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Transport coefficients for driven granular mixtures at low density
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The transport coefficients of a granular binary mixture driven by a stochastic bath with friction are determined
from the inelastic Boltzmann kinetic equation. A normal solution is obtained via the Chapman-Enskog method
for states near homogeneous steady states. The mass, momentum, and heat fluxes are determined to first order
in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They
are given in terms of the solutions of a set of coupled linear integral equations. As in the monocomponent case,
since the collisional cooling cannot be compensated for locally by the heat produced by the external driving,
the reference distributions (zeroth-order approximations) f

(0)
i (i = 1,2) for each species depend on time through

their dependence on the pressure and the temperature. Explicit forms for the diffusion transport coefficients
and the shear viscosity coefficient are obtained by assuming the steady-state conditions and by considering
the leading terms in a Sonine polynomial expansion. A comparison with previous results obtained for granular
Brownian motion and by using a (local) stochastic thermostat is also carried out. The present work extends
previous theoretical results derived for monocomponent dense gases [Garzó, Chamorro, and Vega Reyes, Phys.
Rev. E 87, 032201 (2013)] to granular mixtures at low density.
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I. INTRODUCTION

The use of kinetic theory to describe granular matter under
rapid flow conditions (i.e., when material is externally excited)
has been an active area of research in the past several decades
[1,2]. On the other hand, although in many conditions the
motion of grains exhibits a great similarity to the random
motion of atoms or molecules of an ordinary gas, the fact
that collisions between grains are inelastic gives rise to subtle
modifications of the conventional hydrodynamic equations.
In particular, since the energy is decreasing with time, one
has to feed energy into the system to keep it under rapid
flow conditions. When the injected energy compensates for
the energy lost by collisions, a nonequilibrium steady state is
achieved. In this sense, granular matter can be seen as a good
example of a system which is inherently in a nonequilibrium
state.

In real experiments, the energy input can be done either
by driving through the boundaries [3] or alternatively by bulk
driving, as in air-fluidized beds [4,5]. However, these ways
of supplying energy produce in many cases strong spatial
gradients in the bulk domain. The same effect can be reached
by heating the system homogenously by the action of an
external driving force. This is the usual way to drive a granular
gas in computer simulations [6,7]. Borrowing a terminology
used in nonequilibrium molecular-dynamics simulations of
ordinary fluids [8], these types of external forces are called
“thermostats.” Although thermostats have been widely used
in the past to analyze granular flows, their influence on the
properties of the system is still an unsolved problem, even in
the case of ordinary fluids [9–11].

The transport coefficients of a driven granular monodis-
perse fluid have been recently determined [12]. In this work,
the fluid is driven by the action of a thermostat that is composed
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by two terms: (i) a drag force proportional to the velocity of the
particle and (ii) a stochastic force with the form of a Gaussian
white noise, where the particles are randomly kicked between
collisions [13]. While the viscous drag force could model the
friction of grains with a surrounding fluid (interstitial gas
phase), the stochastic force could model the energy transfer
from the interstitial fluid molecules to the granular particles.
At a kinetic level, the results derived in Ref. [12] were obtained
by solving the (inelastic) Enskog equation by means of the
Chapman-Enskog (CE) method to first order in the spatial
gradients (Navier-Stokes hydrodynamic order). Thus these
results go beyond the dilute regime and apply in principle
to moderate densities, where the collisional contributions to
the fluxes cannot be neglected. The kind of thermostat used
in Ref. [12] has been widely used in previous works by other
authors to perform computer simulations [6]. Moreover, it must
be remarked that the model (stochastic bath with friction)
has been also shown to be relevant in more practical appli-
cations since some recent experimental results for structure
factors [14,15] can be fairly well reproduced by the present
model.

Nevertheless, real granular systems are usually present
in nature as multicomponent systems, namely, they are
constituted by particles of different mechanical properties.
Therefore, a very interesting problem is to extend the results
derived for a monocomponent granular gas in Ref. [12]
to the case of granular mixtures. On the other hand, the
analysis of transport phenomena in fluid mixtures is much
more complicated than for monocomponent gases. Not only
is the number of transport coefficients higher, but also these
coefficients depend on more parameters such as the volume
fractions, concentrations, masses, sizes, and/or coefficients of
restitution. Thus, in order to gain some insight into the general
problem, one considers first more simple systems such as the
case of granular binary mixtures at low density.

The goal of this paper is to evaluate the transport
coefficients of a dilute granular binary mixture driven by a
stochastic bath with friction. As in the undriven case [16],
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the transport coefficients are obtained by solving the set of
coupled nonlinear Boltzmann equations by means of the CE
method [17] conveniently adapted to account for the inelastic
character of collisions. However, while in the undriven case the
zeroth-order approximations f

(0)
i (i = 1,2) of each species are

chosen to be the local version of the so-called homogeneous
cooling state (HCS), the choice of f

(0)
i in the driven case is

a bit more intricate. This problem is also present of course in
the monodisperse gas case [12,18]. In some previous attempts
[19], the distributions f

(0)
i were chosen to be stationary at any

point of the system. However, for general small deviations
from the reference steady state, the collisional cooling cannot
be compensated locally by the energy injected by the driving
force in the system and so f

(0)
i is not in general a stationary

distribution. As shown in previous studies for driven granular
gases [12,18,20,21], the fact that f

(0)
i is a time-dependent

function introduces conceptual and practical difficulties not
present when f

(0)
i is assumed to be stationary [19].

The irreversible parts of the mass, heat, and momentum
fluxes are calculated here up to first order in the spatial
gradients of the hydrodynamic fields. In addition, there is a
new contribution (not present for dilute undriven mixtures)
to the cooling rate proportional to the divergence of the
flow velocity field. Therefore, as happens for freely cooling
granular mixtures [16], the integral equations defining the
transport coefficients for a driven binary mixture are somewhat
more complicated than for the one-component driven case
[12]: twelve coupled integral equations with nine transport
coefficients. Thus the explicit determination of the complete
set of transport coefficients of the mixture is actually a very
long task. For this reason, in this paper we will focus on
the evaluation of the transport coefficients associated with the
mass flux (four diffusion coefficients) and the shear viscosity
coefficient.

One of the motivations of our study is to propose a kinetic
equation that captures the influence of gas phase on the trans-
port properties of grains through the action of nonconservative
external forces. In fact, in the monodisperse case, our model
reduces to a recent kinetic equation [22] proposed to analyze
several properties of gas-solid suspensions. In this context, we
expect that our study has obvious applications in mesoscopic
systems such as colloids and bidisperse suspensions [23–26].

