and is also exhibited by wetted
particles.®

Since the explicit second-Sonine order expressions of D, D, and D’ are at hand, a segregation
criterion based on thermal diffusion is derived. This is the second objective of the paper. Thermal
diffusion is caused by the relative motion of the components of a mixture due to the presence of a
temperature gradient. Under these conditions, a steady state can be reached in which the separation
effect arising from thermal diffusion is balanced by the remixing effect of ordinary diffusion. As a
consequence, segregation is observed and characterized by the so-called thermal diffusion factor A.
While the factor A has been previously studied®' in ordinary mixtures by using the second-Sonine
approximation, much less is known about thermal diffusion in granular mixtures. The present
analysis complements previous studies®® carried out in the tracer limit by considering the second-
Sonine order solution to the diffusion coefficients. As expected, the present results show that the
effect of inelasticity of collisions on A is in general quite significant.

An important issue that may lead to confusion is the applicability of the expression for the mass
flux derived here in the first-order of the spatial gradients (NS hydrodynamic order). The forms
of the three diffusion coefficients do not limit their application to weak inelasticity and hold in
principle for arbitrary values of the coefficients of restitution. In fact, the results reported below
include a domain of both weak and strong inelasticity, 0.5 < «;; < 1. On the other hand, as already
pointed out in previous works,?”-3¢ the NS hydrodynamic equations themselves may or may not
be limited with respect to inelasticity, depending on the particular granular flow considered. While
in the case of ordinary fluids the strength of the spatial gradients is controlled solely by the initial
or boundary conditions, for granular gases the steady state conditions are controlled both by the
boundary conditions and the degree of inelasticity in the collisions.>’~* An illustrative example of
this coupling is the so-called LTu flow class,*>*! of which the well-known (steady) simple shear
flow?7-38 is a special case. The LTu flow class (and thus, the simple shear flow) can only occur when
there is an exact balance between the collisional cooling (which is fixed by the mechanical properties
of the particles making up the granular fluid) and the viscous heating (which is essentially fixed by
the shear rate). Unfortunately, except for the quasi-elastic limit (c;; > 1), this balance only occurs for
high shear rates and so, one needs to include higher order corrections (such as Burnett-order terms)
to the NS solution.*>*} Consequently, the NS hydrodynamics would only be expected to work in
steady granular flows in the quasielastic limit.?

In spite of the above cautions, the NS description is still accurate and appropriate for a wide
class of flows. One of them corresponds to small spatial perturbations of the HCS for an isolated
system. Both molecular dynamics*?> and Monte Carlo simulations>** have confirmed the dependence
of the NS transport coefficients on inelasticity (even in highly dissipative granular gases) and the
reliability of the NS hydrodynamics to describe shearing instabilities. In the case of dense gases,
the predictions of the Enskog kinetic theory®!'? show both qualitative and quantitative agreement
with computer simulations***’ and with real experiments of supersonic flow past a wedge (where
there is no reason a priori to expect that the NS approximation works well)*® and nuclear magnetic
experiments of a system of mustard seeds vibrated vertically.*’ Therefore, the NS equations can still
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be considered as an important and useful tool to describe granular flows although more limited than
for ordinary gases.

The plan of the paper is as follows. First, in Sec. II the Boltzmann equation and its corre-
sponding balance hydrodynamic equations for the mass, momentum, and energy are recalled. In
Sec. I, the diffusion transport coefficients D, D, and D’ are given in terms of the solution of a
set of coupled linear integral equations previously derived by Garzé and Dufty.!? These integral
equations are approximately solved by using the first and second Sonine approximations, where
explicit forms for the above transport coefficients are provided. Technical details of the calcula-
tions carried out in this paper are relegated to two appendices. Next, the theoretical approaches
(first and second Sonine approximations) are compared in Sec. IV with available and new sim-
ulation data obtained from numerical solutions of the Boltzmann equation by using the DSMC
method for the self-diffusion and tracer diffusion coefficients. Two- and three-dimensional sys-
tems are considered. The dependence of the complete set of diffusion coefficients on the parameter
space of the system is widely analyzed in Sec. V. The results indicate that the convergence of
the Sonine expansion is less good for the coefficients D), and D’ than for the mutual diffusion
coefficient D. Segregation by thermal diffusion is studied in Sec. VI and the paper is closed in
Sec. VII with a brief discussion of the results.

