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Abstract. The homogeneous state of a granular flow of smooth inelastic hard
spheres or disks described by the Enskog–Boltzmann kinetic equation is analyzed.
The granular gas is fluidized by the presence of a random force and a drag force.
The combined action of both forces, which act homogeneously on the granular gas,
tries to mimic the interaction of the set of particles with a surrounding fluid. The
first stochastic force thermalizes the system, providing for the necessary energy
recovery to keep the system in its gas state at all times, whereas the second force
allows us to mimic the action of the surrounding fluid viscosity. After a transient
regime, the gas reaches a steady state characterized by a scaled distribution
function ϕ that depends not only on the dimensionless velocity c ≡ v/v0 (v0 being
the thermal velocity) but also on the dimensionless driving force parameters. The
dependence of ϕ and its first relevant velocity moments a2 and a3 (which measure
non-Gaussian properties of ϕ) on both the coefficient of restitution α and the
driven parameters is widely investigated by means of the direct simulation Monte
Carlo method. In addition, approximate forms for a2 and a3 are also derived from
an expansion of ϕ in Sonine polynomials. The theoretical expressions of the above
Sonine coefficients agree well with simulation data, even for quite small values
of α. Moreover, the third order expansion of the distribution function makes a
significant improvement in accuracy for larger velocities and inelasticities. Results
also show that the non-Gaussian corrections to the distribution function ϕ are
smaller than those observed for undriven granular gases.
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1. Introduction

A large amount of work has been devoted in the past few decades to the study of granular
matter (materials composed of many mesoscopic particles that collide inelastically). When
the granular material is externally excited (rapid flow conditions), the behavior of solid
particles is dominated by the particle collisions and kinetic theory tools can be used to
describe granular flows. Thus, from the point of view of fundamental kinetic theory, the
study of granular gases is interesting because it involves the generalization of classical
kinetic equations (such as the Boltzmann, Enskog or Boltzmann–Lorentz equations, for
instance) to dissipative dynamics. On the other hand, the fact that collisions are inelastic
gives rise to a decreasing time evolution of the total kinetic energy and one has to inject
energy into the system to keep it under rapid flow conditions. When the injected energy
compensates for the collisional loss of energy, the system reaches a non-equilibrium steady
state. In this context, granular matter can be considered as a good prototype of a system
that inherently is in a non-equilibrium state.

In real experiments, the granular gas is driven through the boundaries, for example,
vibrating its walls [1] or alternatively by bulk driving, as in air-fluidized beds [2, 3]. The
same effect can be achieved by means of the action of an external driving force that
heats the system homogeneously. This way of supplying energy is quite usual in computer
simulations [4, 5] and this type of external forces is usually called a ‘thermostat’ [6].
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Although thermostats have been widely used in the past to study granular dynamics,
their effects on the properties of the system are not yet completely understood [7]–[9].

In this paper, we are interested in analyzing the homogeneous steady state of a
driven granular fluid. Our thermostat is composed of two different terms: (i) a drag
force proportional to the velocity of the particle and (ii) a stochastic force with the
form of a Gaussian white noise where the particles are randomly kicked between
collisions [10]. Under these conditions, our kinetic equation has the structure of a
Fokker–Planck equation [11] plus the corresponding (inelastic) collisional operator of the
Enskog–Boltzmann equation. The viscous drag force allows us to model the friction from
a surrounding fluid over a moderately dense set of spheres [12]. The stochastic force would
model the energy transfer from the surrounding fluid molecules to the granular particles,
due to molecular thermal motion (much in the same way as in a Brownian particle). Thus,
our study has obvious applications to the dynamics of colloids and suspensions [12]–[16].
In particular, and since the volume forces act homogeneously in the granular gas, our
system may show homogeneous steady states, if there is no additional energy input from
the boundaries.

The same type of thermostats were used in previous works by other authors [4]. In
particular, Gradenigo et al [17] carried out Langevin dynamics simulations for hard disks
to measure the static and dynamic structure factors for shear and longitudinal modes. The
corresponding best fit of their simulation results allows them to identify the kinematic
and longitudinal viscosities and the thermal diffusivity. For the sake of simplicity, they
neglect non-Gaussian corrections to the (homogeneous) distribution function and use the
forms of the elastic Enskog transport coefficients to compare with simulations. More
recently, the expressions of the inelastic transport coefficients of driven granular fluids
have been derived [18] by means of the Chapman–Enskog method instead [19]. In this
case, the inherently homogeneous steady state of our system emerges as the zeroth order
approximation f (0) in the Chapman–Enskog perturbative scheme. In order to characterize
the deviation of the distribution f (0) from its Maxwellian form, a Sonine polynomial
expansion was considered. As usual, for practical purposes, we retained only the first
non-zeroth order contribution to the expansion and derived an explicit expression for the
second Sonine coefficient a2.

We want in the present work to focus in the properties of the homogeneous steady
state, describing in more detail the features of the velocity distribution function. More
specifically, our aim here is two-fold. First, as noted in our previous work [18], we assume
that in the steady state the homogeneous distribution function fs admits a scaling solution

fs → nv−d0,sϕ(c, ξ∗), (1)

where n is the number density, v0,s =
√

2Ts/m is the thermal velocity (Ts being the
steady granular temperature), c ≡ v/v0,s is a dimensionless velocity and ξ∗ (defined below
in equation (18)) is the (dimensionless) noise strength of the stochastic term of the
thermostat. According to the scaling form (1) and in contrast to the results obtained in the
homogeneous cooling state (undriven gas) [20], the dependence of the reduced distribution
ϕ on temperature is encoded not only through the (reduced) velocity c but also through
the driven parameter ξ∗. In this paper, we perform Monte Carlo simulations [21] of the
Enskog–Boltzmann equation to confirm that indeed the scaled distribution ϕ presents this
universal character for arbitrary values of the coefficient of restitution α and the external
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driven parameters. As a second goal, we shall characterize the behavior of ϕ(c, ξ∗) in the
domain of thermal velocities by evaluating the two first nontrivial coefficients (a2 and
a3) of an expansion of ϕ in Sonine polynomials. Given that both coefficients cannot be
exactly obtained, we will propose two different approximations to estimate a2 and a3. In
particular, we provide expressions for the coefficient a2 in a more accurate calculation
method than in our previous work [18]. Therefore, we give an analytical expression for the
distribution function with one more term, and in a more refined approximation. As we
will see, the comparison with the direct simulation Monte Carlo (DSMC) results obtained
specifically for this work shows that the analytical expression of the distribution function
derived here describes very well the system in a wide range of velocities. A preliminary
report of part of the results offered in this paper has been published elsewhere [22].