The plan of the paper is as follows. In Sec. II, the
coupled set of Boltzmann equations for the binary mixture
and the corresponding hydrodynamic equations are recalled.
Section III analyzes the steady homogeneous state. As in the
monodisperse case [27,28], scaling solutions ϕi,s are proposed
whose dependence on temperature T and pressure p occurs
through two dimensionless parameters: the dimensionless
velocity c = v/v0 (v0 being the thermal speed) and the reduced
noise strength ξ ∗. This contrasts with the results obtained in
the HCS [29], where ϕi,s depends on T and p only through
c. Once the steady state is well characterized, in Sec. IV
the CE expansion adapted to dissipative dynamics is used
to construct the distribution functions to linear order in the
gradients. This solution is used to evaluate the fluxes and
identify the transport coefficients. As for elastic collisions,
these coefficients are given in terms of the solutions of a set
of coupled linear integral equations. A Sonine polynomial

approximation is applied in Sec. V to solve the integral
equations defining the diffusion transport coefficients and the
shear viscosity coefficient. These coefficients are explicitly
determined as functions of the parameters of thermostat, the
coefficients of restitution, and the masses, concentrations, and
sizes of the constituents of the mixture. Comparisons with
simulations carried out in the Brownian limit [30] and with
some previous theoretical results [19] obtained by using a local
stochastic thermostat are carried out in Sec. VI. The paper is
closed in Sec. VII with a brief discussion of the results derived
here.

II. BOLTZMANN KINETIC THEORY FOR DRIVEN
GRANULAR BINARY MIXTURES

We consider a granular binary mixture of inelastic hard
spheres in d dimensions with masses mi and diameters σi

(i = 1,2). In the low-density regime, one can assume that there
are no correlations between the velocities of two particles
that are about to collide (molecular chaos hypothesis), so
that the two-body distribution functions factorize into the
product of the one-particle distribution functions fi(r,v,t).
These distributions verify the set of nonlinear Boltzmann
equations [31]

∂tfi + v · ∇fi + Fifi =
2∑

j=1

Jij [v|fi,fj ], (1)

where the Boltzmann collision operator Jij [fi,fj ] is

Jij [v1|fi,fj ] = σd−1
ij

∫
dv2

∫
dσ̂ �(σ̂ · g12)(σ̂ · g12)

×[
α−2

ij fi(r,v′
1,t)fj (r,v′

2,t)

− fi(r,v1,t)fj (r,v2,t)
]
. (2)

Here, σij = (σi + σj )/2, σ̂ is a unit vector directed along the
line of centers from the sphere of species i to that of species j

at contact, � is the Heaviside step function, and g12 = v1 − v2

is the relative velocity. The precollisional velocities are

v′
1 = v1 − μji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ ,

v′
2 = v2 + μij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ , (3)

where μij = mi/(mi + mj ) and αij � 1 is the (constant)
coefficient of normal restitution for collisions (i,j ). Moreover,
in Eq. (1)Fi is an operator representing the effect of an external
force.

In order to maintain a fluidized granular mixture, an external
energy source is needed to compensate for the collisional
cooling. As said in the Introduction, it is quite usual in
computer simulations to homogeneously heat the system by
means of an external driving force (thermostat). Here, as
in our previous work [12] for monodisperse granular gases,
we will assume that the external force is composed by two
independent terms. One term corresponds to a drag force
(Fdrag) proportional to the velocity of the particle. The other
term corresponds to a stochastic force (Fst) where the particles
are randomly kicked between collisions [13]. As usual, the
stochastic force is assumed to have the form of a Gaussian
white noise and is represented by a Fokker-Planck collision
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operator of the form ∂2fi/∂v2 in the Boltzmann equation [32].
While the term Fdrag mimics the effect of the interstitial gas
phase, the noise force Fst tries to simulate the kinetic-energy
gain due to eventual collisions with the (more rapid) particles
of the surrounding fluid. This type of thermostat composed by
two terms has been widely used by Puglisi and co-workers [6]
in several previous works.

On the other hand, there is some flexibility in the choice of
the explicit forms of Fdrag and Fst for multicomponent systems
since either one takes both forces to be the same for each
species [33–35] or they can be chosen to be functions of the
mass of each species [6]. To cover both possibilities, we will
assume that the drag and stochastic forces contribute to the
Boltzmann equation (1) with terms of the form

Fifi = Fdrag
i fi + F st

i fi, (4)

where

Fdrag
i fi = − γb

m
β

i

∂

∂v
· (v − Ug)fi, (5)

F st
i fi = −1

2

ξ 2
b

mλ
i

∂2

∂v2
fi. (6)

In Eqs. (5) and (6), β and λ are arbitrary constants of the
driven model, γb is the drag (or friction) coefficient, and ξ 2

b
represents the strength of the correlation in the Gaussian white
noise. In addition, since our model pretends to incorporate
the effect of gas phase into the dynamics of grains, in
Eq. (5) we have considered the “peculiar” velocity v − Ug

(rather than the instantaneous velocity v of particle) in the
drag force expression. Here, Ug can be interpreted as the
mean velocity of gas surrounding the solid particles and is
assumed to be a known quantity of the model. The parameters
β and λ can be seen as free parameters of the model. In
particular, when γb = 0 and λ = 0 our thermostat reduces to
the stochastic thermostat used in previous works [34,35] for
granular mixtures, while the choice β = 1 and λ = 2 reduces
to the conventional Fokker-Planck model for ordinary (elastic)
mixtures [6,36]. This latter version of the model has been
used also to analyze granular Brownian motion [30]. Thus
our model can be seen as a generalization of previous driven
models and only specific values of β and λ will be considered at
the end of the calculations to make contact with some particular
situations [19].

The Boltzmann kinetic equation (1) can be more explicitly
written when one takes into account the form (4) of the forcing
term Fifi . It can be written as

∂tfi + v · ∇fi − γb

m
β

i

�U · ∂

∂v
fi − γb

m
β

i

∂

∂v
· Vfi

−1

2

ξ 2
b

mλ
i

∂2

∂v2
fi =

2∑
j=1

Jij [fi,fj ], (7)

where �U = U − Ug and V(r,t) = v − U(r,t). Here, U(r,t)
is the mean flow velocity of grains defined as

ρU =
2∑

i=1

∫
dv mivfi(v), (8)

where ρ = ∑2
i=1 mini is the total mass density. In addition,

ni =
∫

dv fi(v) (9)

is the local number density of species i. It is important to
remark that, in the case of a monodisperse granular gas (for
β = 1 and λ = 0), the Boltzmann equation (7) is similar
to the one recently proposed [22] to model the effects of
the interstitial fluid on grains in monodisperse gas-solid
suspensions.