Il. BOLTZMANN KINETIC THEORY FOR GRANULAR BINARY MIXTURES:
CHAPMAN-ENSKOG METHOD

Let us consider a granular binary mixture where the density of each species is sufficiently low.
In this case, all the relevant information on the state of the mixture is described by the velocity
distribution functions f;(r, v;t) of each species (i = 1, 2). These distributions obey the set of
nonlinear Boltzmann equations’

@ +v-V) file, v, ) = Ju [V 1(@0), 1]+ Tz [V /1), f2(D)], (@3]

and an analogous equation for f>(r, v; ¢). The Boltzmann collision operators J;; [v| fis f j] are given
by

Jij [vilfis fi] = ij‘_lfdvzfda@(aglz)(a'glz)

x [a;zﬁ(r, Vi OFi Vs 1) — fi(0 v, £ f5(r, Va, t)] , 3)

where d is the dimensionality of the system, o;; = (¢0; + 0)/2, @ is a unit vector along the line of
centers, © is the Heaviside step function, and g;, = v| — v, is the relative velocity. The primes on
the velocities denote the initial values {v}, v,} that lead to {v;, v} following a binary (restituting)
collision:

Vi =Vi— Wi (1 + 06,-}') (@ - 2o,
“)
Vh = Vo + i) (l + a,-f) (@ -gn)o,
where w;; = mi/(m; + m;).
In the case of granular mixtures, the relevant hydrodynamic fields are the number densities

n;(r,t), the flow velocity u(r, ¢), and the granular temperature 7 (r, ¢). In terms of the velocity
distribution functions f;(r, v, t), the above fields are defined respectively as

2
m= s, pu=Ym [ewsm, )
i=1

2 2
T = Zx,-T,- = Z%/dvvzﬁ(v), (6)
i=1 i=1
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where p = mn; + myn, is the total mass density and V = v — u is the peculiar velocity. The third
equality of Eq. (6) defines the kinetic temperatures 7T; for each species, which measure their mean
kinetic energies. The exact macroscopic balance equations for n;(r, ¢), u(r, t), and T (r, t) follow
directly from Eq. (2) (and its corresponding counterpart for f>) by multiplying with 1, m;v, and

%m ;v? and integrating over v. They are given by

Vi
Dini+nV-u+ ——=0, (N
m;
Du+p~'V-P=0, ®)
T & Ji
DT — =) —’+—(v q+P:Vu)y=—¢T. )

n

m;
i=1 !

In the above equations, D, = 9, + u - V is the material derivative,

ji=m, / avV £(v) (10)
is the mass flux for species i relative to the local flow,
2
P=>"m /deVf,-(v) (1)
i=1
is the total pressure tensor,
2 m;
— | dv V3V §; 12
a=Y 2 [ @V s (12

i=1

is the total heat flux, and

2
(= Z XiyiGi =
i=1

is the total “cooling rate” due to inelastic collisions among all species. In Eq. (13), p = nT = %TrP
is the hydrostatic pressure, y; = T;/T and the second equality defines the “cooling rates” ¢; for the
partial temperatures T;."?

The balance equations (7)—(9) do not constitute a closed set of equations for the hydrodynamic
fields unless one knows the functional dependence of j;, P, q, and ¢ on the above fields. On the other
hand, for times longer than the mean free time, the distribution functions f; are expected to adopt
the form of a normal or hydrodynamic solution such that all space and time dependence of f; occurs
through the hydrodynamic fields

fite, v, 1) = fIvia(r, 1), p(e,2), T(r, 1), u(r, )] . (14)

Note that we have taken the set {x;, p, T, u} as the d + 3 independent fields of the two-component
mixture. As mentioned in Ref. 27, in the case of inelastic systems, there is more flexibility than in
ordinary mixtures to chose the set of relevant hydrodynamic fields since the specific set of gradients
contributing to each flux is only restricted by fluid symmetry considerations. Here, as in our previous
works for dilute granular mixtures,'>?” we have chosen the set {x1, p, T, u} since they are the most
accessible fields from an experimental point of view. In particular, a contribution proportional to Vp
(which is absent in the elastic case) appears in the mass and heat fluxes.

In the case of small spatial variations (i.e., low Knudsen numbers), the functional dependence
(14) can be made local in space through an expansion in the gradients of the hydrodynamic fields.
This is the procedure followed in the Chapman-Enskog method* to get an approximate solution to
the Boltzmann equation. Thus, the distributions f; are written as

ﬁZﬁ(O)-i-éﬁ(l)-i-ezf,«(z)—i----, (15)

2 mi; 2
ZZF/dVV Jijvl fis £il, (13)

i=1 j=I

“BI>—*
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where each factor of € (formal non-uniformity parameter) means an implicit gradient of a hy-
drodynamic field. In the first-order of the expansion, the NS constitutive equations for the mass,
momentum, and heat fluxes can be derived. In this paper, we will focus our attention to the first-order
contribution j;l) to the mass flux.