The plan of the paper is as follows. In section 2 we describe the system, the thermostat
and the system kinetic equation. Next, in section 3 we obtain explicit expressions
for the two first Sonine coefficients a2 and a3 while the numerical solution of the
Enskog–Boltzmann equation for the system studied here is presented in section 4 for
disks and spheres. A comparison with the approximated theoretical expressions derived
in section 3 is also carried out, showing good agreement in general between theory and
simulation. The paper is closed in section 5 with some concluding remarks.

2. Enskog–Boltzmann kinetic theory for homogeneous driven states

Let us then consider a set of identical smooth hard disks/spheres (d is the dimension of the
system) with mass m and diameter σ that collide inelastically. At moderate densities, one
can still assume that there are no correlations between the velocities of two particles that
are about to collide (molecular chaos hypothesis) [23], so that the two-body distribution
function factorizes into the product of the one-particle velocity distribution functions
f(r,v, t). For a spatially uniform state, the Enskog kinetic equation for f(v, t) reads

∂tf + Ff = χJ [f, f ], (2)

where J [f, f ] is the collision operator, given by

J [v1|f(t), f(t)] = σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2f(v′1)f(v′2)− f(v1)f(v2)

]
. (3)

Here, F is an operator representing the effect of an external force, χ is the pair correlation
function at contact [24], σ̂ is a unit vector along the line joining the centers of the colliding
spheres, Θ is the Heaviside step function and g12 = v1 − v2 is the relative velocity. In
addition, the primes on the velocities in equation (3) denote the initial values {v′1,v′2}
that lead to {v1,v2} following a binary collision:

v′1 = v1 − 1
2
(1 + α−1)(σ̂ · g12)σ̂, v′2 = v2 + 1

2
(1 + α−1)(σ̂ · g12)σ̂, (4)

where α ≤ 1 is the (constant) coefficient of normal restitution. Except for the presence
of the factor χ (which accounts for the increase of the collision frequency due to
excluded volume effects), the Enskog equation for uniform states is identical to the
Boltzmann equation for a low-density gas. For this reason, henceforth we will call (2)
the Enskog–Boltzmann equation.

As we said in section 1, our granular gas is subjected to homogeneous volume forces
that try to mimic the interaction with a surrounding molecular fluid [4]. These forces,
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usually called ‘thermostats’ [6], show up in the kinetic equation (2) through the term F .
Here, we will consider a volume force composed by two independent terms. One term
corresponds to a Gaussian white noise force (Fst) that tries to simulate the kinetic energy
gain due to eventual collisions with the (more rapid) molecules of the surrounding fluid.
It does this by adding a ‘random’ velocity to each particle. This additional velocity is
extracted from a Maxwellian distribution with a characteristic variance determined by
the ‘noise intensity’ ξ2

b [10]. The other term corresponds to a drag force (Fdrag) of the
form −γbvi(t) that tries to capture the effect of the surrounding fluid viscosity (γb is a
drag coefficient). This kind of thermostat composed of two different forces has been used
by other authors in previous works [4]. The total thermostat force Fth(t) is

Fth
i (t) = Fst

i (t) + Fdrag
i (t) = Fst

i (t)− γbvi(t). (5)

Since Fst
i (t) is a Gaussian white noise [10], it fulfils the conditions [25]

〈Fst
i (t)〉 = 0, 〈Fst

i (t)Fst
j (t′)〉 = 1m2ξ2

bδijδ(t− t′), (6)

where 1 is the d×d unit matrix and δij is the Kronecker delta function. The corresponding
term in the Enskog–Boltzmann equation associated with the stochastic force Fst

i is
represented by the Fokker–Planck operator −1

2
ξ2
b∂

2/∂v2 [20]. Therefore, the stochastic
and drag forces contribute to the kinetic equation with terms of the form

Ff = F stf + Fdragf, F stf = −1

2
ξ2
b

∂2

∂v2
f, Fdragf = −γb

m

∂

∂v
· vf. (7)

Notice that the thermostat terms F st and Fdrag introduce in the kinetic equation
equation (2) two new and independent timescales given by τst = v2

0/ξb and τdrag = m/γb,

respectively. Here, v0 =
√

2T/m is the thermal velocity defined in terms of the granular
temperature T . A similar external driving force to that of equation (6) has been recently
proposed to model the effect of the interstitial fluid on grains in monodisperse gas–solid
suspensions [12].

The Enskog–Boltzmann equation (2) can be more explicitly written when one takes
into account the form (7) of the forcing term Ff . It is given by

∂tf −
γb

m

∂

∂v
· vf − 1

2
ξ2
b

∂2

∂v2
f = χJ [f, f ]. (8)

The density n and temperature T fields are defined as usual (except that for our case the
mean flow velocity vanishes)

n(t) =

∫
dv f(v, t), (9)

T (t) =
m

dn

∫
dv v2f(v, t). (10)

The balance equation for the homogeneous temperature can be easily obtained by
multiplying both sides of equation (8) by v2 and integrating over velocity. The result
is

∂tT = −2T

m
γb +mξ2

b − ζT, (11)

doi:10.1088/1742-5468/2013/07/P07013 5
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where

ζ = − m

dnT

∫
dv v2J [f, f ] (12)

is the cooling rate ζ. It is proportional to 1 − α2 and is due to the inelastic character of
the collisions.