Apart from the fields ni and U, the other relevant hydrody-
namic field of the mixture is the granular temperature T (r,t).
It is defined as

T = 1

n

2∑
i=1

∫
dv

mi

d
V 2fi(v), (10)

where n = n1 + n2 is the total number density. At a kinetic
level, it is also convenient to introduce the partial kinetic
temperatures Ti for each species defined as

Ti = mi

dni

∫
dv V 2fi(v). (11)

The partial temperatures Ti measure the mean kinetic energy of
each species. According to Eq. (10), the granular temperature
T of the mixture can be also written as

T =
2∑

i=1

xiTi, (12)

where xi = ni/n is the mole fraction of species i.
The collision operators conserve the particle number of

each species and the total momentum but the total energy is
not conserved: ∫

dv Jij [v|fi,fj ] = 0, (13)

2∑
i=1

2∑
j=1

mi

∫
dv vJij [v|fi,fj ] = 0, (14)

2∑
i=1

2∑
j=1

mi

∫
dv V 2Jij [v|fi,fj ] = −dn T ζ, (15)

where ζ is identified as the total “cooling rate” due to inelastic
collisions among all species. The corresponding partial cooling
rates ζi for the partial temperatures Ti are defined as

ζi =
2∑

j=1

ζij = − mi

dniTi

2∑
j=1

∫
dv V 2Jij [v|fi,fj ], (16)

where the second equality defines the quantities ζij . The total
cooling rate ζ can be written in terms of the partial cooling
rates ζi as

ζ = T −1
2∑

i=1

xiTiζi . (17)
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From Eqs. (7) and (13)–(15), the macroscopic balance
equations for the mixture can be obtained. They are given
by

Dtni + ni∇ · U + ∇ · ji
mi

= 0, (18)

DtU + ρ−1∇ · P = −γb

ρ

(
�U

2∑
i=1

ρi

m
β

i

+
2∑

i=1

ji
m

β

i

)
, (19)

DtT − T

n

2∑
i=1

∇ · ji
mi

+ 2

dn
(∇ · q + P : ∇U)

= −2γb

dn

2∑
i=1

�U · ji
m

β

i

− 2γb

2∑
i=1

xiTi

m
β

i

+ ξ 2
b

n

2∑
i=1

ρi

mλ
i

− ζT . (20)

In the above equations, Dt = ∂t + U · ∇ is the material
derivative, ρi = mini ,

ji = mi

∫
dv Vfi(v) (21)

is the mass flux for species i relative to the local flow,

P =
2∑

i=1

∫
dv miVVfi(v) (22)

is the total pressure tensor, and

q =
2∑

i=1

∫
dv

1

2
miV

2Vfi(v) (23)

is the total heat flux. Note that j1 = −j2 by definition of the
flow velocity U.

The balance equations (18)–(20) become a closed set of
hydrodynamic equations for the fields ni , U, and T once
the fluxes (21)–(23) and the cooling rate (15) are obtained
in terms of the hydrodynamic fields and their gradients. The
resulting equations constitute the hydrodynamics for the driven
mixture. Since these fluxes are explicit linear functionals of fi ,
a representation in terms of the hydrodynamic fields results
when a solution to the Boltzmann equation can be obtained as
a function of the fields and their gradients. Such a solution
is called a normal or hydrodynamic solution and can be
obtained for small spatial gradients from the Chapman-Enskog
method [17]. This solution will be worked out in Sec. IV.

III. HOMOGENEOUS STEADY STATES

Before considering inhomogeneous problems, it is quite
instructive to study first the homogeneous state. In this
situation, the partial densities ni(r,t) = ni,s are constant, the
granular temperature T (r,t) = T (t) is spatially uniform, and,
with an appropriate selection of the frame of reference,
the mean flow velocities vanish (U = Ug = 0). Under these
conditions, Eq. (7) for fi(v,t) becomes

∂tfi − γb

m
β

i

∂

∂v
· vfi − 1

2

ξ 2
b

mλ
i

∂2

∂v2
fi =

2∑
j=1

Jij [fi,fj ]. (24)

The balance equation (20) for the temperature reads simply

∂tT = −2γb

2∑
i=1

xiTi

m
β

i

+ ξ 2
b

n

2∑
i=1

ρi

mλ
i

− ζT . (25)

Analogously, the evolution equation for the partial tempera-
tures Ti can be obtained by multiplying both sides of Eq. (24)
by mi

2 V 2 and integrating over v. The result is

∂tTi = −2Ti

m
β

i

γb + ξ 2
b

mλ−1
i

− ζiTi . (26)

As said before, we are only interested here in the normal
solution to Eq. (24). In this case, the distribution function fi

depends on time only through the temperature T [29]:

∂tfi = ∂fi

∂T
∂tT = −

(
2γb

2∑
i=1

xiχi

m
β

i

− ξ 2
b

p

2∑
i=1

ρi

mλ
i

+ ζ

)

× T
∂fi

∂T
, (27)

where χi = Ti/T is the temperature ratio for species i. As
widely discussed in the free cooling case [29], the fact
that fi qualifies as a normal solution implies necessarily
that the temperature ratios χi are independent of time but
different from one for inelastic collisions (breakdown of en-
ergy equipartition). The violation of equipartition theorem for
granular mixtures has been extensively confirmed by computer
simulations [34,35,37], experiments [38], and kinetic theory
calculations for undriven [29] and driven [34] systems.

After a transient regime, the system is expected to achieve
a steady state characterized by constant partial temperatures
Ti,s. Thus, according to Eq. (26), the (asymptotic) steady partial
temperatures Ti,s are given by

2Ti,s

m
β

i

γb + ζi,sTi,s = ξ 2
b

mλ−1
i

, (28)

where the subindex s means that the quantities are evaluated
in the steady state.

In the case of elastic collisions (αij = 1) and if the
distributions fi,s are Maxwellians at the same temperature,
then ζi = 0 and Eq. (28) yields

T el
i,s = ξ 2

b

2γbm
λ−β−1
i

. (29)

According to Eq. (29), the energy equipartition is fulfilled
(T1,s = T2,s) if m1 = m2 (for any choice of λ and β) or λ − β =
1 (for m1 �= m2). Therefore,

T el
1,s = T el

2,s = Tb = ξ 2
b

2γb(2m)λ−β−1
, (30)

where

m = m1m2

m1 + m2
. (31)

Equation (30) defines a “bath temperature” Tb. Its name may
be justified since it is determined by the two thermostat
parameters (γb and ξ 2

b ) and it can be considered as a remnant
of the temperature of the surrounding elastic fluid. It is
quite apparent that in general we find energy nonequipartition
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(T el
1,s �= T el

2,s) even for elastic collisions when λ − β �= 1. The
condition λ − β = 1 to have energy equipartition in the
elastic case should have been expected due to the definition
of thermostat. Indeed, it seems equivalent to the so-called
“fluctuation-dissipation relation of the second kind” [39].

