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Diffusion transport coefficients for granular binary
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The mass flux of a low-density granular binary mixture obtained previously by solv-
ing the Boltzmann equation by means of the Chapman-Enskog method is considered
further. As in the elastic case, the associated transport coefficients D, Dp, and D′ are
given in terms of the solutions of a set of coupled linear integral equations which are
approximately solved by considering the first and second Sonine approximations. The
diffusion coefficients are explicitly obtained as functions of the coefficients of resti-
tution and the parameters of the mixture (masses, diameters, and concentration) and
their expressions hold for an arbitrary number of dimensions. In order to check the ac-
curacy of the second Sonine correction for highly inelastic collisions, the Boltzmann
equation is also numerically solved by means of the direct simulation Monte Carlo
(DSMC) method to determine the mutual diffusion coefficient D in some special sit-
uations (self-diffusion problem and tracer limit). The comparison with DSMC results
reveals that the second Sonine approximation to D improves the predictions made
from the first Sonine approximation. We also study the granular segregation driven
by a uni-directional thermal gradient. The segregation criterion is obtained from the
so-called thermal diffusion factor �, which measures the amount of segregation par-
allel to the temperature gradient. The factor � is determined here by considering the
second-order Sonine forms of the diffusion coefficients and its dependence on the
coefficients of restitution is widely analyzed across the parameter space of the system.
The results obtained in this paper extend previous works carried out in the tracer limit
(vanishing mole fraction of one of the species) by some of the authors of the present
paper. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4800775]

I. INTRODUCTION

It is well established that granular matter under rapid flow conditions admits a hydrodynamic-
like description. At sufficiently low density, the Boltzmann kinetic equation conveniently adapted
to account for the inelastic character of collisions1–3 has been used as the starting point to derive
the corresponding hydrodynamic equations. The essential assumption to get those equations is the
existence of a normal solution,4 defined to be one for which all the space and time dependence
occurs through a functional dependence on the hydrodynamic fields. In the case of small spatial
gradients, the Chapman-Enskog method4 provides a constructive means to get this normal solution
and in particular, to obtain the Navier-Stokes (NS) constitutive equations in the first order of the
expansion. In this context, the study of hydrodynamics for granular gases follows similar steps as
those made for ordinary gases.

On the other hand, as in the elastic case,4 the explicit form of the corresponding NS transport
coefficients requires the solution of a set of linear integral equations. The standard procedure of
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solving these integral equations consists of expanding the solutions in Sonine polynomials.4 For
simplicity, usually only the lowest Sonine polynomial (first Sonine approximation) is retained.
However, in spite of this simple approximation, the results obtained from this approach compare
in general well with Monte Carlo simulations5–7 for mild degrees of inelasticity. Although most
of the theoretical results8–12 have been devoted to monocomponent gases, some progresses have
been made in the past few years in the case of granular mixtures (namely, systems composed by
grains of different masses, diameters, and concentrations). In particular, in the context of granular
mixtures at low density, Garzó and Dufty13 have developed a kinetic theory which covers some
aspects not completely covered in previous works.14–19 Specifically, (i) the Garzó-Dufty theory
goes beyond the weak dissipation limit so that it is expected to be applicable to a wide range of
coefficients of restitution and (ii) it takes into account the effects of nonequipartition of granular
energy on the NS transport coefficients. As in the case of simple granular gases, the accuracy of
the predictions of the Garzó-Dufty theory (which are based on the first Sonine approximation) has
been confirmed by numerical solutions of the (inelastic) Boltzmann equation by means of the direct
simulation Monte Carlo (DSMC) method20 in the cases of the tracer diffusion coefficient21, 22 and the
shear viscosity coefficient of a driven mixture.22, 23 However, and contrary to the monocomponent
case, discrepancies between theory and simulation appear to be important at strong dissipation for
disparate mass and/or disparate size binary mixtures. Recently, the Garzó-Dufty theory has been
extended to moderately dense binary mixtures24 and the theoretical predictions compare also quite
well with computer simulations.25, 26

A possible way of reducing the discrepancies between theory and DSMC results is to consider
higher-order terms in the Sonine polynomial expansion. In fact, recent works26 analyzing diffusion of
impurities in a granular gas have shown that the second Sonine approximation to the tracer diffusion
coefficient yields a dramatic improvement (up to 50o%) over the first Sonine approximation when
impurities are lighter than the surrounding gas in the range of large inelasticity. The results also show
that the differences between the second Sonine approach and computer simulations are in general
small (less than 4%) for arbitrarily large inelasticity. This good agreement stimulates the evaluation
of the complete set of NS transport coefficients of a granular binary mixture (with arbitrary relative
concentration) by retaining terms up to the second Sonine approximation. On the other hand, needless
to say, the above goal is quite intricate due to the large number of collision integrals involved in the
calculation. In this paper, we will cover partially this ambitious project by addressing the evaluation
of the transport coefficients associated with the mass flux.

We consider a binary mixture composed by smooth inelastic disks (d = 2) or spheres (d = 3)
of masses m1 and m2, and diameters σ 1 and σ 2. The inelasticity of collisions among all pairs is
characterized by three independent constant coefficients of restitution13 α11, α22, and α12 = α21,
where αij ≤ 1 is the coefficient of restitution for collisions between particles of species i and j. The
case αij = 1 corresponds to elastic collisions. To first order in the spatial gradients, the constitutive
equation for the mass flux ji (with i = 1, 2) is given by13

j1 = −m1m2n

ρ
D∇x1 − ρ

p
Dp∇ p − ρ

T
D′∇T, j2 = −j1, (1)

where D is the (mutual) diffusion coefficient, Dp is the pressure diffusion coefficient, and D′ is
the thermal diffusion coefficient. Here, n = n1 + n2 is the total number density (ni is the number
density of species i), ρ = m1n1 + m2n2 is the total mass density, xi = ni/n is the concentration
(or mole fraction) of species i, T is the granular temperature of the mixture, and p = nT is the
hydrostatic pressure. One of the goals of this paper is to determine the diffusion coefficients D, Dp,
and D′ of a dilute granular mixture in terms of the coefficients of restitution α11, α22, and α12 and
the parameters of the mixture (relative masses, diameters, and concentration). As said before and
in contrast to our previous works,13, 22, 27 the diffusion coefficients will be explicitly obtained by
considering contributions up to the second Sonine approximation.

There are several reasons to address the above calculation. First, given that the results reported
in Refs. 26 are limited to the tracer limit (x1 → 0), the question arises then as to whether (and
if so, to what extent) the conclusions drawn before21, 26 may apply when one considers arbitrary
concentrations. This goal is not only academic since, from a practical standpoint, many computer
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simulations28, 29 and experiments30 in flowing granular mixtures involve finite concentrations. As a
second reason, it must be noted that previous results31 obtained for ordinary mixtures (i.e., when the
collisions are elastic) have clearly shown that while the first Sonine approximation can accurately
describe the shear viscosity and the thermal conductivity coefficients, it cannot achieve the same
degree of accuracy for the mutual and thermal diffusion coefficients. In this latter case, Kincaid
et al.31 concluded that the second Sonine approximation is much better approximation than the first
one for a wide range of values of masses and sizes. A third motivation to improve the evaluation
of the NS transport coefficients lies in the fact that the reference homogeneous cooling state (HCS)
is known to be unstable against long wavelength spatial perturbations, leading to vortex and cluster
formation. Since this instability can be well characterized32 through a linear stability analysis of
the hydrodynamic equations,33 a more accurate evaluation of the NS transport coefficients for large
inelasticity may help to understand the physical mechanisms involved in this instability. Finally,
as a fourth motivation and given that the second Sonine approach is expected to differ from the
first one at strong dissipation, the results reported here can be of practical interest since the range
of high inelasticities has growing interest in experimental works34 and is also exhibited by wetted
particles.35

Since the explicit second-Sonine order expressions of D, Dp, and D′ are at hand, a segregation
criterion based on thermal diffusion is derived. This is the second objective of the paper. Thermal
diffusion is caused by the relative motion of the components of a mixture due to the presence of a
temperature gradient. Under these conditions, a steady state can be reached in which the separation
effect arising from thermal diffusion is balanced by the remixing effect of ordinary diffusion. As a
consequence, segregation is observed and characterized by the so-called thermal diffusion factor �.
While the factor � has been previously studied31 in ordinary mixtures by using the second-Sonine
approximation, much less is known about thermal diffusion in granular mixtures. The present
analysis complements previous studies26 carried out in the tracer limit by considering the second-
Sonine order solution to the diffusion coefficients. As expected, the present results show that the
effect of inelasticity of collisions on � is in general quite significant.

An important issue that may lead to confusion is the applicability of the expression for the mass
flux derived here in the first-order of the spatial gradients (NS hydrodynamic order). The forms
of the three diffusion coefficients do not limit their application to weak inelasticity and hold in
principle for arbitrary values of the coefficients of restitution. In fact, the results reported below
include a domain of both weak and strong inelasticity, 0.5 ≤ αij ≤ 1. On the other hand, as already
pointed out in previous works,27, 36 the NS hydrodynamic equations themselves may or may not
be limited with respect to inelasticity, depending on the particular granular flow considered. While
in the case of ordinary fluids the strength of the spatial gradients is controlled solely by the initial
or boundary conditions, for granular gases the steady state conditions are controlled both by the
boundary conditions and the degree of inelasticity in the collisions.37–39 An illustrative example of
this coupling is the so-called LTu flow class,40, 41 of which the well-known (steady) simple shear
flow37, 38 is a special case. The LTu flow class (and thus, the simple shear flow) can only occur when
there is an exact balance between the collisional cooling (which is fixed by the mechanical properties
of the particles making up the granular fluid) and the viscous heating (which is essentially fixed by
the shear rate). Unfortunately, except for the quasi-elastic limit (αij � 1), this balance only occurs for
high shear rates and so, one needs to include higher order corrections (such as Burnett-order terms)
to the NS solution.42, 43 Consequently, the NS hydrodynamics would only be expected to work in
steady granular flows in the quasielastic limit.38

In spite of the above cautions, the NS description is still accurate and appropriate for a wide
class of flows. One of them corresponds to small spatial perturbations of the HCS for an isolated
system. Both molecular dynamics32 and Monte Carlo simulations5, 44 have confirmed the dependence
of the NS transport coefficients on inelasticity (even in highly dissipative granular gases) and the
reliability of the NS hydrodynamics to describe shearing instabilities. In the case of dense gases,
the predictions of the Enskog kinetic theory9, 10 show both qualitative and quantitative agreement
with computer simulations45–47 and with real experiments of supersonic flow past a wedge (where
there is no reason a priori to expect that the NS approximation works well)48 and nuclear magnetic
experiments of a system of mustard seeds vibrated vertically.49 Therefore, the NS equations can still
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be considered as an important and useful tool to describe granular flows although more limited than
for ordinary gases.