As said in the Introduction, in the case of ordinary gases (a;; = 1) the strength of the spatial
gradients is imposed by the boundary or initial conditions. However, the situation is more complicated
for granular gases (a; # 1) since for steady states’”**4! the size of the spatial gradients is set by
boundary conditions and inelasticity together. Therefore, the NS equations are in principle expected
to be reliable for steady granular flows just in the case of nearly elastic particles since inelasticity
may set by itself large gradients.* In the Chapman-Enskog solution worked out here, we have
assumed that the spatial gradients are independent of the coefficients of restitution ¢; and so the
corresponding diffusion transport coefficients hold for arbitrary values of a;;.'* It must remarked that
our perturbation scheme differs from previous works on granular mixtures'* '8 where the Chapman-
Enskog solution is given in powers of both the spatial gradients (or equivalently, the Knudsen number)
and the degree of dissipation §;; =1 — a?j. In fact, in those works'*!3 the reference distribution

functions fi(o) are chosen to be Maxwellians at the same temperature (T} = T, = T), ignoring the real
effect of energy non-equipartition in granular mixtures.'®> As a consequence, the results provided in
Refs. 14 and 18 only agree with our results in the quasielastic limit (§;; 2 0).

lll. DIFFUSION TRANSPORT COEFFICIENTS

The application of the Chapman-Enskog method to the Boltzmann equation allows one to

determine the form of the NS transport coefficients of the mixture. In particular, the mass flux j;l) is

given by Eq. (1) where the diffusion transport coefficients D, D,,, and D' are defined, respectively, as

D=-— /de~Al, (16)
dmyn
mp

DPZ—W dvV 'Bl, (17)
T

p =-"1 /dVV .C,. (18)
dp

As in the case of elastic collisions,* the quantities A;, B;, and C; (i = 1, 2) are the solutions of
the following set of coupled linear integral equations: '3

57O
[-g“’) (T3T + [73,,) + El] A+ MA =A + <8§_xl> (pB1 +TCy), (19)
p.T
9c®
[—g(") (TBT + pap) + ﬁz] Ay + My Ap = Ap + (Zf_xl) (pBy +TCy), (20)
p.T
TeO
[~¢© (Tor + piy) + £~ 26O B+ MiBy = By + ——Cy, @)
Te®
(¢ (T + piy) + L2~ 2] By + MoBy = By + ——Cs, (22)
o 1 o B p¢©
—O(Tdr + pd,) + L, —5¢ Ci+ MGy =C - T B, (23)
o 1 o B p¢©
- (TBT + Pa,,) + Ly — EC Co+ MyC =Cs — 2T B;. 24)
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Here, ¢© = ¢ = ¢{” is the cooling rate evaluated with the zeroth-order distribution and we have

introduced the linearized Boltzmann collision operators

£1x = = (IlA% X1+ X, A0+ TolX, £21), (25)

M X = —TnlfO, X1, (26)

The corresponding forms for the operators £, and M, can be easily obtained from Eqgs. (25) and (26),
respectively, by just making the changes 1 <> 2. In addition,

AY) = — (i f,-“’)) v, @7
axl ».T
B:(V) = _l |:fi(0)V + ﬂ (ifi(o))] , (28)
p p \oV
Wil 1O oo
CiV) = = [ﬁ +33v (Vf,. )}V (29)

It is worthwhile remarking that so far the expressions for the transport coefficients D, D,,, and D’
are exact. However, in order to determine the dependence of the above coefficients on the parameters
of the mixture, one needs to solve the integral equations (19)—(24) and to know the explicit form of
the (local) HCS distributions fi(o). With respect to this latter point, both theoretical’! and computer
simulation?®2” results have shown that in the region of thermal velocities f;”(V) is well represented

by its Maxwellian form at the partial temperature T}, i.e.,

©) m; \*? m;V?
i (V)= fim(V) =n; <FT,> exp (— o, ) . (30)
Thus, in order to get simple and accurate expressions for the diffusion transport coefficients, we will
neglect here the non-Gaussian corrections to fi(o) (V). While these corrections are not important in the
case of the mass flux and the pressure tensor,”’ the impact of them on the heat flux is not negligible in
highly dissipative gases.”!! Accordingly, a theory incorporating the above non-Gaussian corrections
does not seem in practice necessary for computing the diffusion transport coefficients.