In order to determine Ti,s one has to obtain the steady-state
solution fi,s(v) to Eq. (24). By using the relation (28), in the
steady state (∂tfi = 0) Eq. (24) becomes

1

2
ζi,s

∂

∂v
· vfi,s − 1

2

ξ 2
b

mλ−1
i Ti,s

∂

∂v
· vfi,s − 1

2

ξ 2
b

mλ
i

∂2

∂v2
fi,s

=
2∑

j=1

Jij [v|fi,s,fj,s]. (32)

As in the monocomponent case [12], it is expected that
fi,s depends on the model parameters γb and ξ 2

b . Although
the explicit form of fi,s is not known, dimensional analysis
requires that fi,s has the scaled form

fi,s
(
v,γb,ξ

2
b

) = ni,sv
−d
0 ϕi,s(x1,c,ξ ∗

s ,γ ∗
s ), (33)

where ϕi,s is an unknown function of the dimensionless
parameters

c = v
v0

, ξ ∗
s = ξ 2

b

nsσ
d−1
12 mλ−1Tsv0

, (34)

and

γ ∗
s = γb

nsσ
d−1
12 mβv0

. (35)

Here, Ts = x1T1,s + x2T2,s is the steady value of the granular
temperature and v0 = √

2Ts/m is the thermal speed. The
(reduced) drag parameter γ ∗

s can be easily expressed in terms
of the (reduced) noise strength ξ ∗

s and density as

γ ∗
s = ω∗

s ξ
∗1/3
s , ω∗

s = γb

mβ

(
mλ

2ξ 2
b

)1/3(
nsσ

d−1
12

)−2/3
. (36)

Note that, when Eq. (36) is used, the dependence of the
scaled distribution function ϕi,s on temperature is encoded
through two parameters: the dimensionless velocity c and the
(reduced) noise strength ξ ∗

s . This scaling differs from the one
assumed in the case of the free cooling case [29] where only
the dimensionless velocity c is required to characterize the
temperature dependence of the scaled distributions ϕi,s.

In terms of the (reduced) distribution function ϕi,s, Eq. (32)
can be rewritten as

1

2
ζ ∗
i,s

∂

∂c
· cϕi,s − 1

2

ξ ∗
s

Mλ−1
i χi

∂

∂c
· cϕi,s − 1

4

ξ ∗
s

Mλ
i

∂2

∂c2
ϕi,s

=
2∑

j=1

J ∗
ij [c|ϕi,s,ϕj,s], (37)

where Mi = mi/m, χi,s = Ti,s/Ts,

ζ ∗
i,s = ζi,s

nsσ
d−1
12 v0

, (38)

and

J ∗
ij [c|ϕi,s,ϕj,s] = Jij [v|fi,s,fj,s]

nsσ
d−1
12 ni,sv

1−d
0

= xj,s

(
σij

σ12

)d−1

×
∫

dc2

∫
dσ̂ �(σ̂ · g∗

12)(σ̂ · g∗
12)

×[
α−2

ij ϕi,s(c′
1)ϕj,s(c′

2) − ϕi,s(c1)ϕj,s(c2)
]
.

(39)

Here, xi,s = ni,s/ns and g∗
12 = c1 − c2. Similarly, in dimen-

sionless variables the cooling rates are given by

ζ ∗
i,s = − 2

d

Mi

χi,s

2∑
j=1

∫
dc c2J ∗

ij [ϕi,s,ϕj,s]. (40)

The (reduced) partial temperatures T ∗
i,s = Ti,s/Tb can be

determined from the condition (28) for i = 1,2. The corre-
sponding equations can be written as

T ∗
s [1 − (Mi/2)λ−1−βT ∗

i,s]ξ
∗
s = Mλ−1

i ζ ∗
i,sT

∗
i,s, (41)

where T ∗
s = Ts/Tb.

Once the reduced distributions ϕ1,s and ϕ2,s have been
obtained from Eqs. (37), the integrals on the right-hand side
of Eq. (40) can be performed to determine the partial cooling
rates ζ ∗

i,s. Then, the partial temperatures T ∗
i,s can be finally

obtained from Eqs. (41) (for i = 1,2) in terms of the model
parameters Tb and ξ 2

b , the concentration x1, and the mechanical
parameters of the mixture (masses, diameters, and coefficients
of restitution).

As said before, the exact form of the distributions ϕi,s is not
known. However, previous results derived for driven granular
mixtures [19,34] have shown that a good estimate for the
partial temperatures can be obtained by using Maxwellians
at different temperatures for ϕi,s(c):

ϕi,s(c) → ϕi,M(c) = π−d/2θ
d/2
i e−θic

2
, (42)

where θi = Mi/χi,s. With this approximation, one gets [29]

ζ ∗
i,s = 4π (d−1)/2

d�
(

d
2

) 2∑
j=1

xj,sμji

(
σij

σ12

)d−1(
θi + θj

θiθj

)1/2

×(1 + αij )

[
1 − μji

2
(1 + αij )

θi + θj

θj

]
. (43)

Substitution of Eq. (43) into Eqs. (41) allows us to get the
partial temperatures T ∗

i,s.
An interesting limit situation corresponds to granular

Brownian motion, namely, when the mass of the tracer
species (x1 → 0) is much heavier than the particles of the
excess granular gas (m1 � m2). In this limit case, M2 → 1,
M1 → m1/m2, and the tracer temperature T1,s is given by

T1,s =
( 2m2

m1

)λ−β−1
γbTb + γg

1+α12
2 T2,s

γb + γg
. (44)

Here,

γg = 2π (d−1)/2

d�
(

d
2

) (1 + α12)mβ−1
1 m2n2σ

d−1
12

√
2T2,s

m2
, (45)
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FIG. 1. (Color online) Plot of the (steady) reduced temperature
T1,s/Tb of a Brownian particle as a function of the volume fraction
φ for hard disks (d = 2). The parameters of the system (impurity
particle plus granular gas) are m1 = 100m2, σ1 = σ2, and α11 =
α12 = α22 = 0.8. The solid line refers to the results derived from
Eq. (41), while the dashed line corresponds to the results obtained
from Eq. (44) in the Brownian limit (m1/m2 → ∞). In both cases,
β = 1 and λ = 2. Symbols are the simulation results obtained in
Ref. [30] by means of the DSMC method (red diamonds) and MD
simulations (black circles).

and the temperature of granular gas T2,s obeys the equation

T2,s = 2λ−β−1Tb − π (d−1)/2

d�
(

d
2

) n2σ
d−1
2

(
1 − α2

22

)
γb

m
β− 1

2
2 T

3/2
2,s .

(46)

In the two-dimensional case (d = 2), Eqs. (43)–(46) agree
with the results derived by Sarracino et al. [30] for hard disks
when β = 1 and λ = 2.