The plan of the paper is as follows. First, in Sec. II the Boltzmann equation and its corre-
sponding balance hydrodynamic equations for the mass, momentum, and energy are recalled. In
Sec. III, the diffusion transport coefficients D, Dp, and D′ are given in terms of the solution of a
set of coupled linear integral equations previously derived by Garzó and Dufty.13 These integral
equations are approximately solved by using the first and second Sonine approximations, where
explicit forms for the above transport coefficients are provided. Technical details of the calcula-
tions carried out in this paper are relegated to two appendices. Next, the theoretical approaches
(first and second Sonine approximations) are compared in Sec. IV with available and new sim-
ulation data obtained from numerical solutions of the Boltzmann equation by using the DSMC
method for the self-diffusion and tracer diffusion coefficients. Two- and three-dimensional sys-
tems are considered. The dependence of the complete set of diffusion coefficients on the parameter
space of the system is widely analyzed in Sec. V. The results indicate that the convergence of
the Sonine expansion is less good for the coefficients Dp and D′ than for the mutual diffusion
coefficient D. Segregation by thermal diffusion is studied in Sec. VI and the paper is closed in
Sec. VII with a brief discussion of the results.

II. BOLTZMANN KINETIC THEORY FOR GRANULAR BINARY MIXTURES:
CHAPMAN-ENSKOG METHOD

Let us consider a granular binary mixture where the density of each species is sufficiently low.
In this case, all the relevant information on the state of the mixture is described by the velocity
distribution functions fi (r, v; t) of each species (i = 1, 2). These distributions obey the set of
nonlinear Boltzmann equations2

(∂t + v · ∇) f1(r, v, t) = J11 [v| f1(t), f1(t)] + J12 [v| f1(t), f2(t)] , (2)

and an analogous equation for f2(r, v; t). The Boltzmann collision operators Ji j
[
v| fi , f j

]
are given

by

Ji j
[
v1| fi , f j

] = σ d−1
i j

∫
dv2

∫
dσ̂ �(σ̂ · g12)(σ̂ · g12)

×
[
α−2

i j fi (r, v′
1, t) f j (r, v′

2, t) − fi (r, v1, t) f j (r, v2, t)
]
, (3)

where d is the dimensionality of the system, σ ij = (σ i + σ j)/2, σ̂ is a unit vector along the line of
centers, � is the Heaviside step function, and g12 = v1 − v2 is the relative velocity. The primes on
the velocities denote the initial values {v′

1, v′
2} that lead to {v1, v2} following a binary (restituting)

collision:

v′
1 = v1 − μ j i

(
1 + α−1

i j

)
(σ̂ · g12)σ̂ ,

(4)

v′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12)σ̂ ,

where μij ≡ mi/(mi + mj).
In the case of granular mixtures, the relevant hydrodynamic fields are the number densities

ni (r, t), the flow velocity u(r, t), and the granular temperature T (r, t). In terms of the velocity
distribution functions fi (r, v, t), the above fields are defined respectively as

ni =
∫

dv fi (v) , ρu =
2∑

i=1

mi

∫
dvv fi (v), (5)

T =
2∑

i=1

xi Ti =
2∑

i=1

mi

dn

∫
dvV 2 fi (v), (6)



043302-5 Garzó, Murray, and Vega Reyes Phys. Fluids 25, 043302 (2013)

where ρ = m1n1 + m2n2 is the total mass density and V = v − u is the peculiar velocity. The third
equality of Eq. (6) defines the kinetic temperatures Ti for each species, which measure their mean
kinetic energies. The exact macroscopic balance equations for ni (r, t), u(r, t), and T (r, t) follow
directly from Eq. (2) (and its corresponding counterpart for f2) by multiplying with 1, mi v, and
1
2 miv

2 and integrating over v. They are given by13

Dt ni + ni∇ · u + ∇ · ji

mi
= 0, (7)

Dt u + ρ−1∇ · P = 0, (8)

Dt T − T

n

2∑
i=1

∇ · ji

mi
+ 2

dn
(∇ · q + P : ∇u) = −ζ T . (9)

In the above equations, Dt = ∂ t + u · ∇ is the material derivative,

ji = mi

∫
dv V fi (v) (10)

is the mass flux for species i relative to the local flow,

P =
2∑

i=1

mi

∫
dv VV fi (v) (11)

is the total pressure tensor,

q =
2∑

i=1

mi

2

∫
dv V 2V fi (v) (12)

is the total heat flux, and

ζ =
2∑

i=1

xiγiζi = − 1

p

2∑
i=1

2∑
j=1

mi

d

∫
dvV 2 Ji j [v| fi , f j ], (13)

is the total “cooling rate” due to inelastic collisions among all species. In Eq. (13), p = nT = 1
d TrP

is the hydrostatic pressure, γ i ≡ Ti/T and the second equality defines the “cooling rates” ζ i for the
partial temperatures Ti.13

The balance equations (7)–(9) do not constitute a closed set of equations for the hydrodynamic
fields unless one knows the functional dependence of ji , P, q, and ζ on the above fields. On the other
hand, for times longer than the mean free time, the distribution functions fi are expected to adopt
the form of a normal or hydrodynamic solution such that all space and time dependence of fi occurs
through the hydrodynamic fields

fi (r, v, t) = f [v|x1(r, t), p(r, t), T (r, t), u(r, t)] . (14)

Note that we have taken the set {x1, p, T, u} as the d + 3 independent fields of the two-component
mixture. As mentioned in Ref. 27, in the case of inelastic systems, there is more flexibility than in
ordinary mixtures to chose the set of relevant hydrodynamic fields since the specific set of gradients
contributing to each flux is only restricted by fluid symmetry considerations. Here, as in our previous
works for dilute granular mixtures,13, 27 we have chosen the set {x1, p, T, u} since they are the most
accessible fields from an experimental point of view. In particular, a contribution proportional to ∇p
(which is absent in the elastic case) appears in the mass and heat fluxes.

In the case of small spatial variations (i.e., low Knudsen numbers), the functional dependence
(14) can be made local in space through an expansion in the gradients of the hydrodynamic fields.
This is the procedure followed in the Chapman-Enskog method4 to get an approximate solution to
the Boltzmann equation. Thus, the distributions fi are written as

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (15)



043302-6 Garzó, Murray, and Vega Reyes Phys. Fluids 25, 043302 (2013)

where each factor of ε (formal non-uniformity parameter) means an implicit gradient of a hy-
drodynamic field. In the first-order of the expansion, the NS constitutive equations for the mass,
momentum, and heat fluxes can be derived. In this paper, we will focus our attention to the first-order
contribution j(1)

i to the mass flux.
As said in the Introduction, in the case of ordinary gases (αij = 1) the strength of the spatial

gradients is imposed by the boundary or initial conditions. However, the situation is more complicated
for granular gases (αij �= 1) since for steady states37, 38, 41 the size of the spatial gradients is set by
boundary conditions and inelasticity together. Therefore, the NS equations are in principle expected
to be reliable for steady granular flows just in the case of nearly elastic particles since inelasticity
may set by itself large gradients.39 In the Chapman-Enskog solution worked out here, we have
assumed that the spatial gradients are independent of the coefficients of restitution αij and so the
corresponding diffusion transport coefficients hold for arbitrary values of αij.13 It must remarked that
our perturbation scheme differs from previous works on granular mixtures14, 18 where the Chapman-
Enskog solution is given in powers of both the spatial gradients (or equivalently, the Knudsen number)
and the degree of dissipation ξi j ≡ 1 − α2

i j . In fact, in those works14, 18 the reference distribution

functions f (0)
i are chosen to be Maxwellians at the same temperature (T1 = T2 = T), ignoring the real

effect of energy non-equipartition in granular mixtures.13 As a consequence, the results provided in
Refs. 14 and 18 only agree with our results in the quasielastic limit (ξ ij � 0).