Regarding the unknowns A;, B;, and C;, the standard method consists of approximating them
by Maxwellians (at different temperatures) times truncated Sonine polynomial expansions. For
simplicity, usually only the lowest Sonine polynomial (first Sonine approximation) is retained® 22’
and the results obtained from this simple approach agree in general relatively well with numerical
results’*>2 for granular mixtures obtained from the DSMC method. However, as for ordinary
mixtures,?! significant discrepancies between theory and simulation appear when one considers
disparate values of mass and diameter ratios at small values of the coefficients of restitution. We
may expect that this disagreement could be mitigated in part if one considers higher-order terms
in the Sonine polynomial expansion, much like in the case of the diffusion coefficient D for the
tracer limit (x; — 0).2"?% In particular, as said in the Introduction, it is shown that the accuracy of
the second Sonine approximation for D is much better than the first Sonine approximation when
the tracer particles are lighter than the particles of the gas. Motivated by these results, our goal
here is to evaluate the complete set of diffusion coefficients D, D,, and D’ up to the second Sonine
approximation as functions of the coefficients of restitution (¢, @2y, and «») and the parameters
of the mixture (masses m;, diameters o;, and concentration x;). Therefore, the present analysis
generalizes to arbitrary concentration our previous theoretical results derived in the simple tracer
limit case.

In the second Sonine approximation, the quantities \A;, BB;, and C; are approximated by

Ai(V) = fim [araV+ai2S1(V)], (31)

Ao(V) = fou [az1V + a225:(V)], (32)
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Bi(V) = fim [b1.aV +b1:81(V)], (33)

Ba(V) = fou [b21V + b2282(V)], (34)

Ci(V) = fim[ciaV+c2$i(V)], (35)

Co(V) = foum [c21V +225(V)], (36)
where

SxV%:(%mﬂﬂ——i;2ﬂ>V. (37)

The coefficients {a; 1, b; 1, ¢; 1 } are related to the transport coefficients D, D,, and D', respectively,
as

i’l2T2 mympn

a)) = ———ay] = — D, (38)
ni Ty pn T
nyT, Jo

b1 =———by1 = ———D,, (39)
m T pmiTy 7

T

C1,1 = —}12—262,1 = — P D/. (40)

n1T1 TI’l]T]

Upon writing the first equalities in Egs. (38)—(40) use has been made of the property j(ll) = —j(zl).

The coefficients {a; 2, b; 2, ¢; 2} are defined as

ain Ai
2 m;
bir | = —=— " [ avsvy. | B, |. 41
5 du+mmﬁjjv() (1)
Ci2 Ci

The diffusion transport coefficients D, D,, and D" and the second Sonine coefficients «; ,,
b; 2, and ¢; , are determined by substitution of Eqgs. (31)—(36) into the integral equations (19)—(24),
multiplication by m; V and S; (V), and integration over velocity. The procedure is lengthy and follows
similar mathematical steps as those made before?!-?% in the tracer limit (x; — 0). Technical details
on this calculation have been relegated to Appendix A.

For the sake of convenience, we introduce dimensionless forms for the diffusion coefficients as

pT * I’lT % ’ I’lT 1%
D*, D,= —Dp, D' = —D", 42)
mimaVy PV PVo

[ my+m
Vo = \/Enoldz_l 2Tﬁ (43)
1mM2

is an effective collision frequency. According to the relations (38)—(40), the (reduced) Sonine
coefficients aj, = voaii, b}, = pvobi1, and ¢f; = Tvycy; are given, respectively, as

D =

where

D* D* D/*
afy = ———, b =——", fj=——. (44)
XiV1 X171 XiV1
The three first elements of the column matrix
X= {ay 1307 15¢1 13072305 307 5305 53¢ 53635} (45)

provide the expressions of the second Sonine approximations af,[2], b},[2], and c},[2]. In Eq. (45),
aiy =Twvoa; o, b}y = pTvobi o, and ¢}, = T?vyc; . The matrix X is given by

X=Q'.Y, (46)
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where Q is the 9x9 square matrix defined by Eq. (A29) while the column matrix Y is given by
Eq. (A32). Once the above Sonine coefficients are known, the forms of the (reduced) second Sonine
diffusion coefficients D*[2], D;‘,[Z], and D"*[2] can be easily derived from the relations (44). The
expressions of the diffusion coefficients are analytic for any dimension d and give D*[2], D}[2],
and D™*[2] as functions of the mole fraction x;, the mass ratio . = m;/m,, the diameter ratio
o = o/o,, and the coefficients of restitution o, @, and o, = ;. The explicit forms of the
second-order Sonine solutions are too large to be displayed here and will be omitted for the sake of
brevity. In particular, since j(ll) = — j(zl), D*[2] must be symmetric while D;[Z] and D’*[2] must be
antisymmetric with respect to the exchange 1 <> 2. We have checked that our expressions verify the
above symmetry properties.