Figure 1 shows the (steady) reduced temperature T1,s/Tb

versus the volume fraction φ = πn2σ
2
2 /4 of the excess gas in

the tracer limit (x1 → 0) for the case m1 = 100m2, σ1 = σ2,
and α11 = α22 = α12 = 0.8. The theoretical results derived
from Eqs. (41) and (44) (Brownian limit, m1/m2 → ∞)
for hard disks (d = 2) are compared with those obtained in
Ref. [30] by means of molecular-dynamics simulations (MD)
and by numerically solving the Langevin equation from the
direct simulation Monte Carlo (DSMC) method [40]. As in
Ref. [30], β = 1 and λ = 2 and the fixed parameters of the
simulations are m2 = 1, σ2 = 0.01, γb = 0.1, and ξ 2

b = 0.2.
This gives a bath temperature Tb = 1. We observe a good
agreement between both theories and simulations in the
complete range of values of φ considered. Given that the
DSMC method numerically solves the Langevin equation
(which is obtained from the Boltzmann equation in the
limit m1/m2 → ∞), the theoretical predictions obtained from
Eq. (44) compare slightly better with DSMC results than
those derived from Eq. (41) (which are obtained for the mass
ratio m1/m2 = 100). On the other hand, as expected, MD
simulations are closer to the results derived from Eq. (41) than
those obtained from Eq. (44).

The dependence of the temperature ratio T1,s/T2,s on the
(common) coefficient of restitution α11 = α22 = α12 ≡ α is
shown in Fig. 2 for hard disks (d = 2) and spheres (d = 3).
We have considered a binary mixture where x1 = 2

3 , σ1/σ2 = 1,

 0.7
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 0.9

 1

 1.1

 1.2
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s

α

d=2
(a)

(b)

(c)
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s
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d=3

(c)
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(a)

FIG. 2. (Color online) Temperature ratio T1,s/T2,s versus the
(common) coefficient of restitution α for hard disks (top panel) and
hard spheres (bottom panel) for x1 = 2

3 , σ1 = σ2, and three different
values of the mass ratio m1/m2: (a) m1/m2 = 0.1, (b) m1/m2 = 2,
and (c) m1/m2 = 10. The parameters of the system are the same as
those considered in Fig. 1.

and three different values of the mass ratio m1/m2. The
values of the parameters of the system are the same as those
considered before in Fig. 1. We observe that the deviations
from the energy equipartition (T1,s = T2,s) are smaller than
those previously reported for undriven granular mixtures [29].
Moreover, in contrast to the free cooling case, the energy of
the lighter particle is larger than that of the heavier particle.
This means that the impact of thermostat on the temperature
ratio is significant since the qualitative behavior of the latter on
the mass ratio is the opposite of the one found in the undriven
case.

IV. CHAPMAN-ENSKOG SOLUTION OF
THE BOLTZMANN EQUATIONS

The homogeneous steady state analyzed in Sec. III can
be disturbed by the presence of small spatial gradients.
These gradients give rise to nonzero contributions to the
mass, momentum, and heat fluxes, which are characterized
by transport coefficients. The determination of the transport
coefficients of the mixture is the main goal of the present
paper. However, as pointed out in the Introduction, the study
of transport in multicomponent systems is more intricate than
for monocomponent systems not only from a fundamental
point of view (for instance, there are cross transport effects not
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present in single gases), but also from a more practical point of
view (there are more coupled integral equations to solve than
in single gases).

As in our previous effort for driven monodisperse gases
[12], we consider states that deviate from steady homogeneous
states by small spatial gradients. In these conditions, the
Boltzmann equations (7) may be solved by the CE method
[17] conveniently adapted to account for the inelasticity in
collisions. As said before, this method assumes the existence
of a normal solution such that all space and time dependence
of the distribution functions fi(r,v,t) only occurs through the
hydrodynamic fields. On the other hand, as noted in previous
papers on granular mixtures [16], there is more flexibility in the
representation of the heat and mass fluxes for multicomponent
systems. Even in the case of elastic collisions, several different
(but equivalent) choices of hydrodynamic fields are used and
so some care is required in comparing transport coefficients
in the different representations. As in the undriven case [16],
here we take the concentration x1, the hydrostatic pressure
p = nT , the temperature T , and the d components of the
local flow velocity U as the d + 3 independent fields of the
two-component mixture. Consequently, for times longer than
the mean free time, the distributions fi(r,v,t) adopt the normal
form

fi(r,v,t) = fi[v|x1(r,t),p(r,t),T (r,t),U(r,t)]. (47)

The notation on the right-hand side indicates a functional
dependence on concentration, pressure, temperature, and flow
velocity. In the case of small spatial variations, the functional
dependence (47) can be made local in space and time through
an expansion in gradients of the fields. To generate the
expansion, fi is written as a series expansion in a formal
parameter ε measuring the nonuniformity of the system, i.e.,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , (48)

where each factor of ε means an implicit gradient of a
hydrodynamic field. Moreover, in ordering the different
level of approximations in the kinetic equations, one has to
characterize the magnitude of the driven parameters γb and
ξ 2

b relative to the gradients as well. As in our study [12] for
monocomponent gases, given that both driven parameters do
not induce any flux in the system, they are taken to be of
zeroth order in the gradients. A different consideration must
be given to the term proportional to the velocity difference �U
in Eq. (7) since it is expected that this term contributes to the
mass flux in sedimentation problems, for instance. In fact, the
term �U can be interpreted as an external field (like gravity)
and so it should be considered at least to be of first order in
perturbation expansion.

The time derivatives of the fields are also expanded as
∂t = ∂

(0)
t + ε∂

(1)
t + · · · . The coefficients of the time derivative

expansion are identified from the balance equations (18)–(20)
with a representation of the fluxes and the cooling rate in
the macroscopic balance equations as a similar series through
their definitions as functionals of the distributions fi . This is
the usual CE method for solving kinetic equations.

A. Zeroth-order distribution function

To zeroth order in ε, the kinetic equation (7) for f
(0)
i

becomes

∂
(0)
t f

(0)
i − γb

m
β

i

∂

∂v
· Vf

(0)
i − 1

2

ξ 2
b

mλ
i

∂2

∂v2
f

(0)
i =

2∑
j=1

Jij

[
f

(0)
i ,f

(0)
j

]
.

(49)

The balance equations at this order give

∂
(0)
t x1 = 0, ∂

(0)
t U = 0, (50)

T −1∂
(0)
t T = p−1∂

(0)
t p = −�(0), (51)

where

�(0) = 2γb

2∑
i=1

xiχi

m
β

i

− ξ 2
b

p

2∑
i=1

ρi

mλ
i

+ ζ (0). (52)

Here, the cooling rate ζ (0) is determined by Eq. (17) to zeroth
order. In the Maxwellian approximation (42) to ϕi , ζ

(0)
i is given

by Eqs. (38) and (43) with the replacements x1,s → x1(r,t),
ps → p(r,t), and Ts → T (r,t). In Eqs. (50) and (51) use has
been made of the isotropic property of f

(0)
i which leads to

j(0)
i = q(0) = 0 and P

(0)
αβ = pδαβ .