III. DIFFUSION TRANSPORT COEFFICIENTS

The application of the Chapman-Enskog method to the Boltzmann equation allows one to
determine the form of the NS transport coefficients of the mixture. In particular, the mass flux j(1)

i is
given by Eq. (1) where the diffusion transport coefficients D, Dp, and D′ are defined, respectively, as

D = − ρ

dm2n

∫
dv V· A1, (16)

Dp = −m1 p

dρ

∫
dv V · B1, (17)

D′ = −m1T

dρ

∫
dv V · C1. (18)

As in the case of elastic collisions,4, 50 the quantities Ai , Bi , and Ci (i = 1, 2) are the solutions of
the following set of coupled linear integral equations:13

[−ζ (0)
(
T ∂T + p∂p

) + L1
]
A1 + M1A2 = A1 +

(
∂ζ (0)

∂x1

)
p,T

(pB1 + T C1) , (19)

[−ζ (0)
(
T ∂T + p∂p

) + L2
]
A2 + M2A1 = A2 +

(
∂ζ (0)

∂x1

)
p,T

(pB2 + T C2) , (20)

[−ζ (0)
(
T ∂T + p∂p

) + L1 − 2ζ (0)
]
B1 + M1B2 = B1 + T ζ (0)

p
C1, (21)

[−ζ (0)
(
T ∂T + p∂p

) + L2 − 2ζ (0)
]
B2 + M2B1 = B2 + T ζ (0)

p
C2, (22)

[
−ζ (0)

(
T ∂T + p∂p

) + L1 − 1

2
ζ (0)

]
C1 + M1C2 = C1 − pζ (0)

2T
B1, (23)

[
−ζ (0)

(
T ∂T + p∂p

) + L2 − 1

2
ζ (0)

]
C2 + M2C1 = C2 − pζ (0)

2T
B2. (24)
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Here, ζ (0) = ζ
(0)
1 = ζ

(0)
2 is the cooling rate evaluated with the zeroth-order distribution and we have

introduced the linearized Boltzmann collision operators

L1 X = −
(

J11[ f (0)
1 , X ] + J11[X, f (0)

1 ] + J12[X, f (0)
2 ]

)
, (25)

M1 X = −J12[ f (0)
1 , X ]. (26)

The corresponding forms for the operatorsL2 andM2 can be easily obtained from Eqs. (25) and (26),
respectively, by just making the changes 1 ↔ 2. In addition,

Ai (V) = −
(

∂

∂x1
f (0)
i

)
p,T

V, (27)

Bi (V) = − 1

p

[
f (0)
i V + nT

ρ

(
∂

∂V
f (0)
i

)]
, (28)

Ci (V) = 1

T

[
f (0)
i + 1

2

∂

∂V
·
(

V f (0)
i

)]
V. (29)

It is worthwhile remarking that so far the expressions for the transport coefficients D, Dp, and D′

are exact. However, in order to determine the dependence of the above coefficients on the parameters
of the mixture, one needs to solve the integral equations (19)–(24) and to know the explicit form of
the (local) HCS distributions f (0)

i . With respect to this latter point, both theoretical51 and computer
simulation28, 29 results have shown that in the region of thermal velocities f (0)

i (V) is well represented
by its Maxwellian form at the partial temperature Ti, i.e.,

f (0)
i (V) → fi,M (V) = ni

(
mi

2πTi

)d/2

exp

(
−mi V 2

2Ti

)
. (30)

Thus, in order to get simple and accurate expressions for the diffusion transport coefficients, we will
neglect here the non-Gaussian corrections to f (0)

i (V). While these corrections are not important in the
case of the mass flux and the pressure tensor,27 the impact of them on the heat flux is not negligible in
highly dissipative gases.7, 11 Accordingly, a theory incorporating the above non-Gaussian corrections
does not seem in practice necessary for computing the diffusion transport coefficients.

Regarding the unknowns Ai , Bi , and Ci , the standard method consists of approximating them
by Maxwellians (at different temperatures) times truncated Sonine polynomial expansions. For
simplicity, usually only the lowest Sonine polynomial (first Sonine approximation) is retained9, 22, 27

and the results obtained from this simple approach agree in general relatively well with numerical
results23, 52 for granular mixtures obtained from the DSMC method. However, as for ordinary
mixtures,31 significant discrepancies between theory and simulation appear when one considers
disparate values of mass and diameter ratios at small values of the coefficients of restitution. We
may expect that this disagreement could be mitigated in part if one considers higher-order terms
in the Sonine polynomial expansion, much like in the case of the diffusion coefficient D for the
tracer limit (x1 → 0).21, 26 In particular, as said in the Introduction, it is shown that the accuracy of
the second Sonine approximation for D is much better than the first Sonine approximation when
the tracer particles are lighter than the particles of the gas. Motivated by these results, our goal
here is to evaluate the complete set of diffusion coefficients D, Dp, and D′ up to the second Sonine
approximation as functions of the coefficients of restitution (α11, α22, and α12) and the parameters
of the mixture (masses mi, diameters σ i, and concentration x1). Therefore, the present analysis
generalizes to arbitrary concentration our previous theoretical results derived in the simple tracer
limit case.

In the second Sonine approximation, the quantities Ai , Bi , and Ci are approximated by

A1(V) → f1,M
[
a1,1V + a1,2S1(V)

]
, (31)

A2(V) → f2,M
[
a2,1V + a2,2S2(V)

]
, (32)
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B1(V) → f1,M
[
b1,1V + b1,2S1(V)

]
, (33)

B2(V) → f2,M
[
b2,1V + b2,2S2(V)

]
, (34)

C1(V) → f1,M
[
c1,1V + c1,2S1(V)

]
, (35)

C2(V) → f2,M
[
c2,1V + c2,2S2(V)

]
, (36)

where

Si (V) =
(

1

2
mi V

2 − d + 2

2
Ti

)
V. (37)

The coefficients {ai, 1, bi, 1, ci, 1} are related to the transport coefficients D, Dp, and D′, respectively,
as

a1,1 = −n2T2

n1T1
a2,1 = −m1m2n

ρn1T1
D, (38)

b1,1 = −n2T2

n1T1
b2,1 = − ρ

pn1T1
Dp, (39)

c1,1 = −n2T2

n1T1
c2,1 = − ρ

T n1T1
D′. (40)

Upon writing the first equalities in Eqs. (38)–(40) use has been made of the property j(1)
1 = −j(1)

2 .
The coefficients {ai, 2, bi, 2, ci, 2} are defined as⎛⎜⎝ ai,2

bi,2

ci,2

⎞⎟⎠ = 2

d(d + 2)

mi

ni T 3
i

∫
dvSi (V) ·

⎛⎜⎝Ai

Bi

Ci

⎞⎟⎠ . (41)

The diffusion transport coefficients D, Dp, and D′ and the second Sonine coefficients ai, 2,
bi, 2, and ci, 2 are determined by substitution of Eqs. (31)–(36) into the integral equations (19)–(24),
multiplication by mi V and Si (V), and integration over velocity. The procedure is lengthy and follows
similar mathematical steps as those made before21, 26 in the tracer limit (x1 → 0). Technical details
on this calculation have been relegated to Appendix A.

For the sake of convenience, we introduce dimensionless forms for the diffusion coefficients as

D = ρT

m1m2ν0
D∗, Dp = nT

ρν0
D∗

p, D′ = nT

ρν0
D′∗, (42)

where

ν0 = √
πnσ d−1

12

√
2T

m1 + m2

m1m2
(43)

is an effective collision frequency. According to the relations (38)–(40), the (reduced) Sonine
coefficients a∗

11 ≡ ν0a11, b∗
11 ≡ pν0b11, and c∗

11 ≡ T ν0c11 are given, respectively, as

a∗
11 = − D∗

x1γ1
, b∗

11 = − D∗
p

x1γ1
, c∗

11 = − D′∗

x1γ1
. (44)

The three first elements of the column matrix

X ≡ {a∗
1,1; b∗

1,1; c∗
1,1; a∗

1,2; a∗
2,2; b∗

1,2; b∗
2,2; c∗

1,2; c∗
2,2} (45)

provide the expressions of the second Sonine approximations a∗
11[2], b∗

11[2], and c∗
11[2]. In Eq. (45),

a∗
i,2 = T ν0ai,2, b∗

i,2 = pT ν0bi,2, and c∗
i,2 = T 2ν0ci,2. The matrix X is given by

X = �−1 · Y, (46)
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where � is the 9×9 square matrix defined by Eq. (A29) while the column matrix Y is given by
Eq. (A32). Once the above Sonine coefficients are known, the forms of the (reduced) second Sonine
diffusion coefficients D*[2], D∗

p[2], and D′∗[2] can be easily derived from the relations (44). The
expressions of the diffusion coefficients are analytic for any dimension d and give D*[2], D∗

p[2],
and D′∗[2] as functions of the mole fraction x1, the mass ratio μ ≡ m1/m2, the diameter ratio
ω ≡ σ 1/σ 2, and the coefficients of restitution α11, α22, and α12 = α21. The explicit forms of the
second-order Sonine solutions are too large to be displayed here and will be omitted for the sake of
brevity. In particular, since j(1)

1 = −j(1)
2 , D*[2] must be symmetric while D∗

p[2] and D′*[2] must be
antisymmetric with respect to the exchange 1 ↔ 2. We have checked that our expressions verify the
above symmetry properties.

It must be noted again that all the above expressions have the power to be explicit; that is they
are explicitly given in terms of the parameters of the mixture.53 Since our theory does not involve
numerical solutions the diffusion transport coefficients can be evaluated within very short computing
times.53

It is quite apparent that the influence of the parameters of the mixture on the second Sonine
approximations is rather complicated, given the large number of parameters involved in the system.
Thus, in order to show more clearly the dependence on each parameter on diffusion, it is instructive
to consider first some simple cases.