We will assume now that a normal (or hydrodynamic) solution to equation (8) exists.
This means that all the time dependence of the distribution function f(v, t) occurs through
a functional dependence on the hydrodynamic fields [19, 26]. Since the temperature is the
only relevant field in this problem, the time dependence of f(v, t) occurs only through
T (t). Therefore, according to equation (11), one gets

∂tf =
∂f

∂T
∂tT = −

(
2γb

m
− m

T
ξ2
b + ζ

)
T
∂f

∂T
. (13)

Substitution of equation (13) into (8) yields

−
(

2

m
γb −

m

T
ξ2
b + ζ

)
T
∂f

∂T
− γb

m

∂

∂v
· vf − 1

2
ξ2
b

∂2

∂v2
f = χJ [f, f ]. (14)

After a transient regime, it is expected that the gas reaches a steady state characterized
by a constant granular temperature Ts. In this case, ∂tT = 0 and the balance equation (11)
leads to

Ts =
mξ2

b

ζs + 2γb/m
, (15)

where the subindex s means that the quantities are evaluated in the steady state. Given
that equation (15) establishes a relation between the two driven parameters γb and ξ2

b, only
one of the above parameters will be considered as independent. Henceforth, we will take ξ2

b

as the relevant driven parameter. For elastic collisions (α = 1), ζs = 0, thus equation (15)
yields Ts = Tb where

Tb =
m2ξ2

b

2γb

. (16)

As in the work of Gradenigo et al [17], equation (16) defines a ‘bath temperature’. Its
name may be justified since it is determined by the two thermostat parameters (γb

and ξ2
b), and thus it can be considered as remnant of the physical temperature of the

surrounding ordinary (elastic) fluid. In this sense, for elastic collisions, T = Tb, and
so energy equipartition is fulfilled (in accordance to equilibrium statistical mechanics
principles). For inelastic gases (i.e., for α < 1, ζs > 0), equation (15) yields T < Tb. From
a physical point of view, it makes sense that the inelastic granular gas is cooler than the
surrounding ordinary fluid.

The kinetic equation of the steady distribution function fs can be easily obtained by
using the relation (15) in equation (14):

1

2
ζs
∂

∂v
· vfs −

mξ2
b

2Ts

∂

∂v
· vfs −

1

2
ξ2
b

∂2

∂v2
fs = χJ [fs, fs]. (17)

Equation (17) clearly shows that fs(v) must also depend on the model parameter ξ2
b and

the steady temperature Ts apart from its dependence on the coefficient of restitution α.

doi:10.1088/1742-5468/2013/07/P07013 6
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Note that the steady cooling rate ζs is defined in terms of the steady distribution fs (see
equation (12)).

Based on previous results obtained for undriven [20, 23] and driven [18, 20, 25] systems,
it is expected that equation (17) admits a scaling solution of the form given by equation (1),
where ϕ is an unknown function of the dimensionless parameters

c ≡ v

v0,s

, ξ∗ ≡ m`

χTsv0,s

ξ2
b. (18)

Here,

` =
1

nσd−1
(19)

is the mean free path for hard spheres. In the steady state, it is also convenient to define
the collision frequency

νs =
v0,s

`
=

√
2Ts

m
nσd−1, (20)

and the reduced drag coefficient

γ∗ =
γb

χmνs

. (21)

In terms of the (reduced) distribution function ϕ, equation (17) may be rewritten as

1

2
ζ∗
∂

∂c
· cϕ− 1

2
ξ∗
∂

∂c
· cϕ− 1

4
ξ∗
∂2

∂c2
ϕ = J∗[ϕ, ϕ], (22)

where we have introduced the dimensionless quantities

ζ∗ ≡ ζs
χνs

, J∗[ϕ, ϕ] ≡
vd0,s
nνs

J [f, f ]. (23)

Equation (22) clearly shows that the dependence of the scaled distribution function ϕ on
the temperature is encoded through two different parameters: the dimensionless velocity
c and the (reduced) noise strength ξ∗. This scaling differs from the one assumed in the
free cooling case [20], where only the dimensionless velocity c is required to characterize
the distribution ϕ. A similar scaling solution to the form (14) has been recently found [27]
at all times (also for unsteady states) in the particular case γb = 0. Thus, our guess in
equation (1) seems to be reasonable.

In the case of elastic particles (α = 1), the cooling rate ζ∗s vanishes and the solution
of equation (22) is the Maxwellian distribution

ϕM(c) = π−d/2e−c
2

. (24)

However, if the particles collide inelastically (α < 1), then ζ∗ 6= 0 and the exact form
of ϕ(c) is not known. One of the objectives of the present work is to find an accurate
analytical solution to the reduced distribution function ϕ, from equation (22). As usual,
the behavior of ϕ(c, ξ∗) in the region of thermal velocities (c ' 1) can be well characterized
by the two first nontrivial coefficients (a2 and a3) of an expansion in Sonine polynomials.
This will be done in section 2 by considering two different approaches.

doi:10.1088/1742-5468/2013/07/P07013 7
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In reduced units, the steady state condition equation (15) can be simply written as

2γ∗ = ξ∗ − ζ∗. (25)

Since γ∗ ≥ 0, then equation (25) requires ξ∗ ≥ ζ∗. Thus, at a given value of the coefficient
of restitution α, there is a minimum threshold value ξ∗th(α) of the noise intensity needed
to reach a steady state. The value of ξ∗th coincides with the (reduced) cooling rate ζ∗(α).
Given that the latter cannot be exactly determined, a good estimate of it is obtained when
one replaces the true distribution ϕ by its Maxwellian form ϕM. In this case, ζ∗ → ζ∗M,
where [23]

ζ∗M =

√
2

d

π(d−1)/2

Γ(d/2)
(1− α2). (26)

Before closing this section, let us make some observations. First, due to the equivalence
between the Enskog and Boltzmann equations in the homogeneous states, the solution to
equation (22) does not depend explicitly on the pair correlation function χ (and χ is a
function of the packing fraction). This means that the reduced distribution function ϕ
has the same universal form for arbitrary values of the packing fraction of the granular
fluid. Thus, we do not need to provide explicit expressions for the purpose of this work,
although they may be found elsewhere [24, 28]. Also, as mentioned before, the steady
state equation (15) leads to a relation between ξ2

b and γb so that the scaled distribution
ϕ depends on both parameters only through the reduced noise strength ξ∗. Therefore,
providing ξ∗ (and not ξ2

b, γb, nor χ) is enough to determine uniquely the steady distribution
function. We will check that in effect this is the case in section 4, from comparison with
simulation data.