Since f
(0)
i is a normal solution, then the time derivative in

Eq. (49) can be represented more usefully as

∂
(0)
t f

(0)
i = −�(0)(T ∂T + p∂p)f (0)

i . (53)

Substitution of Eq. (53) into Eq. (49) yields

−�(0)(T ∂T + p∂p)f (0)
i − γb

m
β

i

∂

∂v
· Vf

(0)
i − 1

2

ξ 2
b

mλ
1

∂2

∂v2
f

(0)
i

=
2∑

j=1

Jij

[
f

(0)
i ,f

(0)
j

]
. (54)

The steady solution to Eq. (54) corresponds to �(0) = 0
and has been previously analyzed in Sec. III. On the other
hand, as noted in the driven monocomponent case [12], for
given values of γb, ξ 2

b , and αij , the steady-state condition
(�(0) = 0) establishes a mapping between the partial densities,
the pressure, and the temperature. Since the densities ni(r,t),
the pressure p(r,t), and the granular temperature T (r,t) are
specified separately in the local reference states f

(0)
i , the

collisional cooling ζ (0) is only partially compensated for by
the heat injected in the system by the driving force. Thus the
time derivatives ∂

(0)
t T and ∂

(0)
t p are in general both different

from zero and so the zeroth-order distribution functions f
(0)
i

depend on time through its dependence on p and T . However,
for the sake of simplicity, one could impose the steady-state
condition at any point of the system, i.e., ∂

(0)
t p = ∂

(0)
t T = 0.

This was the choice proposed in previous theoretical works
[19] in the case of the stochastic thermostat (γb = 0 and
λ = 0) where the relation (ρ/p)ξ 2

b = ζ (0) was assumed to hold
locally. The fact that both ∂

(0)
t p �= 0 and ∂

(0)
t T �= 0 gives rise to

conceptual and practical difficulties not present in the previous
works [19]. As we will show later, while the expression of the
shear viscosity coefficient is the same in both choices (∂ (0)

t �= 0
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and ∂
(0)
t = 0), the forms of the transport coefficients associated

to the mass and heat fluxes are clearly different in both choices.
In the unsteady state, the zeroth-order distribution function

f
(0)
i obeys Eq. (49). Dimensional analysis requires that f

(0)
i

is also given by the scaled form (33), except that here the
thermal velocity v0 and the (reduced) model parameters γ ∗
and ξ ∗ are defined as in Sec. III [see Eqs. (34) and (35)] with
the replacements ns → p(r,t)/T (r,t) and Ts → T (r,t). Thus
the zeroth-order distribution f

(0)
i can be written as

f
(0)
i (r,v,t) = xi(r,t)

p(r,t)
T (r,t)

v0(r,t)−dϕi(x1,c,γ ∗,ξ ∗), (55)

where now c = V/v0. The dependence of f
(0)
i on the tempera-

ture T and the pressure p is not only explicit but also through
c, γ ∗, and ξ ∗. Thus

T ∂T f
(0)
i = −f

(0)
i − 1

2

∂

∂v
· (

Vf
(0)
i

)
−1

2
ξ ∗ ∂f

(0)
i

∂ξ ∗ + 2

3
ω∗ ∂f

(0)
i

∂ω∗ , (56)

p∂pf
(0)
i = f

(0)
i − ξ ∗ ∂f

(0)
i

∂ξ ∗ − 2

3
ω∗ ∂f

(0)
i

∂ω∗ . (57)

Upon deriving Eqs. (56) and (57) use has been made of the
relation γ ∗ = ω∗ξ ∗1/3, where ω∗ is defined by the second
identity in Eq. (36) with the change ns → p(r,t)/T (r,t).
According to Eqs. (56) and (57), one has

(T ∂T + p∂p)f (0)
i = −1

2

∂

∂v
· (

Vf
(0)
i

) − 3

2
ξ ∗ ∂f

(0)
i

∂ξ ∗ . (58)

In dimensionless form, Eq. (49) finally becomes

�∗
(

1

2

∂

∂c
· cϕi + 3

2
ξ ∗ ∂ϕ1

∂ξ ∗

)
− ω∗ξ ∗1/3

M
β

i

∂

∂c
· cϕi

−1

4

ξ ∗

Mλ
i

∂2

∂c2
ϕi =

2∑
i=1

J ∗
ij [ϕi,ϕj ], (59)

where J ∗
ij is defined by Eq. (39) and

�∗ = �(0)

ν0
, ν0 = pσd−1

12 v0

T
. (60)

The partial temperature ratios χi can be obtained by multiply-
ing both sides of Eq. (59) by c2 and integrating over velocity.
The result is

3

2
�∗ξ ∗ ∂χi

∂ξ ∗ = χi�
∗ − �∗

i , (61)

where �∗ = x1�
∗
1 + x2�

∗
2 and

�∗
i = 2ω∗ξ ∗1/3 χi

M
β

i

− ξ ∗

Mλ−1
i

+ χiζ
∗
i,0. (62)

Here, ζ ∗
i,0 = ζ

(0)
i /ν0 is defined by Eq. (40) with the

replacements χi,s → χi and ϕi,s → ϕi . Approximate forms
for the partial cooling rates ζ ∗

i,0 are given by Eq. (43). The
zeroth-order contribution ζ ∗

0 = ζ (0)/ν0 to the cooling rate is
ζ ∗

0 = x1χ1ζ
∗
1,0 + x2χ2ζ

∗
2,0.

In the steady-state (�∗
i = 0), Eqs. (62) for i = 1,2 agree

with Eqs. (41). In general, Eqs. (62) must be solved numeri-
cally to get the dependence of the temperature ratios χi on x1,
γ ∗, and ξ ∗. As we will show below, the transport coefficients
of the mixture depend on the derivatives ∂χi/∂x1, ∂χi/∂ω∗,
and ∂χi/∂ξ ∗. Analytical expressions of these derivatives in the
steady-state limit have been obtained in Appendix A.

V. TRANSPORT COEFFICIENTS

The analysis to first order in spatial gradients is more
involved and follows similar steps as those worked out before
for driven monodisperse gases [12] and undriven granular
mixtures [16]. Some technical details on the determination
of the transport coefficients are provided in Appendixes B and
C. The form of the first-order velocity distribution functions
f

(1)
i are given by

f
(1)
i = Ai · ∇x1 + Bi · ∇p + Ci · ∇T

+Di,k�

1

2

(
∇kU� + ∇�Uk − 2

d
δk�∇ · U

)
+ Ei∇ · U + Gi · �U, (63)

where the quantities Ai(V), Bi(V), Ci(V),Di,k�(V), Ei(V), and
Gi(V) are the solutions of the linear integral equations (B18)–
(B23), respectively.