A. Some special limits

Let us first consider the first Sonine approximations D*[1], D∗
p[1], and D′∗[1]. They can be

obtained from the general results by taking ai, 2 = bi, 2 = ci, 2 = 0. In this case, one gets

D∗[1] =
(

ν∗ − 1

2
ζ ∗

)−1
[(

∂

∂x1
x1γ1

)
p,T

+
(

∂ζ ∗

∂x1

)
p,T

(
1 − ζ ∗

2ν∗

)
D∗

p[1]

]
, (47)

D∗
p[1] = x1

(
γ1 − μ

x2 + μx1

) (
ν∗ − 3

2
ζ ∗ + ζ ∗2

2ν∗

)−1

, (48)

D′∗[1] = − ζ ∗

2ν∗ D∗
p[1], (49)

where ζ* ≡ ζ (0)/ν0 and ν* is given by Eq. (B1). The temperature ratio γ ≡ T1/T2 is determined
from the condition ζ ∗

1 = ζ ∗
2 = ζ ∗, where the partial cooling rates ζ ∗

i are given by Eq. (B13). The
expressions (47)–(49) agree with those derived in previous works.13, 22

Another interesting situation is the case of mechanically equivalent particles (m1 = m2,
σ 1 = σ 2, α11 = α22 = α12 ≡ α). In this simple situation, as expected, our results yield D∗

p[2]
= D′∗[2] = 0 and

D∗[2] = D∗[1]
1 + α

d

12α2 + 3(2d − 3)α + 8 + 10d

12α3 + (6d − 5)α2 + (16d + 1)α + 10d + 12
, (50)

where the first Sonine approximation D*[1] is simply

D∗[1] = 2�
(

d
2

)
π

d
2 −1

d

(1 + α)2
. (51)

As expected, the expression of the self-diffusion coefficient D*[2] holds for any relative number of
tagged particles since it is independent of x1. Equation (51) coincides with previous results for the
self-diffusion coefficient.52

Let us consider finally the tracer limit, namely, we assume that the concentration of one of the
species (say for instance, species 1) is negligible (x1 → 0). In this limit, a careful analysis of the
matrix equation (A28) defining the Sonine coefficients aij, bij, and cij shows that a22 = 0 and
the coefficients a11 (which defines the diffusion coefficient D through Eq. (38)) and a12 are decoupled
from the remaining 6 Sonine coefficients. Moreover, the coefficients b22 and c22 associated with the
excess component also verify an autonomous set of equations so that, the coefficients b11 (which
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defines the pressure diffusion coefficient Dp through Eq. (38)) and c11 (which defines the thermal
diffusion coefficient D′ through Eq. (38)) can be given in terms of b22 and c22. The corresponding
expressions for D*[2], D∗

p[2], and D′∗[2] coincide with those obtained previously26 by following an
independent route. In particular, the explicit expression of the tracer diffusion coefficient D*[2] is

D∗[2] = γ
ν∗

11 − 3
2ζ ∗

(ν∗ − 1
2ζ ∗)(ν∗

11 − 3
2ζ ∗) − ω∗

12τ
∗
11

, (52)

where ν* is given by Eq. (B1) with x1 = 0 and the quantities ν∗
11, ω∗

12, and τ ∗
11 are defined in the

Appendices A and B.
All the above limits confirm the self-consistency of the results derived in this paper for the second

Sonine approximation to the diffusion coefficients D, Dp, and D′ of a granular binary mixture.

IV. COMPARISON WITH DSMC RESULTS

Needless to say, the improvement of the analytical results by considering the second Sonine ap-
proximation for the diffusion coefficients is not completely guaranteed unless the Sonine polynomial
expansion is convergent. The analysis of higher-order Sonine corrections to the transport coefficients
for granular gases and the convergence of the Sonine polynomial expansion is a very difficult math-
ematical problem. Thus, the works devoted to this issue in granular systems are more scarce than
for ordinary gases. For instance, the analysis of the transport properties for dense binary mixtures
have been studied and it was observed that with one tracer component (x1 → 0) the convergence
of the Sonine expansion improves with increasing values of the mass ratio m1/m2.54 In this section,
we will compare the first and second Sonine approximations of the mutual diffusion coefficient
D with computer simulation results obtained by numerically solving the Boltzmann equation by
means of the DSMC method.26 As in previous studies,21, 22, 26 due to the difficulties for measuring
the coefficient D for general values of the mass ratio and the mole fraction, we will consider the
self-diffusion (m1 = m2) and tracer diffusion (x1 → 0) coefficients. However, in order to cover more
general systems than those considered in our previous simulations,21, 22, 26 we will assume that α12

�= α22 when the intruder and the gas particles are mechanically different.
The adaption of DSMC method to analyze binary granular mixtures has been described in

previous works (see, for instance, Refs. 21 and 28), so that here we shall only mention some aspects
related to the diffusion of impurities in a granular gas under HCS. In the tracer limit (n1 � n2),
during our simulations collisions 1-1 are not considered, and when a collision 1-2 takes place, the
post-collisional velocity obtained from the scattering rule is only assigned to the tracer particle
(species 1). According to this scheme, the numbers of particles have simply a statistical meaning
and can be arbitrarily chosen.

The DSMC method for our problem has two steps that are repeated in each time iteration.26

In the first step, the system (tracer and gas particles) evolves from the initial state to the HCS. In
the second step, the system is assumed to be in the HCS and then the diffusion coefficient D(t) is
measured from the mean square displacement of the impurity as

D(t) = n2

2dδt

[〈|r(t + δt) − r(0)|2〉 − 〈|r(t) − r(0)|2〉] . (53)

Here, |r(t) − r(0)| is the distance traveled by the impurity from t = 0 until time t, t = 0 being the
beginning of the second step. Moreover, 〈· · ·〉 denotes the average over the N impurities and δt is
the time step. In our simulations, we have typically taken a time step δt = 2.5 × 10−4ν−1 and N
= 2 × 106 simulated particles for each species. Here, ν = n2σ

d−1
2

√
2T/m2 is an effective collision

frequency for gas particles.
We will consider first the self-diffusion coefficient, which is independent of the mole fraction x1

[see Eqs. (50) and (51)]. The simulation data obtained from DSMC method along with both Sonine
approximations for the reduced coefficient D(α)/D(1) are presented in Fig. 1 for disks (d = 2) and
spheres (d = 3). Here, D(1) refers to the elastic value of the self-diffusion coefficient consistently
obtained in each Sonine approximation. The data corresponding to d = 3 for α ≥ 0.5 and d = 2 for α

≥ 0.6 were reported in Refs. 21 and 22, respectively, while those corresponding to d = 3 and d = 2
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FIG. 1. Plot of the (reduced) self-diffusion coefficient D(α)/D(1) as a function of the coefficient of restitution α as given
by the first Sonine approximation (dashed line), the second Sonine approximation (solid line), and Monte Carlo simulations
(symbols). Here, D(1) is the elastic value of the self-diffusion coefficient consistently obtained in each approximation. The
left panel is for hard disks (d = 2) while the right panel is for hard spheres (d = 3).

for α ≤ 0.5 have been obtained in this work. It is quite apparent that the first Sonine approximation
performs well for not strong values of dissipation, but the agreement between theory and simulation
improves over the complete range of values of the coefficient of restitution when the second Sonine
approximation is considered (especially for hard disks). This confirms again the accuracy of the
second Sonine approach even for quite extreme values of dissipation.

Consider now the situation in which impurities and particles of the gas are mechanically
different (i.e., they can differ in size, mass, and coefficients of restitution). Although not shown
here, as expected,21 comparison between theory and simulation shows that the Sonine polynomial
expansion exhibits a better convergence (namely, although both Sonine approximations compare
well with numerical results, the second is better) when the impurity is heavier and/or larger than the
gas particles while this convergence is worsen as μ and/or ω significantly decreases. These findings
agree with the conclusions obtained for elastic collisions.54 To illustrate this behavior, Fig. 2 shows
the dependence of the ratio D(α12)/D(1) on the coefficient of restitution α12 for hard spheres with
ω = 1/2, μ = 1/4 and α22 = 0.5. The present comparison complements previous results21, 22, 26

reported for the special case α12 = α22. We observe that the first Sonine approximation clearly
overestimates the simulation results while the second Sonine approximation to D(α12) exhibits good
agreement. On the other hand, the quantitative discrepancies between the second Sonine solution and
simulation data are larger than those observed for the self-diffusion problem (see Fig. 1), especially
for strong dissipation. Thus, one perhaps would have to consider the third Sonine correction to obtain
a better prediction for the diffusion coefficient.
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0.7
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Α12
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�Α

12
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FIG. 2. Plot of the (reduced) mutual diffusion coefficient D(α12)/D(1) versus the coefficient of restitution α12 in the tracer
limit (x1 → 0) for a granular gas of hard spheres with ω = 1/2, μ = 1/4 and α22 = 0.5. The dashed and solid lines are the
first and second Sonine approximations, respectively, while the symbols are the Monte Carlo simulation results. Here, D(1)
is the elastic value of the mutual diffusion coefficient consistently obtained in each approximation.
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FIG. 3. Plot of the (reduced) mutual diffusion coefficient D/D(1) as a function of the mass ratio μ in the tracer limit (x1 → 0)
for a granular gas of hard spheres with ω = 1/2 and a (common) coefficient of restitution α ≡ α22 = α12 = 0.5. The dashed
and solid lines are the first and second Sonine approximations, respectively, while the symbols are the Monte Carlo simulation
results. Here, D(1) is the elastic value of the mutual diffusion coefficient consistently obtained in each approximation.

We explore now the influence of the mass ratio μ on the accuracy of the two first Sonine
approximations. Figure 3 shows the ratio D/D(1) versus the mass ratio μ for hard spheres with ω

= 1/2 and a (common) coefficient of restitution α ≡ α22 = α12 = 0.5. We find that the second
Sonine approximation D[2] differs form the first Sonine approximation D[1] as the mass ratio μ is
varied. For the system studied in Fig. 3, the disagreement between both approaches turns out to be
significant when the impurity is heavier than the gas particles. Thus, for instance when μ = 5, the first
Sonine approximation to the ratio D/D(1) differs by 26% from the second Sonine approximation. The
comparison with simulation data shows again that the theoretical predictions are clearly improved
when one takes the second Sonine solution (up to 20% of improvement compared to the first
Sonine approximation). However, the quantitative differences between the second Sonine solution
and DSMC results seem to increase as the mass ratio increases. In this case, as in Fig. 2, one should
consider higher-order terms in the Sonine polynomial expansion to get a more accurate approach.
We want also to remark that we have also considered other systems (see for instance, Figs. 8 and 9
of Ref. 21 and Figs. 4 and 5 of Ref. 26) where the improvement of the second Sonine approximation
to D over the first Sonine approximation is much more significant than the one observed in Figs. 1,
2, and 3.