It must be noted again that all the above expressions have the power to be explicit; that is they
are explicitly given in terms of the parameters of the mixture.>® Since our theory does not involve
numerical solutions the diffusion transport coefficients can be evaluated within very short computing
times.>

It is quite apparent that the influence of the parameters of the mixture on the second Sonine
approximations is rather complicated, given the large number of parameters involved in the system.
Thus, in order to show more clearly the dependence on each parameter on diffusion, it is instructive
to consider first some simple cases.

A. Some special limits

Let us first consider the first Sonine approximations D*[1], D;’;[l], and D™*[1]. They can be
obtained from the general results by taking a; » = b; » = ¢; » = 0. In this case, one gets

1)*[1]—(*—1*>1 (i ) +<8§*> <1—§*>D*[1] @7)
=\ 3¢ ox, ! T dx1 ), 1 0% ) P

D*[1] = NIRRT A 48)
4 =X1{n o+ px v 2{ Ip* s
D11 =~ D1, (49)

where ¢* = ¢©@/vy and v* is given by Eq. (B1). The temperature ratio y = T,/T is determined
from the condition ¢ = ¢ = ¢*, where the partial cooling rates ¢ are given by Eq. (B13). The
expressions (47)—(49) agree with those derived in previous works.'*?2

Another interesting situation is the case of mechanically equivalent particles (m; = my,
01 = 03, 1] = oy = op = «). In this simple situation, as expected, our results yield D;;[2]
= D"™[2] =0 and

1 12 + 3(2d — 3 8+ 10d
D21 = D12 G ek : (50)
d 1203+ (6d — 5)a? 4+ (16d + o + 10d + 12
where the first Sonine approximation D*[1] is simply
2r(4) d

il (L +a)?
As expected, the expression of the self-diffusion coefficient D*[2] holds for any relative number of
tagged particles since it is independent of x;. Equation (51) coincides with previous results for the
self-diffusion coefficient.>”

Let us consider finally the tracer limit, namely, we assume that the concentration of one of the
species (say for instance, species 1) is negligible (x; — 0). In this limit, a careful analysis of the
matrix equation (A28) defining the Sonine coefficients a;;, b, and c¢; shows that a; = 0 and
the coefficients a;; (which defines the diffusion coefficient D through Eq. (38)) and a;, are decoupled
from the remaining 6 Sonine coefficients. Moreover, the coefficients by, and ¢,; associated with the
excess component also verify an autonomous set of equations so that, the coefficients b;; (which
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defines the pressure diffusion coefficient D, through Eq. (38)) and ¢y (which defines the thermal
diffusion coefficient D’ through Eq. (38)) can be given in terms of by, and c¢;;. The corresponding
expressions for D*[2], D;‘, [2], and D"*[2] coincide with those obtained plreviously26 by following an
independent route. In particular, the explicit expression of the tracer diffusion coefficient D*[2] is

D2l =y 2
(V" = 3090 — 389 — ol T
where v* is given by Eq. (B1) with x; = 0 and the quantities v{,, »},, and t}; are defined in the
Appendices A and B.
All the above limits confirm the self-consistency of the results derived in this paper for the second
Sonine approximation to the diffusion coefficients D, D), and D’ of a granular binary mixture.