However, as pointed out in the monocomponent case
[12], the evaluation of the transport coefficients from the
above integral equations requires one to know the complete
time dependence of the first-order corrections to the mass,
momentum, and heat fluxes. This is quite an intricate problem.
On the other hand, some simplifications occur if attention is
payed to linear deviations from the steady state described in
Sec. II. Thus, since the irreversible fluxes are already of first
order in the deviations from the steady state, then one only
needs to evaluate the transport coefficients to zeroth order
in the deviations, namely, when the steady-state condition
�(0) = 0 applies. In this case, the set of coupled linear integral
equations (B18)–(B23) becomes, respectively,

− γb

m
β

1

∂

∂v
· VA1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
A1 + L1A1 + M1A2 +

[
ξ 2
b

1

T

mλ−1
2 − mλ−1

1

(m1m2)λ−1
− 2γb

m
β

2 − m
β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)
− ∂ζ (0)

∂x1

]
× (pB1 + T C1) = A1, (64)

− γb

m
β

1

∂

∂V
· VB1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
B1 + L1B1 + M1B2 −

(
2γb

2∑
i=1

xiχi

m
β

i

+ 2γbp
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p

− ξ 2
b

1

T

2∑
i=1

xi

mλ−1
i

+ ζ (0) + p
∂ζ (0)

∂p

)
B1 = B1 +

(
2γbT

m
β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p
+ T

∂ζ (0)

∂p

)
C1, (65)

052201-8



TRANSPORT COEFFICIENTS FOR DRIVEN GRANULAR . . . PHYSICAL REVIEW E 88, 052201 (2013)

− γb

m
β

1

∂

∂V
· VC1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
C1 + L1C1 + M1C2 −

(
2γb

2∑
i=1

xiχi

m
β

i

+ 2γbT
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T
+ ζ (0) + T

∂ζ (0)

∂T

)
C1

= C1 +
(

2γbp
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T
+ ξ 2

b

p

T 2

2∑
i=1

xi

mλ−1
i

+ p
∂ζ (0)

∂T

)
B1, (66)

− γb

m
β

1

∂

∂v
· VD1,k� − 1

2

ξ 2
b

mλ
1

∂2

∂v2
D1,k� + L1D1,k� + M1D2,k� = D1,k�, (67)

− γb

m
β

1

∂

∂v
· VE1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
E1 + L1E1 + M1E2 = E1, (68)

− γb

m
β

1

∂

∂V
· VG1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
G1 + L1G1 + M1G2 = G1. (69)

The coefficients A1, B1, C1, D1,k�, E1, and G1 are functions
of the peculiar velocity V and the hydrodynamic fields. Their
explicit forms are given by Eqs. (B10)–(B15), respectively.
Moreover, the linear operators L1 and M1 are defined as

L1X = −(
J11

[
f

(0)
1 ,X

] + J11
[
X,f

(0)
1

] + J12
[
X,f

(0)
2

])
, (70)

M1X = −J12
[
f

(0)
1 ,X

]
. (71)

The corresponding integral equations for A2, B2, C2, D2,αβ ,
E2, and G2 can be easily inferred from Eqs. (64)–(69) by setting
1 ↔ 2. In Eqs. (64)–(69), it is understood that all the quantities
are evaluated in the steady state.

Use of Eq. (63) in the definitions (21)–(23) of the fluxes
gives the following forms for them to first order in gradients:

j(1)
1 = −

(
m1m2n

ρ

)
D∇x1 − ρ

p
Dp∇p

− ρ

T
DT ∇T − DU�U, (72)

q(1) = −T 2D′′∇x1 − L∇p − κ∇T − κU�U, (73)

P
(1)
αβ = −η

(
∂βUα + ∂αUβ − 2

d
δαβ∇ · U

)
. (74)

The transport coefficients in Eqs. (72)–(74) are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D

Dp

DT

DU

D′′
L

κ

κU

η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

diffusion coefficient
pressure diffusion coefficient
thermal diffusion coefficient
velocity diffusion coefficient

Dufour coefficient
pressure energy coefficient

thermal conductivity
velocity conductivity

shear viscosity

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (75)

The transport coefficients associated with the mass flux j(1)
1 are

identified as

D = − ρ

dm2n

∫
dv V · A1, (76)

Dp = −m1p

dρ

∫
dv V · B1, (77)

DT = −m1T

dρ

∫
dv V · C1, (78)

DU = −m1

d

∫
dv V · G1. (79)

The transport coefficients for the heat flux q(1) are

D′′ = − 1

dT 2

2∑
i=1

∫
dv

1

2
miV

2V · Ai , (80)

L = − 1

d

2∑
i=1

∫
dv

1

2
miV

2V · Bi , (81)

κ = − 1

d

2∑
i=1

∫
dv

1

2
miV

2V · Ci , (82)

κU = − 1

d

2∑
i=1

∫
dv

1

2
miV

2V · Gi . (83)

Finally, the shear viscosity is

η = − 1

(d − 1)(d + 2)

2∑
i=1

∫
dv miVkV�Di,k�. (84)

The evaluation of the complete set of transport coefficients
is a quite long task. Here, we will focus on the transport
coefficients associated to the mass flux and the shear viscosity
coefficient. To determine them, we will consider the leading
terms in a Sonine polynomial expansion to the unknowns
Ai , Bi , Ci , Di,αβ , Ei , and Gi . The procedure is described
in Appendix C and only the final expressions will be provided
here.

A. Diffusion transport coefficients

In dimensionless form, the diffusion transport coefficients
D, Dp, and DT can be written as

D = ρT

m1m2ν0
D∗, Dp = nT

ρν0
D∗

p, DT = nT

ρν0
D∗

T , (85)
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where ν0 is the effective frequency defined in Eq. (60). The
explicit forms are

D∗
p = a23a30 − a33a20

a23a32 − a22a33
, (86)

D∗
T = a32a20 − a22a30

a23a32 − a22a33
, (87)

D∗ = a10 − a12(D∗
p + D∗

T )

a11
, (88)

where the coefficients aij are defined by Eqs. (C8)–(C16). The
velocity diffusion coefficient DU is simply given by

DU = ρ1ρ2

ρ

ω∗ξ ∗1/3

a11
mβ m

β

2 − m
β

1

(m1m2)β
. (89)

Since j(1)
1 = −j(1)

2 and ∇x1 = −∇x2, D must be symmetric
while Dp, DT , and DU must be antisymmetric with respect to
the exchange 1 ↔ 2. This can be easily verified by noting that
x1χ1 + x2χ2 = 1.

B. Shear viscosity coefficient

The shear viscosity coefficient η can be written as

η = p

ν0

(
x1χ

2
1 η∗

1 + x2χ
2
2 η∗

2

)
, (90)

where the expression of the (dimensionless) partial contribu-
tions η∗

i (i = 1,2) is

η∗
1 = χ−1

1

(
τ22 + 2μ

β

12ω
∗ξ ∗1/3

) − χ−1
2 τ12(

τ11 + 2μ
β

21ω
∗ξ ∗1/3

)(
τ22 + 2μ

β

12ω
∗ξ ∗1/3

) − τ12τ21

.

(91)

The partial shear viscosity η∗
2 can be easily obtained by just

making the changes 1 ↔ 2. The expressions of the (reduced)
collision frequencies τij are given by Eqs. (C25) and (C26).