The results reported in this section confirm again the reliability of the second Sonine approxi-
mation for the mutual diffusion coefficient D, at least in the cases of self-diffusion and tracer limit.
Unfortunately, the lack of available simulation data for finite mole fraction prevent us to assess the
reliability of the second Sonine solution to D beyond the tracer limit. The fact that the second Sonine
expression for D in the self-diffusion problem (which holds for any value of x1) compares quite
well with DSMC results suggests that the good agreement found for x1 → 0 would be also kept
for arbitrary values of the mole fraction, even when both species are mechanically different. More
simulations are needed to support the above expectation.

V. DEPENDENCE OF THE DIFFUSION COEFFICIENTS ON THE PARAMETERS
OF THE MIXTURE

Once the reliability of the second Sonine solution to the mutual diffusion coefficient D has been
confirmed in Sec. IV, our goal now is to provide a systematic study of the dependence of the complete
set of diffusion coefficients D, Dp, and D′ on the parameter space of the system. However, the first
and second Sonine approximations to the (reduced) transport coefficients of the granular binary
mixture depend on many parameters: {x1, m1/m2, σ 1/σ 2, α11, α22, α12}. Also, to reduce the number
of independent parameters, the simplest case of a common coefficient of restitution (α11 = α22

= α12 ≡ α) and a common diameter (σ 1 = σ 2) is considered. The latter assumption is justified
because the dependence of D*, D∗

p, and D′∗ on the diameter ratio ω is very weak. Moreover,
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FIG. 4. Plot of the reduced coefficient D(α)/D(1) as a function of the (common) coefficient of restitution α for hard spheres
with x1 = 0.2, σ 1 = σ 2 and two different values of the mass ratio μ ≡ m1/m2. The solid lines correspond to the results
obtained from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation and the
dotted lines correspond to the modified first Sonine approximation. Here, D(1) is the elastic value of D consistently obtained
in each approximation.

henceforth we only analyze the physical case of hard spheres (d = 3) and so, the parameter space is
reduced to three quantities: {x1, m1/m2, α}.

The first and second Sonine approximations of the (reduced) transport coefficients D(α)/D(1),
Dp(α)/Dp(1), and D′∗(α) are plotted in Figs. 4, 5, and 6, respectively, for x1 = 0.2 and two values
of the mass ratio μ. The diffusion coefficients have been reduced with respect to their elastic values
(consistently obtained in each Sonine approximation), except the thermal diffusion coefficient D′

since it vanishes for elastic collisions when one considers the first Sonine approximation. In this
latter case, we have plotted the reduced coefficient D′∗ defined by the third relation in Eq. (42). For
the sake of comparison, we have also included the results derived from a modified version of the first
Sonine approximation.36 This approach consists of replacing the Maxwellian distribution in the first
Sonine solution by the HCS distribution. Figure 4 shows the α-dependence of the mutual diffusion
coefficient obtained from the three different approximations (standard and modified first Sonine
approximation and the second Sonine approximation) for two mass ratios. We observe that the
first Sonine approximations capture relatively well the effect of dissipation on the mutual diffusion
coefficient since the three approaches show a monotonic increase of D with decreasing α in all cases.
On the other hand, at a more quantitative level, both first Sonine solutions overestimate slightly the
predictions of the second Sonine approach. In any case, the convergence of the Sonine expansion
for this transport coefficient seems to be quite good, at least for not quite extreme values of mass
and/or diameter ratios.

We consider now the pressure diffusion coefficient Dp(α). This is plotted in Fig. 5 for the same
cases as in Fig. 4. In contrast to the case of the mutual diffusion coefficient, when the defect species is
lighter than the excess component, the dependence of Dp on the coefficient of restitution predicted by

FIG. 5. Plot of the reduced coefficient Dp(α)/Dp(1) as a function of the (common) coefficient of restitution α for hard
spheres with x1 = 0.2, σ 1 = σ 2 and two different values of the mass ratio μ ≡ m1/m2. The solid lines correspond to the
results obtained from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation
and the dotted lines correspond to the modified first Sonine approximation. Here, Dp(1) is the elastic value of Dp consistently
obtained in each approximation.
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FIG. 6. Plot of the reduced coefficient D′∗(α) as a function of the (common) coefficient of restitution α for hard spheres with
x1 = 0.2, σ 1 = σ 2 and two different values of the mass ratio μ ≡ m1/m2. The solid lines correspond to the results obtained
from the second Sonine approximation, the dashed lines refer to the (standard) first Sonine approximation and the dotted
lines correspond to the modified first Sonine approximation.

the first Sonine approximation (Dp increases with decreasing α) differs from the one obtained from
the more refined second Sonine solution (Dp decreases with decreasing α). At a quantitative level, the
first Sonine approximations overestimate again the second Sonine results for both values of the mass
ratio, being the differences between both Sonine solutions more pronounced when μ < 1. In fact, at
α = 0.5, the discrepancies between the first and second Sonine approximations are about 4 % for μ

= 4 while they are about 63 % for μ = 0.5. The dependence of the thermal diffusion coefficient D′∗

on α is shown in Fig. 6. Note that, in the elastic limit, the first Sonine approximation to D′∗ vanishes
while the second Sonine approximation is in general different from zero. We observe that both Sonine
results tend to approach each other as the dissipation increases. In particular, the dependence of D′∗

on the coefficient of restitution predicted by the first and second Sonine approximations is very weak
when μ < 1 (in fact it is practically zero) while the coefficient increases clearly with dissipation in
the opposite case (μ > 1). In comparison with the results obtained for Dp, the convergence of the
Sonine solution for D′ is better than that of the pressure diffusion coefficient, specially for strong
dissipation. It must be noticed that the differences between the standard and modified first Sonine
approximations36 are quite small in the region of collisional dissipation considered. Although not
shown here, similar conclusions can be drawn when one considers other values for the mass and size
ratios.

As said in the Introduction, the results derived in this paper extend previous studies (on both
Sonine approximations) on the diffusion coefficients in the tracer limit (x1 → 0).21, 26 Thus, one of
the goals here is to assess the effect of finite concentration on the ratios of the second and first Sonine
approximations to the diffusion transport coefficients. Figures 7, 8, and 9 shows the ratios D[2]/D[1],
Dp[2]/Dp[1], and D′[2]/D′[1], respectively, versus the concentration x1 for ω = 1, α = 0.8, and two
(disparate) values of the mass ratio μ. The impact of composition on the above ratios is in general
significant. While the ratio D[2]/D[1] has a non-monotonic dependence of x1, the corresponding
ratios for the pressure and thermal diffusion coefficients exhibit a monotonic dependence with x1.
The second Sonine approximation to the diffusion coefficients differs clearly from its first Sonine

FIG. 7. The ratio of the second and first Sonine approximations D[2]/D[1] to the mutual diffusion coefficient versus the mole
fraction x1 for ω = 1, α = 0.8 and two values of the mass ratio (μ = 4 and μ = 1/3).
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FIG. 8. The ratio of the second and first Sonine approximations Dp[2]/Dp[1] to the pressure diffusion coefficient versus the
mole fraction x1 for ω = 1, α = 0.8 and two values of the mass ratio (μ = 4 and μ = 1/3).

approximation, specially in the case of the thermal diffusion coefficient (we observe for instance up
to a 500% difference for D′ in Fig. 9).

VI. THERMAL DIFFUSION SEGREGATION

As an application of the previous results, this section is devoted to the study of segregation
driven by a thermal gradient in granular binary mixtures. This is one of the most interesting problems
appearing in multicomponent mixtures and it has been widely analyzed in the past for ordinary gases
and liquids.55 On the other hand, much less is known in the case of granular mixtures, although
some progress has been made in the past few years in the tracer limit case (x1 → 0).26, 56–60 Here,
we analyze thermal diffusion for arbitrary concentrations but restricted to the case of dilute granular
systems.

We consider a granular binary mixture enclosed between two plates at different temperatures.
In a non-convecting steady state (u = 0) with gradients only along the orthogonal direction to the
plates (z axis), the amount of segregation parallel to the thermal gradient may be characterized by
the thermal diffusion factor �. This quantity measures the separation of components caused by the
temperature gradient. The factor � is defined as16, 31

− �
∂ ln T

∂z
= ∂

∂z
ln

(
n1

n2

)
. (54)

Let us assume henceforth that σ 1 ≥ σ 2 and that the bottom plate is hotter than the top plate (∂zT < 0).
In this case and assuming that � is constant over the relevant ranges of temperature and composition,
when � > 0 the larger particles 1 tend to rise with respect to the smaller particles 2 (i.e., ∂z(n1/n2)
> 0). In the opposite case, when � < 0 the larger particles fall with respect to the smaller particles
(i.e., ∂z(n1/n2) < 0). Although gravity is absent in our description, the former situation (� > 0)
will be referred here to as the Brazil-nut effect (BNE) while the latter (� < 0) will be called as the
reverse Brazil-nut effect (RBNE).

FIG. 9. The ratio of the second and first Sonine approximations D′[2]/D′[1] to the thermal diffusion coefficient versus the
mole fraction x1 for ω = 1, α = 0.8 and two values of the mass ratio (μ = 4 and μ = 1/3).
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FIG. 10. Plot of the thermal diffusion factor �[2] obtained from the second Sonine approximation as a function of the
diameter ratio σ 1/σ 2 for an ordinary binary mixture (αij = 1) of hard spheres when both species have the same mass density
(m1/m2 = (σ 1/σ 2)3). Three different values of the mole fraction are considered: (a) x1 = 0.2, (b) x1 = 0.5, and (c) x1 = 0.8.