(52)

IV. COMPARISON WITH DSMC RESULTS

Needless to say, the improvement of the analytical results by considering the second Sonine ap-
proximation for the diffusion coefficients is not completely guaranteed unless the Sonine polynomial
expansion is convergent. The analysis of higher-order Sonine corrections to the transport coefficients
for granular gases and the convergence of the Sonine polynomial expansion is a very difficult math-
ematical problem. Thus, the works devoted to this issue in granular systems are more scarce than
for ordinary gases. For instance, the analysis of the transport properties for dense binary mixtures
have been studied and it was observed that with one tracer component (x; — 0) the convergence
of the Sonine expansion improves with increasing values of the mass ratio n1;/m,.>* In this section,
we will compare the first and second Sonine approximations of the mutual diffusion coefficient
D with computer simulation results obtained by numerically solving the Boltzmann equation by
means of the DSMC method.?® As in previous studies,?"~?>2® due to the difficulties for measuring
the coefficient D for general values of the mass ratio and the mole fraction, we will consider the
self-diffusion (m; = my) and tracer diffusion (x; — 0) coefficients. However, in order to cover more
general systems than those considered in our previous simulations,?’-?>?® we will assume that o,
# apy when the intruder and the gas particles are mechanically different.

The adaption of DSMC method to analyze binary granular mixtures has been described in
previous works (see, for instance, Refs. 21 and 28), so that here we shall only mention some aspects
related to the diffusion of impurities in a granular gas under HCS. In the tracer limit (n; < n),
during our simulations collisions 1-1 are not considered, and when a collision 1-2 takes place, the
post-collisional velocity obtained from the scattering rule is only assigned to the tracer particle
(species 1). According to this scheme, the numbers of particles have simply a statistical meaning
and can be arbitrarily chosen.

The DSMC method for our problem has two steps that are repeated in each time iteration.?®
In the first step, the system (tracer and gas particles) evolves from the initial state to the HCS. In
the second step, the system is assumed to be in the HCS and then the diffusion coefficient D(¢) is
measured from the mean square displacement of the impurity as

D(t) = % [(Ir(t + 81) — r(0)]*) — (Ir() — £ (O)1H)]. (53)

Here, |r(f) — r(0)| is the distance traveled by the impurity from ¢ = 0 until time #, t = 0 being the
beginning of the second step. Moreover, (- --) denotes the average over the N impurities and §¢ is
the time step. In our simulations, we have typically taken a time step 8t = 2.5 x 10~*v~! and N
=2 x 10° simulated particles for each species. Here, v = n,0§ ' /2T /m; is an effective collision
frequency for gas particles.

We will consider first the self-diffusion coefficient, which is independent of the mole fraction x;
[see Egs. (50) and (51)]. The simulation data obtained from DSMC method along with both Sonine
approximations for the reduced coefficient D(«)/D(1) are presented in Fig. 1 for disks (d = 2) and
spheres (d = 3). Here, D(1) refers to the elastic value of the self-diffusion coefficient consistently
obtained in each Sonine approximation. The data corresponding tod =3 fora > 0.5 and d =2 for «
> 0.6 were reported in Refs. 21 and 22, respectively, while those corresponding to d = 3 and d = 2
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FIG. 1. Plot of the (reduced) self-diffusion coefficient D(«)/D(1) as a function of the coefficient of restitution « as given
by the first Sonine approximation (dashed line), the second Sonine approximation (solid line), and Monte Carlo simulations
(symbols). Here, D(1) is the elastic value of the self-diffusion coefficient consistently obtained in each approximation. The
left panel is for hard disks (d = 2) while the right panel is for hard spheres (d = 3).

for & < 0.5 have been obtained in this work. It is quite apparent that the first Sonine approximation
performs well for not strong values of dissipation, but the agreement between theory and simulation
improves over the complete range of values of the coefficient of restitution when the second Sonine
approximation is considered (especially for hard disks). This confirms again the accuracy of the
second Sonine approach even for quite extreme values of dissipation.

Consider now the situation in which impurities and particles of the gas are mechanically
different (i.e., they can differ in size, mass, and coefficients of restitution). Although not shown
here, as expected,?' comparison between theory and simulation shows that the Sonine polynomial
expansion exhibits a better convergence (namely, although both Sonine approximations compare
well with numerical results, the second is better) when the impurity is heavier and/or larger than the
gas particles while this convergence is worsen as p and/or w significantly decreases. These findings
agree with the conclusions obtained for elastic collisions.>* To illustrate this behavior, Fig. 2 shows
the dependence of the ratio D(«12)/D(1) on the coefficient of restitution o, for hard spheres with
w = 1/2, 4 = 1/4 and oy = 0.5. The present comparison complements previous results?'»2%2
reported for the special case aj, = az,. We observe that the first Sonine approximation clearly
overestimates the simulation results while the second Sonine approximation to D(«j») exhibits good
agreement. On the other hand, the quantitative discrepancies between the second Sonine solution and
simulation data are larger than those observed for the self-diffusion problem (see Fig. 1), especially
for strong dissipation. Thus, one perhaps would have to consider the third Sonine correction to obtain
a better prediction for the diffusion coefficient.