3. Analytical solution of the scaled distribution function

The goal of this section is to determine a perturbative (although sufficiently accurate)
analytic solution of the distribution function ϕ(c, ξ∗). As said before, a convenient and
useful way of characterizing ϕ(c, ξ∗) in the range of low to intermediate velocities is through
the Sonine polynomial expansion

ϕ(c, ξ∗) = ϕM(c)

[
1 +

∞∑
p=1

ap(ξ
∗) Sp(c

2)

]
, (27)

where Sp are generalized Laguerre or Sonine polynomials. They are defined as [29]

Sp(x) =

p∑
k=0

(−1)k (d/2− 1 + p)!

(d/2− 1 + k)!(p− k)!k!
xk, (28)

and satisfy the orthogonality relations [30]∫
dcϕM(c) Sp(c

2) Sp′ (c2) = Np δpp′ , (29)

where Np is a normalization constant.
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The first few Sonine polynomials relevant for our study are

S0(x) = 1, S1(x) = −x+
d

2
, S2(x) =

1

2
x2 − d+ 2

2
x+

d(d+ 2)

8
, (30)

S3(x) = −1

6
x3 +

d+ 4

4
x2 − (d+ 2)(d+ 4)

8
x+

d(d+ 2)(d+ 4)

48
. (31)

The coefficients ap appearing in equation (27) (also called cumulants) are the
corresponding velocity moments of the scaling function ϕ, i.e.,

ap(ξ
∗) =

1

Np

∫
dcSp(c

2) ϕ(c, ξ∗). (32)

In particular, the temperature definition (10) implies 〈c2〉 = d/2 and therefore,

a1 =
2

d
〈S1(c

2)〉 = 0. (33)

Here, 〈· · ·〉 denotes an average over the scaled distribution ϕ, namely,

〈cp〉 ≡
∫

dc cp ϕ(c). (34)

In the present work, we will retain up to the first two nontrivial coefficients a2 and a3.
They are related to the fourth and sixth velocity moments as

〈c4〉 =
d(d+ 2)

4
(1 + a2), (35)

〈c6〉 =
d(d+ 2)(d+ 4)

8
(1 + 3a2 − a3). (36)

In order to determine the coefficients ak, we construct a set of equations for the velocity
moments 〈c2p〉. The hierarchy for the moments can be easily derived by multiplying both
sides of equation (22) by c2p and integrating over c. The result is

p(ζ∗ − ξ∗)〈c2p〉+
p(2p+ d− 2)

2
ξ∗〈c2p−2〉 = µ2p, (37)

where

µ2p = −
∫

dc c2p J∗[ϕ, ϕ]. (38)

Upon writing equation (37) use has been made of the results∫
dc c2p

∂

∂c
· cϕ(c) = −2p〈c2p〉, (39)∫

dc c2p
∂2

∂c2
ϕ(c) = 2p(2p+ d− 2)〈c2p−2〉. (40)

Note that, according to equations (12) and (38), the (reduced) cooling rate ζ∗ = (2/d)µ2.
The cumulants ap can be obtained from the exact set of moment equations (37).

However, given that the collisional moments µ2p are functionals of the distribution
ϕ, equation (37) becomes an infinite hierarchy of moment equations. In other words, all
the Sonine coefficients ap are coupled and one has to resort to some kind of truncation in
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the series (27) to get explicit forms for ap. Thus, based on the expectation that the Sonine
coefficients are small, one usually approximates the first few collisional moments µ2p by
inserting the expansion (27) into equation (38), truncating the expansion in a given order
and, in some cases, neglecting nonlinear terms. In particular, in the case of the collisional
moments defined by equation (38) with p = 1, 2, and 3, one gets

µ2 → A0 + A2a2 + A3a3, (41)

µ4 → B0 +B2a2 +B3a3, (42)

µ6 → C0 + C2a2 + C3a3. (43)

The expressions of the coefficients Ai, Bi, and Ci as functions of the coefficient of
restitution α and the dimensionality d were independently derived by van Noije and
Ernst [20] and by Brilliantov and Pöschel [31]. They are displayed in the appendix A for
the sake of completeness. We need to note that in equations (41)–(43), we have neglected
the coefficients ap with p ≥ 4 and nonlinear terms (such as a2

2, a2a3, and a2
3).

The exact moment equation (37) becomes an approximation when it is linearized with
respect to a2 and a3. For p = 2, one gets[
B2 − (d+ 2)(A0 + A2) +

d(d+ 2)

2
ξ∗
]
a2 + [B3 − (d+ 2)A3] a3 = (d+ 2)A0 −B0, (44)

while the result for p = 3 is[
C2 + 3

4
(d+ 2)(d+ 4)(dξ∗ − 3A0 − A2)

]
a2

+

[
C3 −

3

4
(d+ 2)(d+ 4)

(
A3 − A0 +

d

2
ξ∗
)]

a3

= 3
4
(d+ 2)(d+ 4)A0 − C0. (45)

The (reduced) thermostat parameter ξ∗ depends on the value of the (steady) granular
temperature, which is a function of a2 and a3. Since it is expected that both coefficients are
quite small, we evaluate ξ∗ by assuming a2 = a3 = 0. In this case, the set of equations (44)
and (45) becomes a simple linear algebraic set of equations that can be easily solved to
give a2 and a3 in terms of d, α and ξ∗. As noted previously by Montanero and Santos [25,
32], there is a certain degree of ambiguity in the approximations used in the determination
of a2 and a3. Here, in order to solve the set of equations (44) and (45), we consider two
basic classes of approximations. In approximation I, we first assume that a3 � a2 so that
a3 can be neglected versus a2 in equation (44) but not in equation (45). This is equivalent
to neglecting a3 in equations (41) and (42) for µ2 and µ4, respectively. Given that µ6 is
expected to be smaller than µ4, it seems to be more accurate to neglect a3 in equation (44)
rather than in equation (45). The comparison with computer simulations confirms this
expectation. In approximation II, both Sonine coefficients a2 and a3 are considered as being
of the same order of magnitude. Since the latter does not assume negligible contributions
of a3 to the expression of a2, this approximation should be more accurate.