In the case of granular mixtures thermal diffusion can appear in vibrated systems even in the
absence of an imposed temperature gradient, as a consequence of the inelasticity of collisions. In
this case, energy of the grains decays away from the vibrating wall, giving rise to a (granular)
temperature gradient. However, it is known for vertically vibrated granular systems44, 61 that after
the decrease in the value of the granular temperature as a function of height above the floor, the
temperature profile possesses a minimum above which the temperature increases as a function of
height. Therefore, given that we have assumed ∂zT < 0 in Eq. (54), then our segregation criterion can
be useful for physical situations39, 40 where the minimum in the temperature profile is not achieved
or is very close to the top of the sample.

Since no shearing flows are present in the problem, the pressure tensor Pij = pδij and so the
momentum balance equation (8) yields simply ∂zp = 0. Moreover, according to Eq. (7), j1, z = 0
in the steady state. In the NS hydrodynamic order, j1, z is given by Eq. (1) so that the condition
j1, z = 0 (along with ∂zp = 0) leads to the relation

∂ ln x1

∂z
= − ρ2

m1m2n1

D′

D

∂ ln T

∂z
. (55)

The form of � can be easily obtained from Eqs. (54) and (55) and the result is

� = nρ2

m1m2n1n2

D′

D
= 1

x1x2

D′∗

D∗ , (56)

where use has been made of the reduced expressions (42) for the mutual and thermal diffusion
coefficients, respectively. Since the mutual diffusion coefficient D must be positive, the sign of � is
determined by the sign of the reduced coefficient D′∗. Consequently, the condition � = 0 (which
provides the criterion for the BNE/RBNE transition) implies simply

D′∗ = 0. (57)

According to Eqs. (48) and (49), the first Sonine approximation to Eq. (57) yields the criterion

x1x2μζ ∗

(2ν∗2 − 3ζ ∗ν∗ + ζ ∗2)(x2 + x1γ )(x2 + μx1)

(
1 − γ

μ

)
= 0. (58)

In the elastic limit (αij = 1), ζ* = 0 and so, �[1] = 0 in the first Sonine approximation. However,
away from the dilute gas limit, �[1] is not zero31, 58 and segregation appears for ordinary mixtures.
In the case of granular mixtures (αij �= 1), the solution to Eq. (58) is simply56

m1

m2
= T1

T2
. (59)

Note that if one assumes energy equipartition (T1 = T2), then segregation is only predicted for
particles that differ in mass, no matter what their diameters may be. It must be emphasized that the
criterion (59) compares well with molecular dynamics simulations59 carried out in the tracer limit
(x1 → 0).



043302-17 Garzó, Murray, and Vega Reyes Phys. Fluids 25, 043302 (2013)

FIG. 11. Plot of the thermal diffusion factors �[2] and �[1] as a function of the mole fraction x1 for m1 = m2, σ 1 = σ 2 and
different values of the coefficients of restitution: (a) α11 = α22 = 0.5, α12 = 0.9 and (b) α11 = 0.8, α22 = 0.9, α12 = 0.7. The
solid lines correspond to the second Sonine approximation �[2] while the dashed lines refer to the first Sonine approximation
�[1].

The second Sonine approximation to Eq. (57) leads to a much more intricate criterion than
Eq. (59). In particular, the results show that �[2] �= 0 even for elastic collisions (αij = 1). This is
consistent with the results obtained years ago in Ref. 31. To illustrate this feature, Fig. 10 shows �[2]
versus σ 1/σ 2 for a binary mixture of hard spheres (d = 3) constituted by particles of the same mass
density (m1/m2 = (σ 1/σ 2)3). In this case, �[2] is always positive and so, the larger particles tend to
move towards the cold plate (BNE). It must be remarked again that the second Sonine approximation
does predict segregation in the elastic limit whereas the first Sonine approximation does not. Thus,
it is expected that the second Sonine solution describes a much better behavior than the first one in
the range of small inelasticities.

Another interesting limit case corresponds to the situation in which segregation is only in-
duced by inelasticity, namely, when one considers a binary mixture whose constituents differ only
by their respective coefficients of restitution. This situation has been theoretically studied18 from
the Boltzmann equation and it has been also confirmed62 by molecular dynamics simulations of
two-dimensional binary mixtures. In order to analyze this effect, Fig. 11 shows the thermal diffusion
factor � versus the mole fraction x1 when m1 = m2, σ 1 = σ 2 and different values of the coefficients
of restitution. As expected,18 we observe that segregation can occur due to inelasticity alone. Notice
also that for the cases represented in Fig. 11, the first and second Sonine approximations have differ-
ences of about 800% (note the tracer limit x1 → 0 for the α11 = 0.8 curves). Also, in both systems
there is a change in the sign of � at a given critical value x1, c of the composition x1. Although the
form of � differs in the first and second Sonine approximations, the value x1, c for each mixture
is (practically) the same in both Sonine predictions. In the case (a), x1, c = 0.5 due to symmetry
considerations.

Apart from the above limit situations, the dependence of � on the parameter space is quite
intricate. To assess the effect of inelasticity in collisions on thermal diffusion factor, we normalize
�(α) with respect to its value in the elastic limit �(1). Moreover, we consider again the physical case

FIG. 12. Plot of the second Sonine approximation to the ratio �(α)/�(1) as a function of the (common) coefficient of
restitution α for x1 = 0.5, σ 1/σ 2 = 2 and three different values of the mass ratio: (a) m1/m2 = 4, (b) m1/m2 = 8, and
(c) m1/m2 = 1/4. Here, �(1) refers to the elastic value of the thermal diffusion factor.
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FIG. 13. Plot of the second Sonine approximation to the ratio �(α)/�(1) as a function of the (common) coefficient of
restitution α for x1 = 0.5, m1/m2 = 2 and three different values of the size ratio: (a) σ 1/σ 2 = 1, (b) σ 1/σ 2 = 3, and
(c) σ 1/σ 2 = 5. Here, �(1) refers to the elastic value of the thermal diffusion factor.

of hard spheres (d = 3) with a common coefficient of restitution (αij = α) and only the second Sonine
approximation to � will be plotted. Figure 12 shows �(α)/�(1) as a function of α for an equimolar
mixture (x1 = 0.5) with σ 1/σ 2 = 2 and three different values of the mass ratio m1/m2. We observe
that the impact of collisional dissipation on thermal diffusion is in general quite significant. It is
apparent that thermal diffusion is partly concealed by inelasticity since |�(α)| < |�(1)|. In addition,
Fig. 12 also shows that the dependence of � on the mass ratio is non-monotonic when the mass ratio
is larger than one: while the magnitude of the ratio �(α)/�(1) decreases with increasing the mass
ratio at moderate inelasticity (say for instance, α � 0.9), the opposite happens at smaller values of
the coefficient of restitution. The α-dependence of the ratio �(α)/�(1) is also plotted in Fig. 13 for
x1 = 0.5, m1/m2 = 2 and three different values of the diameter ratio σ 1/σ 2. As happens in Fig. 12,
the influence of dissipation on thermal diffusion is again quite significant, especially when the sizes
of both species are very disparate. In addition, in the case σ 1/σ 2 = 5, we also observe that there is a
change of the sign of � for high inelasticity. Thus, for this system, while the larger particles tend to
accumulate at the top of the sample when both species collide elastically, the opposite happens for
high dissipation and the larger particles fall with respect to the smaller ones.

Finally, we illustrate the form of the phase diagrams delineating the regimes between BNE and
RBNE in the (σ 1/σ 2, m1/m2)-plane. Figure 14 shows phase diagrams for α = 0.8 and two values of
the composition x1. The first Sonine prediction is also shown for the sake of comparison. Although
the first Sonine approximation shows the same trends of the phase diagram, it clearly overestimates
the predictions of the second Sonine approximation, specially at large size ratios and small mass
ratios. Regarding the influence of the concentration of the mixture x1 on phase diagrams we observe
that the BNE region is reduced as x1 increases. On the other hand, this effect is less significant than
for dense binary mixtures (see, for instance, Fig. 7 of Ref. 58). Moreover, in contrast to what happens

FIG. 14. BNE/RBNE phase diagram for inelastic hard spheres at α = 0.8 and two different values of the mole fraction x1:
x1 = 0.1 (a) and x1 = 0.5 (b). Points above the curves correspond to � > 0 (BNE) while points below the curves correspond
to � < 0 (RBNE). The dashed and solid lines are the results obtained from the first and second Sonine approximations,
respectively.
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FIG. 15. BNE/RBNE phase diagram for inelastic hard spheres with x1 = 0.7 and three different values of the (common)
coefficient of restitution α. Points above the curves correspond to � > 0 (BNE) while points below the curves correspond to
� < 0 (RBNE).

in the dense case,58 at a given value of the concentration, the transition from BNE to RBNE may
occur following two paths: (i) along constant mass ratio m1/m2 with decreasing diameter ratio σ 1/σ 2

and (ii) along constant diameter ratio σ 1/σ 2 with decreasing mass ratio m1/m2. Next, we study the
impact of inelasticity on the form of the phase diagrams. Figure 15 shows the phase diagram for
x1 = 0.7 and three values of α (α = 0.9, 0.7, and 0.5). The results show that the main effect of
collisional dissipation is to reduce the size of the BNE region. This contrasts again with the results
obtained from the first Sonine approximation for the Enskog equation (see, for instance, Fig. 5 of
Ref. 58). The influence of dissipation on the BNE/RBNE phase diagram is much more significant for
quite strong values of α (say for instance, α = 0.5) since the lines delineating the regimes between
BNE and RBNE for α = 0.9 and 0.7 are quite similar (at least in the region of values of the diameter
ratio explored).