D(a12)/D(1)

FIG. 2. Plot of the (reduced) mutual diffusion coefficient D(c2)/D(1) versus the coefficient of restitution a7 in the tracer
limit (x; — 0) for a granular gas of hard spheres with @ = 1/2, © = 1/4 and a2 = 0.5. The dashed and solid lines are the
first and second Sonine approximations, respectively, while the symbols are the Monte Carlo simulation results. Here, D(1)
is the elastic value of the mutual diffusion coefficient consistently obtained in each approximation.
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D/D(1)

FIG. 3. Plot of the (reduced) mutual diffusion coefficient D/D(1) as a function of the mass ratio w in the tracer limit (x; — 0)
for a granular gas of hard spheres with @ = 1/2 and a (common) coefficient of restitution « = a2 = 12 = 0.5. The dashed
and solid lines are the first and second Sonine approximations, respectively, while the symbols are the Monte Carlo simulation
results. Here, D(1) is the elastic value of the mutual diffusion coefficient consistently obtained in each approximation.

We explore now the influence of the mass ratio © on the accuracy of the two first Sonine
approximations. Figure 3 shows the ratio D/D(1) versus the mass ratio p for hard spheres with @
= 1/2 and a (common) coefficient of restitution o = ay = o = 0.5. We find that the second
Sonine approximation D[2] differs form the first Sonine approximation D[1] as the mass ratio u is
varied. For the system studied in Fig. 3, the disagreement between both approaches turns out to be
significant when the impurity is heavier than the gas particles. Thus, for instance when u = 5, the first
Sonine approximation to the ratio D/D(1) differs by 26% from the second Sonine approximation. The
comparison with simulation data shows again that the theoretical predictions are clearly improved
when one takes the second Sonine solution (up to 20% of improvement compared to the first
Sonine approximation). However, the quantitative differences between the second Sonine solution
and DSMC results seem to increase as the mass ratio increases. In this case, as in Fig. 2, one should
consider higher-order terms in the Sonine polynomial expansion to get a more accurate approach.
We want also to remark that we have also considered other systems (see for instance, Figs. 8 and 9
of Ref. 21 and Figs. 4 and 5 of Ref. 26) where the improvement of the second Sonine approximation
to D over the first Sonine approximation is much more significant than the one observed in Figs. 1,
2, and 3.

The results reported in this section confirm again the reliability of the second Sonine approxi-
mation for the mutual diffusion coefficient D, at least in the cases of self-diffusion and tracer limit.
Unfortunately, the lack of available simulation data for finite mole fraction prevent us to assess the
reliability of the second Sonine solution to D beyond the tracer limit. The fact that the second Sonine
expression for D in the self-diffusion problem (which holds for any value of x;) compares quite
well with DSMC results suggests that the good agreement found for x; — 0 would be also kept
for arbitrary values of the mole fraction, even when both species are mechanically different. More
simulations are needed to support the above expectation.

V. DEPENDENCE OF THE DIFFUSION COEFFICIENTS ON THE PARAMETERS
OF THE MIXTURE

Once the reliability of the second Sonine solution to the mutual diffusion coefficient D has been
confirmed in Sec. IV, our goal now is to provide a systematic study of the dependence of the complete
set of diffusion coefficients D, D), and D’ on the parameter space of the system. However, the first
and second Sonine approximations to the (reduced) transport coefficients of the granular binary
mixture depend on many parameters: {x;, mi/my, o1/02, &11, @22, @12 }. Also, to reduce the number
of independent parameters, the simplest case of a common coefficient of restitution («¢;; = a2
= ap = «) and a common diameter (0| = o0;) is considered. The latter assumption is justified

because the dependence of D*, D;‘,, and D’* on the diameter ratio w is very weak. Moreover,
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D())/D(1)

FIG. 4. Plot of the reduced coefficient D(«)/D(1) as a function of the (common) coefficient of restitution « for hard spheres
with x; = 0.2, 01 = o7 and two different values of the mass ratio ;. = mj/my. The solid lines correspond to the results
obtained from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation and the
dotted lines correspond to the modified first Sonine approximation. Here, D(1) is the elastic value of D consistently obtained
in each approximation.

henceforth we only analyze the physical case of hard spheres (d = 3) and so, the parameter space is
reduced to three quantities: {x;, m/my, o }.