In approximation I, the expression of the second Sonine coefficient a2 may be

calculated independently of a3, from equation (44) with a3 = 0. In fact, a
(I)
2 was obtained

in previous works [18, 22]. Its explicit expression is given by equation (B.2) while a
(I)
3 is

a
(I)
3 (α, ξ∗) = F

(
α, a

(I)
2 (α), ξ∗

)
, (46)
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where the function F (α, a2, ξ
∗) is given by equation (B.5). The expressions in

approximation II have the following forms

a
(II)
2 (α, ξ∗) =

M(α, ξ∗)

N(α, ξ∗)
, (47)

a
(II)
3 (α, ξ∗) = F

(
α, a

(II)
2 (α), ξ∗

)
, (48)

where the explicit (and rather large) expressions of M(α, ξ∗) and N(α, ξ∗) are given by
equations (B.6) and (B.7), respectively.

4. Computer simulation results. Comparison with theoretical approaches

In this section, the relevant quantities of the problem (a2, a3 and ϕ) will be computed
by numerically solving the Enskog–Boltzmann equation by means of the DSMC method
[21, 33]. The DSMC method has proved to be a very efficient tool by solving numerically
the Enskog–Boltzmann equation [21, 25] for inelastic collisions. The numerical results will
also be compared with the theoretical predictions described in section 3. Before doing it,
let us provide some details on the implementation of the DSMC method to the problem
considered in this paper.

4.1. Direct simulation Monte Carlo method

By means of the DSMC method we can obtain a numerical solution of the kinetic
equation (8). This solution has the following advantages: (1) it also determines
homogeneous non-steady states; and (2) it does not assume a priori either a normal
solution or the specific scaling form (1) of the distribution function, as we did for the
analytical solution. Therefore, a comparison of both numerical and analytical solutions
is a direct way of validating (for steady states) the hypotheses of existence of a normal
solution and of the special scaling form of equation (17). Also, the comparison will allow
us to assess the accuracy of the approximate expressions for a2 and a3. Additionally, it
will allow us to show in this work the first preliminary analysis of the transient regime
towards the steady state for the kind of thermostat we are using.

The DSMC algorithm is composed in its basic form of a collision step that takes care of
all particle collisions and a free drift step between particle collisions [21]. If volume forces
act on the system, their corresponding steps need to be incorporated into the algorithm.
Although the DSMC method has been explained elsewhere [18, 21, 25], we will give here
some details of the specific method we have used to solve the uniform Enskog–Boltzmann
equation (8).

The velocity distribution function is represented by the velocities {vi} of N ‘simulated’
particles:

f(v, t)→ n

N

N∑
i=1

δ(vi(t)− v). (49)

The system is always initialized with a Maxwellian velocity distribution with temperature
T0. In the collision stage, a sample of 1

2
Nωmaxdt pairs is chosen at random with

equiprobability, where dt is the time step (which is much smaller than the mean free
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time) and ωmax is an upper bound estimate of the probability that a particle collides per
unit of time. For each pair (i, j) belonging to this sample, a given direction σ̂ij is chosen at
random with equiprobability. Then, the collision between particles i and j is accepted with
a probability equal to Θ(gij · σ̂ij)ωij/ωmax, where ωij = (4πnσ2χ)|gij · σ̂ij| for hard spheres
and ωij = (2πnσχ)|gij · σ̂ij| for hard disks. Here, gij = vi − vj is the relative velocity. If
the collision is accepted, postcollisional velocities are assigned according to the scattering
rule (4). In the case that ωij > ωmax, then the estimate ωmax is updated as ωmax = ωij.
Thus, notice that the acceptance probability Θ(gij · σ̂ij)ωij/ωmax is independent of the
pair correlation function and for this reason the DSMC algorithm is formally identical for
both Boltzmann and Boltzmann–Enskog equations, if the system is homogeneous, like in
our case [25].

In the streaming stage, the velocity of every particle is changed according to the
thermostat, which is composed by two different forces. These two forces act consecutively
(the precedence is not relevant) to the collision step. We only need to take care that
the intrinsic timescales produced by the two forces (τdrag = m/γb and τst = v2

0/ξb) are
not too fast compared to the algorithm time step dt, which needs to be small compared
to the characteristic collision time in order to describe properly the collision integral
of the Boltzmann–Enskog equation [18, 21]. In other words, we need that τdrag ≤ ν−1

and τst ≤ ν−1, where ν = v0/`. As said in section 2, our thermostat is constituted of a
deterministic external force proportional to the velocity particle plus a stochastic force.
Consequently, the thermostat updates particle velocities following the rule

vi → vi + wth
i , wth

i = wdrag
i + wst

i . (50)

Here, wdrag
i and wst

i denote the velocity increments due to the drag and stochastic forces,
respectively. The increment wst

i is picked from a Gaussian distribution with a variance
characterized by the noise intensity ξ2

b fulfilling the conditions

〈wi〉 = 0, 〈wiwj〉 = ξ2
bdtδij, (51)

where

P (wst
i ) = (2πξ2

bdt)
−3/2e−w

st
i

2
/(2ξ2bdt) (52)

is a Gaussian probability distribution [25]. The velocity increment wdrag
i due to the drag

force is given by

wdrag
i = −γbvi dt. (53)

In the simulations carried out in this work we have used a number of particles
N = 2 × 106 particles and a time step dt = 5 × 10−2ν−1

0 , where ν−1
0 = (2T0/m)1/2nσd−1.