VII. SUMMARY AND DISCUSSION

In this paper we have determined the mass flux j(1)
1 of a granular binary mixture at low-

density. The results have been obtained by solving the inelastic Boltzmann equation by means of the
Chapman-Enskog method at the NS order. Three diffusion coefficients characterize the mass flux in
the NS regime: the mutual diffusion coefficient D (that couples j(1)

1 with the concentration gradient
∇x1), the pressure diffusion coefficient Dp (that couples j(1)

1 with the pressure gradient ∇p), and the
thermal diffusion coefficient D′ (that couples j(1)

1 with the temperature gradient ∇T). On the other
hand, as for elastic collisions,4 the above coefficients [see Eqs. (16)–(18)] are defined in terms of
quantities A1, B1, and C1 which are the solutions of a set of linear integral equations [see Eqs. (19)–
(24)]. Given that the above quantities cannot be exactly obtained, they are approximated by a truncated
Sonine polynomial expansion. This allows us to obtain explicit forms for the diffusion transport
coefficients in terms of the coefficients of restitution and the parameters of the mixture (relative
masses, diameters, and concentration). Here, we have determined D, Dp, and D′ by considering
two polynomials in the Sonine polynomial expansion [see Eqs. (31)–(36)]. This approximation is
usually referred to as the second Sonine approximation. Our present study complements and extends
previous works on diffusion transport coefficients carried out in the tracer limit.21, 26

As mentioned in the Introduction, previous results31 derived many years ago for ordinary
mixtures (αij = 1) have clearly shown the reliability of the second Sonine approximation for the
mutual and thermal diffusion coefficients for a wide range of values of masses and sizes. These results
have mainly encouraged the present work since the studies of the impact of the Sonine approximation
on the NS transport coefficients are very scarce in the case of granular mixtures. On the other
hand, given the technical difficulties involved in the evaluation of the second Sonine corrections
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to the transport coefficients, we have focussed on our efforts in the case of diffusion coefficients
which are related to the lowest velocity moment (the mass flux) of the first-order distribution
functions f (1)

i .
In order to gauge the accuracy of the second Sonine approximation, we have compared our the-

oretical predictions for the mutual diffusion coefficient D with numerical solutions of the Boltzmann
equation by means of the DSMC.20 Two situations have been considered: the self-diffusion problem
(namely, when both species are mechanically equivalent) and the tracer limit (namely, when the
concentration of one of the species is negligible). These are perhaps the two most simple situations
where the coefficient D can be measured from the mean square displacement of a tracer particle
immersed in a granular gas under HCS. The simulations performed here consider more general
situations than those analyzed in previous works21, 22, 26 where it was assumed that α22 = α12. As in
previous studies, the present comparison shows again that in general the second Sonine approxima-
tion to D improves significantly the prediction of the first Sonine approximation, especially for high
degree of dissipation and/or extreme mass or size ratios.

A second important issue covered in this paper has been the study of segregation and mixing of
dissimilar grains. The understanding of physical mechanisms involved in segregation within poly-
disperse, rapid granular flows is perhaps one of the most important open challenges of granular gas
research. Among the different mechanisms involved in segregation, thermal diffusion (segregation
induced by a thermal gradient) becomes the most relevant one when the sample is vibrated at large
shaking amplitude. In this regime, binary collisions prevail and the granular system behaves like a
granular gas. In a steady state without shearing flows, the sign of the thermal diffusion factor [defined
by Eq. (54)] provides information on the tendency of each species to move towards the colder or
hotter plate. The knowledge of the three diffusion transport coefficients allows one to compute the
thermal diffusion factor � in terms of the coefficients of restitution, the concentration, and the mass
and size ratios. The evaluation of the thermal diffusion factor is of central interest in the field of
granular matter mainly due to its practical and industrial importance.

The analysis carried out here for segregation provides an extension of previous studies
performed26 in the tracer limit (x1 → 0). Our present results show that the influence of colli-
sional dissipation on thermal diffusion is in general important. This is clearly illustrated in Figs. 12
and 13 where the form of the inelastic thermal diffusion factor �(α) differs significantly from its
elastic counterpart �(1) even at moderate dissipation. Moreover, our study also reveals that the effect
of the concentration x1 on BNE-RBNE phase diagrams is less important than the one previously
obtained for dense binary mixtures.58 We expect the segregation criteria obtained here by using
the second Sonine approximation can be tested against DSMC results, molecular dynamics (MD)
simulations, and eventually experiments in real problems. We are currently working on DSMC and
MD simulations adapted to the problem of segregation.

One of the main limitations of the present study is its restriction to dilute gases. Given that
most of the experiments are carried out for dense granular systems, it would be convenient to
extend the present results to densities beyond the low-density limit. The NS transport coefficients
for granular mixtures at moderate densities (solid volume fractions typically smaller than or equal
to 0.25) have been recently obtained from the Enskog kinetic equation24 by considering the first
Sonine approximation. The evaluation of the second Sonine expressions of the diffusion transport
coefficients from the Enskog equation could be a possible future work. This extension could allow us
to compare our theoretical results (based on the second Sonine approximation) with MD simulations
performed at finite densities.
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APPENDIX A: FIRST AND SECOND SONINE APPROXIMATIONS TO THE MASS FLUX

In this appendix, we determine the first and second Sonine approximations to the diffusion
coefficients D, Dp, and D′. These coefficients are defined by Eqs. (16)–(18) where the functions
Ai , Bi , and Ci are given by Eqs. (31)–(36). Our goal is to evaluate the nine independent Sonine
coefficients

{a1,1; b1,1; c1,1; a1,2; a2,2; b1,2; b2,2; c1,2; c2,2}. (A1)

The three first coefficients (a1, 1, b1, 1, and c1, 1) are directly related to the diffusion coefficients D,
Dp, and D′, respectively.

Substitution of Eqs. (31)–(36) into the integral equations (19), (21), and (23) gives

−ζ (0)
(
T ∂T + p∂p

) [
a1,1V1 + a1,2S1(V1)

]
f1,M + a1,1

[
L1 f1,M V1 − δγM1 f2,M V2

]
+a1,2L1 f1,M S1(V1) + a2,2M1 f2,M S2(V2) = A12, (A2)

[−ζ (0) (T ∂T + p∂p
) − 2ζ (0)] [

b1,1V1 + b1,2S1(V1)
]

f1,M + b1,1
[
L1 f1,M V1 − δγM1 f2,M V2

]
+b1,2L1 f1,M S1(V1) + b2,2M1 f2,M S2(V2) = B12, (A3)

[
−ζ (0) (T ∂T + p∂p

) − 1

2
ζ (0)

] [
c1,1V1 + c1,2S1(V1)

]
f1,M + c1,1

[
L1 f1,M V1 − δγM1 f2,M V2

]
+c1,2L1 f1,M S1(V1) + c2,2M1 f2,M S2(V2) = C12, (A4)

where δ ≡ x1/x2, x2 = 1 − x1, γ ≡ T1/T2 and

A12 = A1 +
(

∂ζ (0)

∂x1

)
p,T

f1,M
[

p
(
b1,1V + b1,2S1

) + T
(
c1,1V + c1,2S1

)]
, (A5)

B12 = B1 + T ζ (0)

p
f1,M

(
c1,1V + c1,2S1

)
, (A6)

C12 = C1 − pζ (0)

2T
f1,M

(
b1,1V + b1,2S1

)
. (A7)

Here, A1, B1, and C1 are given by Eqs. (27)–(29), respectively. The corresponding counterparts of
Eqs. (A2)–(A4) can be obtained from them by just making the change 1 ↔ 2. Next, we multiply
Eqs. (A2) and (A3) by m1V1 and integrates over the velocity. The result is[−ζ (0)

(
T ∂T + p∂p

) + ν
]

n1T1a1,1 + n1T1
(
τ11a1,2 + τ12a2,2

)
= −

(
∂

∂x1
n1T1

)
p,T

+
(

∂ζ (0)

∂x1

)
p,T

n1T1
(

pb1,1 + T c1,1
)
, (A8)

[−ζ (0)
(
T ∂T + p∂p

) − 2ζ (0) + ν
]

n1T1b1,1 + n1T1
(
τ11b1,2 + τ12b2,2

)
= −n1T1

p

(
1 − m1nT

ρT1

)
+ T ζ (0)

p
n1T1c1,1, (A9)

[
−ζ (0)

(
T ∂T + p∂p

) − 1

2
ζ (0) + ν

]
n1T1c1,1 + n1T1

(
τ11b1,2 + τ12b2,2

) = − pζ (0)

2T
n1T1b1,1.

(A10)
Here, we have introduced the collision frequencies

ν = 1

dn1T1

∫
dV1m1V1 · [

L1 f1,M V1 − δγM1 f2,M V2
]

= − 1

dn1T1

∫
dV1m1V1 ·

(
J12[v1| f1,M V1, f (0)

2 ] − δγ J12[v1| f (0)
1 , f2,M V2]

)
, (A11)
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τi i = 1

dni Ti

∫
dv1mi V1 · Li

(
fi,M Si

)
, (A12)

τi j = 1

dni Ti

∫
dv1mi V1 · Mi

(
f j,M S j

)
, i �= j. (A13)

From dimensional analysis, n1T1a1, 1 ∼ T1/2, n1T1b1, 1 ∼ T1/2/p, and n1T1c1, 1 ∼ T−1/2. Thus, the
temperature derivatives can be performed in Eqs. (A8)–(A10) and the result is(

ν − 1

2
ζ (0)

)
a1,1 + τ11a1,2 + τ12a2,2 = −

(
∂

∂x1
ln n1T1

)
p,T

+
(

∂ζ (0)

∂x1

)
p,T

(
pb1,1 + T c1,1

)
,

(A14)(
ν − 3

2
ζ (0)

)
b1,1 + τ11b1,2 + τ12b2,2 = − 1

p

(
1 − m1nT

ρT1

)
+ T ζ (0)

p
c1,1, (A15)

νc1,1 + τ11c1,2 + τ12c2,2 = − pζ (0)

2T
b1,1. (A16)

If only the first Sonine approximation is considered (which means ai, 2 = bi, 2 = ci, 2 = 0), the
solution to Eqs. (A14)–(A16) is

a1,1[1] = −
(

ν − 1

2
ζ (0)

)−1
[(

∂

∂x1
ln n1T1

)
p,T

−
(

∂ζ (0)

∂x1

)
p,T

(
p b1,1[1] + T c1,1[1]

)]
,

(A17)

b1,1[1] = − 1

p

(
1 − m1nT

ρT1

) (
ν − 3

2
ζ (0) + ζ (0)2

2ν

)−1

, (A18)

c1,1[1] = − pζ (0)

2T ν
b1,1[1]. (A19)

Here, ai, 2[1], bi, 2[1], and ci, 2[1] denotes the first Sonine approximation to ai, 2, bi, 2, and ci, 2,
respectively. From Eqs. (A17)–(A19) one gets the first Sonine expressions (47)–(49) for D, Dp and
D′, respectively.