The first and second Sonine approximations of the (reduced) transport coefficients D(«)/D(1),
D,(a)/D,(1), and D"*(«) are plotted in Figs. 4, 5, and 6, respectively, for x; = 0.2 and two values
of the mass ratio u. The diffusion coefficients have been reduced with respect to their elastic values
(consistently obtained in each Sonine approximation), except the thermal diffusion coefficient D’
since it vanishes for elastic collisions when one considers the first Sonine approximation. In this
latter case, we have plotted the reduced coefficient D™ defined by the third relation in Eq. (42). For
the sake of comparison, we have also included the results derived from a modified version of the first
Sonine approximation.*® This approach consists of replacing the Maxwellian distribution in the first
Sonine solution by the HCS distribution. Figure 4 shows the o-dependence of the mutual diffusion
coefficient obtained from the three different approximations (standard and modified first Sonine
approximation and the second Sonine approximation) for two mass ratios. We observe that the
first Sonine approximations capture relatively well the effect of dissipation on the mutual diffusion
coefficient since the three approaches show a monotonic increase of D with decreasing « in all cases.
On the other hand, at a more quantitative level, both first Sonine solutions overestimate slightly the
predictions of the second Sonine approach. In any case, the convergence of the Sonine expansion
for this transport coefficient seems to be quite good, at least for not quite extreme values of mass
and/or diameter ratios.

We consider now the pressure diffusion coefficient D,,(a). This is plotted in Fig. 5 for the same
cases as in Fig. 4. In contrast to the case of the mutual diffusion coefficient, when the defect species is
lighter than the excess component, the dependence of D), on the coefficient of restitution predicted by

P

P

D (a)/D (1)

FIG. 5. Plot of the reduced coefficient D, (c)/Dp(1) as a function of the (common) coefficient of restitution o for hard
spheres with x; = 0.2, 01 = o, and two different values of the mass ratio ;& = mj/my. The solid lines correspond to the
results obtained from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation
and the dotted lines correspond to the modified first Sonine approximation. Here, D, (1) is the elastic value of D,, consistently
obtained in each approximation.



043302-14 Garzo, Murray, and Vega Reyes Phys. Fluids 25, 043302 (2013)

D'()

-0.1 ‘ ‘ ‘ ‘

FIG. 6. Plot of the reduced coefficient D"*(«) as a function of the (common) coefficient of restitution « for hard spheres with
x1 = 0.2, 01 = 0 and two different values of the mass ratio ;t = m;/my. The solid lines correspond to the results obtained
from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation and the dotted
lines correspond to the modified first Sonine approximation.

the first Sonine approximation (D), increases with decreasing «) differs from the one obtained from
the more refined second Sonine solution (D, decreases with decreasing o). At a quantitative level, the
first Sonine approximations overestimate again the second Sonine results for both values of the mass
ratio, being the differences between both Sonine solutions more pronounced when p < 1. In fact, at
a = 0.5, the discrepancies between the first and second Sonine approximations are about 4 % for p
= 4 while they are about 63 % for © = 0.5. The dependence of the thermal diffusion coefficient D"*
on « is shown in Fig. 6. Note that, in the elastic limit, the first Sonine approximation to D™* vanishes
while the second Sonine approximation is in general different from zero. We observe that both Sonine
results tend to approach each other as the dissipation increases. In particular, the dependence of D*
on the coefficient of restitution predicted by the first and second Sonine approximations is very weak
when p < 1 (in fact it is practically zero) while the coefficient increases clearly with dissipation in
the opposite case (4 > 1). In comparison with the results obtained for D), the convergence of the
Sonine solution for D’ is better than that of the pressure diffusion coefficient, specially for strong
dissipation. It must be noticed that the differences between the standard and modified first Sonine
approximations® are quite small in the region of collisional dissipation considered. Although not
shown here, similar conclusions can be drawn when one considers other values for the mass and size
ratios.

As said in the Introduction, the results derived in this paper extend previous studies (on both
Sonine approximations) on the diffusion coefficients in the tracer limit (x; — 0).2'*26 Thus, one of
the goals here is to assess the effect of finite concentration on the ratios of the second and first Sonine
approximations to the diffusion transport coefficients. Figures 7, 8, and 9 shows the ratios D[2]/D[1],
D,[21/D,[1], and D'[2]/D'[1], respectively, versus the concentration x; for = 1, & = 0.8, and two
(disparate) values of the mass ratio x. The impact of composition on the above ratios is in general
significant. While the ratio D[2]/D[1] has a non-monotonic dependence of 