Moreover, for the sake of convenience, we introduce the following dimensionless quantities
(γ∗sim and ξ∗sim) characterizing the driven parameters used for the different simulations

γ∗sim =
γb

χmν0

=

(
Ts

T0

)1/2

γ∗, (54)

ξ∗sim =
mξ2

b

χT0ν0

=

(
Ts

T0

)3/2

ξ∗. (55)
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Figure 1. Time evolution for hard disks of the reduced temperature T (t)/Ts

(left panel) and the scaled distribution function ϕ(c0) (right panel) for ξ∗ =
0.478, γ∗ = 0.014, and α = 0.8. Three different initial temperatures have been
considered: T (0)/Ts = 0.25(×), 1 (· · · · · ·), and 4 (�). Here, Ts is the steady value
of the temperature and c0(t) = v0,s/v0(t), v0,s =

√
2Ts/m being the steady value

of thermal speed. The symbols correspond to the simulation results while the
horizontal lines refer to the theoretical predictions for Ts and ϕ(c0). The latter has
been obtained by retaining the three first Sonine polynomials (see equation (57))
and evaluating a2 and a3 with approximation II. Time is measured in units of
ν−1 (t∗ = tν−1).

The last equality in equations (54) and (55) provides the relation between the simulation
(reduced) quantities γ∗sim and ξ∗sim and their corresponding theoretical values γ∗ and ξ∗,
respectively.

4.2. Comparison between theory and simulations

Although we are mainly interested in evaluating all the relevant quantities of the
problem (a2, a3 and ϕ) in the (asymptotic) steady state, it is also interesting to analyze
the approach of some of these quantities towards the steady state. Figure 1 shows
the time evolution of both the (reduced) temperature T (t)/Ts (left panel) and the
distribution function ϕ(c0) (right panel) for the (dimensionless) velocity c0 = v0,s/v0(t).

Here, Ts and v0,s =
√

2Ts/m refer to the theoretical steady values of the granular
temperature and thermal velocity, respectively. The solid horizontal lines correspond to
the theoretical predictions by considering the first two non-Gaussian corrections (third
Sonine approximation) to the distribution ϕ (see equation (57)). We have made runs
of identical systems except that they are initialized with different temperatures. After
a transient regime, as expected we observe that all simulation data tend to collapse
to the same steady values for sufficiently long times. In addition, the corresponding
steady values obtained from the simulation for both temperature and distribution function
practically coincide with those predicted by the Sonine solution. It is also to be noticed
that the convergence to the steady values occurs approximately at the same time for both
T (t)/Ts and ϕ(c0) (thermal fluctuations make it difficult to determine the exact point
for steady state convergence for the distribution function). This is another and indirect
way of checking that indeed the normal solution exists for simulations, since its existence
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Figure 2. Plot of the second Sonine coefficient a2 versus the coefficient of
restitution α for hard disks (left panel) and hard spheres (right panel). The
symbols refer to three different systems with different values of the simulation
parameters γ∗sim and ξ∗sim but with the same value of ξ∗ (ξ∗ = 1.26 for disks and
ξ∗ = 1.68 for spheres). The solid and dashed lines are the values obtained for a2

by means of approximation I and approximation II, respectively.

implies, from equation (13), that we reach the scaled form (1) when the temperature is
stationary.

Some previous works on a granular gas heated by the stochastic thermostat [27] and
on the simple shear flow [34] have shown that before reaching the steady state the system
evolves towards a universal unsteady state that depends on a new parameter measuring
the distance to the steady state. A similar behavior is expected here where the different
solutions to the Enskog–Boltzmann equation (8) would be attracted by the universal

distribution function f(v, t)→ nv0(t)
−dϕ(c, γ̃(t), ξ̃(t)), where c = v/v0(t), and

γ̃(t) ≡ `γb

χmv0(t)
, ξ̃(t) ≡ `ξ2

b

χT (t)v0(t)
. (56)

The dimensionless driven parameters γ̃(t) and ξ̃(t) measure the distance to the steady
state. Of course, for asymptotically long times, the steady state is eventually reached,
i.e., ϕ(c, γ̃(t), ξ̃(t))→ ϕs(c, ξ

∗), where ξ∗ is defined by equation (18). The above unsteady
hydrodynamic regime (for which the system has forgotten its initial condition) is expected
to be achieved after a certain number of collisions per particle. On the other hand, although
the characterization of this unsteady state is a very interesting problem, its study lies
beyond the goal of the present paper.

Now, we will focus on the steady state values of the relevant quantities of the problem.
In particular, the basic quantities measuring the deviation of the distribution function from
its Maxwellian form are the second and third Sonine coefficients a2 and a3, respectively.
The dependence of a2 and a3 on the coefficient of restitution α is shown in figures 2
and 3, respectively, for hard disks (left panels) and spheres (right panels). Three different
systems with different values of the simulation parameters γ∗sim and ξ∗sim, but with the
same value of ξ∗ (ξ∗ = 1.263 for disks and ξ∗ = 1.688 for spheres) have been considered.
We observe that, at a given of α, the corresponding three simulation data collapse in
a common curve, showing that indeed both Sonine coefficients are always of the form
ai(α, ξ

∗). Regarding the comparison between theory and simulation, it is quite apparent
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Figure 3. Plot of the third Sonine coefficient a3 versus the coefficient of
restitution α for hard disks (left panel) and hard spheres (right panel). The
symbols refer to three different systems with different values of the simulation
parameters γ∗sim and ξ∗sim but with the same value of ξ∗ (ξ∗ = 1.26 for disks and
ξ∗ = 1.68 for spheres). The solid and dashed lines are the values obtained for a3

by means of approximation I and approximation II, respectively.

Figure 4. Plot of the second Sonine coefficient a2 versus the (reduced) noise
strength ξ∗ for α= 0.7 in the case of hard disks (left panel) and hard spheres (right
panel). The symbols refer to simulation results while the solid and dashed lines
are the values obtained for a2 by means of approximation I and approximation
II, respectively. The vertical lines indicate the threshold values ξ∗th.

that while both approximations I and II compare quantitatively quite well with simulations
in the case of a2, approximation II has a better performance than approximation I in
the case of a3, especially at very strong dissipation. This is the expected result, since
approximation II is in principle more accurate that approximation I, although the latter
is simpler than the former. In this sense and with respect to the α-dependence of a2 and a3,
approximation I could be perhaps preferable to approximation II since it has an optimal
compromise between simplicity and accuracy.