To close the problem, we multiply now Eqs. (A2)–(A4) by S1(V1) and integrates over the
velocity. Following identical mathematical steps as before and after some algebra one gets(

ν11 − 3

2
ζ (0)

)
a1,2 + ν12a2,2 −

(
∂ζ (0)

∂x1

)
p,T

(
pb1,2 + T c1,2

)
= −

(
ζ (0)

T1
− �12

)
a1,1 − 1

2

T 2

T 3
1

(
∂γ 2

1

∂x1

)
p,T

, (A20)

(
ν11 − 5

2
ζ (0)

)
b1,2 + ν12b2,2 − T ζ (0)

p
c1,2 −

(
ζ (0)

T1
− �12

)
b1,1 = 0, (A21)

(
ν11 − ζ (0)

)
c1,2 + ν12c2,2 + pζ (0)

2T
b1,2 −

(
ζ (0)

T1
− �12

)
c1,1 = − 1

T T1
. (A22)

Here, �12 = λ11 − δγ λ12,

λi i = 2

d(d + 2)

mi

ni T 3
i

∫
dv1Si · Li

(
fi,M V1

)
, (A23)

λi j = 2

d(d + 2)

mi

ni T 3
i

∫
dv1Si · Mi

(
f j,M V2

)
, i �= j. (A24)
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In addition, in Eqs. (A20)–(A22), we have introduced the collision frequencies

νi i = 2

d(d + 2)

mi

ni T 3
i

∫
dv1Si · Li

(
fi,M Si

)
, (A25)

νi j = 2

d(d + 2)

mi

ni T 3
i

∫
dv1Si · Mi

(
f j,M S j

)
, i �= j. (A26)

The corresponding integral equations verifying the remaining coefficients a2, 2, b2, 2, and c2, 2 can
be obtained from Eqs. (A20)–(A22), respectively, by interchanging 1 ↔ 2. Note that upon writing
Eqs. (A20)–(A22) we have neglected the non-Gaussian corrections to f (0)

i .
Equations (A14)–(A16) along with Eqs. (A20)–(A22) can be written in a more compact form

by using matrix notation. For the sake of convenience, let us introduce the dimensionless coefficients
a∗

1,1 = ν0a1,1, b∗
1,1 = pν0b1,1, c∗

1,1 = T ν0c1,1, a∗
i,2 = T ν0ai,2, b∗

i,2 = pT ν0bi,2, and c∗
i,2 = T 2ν0ci,2,

where ν0 is defined by Eq. (43). Let us introduce the column matrix X by

{a∗
1,1; b∗

1,1; c∗
1,1; a∗

1,2; a∗
2,2; b∗

1,2; b∗
2,2; c∗

1,2; c∗
2,2}. (A27)

Therefore, according to Eqs. (A14)–(A16) and (A20)–(A22), the coupled set of nine equations for
the unknowns can be rewritten in matrix form as

�σσ ′ Xσ ′ = Yσ , (A28)

where the square matrix � is

� = �(0) + �(1), (A29)

�(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν∗ − 1
2 ζ ∗ 0 0 τ ∗

11 τ ∗
12 0 0 0 0

0 ν∗ − 3
2 ζ ∗ 0 0 0 τ ∗

11 τ ∗
12 0 0

0 0 ν∗ 0 0 0 0 τ ∗
11 τ ∗

12

0 0 0 ν∗
11 − 3

2 ζ ∗ ν∗
12 0 0 0 0

0 0 0 ν∗
21 ν∗

22 − 3
2 ζ ∗ 0 0 0 0

0 0 0 0 0 ν∗
11 − 5

2 ζ ∗ ν∗
12 0 0

0 0 0 0 0 ν∗
21 ν∗

22 − 5
2 ζ ∗ 0 0

0 0 0 0 0 0 0 ν∗
11 − ζ ∗ ν∗

12

0 0 0 0 0 0 0 ν∗
21 ν∗

22 − ζ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A30)

�(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
(

∂ζ ∗
∂x1

)
p,T

−
(

∂ζ ∗
∂x1

)
p,T

0 0 0 0 0 0

0 0 −ζ ∗ 0 0 0 0 0 0

0 ζ ∗/2 0 0 0 0 0 0 0

ω∗
12 0 0 0 0 −

(
∂ζ ∗
∂x1

)
p,T

0 −
(

∂ζ ∗
∂x1

)
p,T

0

ω∗
21 0 0 0 0 0 −

(
∂ζ ∗
∂x1

)
p,T

0 −
(

∂ζ ∗
∂x1

)
p,T

0 ω∗
12 0 0 0 0 0 −ζ ∗ 0

0 ω∗
21 0 0 0 0 0 0 −ζ ∗

0 0 ω∗
12 0 0 ζ ∗/2 0 0 0

0 0 ω∗
21 0 0 0 ζ ∗/2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A31)
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The column matrix Y is given by

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
x1γ1

(
∂

∂x1
x1γ1

)
p,T

−
(

1 − μ(1+δ)
γ1(1+μδ)

)
0

− 1
2γ 3

1

(
∂γ 2

1
∂x1

)
p,T

− 1
2γ 3

2

(
∂γ 2

2
∂x1

)
p,T

0

0

−γ −1
1

−γ −1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A32)

In the above equations, we have introduced the reduced quantities ν* = ν/ν0, τ ∗
i j = τi j/T ν0,

ν∗
i j = νi j/ν0, and

ω∗
12 = �∗

12 − ζ ∗

γ1
, ω∗

21 = −δγ

(
�∗

21 − ζ ∗

γ2

)
, �∗

i j = T �i j

ν0
. (A33)

The solution to Eq. (A28) is

Xσ = (�−1)σσ ′Yσ ′ . (A34)

From this relation one gets the second Sonine corrections to the coefficients a11, b11, and c11.

APPENDIX B: REDUCED COLLISION FREQUENCIES AND COOLING RATES

In this appendix, we provide the explicit expressions of the (reduced) collision frequencies
needed to evaluate D[2], Dp[2], and D′[2]. As said in the main text, to evaluate them we take
the local Maxwellian approximations (30) for the zeroth-order distributions f (0)

i . These collision
frequencies have been already evaluated in the d dimensional case.22, 26 They are given by

ν∗ = 2π
d
2 −1

d�
(

d
2

) (1 + α12)

(
θ1 + θ2

θ1θ2

)1/2
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In the above equations, μij = mi/(mi + mj), and

θi = mi

γi

2∑
j=1

m−1
j . (B7)

In addition, the quantities A, B, E, and F are given, respectively, as

A = (d+2)(2β12 + θ2) + μ21(θ1 + θ2)
{
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B = (d + 2)(2β12 − θ1) + μ21(θ1 + θ2)
{
(d + 2)(1 − α12) + [(11 + d)α12 − 5d − 7]β12θ

−1
2

}
−3(d + 3)β2

12θ
−1
2 − 2μ2

21

(
2α2

12 − d + 3

2
α12 + d + 1

)
θ−1

2 (θ1 + θ2)2 + (d + 2)(θ1 + θ2),

(B9)
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Here, β12 = μ12θ2 − μ21θ1. From Eqs. (B2)–(B6), one easily gets the expressions for τ ∗
22, τ ∗

21, �∗
21,

ν∗
22 and ν∗

21 by interchanging 1 ↔ 2.
Finally, the temperature ratio γ is determined from the condition51

ζ ∗
1 = ζ ∗

2 = ζ ∗, (B12)
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where the dimensionless cooling rate is
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. (B13)

The expression of ζ ∗
2 can be obtained form the change 1 ↔ 2. Once the temperature ratio γ is

known, the partial temperature ratios γ i = Ti/T (i = 1, 2) can be expressed in terms of the (global)
temperature as

γ1 = γ

1 + x1(γ − 1)
, γ2 = 1

1 + x1(γ − 1)
. (B14)
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28 J. M. Montanero and V. Garzó, “Monte Carlo simulation of the homogeneous cooling state for a granular mixture,” Granular
Matter 4, 17 (2002).

29 See for instance, A. Barrat and E. Trizac, “Lack of energy equipartition in homogeneous heated binary granular mixtures,”
Granular Matter 4, 57 (2002); S. R. Dahl, C. M. Hrenya, V. Garzó, and J. W. Dufty, “Kinetic temperatures for a granular
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31 J. Kincaid, E. G. D. Cohen, and M. López de Haro, “The Enskog theory for multicomponent mixtures. IV. Thermal
diffusion,” J. Chem. Phys. 86, 963 (1987).

32 P. P. Mitrano, S. R. Dahl, D. J. Cromer, M. S. Pacella, and C. M. Hrenya, “Instabilities in the homogeneous cooling of
a granular gas: A quantitative assessment of kinetic-theory predictions,” Phys. Fluids 23, 093303 (2011); P. P. Mitrano,
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