On the other hand, more quantitative discrepancies between both approximations are
found when one analyzes both Sonine coefficients versus ξ∗ with constant α. Figures 4 and
5 show a2 and a3, respectively, versus ξ∗ at α = 0.7. We see that approximation I exhibits
a poor agreement with simulations since it predicts a dependence on the noise strength
opposite to the one found in the simulations. On the other hand, approximation II agrees
very well with simulation data in all the range of values of ξ∗ (note that ξ∗ & 0.639 for
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Figure 5. Plot of the third Sonine coefficient a3 versus the (reduced) noise
strength ξ∗ for α= 0.7 in the case of hard disks (left panel) and hard spheres (right
panel). The symbols refer to simulation results while the solid and dashed lines
are the values obtained for a3 by means of approximation I and approximation
II, respectively. The vertical lines indicate the threshold values ξ∗th.

d = 2 and ξ∗ & 0.852 for d = 3 to achieve a steady state for α = 0.7). It must also be noted
that for the systems studied in figures 4 and 5, although the magnitudes of both Sonine
coefficients are very small, |a2| is of the order of ten times smaller than |a3|. This may
indicate that in certain ranges the cumulant a3 is relevant compared to a2, which justifies
our approximation II.

The small values of the coefficients a2 and a3 support the assumption of a low-order
truncation in the polynomial expansion and suggests that the scaled distribution function
ϕ(c, ξ∗) for thermal velocities can be well represented by the three first contributions (note
that a1 = 0) in the Sonine polynomial expansion (27). To confirm it, we have measured the
deviation of ϕ(c, ξ∗) from its Maxwellian form ϕM(c). In figures 6 and 7 we plot the ratio
ϕ(c)/ϕM(c) versus the reduced velocity c in the steady state for two values of the coefficient
of restitution (α = 0.8 and α = 0.6). As before, we have considered a system of inelastic
hard disks (figure 6 with ξ∗ = 1.26) and inelastic hard spheres (figure 7 with ξ∗ = 1.69).
As in figures 2–5, symbols correspond to simulation results obtained for different values of
γ∗sim and ξ∗sim. The solid and dashed lines are obtained from equation (27) with the series
truncated at p = 3, i.e.,

ϕ(c, ξ∗)

ϕM(c)
→ 1 + a2(ξ

∗)

(
1

2
c4 − d+ 2

2
c2 +

d(d+ 2)

8

)
− a3(ξ

∗)

(
1

6
c6 − d+ 4

4
c4 +

(d+ 2)(d+ 4)

8
c2 − d(d+ 2)(d+ 4)

48

)
. (57)

The coefficients a2 and a3 in equation (57) are determined by using approximation I (solid
lines) and approximation II (dashed lines). First, it is quite apparent that simulations
confirm that the reduced distribution function ϕ(c, ξ∗) is a universal function of ξ∗ since all
simulation series at constant ξ∗ collapse to the same curve (within non-measurable margin
error). We also see that the simulation curves agree very well with the corresponding third-
degree Sonine polynomial in this range of velocities, especially in the two-dimensional case.
Surprisingly, in the high velocity region, the curves obtained from approximation I fit the
simulation data slightly better than those obtained by using the improved approximation
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Figure 6. Plot of the scaled distribution function ϕ(c, ξ∗)/ϕM(c) in the steady
state for α = 0.8. The left panel is for hard disks while the right panel corresponds
to hard spheres. The symbols refer to DSMC data obtained for three different
systems with parameters: {γ∗sim, ξ∗sim} = {(1.4×10−2, 5.2×10−5), (9.8×10−3, 1.8×
10−5), (7 × 10−3, 6.5 × 10−6)} for d = 2 and {γ∗sim, ξ∗sim} = {(7.1 × 10−3, 2.9 ×
10−6), (5 × 10−3, 9.8 × 10−7), (3.6 × 10−3, 3.6 × 10−7)} for d = 3. These values
yield a common value of ξ∗: ξ∗ = 1.263 for d = 2 and ξ∗ = 1.688 for d = 3. The
lines correspond to equation (57) with expressions for the cumulants given by
approximation I (solid lines) and approximation II (dashed lines).

Figure 7. Plot of the scaled distribution function ϕ(c, ξ∗)/ϕM(c) in the steady
state for α = 0.6. The left panel is for hard disks while the right panel
corresponds to hard spheres. The symbols refer to DSMC data obtained for three
different systems with parameters: {γ∗sim, ξ∗sim} = {(1.4× 10−2, 2.9× 10−4), (9.8×
10−3, 10−4), (7×10−3, 3.6×10−5)} for d = 2 and {γ∗sim, ξ∗sim} = {(7.1×10−3, 1.5×
10−5), (5 × 10−3, 5.4 × 10−6), (3.6 × 10−3, 1.9 × 10−6)} for d = 3. These values
yield a common value of ξ∗: ξ∗ = 1.263 for d = 2 and ξ∗ = 1.688 for d = 3. The
lines correspond to equation (57) with expressions for the cumulants given by
approximation I (solid lines) and approximation II (dashed lines).

II. In any case, the agreement between theory and simulation is again excellent, especially
taking into account the very small discrepancies we are measuring.

5. Concluding remarks

In this paper we have performed Monte Carlo simulations of the Enskog–Boltzmann for
a granular fluid in a homogeneous state. The system is driven by a stochastic bath with
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friction. One of the primary objectives of this work has been to check the velocity scaling
and form assumed for the distribution function in the steady state. As equation (1)
indicates, the new feature of the scaled distribution ϕ is that it not only depends on the
granular temperature T through the (scaled) velocity c but also through the (reduced)
noise strength ξ∗ (defined in equation (18)). The simulation results reported here (see
figures 6 and 7) have confirmed the above dependence since different systems sharing the
same values of ξ∗ and α lead to the same distribution function ϕ. This is consistent with
the existence of a normal solution in the long-time limit.

Apart from performing Monte Carlo simulations to confirm the validity of a
hydrodynamic description for finite degree of collisional dissipation, we have also
characterized the distribution ϕ through its first velocity moments. More specifically,
we have obtained the second a2 and third a3 Sonine coefficients. While the coefficient a2

measures the fourth-degree velocity moment of ϕ, the coefficient a3 is defined in terms of
the sixth-degree velocity moment of ϕ. Both Sonine coefficients provide information on the
deviation of ϕ from its Maxwellian form ϕM. Moreover, the knowledge of those coefficients
is important, for instance, in the precise determination of the transport coefficients [18].
On the other hand, given that the Sonine coefficients cannot be exactly determined (they
obey an infinite hierarchy of moments), one has to truncate the corresponding Sonine
polynomial expansion in order to estimate them. Here, we have considered two different
approaches (approximation I and II) to get explicit expressions of a2 and a3 in terms
of the dimensionality of the system d, the coefficient of restitution α and the driven
parameter ξ∗. Approximation II is more involved than approximation I since it considers
both Sonine coefficients as being of the same order of magnitude. The comparison between
the analytical solution and DSMC results shows in general a good agreement, even for
high inelasticity. Moreover, as expected, the improved approximation II for a2 and a3

shows a better agreement with simulations than approximation I (see figures 2–5). Thus,
taking into account all the above comparisons, we can conclude that a good compromise
between accuracy and simplicity is represented by approximation I.

The results derived in this paper show clearly that the combination of analytical
and computational tools (based on the DSMC method) turns out to be an useful way to
characterize properties in granular flows. On the other hand, given that most of the Sonine
coefficients could be directly measured by DSMC, one could in principle make a least-
squares fit to obtain explicit forms for those coefficients. However, this procedure would
not be satisfactory from a more fundamental point of view, especially if one is interested
in capturing the behavior of ϕ(c) and its Sonine expansion. In this context, our analytical
solution of the distribution function (redundant as it may seem) has the advantage
of providing a rational description of the physical properties of the kinetic equation
of the system. This is not accomplished by the numerical solution. However, the fact
that the DSMC method gives an accurate numerical solution of the Enskog–Boltzmann
equation makes it complementary to the theoretical one and thus both confirm a complete
description of the kinetic equation of our system.
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Appendix A. Expressions for Ai, Bi, and Ci

In this appendix we provide the explicit expressions of the coefficients Ai, Bi, and Ci as
functions of d and α. They are given by [20, 31]

A0 = K(1− α2), A2 =
3K

16
(1− α2), A3 =

K

64
(1− α2), (A.1)

B0 = K(1− α2)

(
d+

3

2
+ α2

)
, (A.2)

B2 = K(1 + α)
[
d− 1 + 3

32
(1− α)(10d+ 39 + 10α2)

]
, (A.3)

B3 = − K

128
(1 + α)

[
(1− α)(97 + 10α2) + 2(d− 1)(21− 5α)

]
, (A.4)

C0 =
3K

4
(1− α2)

[
d2 +

19

4
+ (d+ α2)(5 + 2α2)

]
, (A.5)

C2 =
3K

256
(1− α2)

[
1289 + 172d2 + 4(d+ α2)(311 + 70α2)

]
+

3

4
λ, (A.6)

C3 = − 3K

1024
(1− α2)

[
2537 + 236d2 + 4(d+ α2)(583 + 70α2)

]
− 9

16
λ, (A.7)

where

K ≡ π(d−1)/2

√
2Γ(d/2)

, λ ≡ K(1 + α)
[
(d− α)(3 + 4α2) + 2(d2 − α)

]
. (A.8)

Appendix B. Approximations I and II

In this appendix we display the forms of the Sonine coefficients a2 and a3 by using
approximations I and II. Let us start by considering approximation I. In this case, we
neglect a3 versus a2 in equation (44), thus one gets

[
B2 − (d+ 2)(A0 + A2) +

d(d+ 2)

2
ξ∗
]
a2 = (d+ 2)A0 −B0, (B.1)

whose solution is

a
(I)
2 (α, ξ∗) =

(d+ 2)A0 −B0

B2 − (d+ 2)(A0 + A2) + (d(d+ 2)/2)ξ∗

=
16(1− α)(1− 2α2)

9 + 24d− α(41− 8d) + 30(1− α)α2 + Ωd(ξ∗/(1 + α))
, (B.2)
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where in the last step use has been made of the explicit expressions of A0, A2, B0 and B2.
Here,

Ωd = 16
√

2d(d+ 2)
Γ(d/2)

π(d−1)/2
. (B.3)

Once a2 is determined, we can use equation (45) to express a3 in terms of a2. The result
can be written as

a
(I)
3 (α, ξ∗) = F

(
α, a

(I)
2 (α), ξ∗

)
, (B.4)

where

F (α, a2, ξ
∗)

≡ (3/4)(d+ 2)(d+ 4)A0 − C0 − [C2 + (3/4)(d+ 2)(d+ 4)(dξ∗ − 3A0 − A2)] a2

C3 − (3/4)(d+ 2)(d+ 4) (A3 − A0 + (d/2)ξ∗)
. (B.5)

In approximation II, a3 is formally treated as being of the same order of magnitude as
a2, thus equations (44) and (45) become a linear set of two coupled equations for a2 and

a3. The problem is algebraically more involved as in approximation I. The form of a
(II)
2 is

given by equation (47), where

M(α, ξ∗) ≡
[
C3 −

3

4
(d+ 2)(d+ 4)

(
A3 − A0 +

d

2
ξ∗
)]

× [(d+ 2)A0 −B0]− [B3 − (d+ 2)A3]
[

3
4
(d+ 2)(d+ 4)A0 − C0

]
, (B.6)

and

N(α, ξ∗) ≡
[
B2 − (d+ 2)(A0 + A2) +

d(d+ 2)

2
ξ∗
]

×
[
C3 −

3

4
(d+ 2)(d+ 4)

(
A3 − A0 +

d

2
ξ∗
)]

− [B3 − (d+ 2)A3]
[
C2 + 3

4
(d+ 2)(d+ 4)(dξ∗ − 3A0 − A2)

]
. (B.7)

The corresponding result for a
(II)
3 in approximation II has the same form as for

approximation I except that now it relies on a
(II)
2 , i.e,

a
(II)
3 (α, ξ∗) = F

(
α, a

(II)
2 (α), ξ∗

)
. (B.8)
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