VI. SOME ILLUSTRATIVE DRIVEN SYSTEMS

The results derived in Sec. V for the diffusion transport
coefficients and the shear viscosity depend on the driven
parameters γb and ξ 2

b , the concentration x1, and the mechanical
parameters of the mixture (masses, sizes, and coefficients of
restitution). Moreover, they also depend on the parameters
β and λ characterizing the class of model considered. An
exploration of the full parameter space is straightforward but
beyond the scope of this presentation. In this section we will
consider some specific situations where a careful analysis of
the impact of the parameters of the system on transport can be
easily assessed.

A. Tracer limit

We consider first the special case in which one of the
components of the mixture (say, for instance, species 1) is
present in tracer concentration (x1 → 0). In this situation,
an inspection of the coefficients aij defining the diffusion
coefficients shows that both a20 and a30 go to zero and,
consequently, the pressure diffusion Dp and thermal diffusion
DT coefficients tend to zero. The only nonzero coefficient is

the (reduced) tracer diffusion coefficient D∗ given by

D∗ = χ1

νD + μ
β

21ω
∗ξ ∗1/3

, (92)

where in the tracer limit νD [defined in Eq. (C17)] is

νD → 2π (d−1)/2

d�
(

d
2

) (1 + α12)μ21
√

μ12 + μ21χ1. (93)

Equations (92) and (93) apply for arbitrary values of the
mass ratio m1/m2. In the Brownian limit (m1/m2 → ∞),
Sarracino et al. [30] have derived an expression for the
self-diffusion coefficient D defined as

D = T2D
∗

m1ν0
. (94)

An explicit form for D can be easily obtained after taking the
limit m1/m2 → ∞ in our Eq. (92) for D∗. The result is

D = m
β−1
1 T1

γg + m
β−1
2 γb

, (95)

where γg is defined in Eq. (45). When λ = 2, β = 1, and for
hard disks (d = 2), Eq. (95) is the same as the one obtained
from the Langevin equation.

In the tracer limit, the shear viscosity of the mixture
coincides with that of the excess component. Thus, when
x1 → 0, χ2 → 1, and Eqs. (90) and (91) reduce to

η = p

νη + 2γb

m
β

2

, (96)

where

νη =
√

2π (d−1)/2

d(d + 2)�
(

d
2

) (3 + 2d − 3α22)(1 + α22)n2σ
d−1
2

√
2T2

m2
.

(97)

Equations (96) and (97) agree with the results obtained
by Hayakawa [36] in the Fokker-Planck model (β = 1) for
monocomponent granular gases. This shows the consistency
of our results with those previously derived.

The self-diffusion coefficient D is plotted in Fig. 3 as
a function of the (common) coefficient of restitution α for
d = 2. The solid line is the theoretical prediction following
from Eq. (92), while the dashed line is the theoretical result
obtained from Eq. (95) (Brownian limit). Symbols are DSMC
results and MD simulations carried out in Ref. [30]. There is
an excellent agreement between DSMC and Brownian theory,
while MD simulations present a small discrepancy with the
latter at small values of the coefficient of restitution. This
discrepancy is in part mitigated by the results obtained from
the Boltzmann-Lorentz description [Eq. (92)], especially for
strong dissipation (say, for instance, α � 0.7). Moreover, in
contrast to the free cooling case [29], we observe that the
diffusion coefficient D shows a nonmonotonic behavior with
a minimum at low values of α. The lack of simulation data at
small values of α prevents us from making a comparison in
this range of inelasticity.
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FIG. 3. (Color online) Plot of the self-diffusion coefficient D as
a function of the (common) coefficient of restitution α ≡ α22 = α12

for a two-dimensional system (d = 2). The parameters of the system
are m1 = 100m2, σ1 = σ2, φ = 0.007 85, ξ 2

b = 0.2, and γb = 0.1.
Symbols are the simulation results obtained in Ref. [30] by means
of the DSMC method (red diamonds) and MD simulations (black
circles). The solid line is the theoretical result obtained from Eq. (92)
for m1 = 100m2, while the dashed line corresponds to the theoretical
result obtained from Eq. (95) in the Brownian limit (m1/m2 → ∞).

B. Stochastic thermostat

We consider now a system only driven by the stochastic
term of thermostat (namely, when γb → 0 but keeping γbTb

finite). This driven system has been widely studied in the
literature [7], especially for homogeneous monocomponent
granular gases. Moreover, expressions for the diffusion trans-
port coefficients of a granular binary mixture have been also
obtained [19] for this sort of thermostat (with λ = 0) when
the steady-state condition �(0) = 0 applies at any point of the
system (local stochastic thermostat). These expressions are
displayed in Appendix D for the sake of completeness.

In this case (γb = 0, λ = 0), the steady-state condition
simply reduces to

ξ ∗ = ζ ∗
0∑2

i=1 xiMi

= nm

ρ
ζ ∗

0 , (98)

while the temperature ratio is determined from the condition

m2χ1ζ
∗
1,0 = m1χ2ζ

∗
2,0. (99)

Thus, according to Eq. (98), the noise strength ξ ∗ is a function
of the coefficients of restitution and the parameters of the
mixture. The diffusion transport coefficients are

D∗
p =

x1
2

nm
ρ

ζ ∗2
0

∂χ1

∂ξ∗ δ − (
νD − ζ ∗

0
2 δ

)(
x1χ1 − ρ1

ρ
− x1ζ

∗
0

∂χ1

∂ξ∗
)

1
2ζ ∗2

0 δ2 − (
νD − ζ ∗

0 δ
)(

νD − 1
2ζ ∗

0 δ
) ,

(100)

D∗
T =

x1
2 ξ ∗ ∂χ1

∂ξ∗ (νD − ζ ∗
0 δ) − ζ ∗

0
2 δ

(
x1χ1 − ρ1

ρ
− x1ζ

∗
0

∂χ1

∂ξ∗
)

1
2ζ ∗2

0 δ2 − (νD − ζ ∗
0 δ)

(
νD − 1

2ζ ∗
0 δ

) ,

(101)

D∗ =
χ1 + x1

∂χ1

∂x1
− [ (m1−m2)n

ρ
ζ ∗

0 − ∂ζ ∗
0

∂x1

]
(D∗

p + D∗
T )

νD

,

(102)

where δ = 1 − nm
ρ

(∂ζ ∗
0 /∂ξ ∗) and νD is given by Eq. (C17). In

addition, since DU ∝ γ ∗ = ω∗ξ ∗1/3 [see Eq. (89)], the velocity
diffusion coefficient DU vanishes in the case of the stochastic
thermostat.

Comparison between Eqs. (100)–(102) and Eqs. (D1)–(D2)
clearly shows that the forms of the diffusion coefficients
obtained here differ from those previously derived [19] by
using a (simple) local thermostat. In particular, while the
latter choice yields a vanishing thermal diffusion coefficient
DT , we found here that DT �= 0. To illustrate the differences
between both choices of thermostat, Fig. 4 shows the (reduced)
diffusion coefficients D∗, D∗

p, and D∗
T as a function of the

(common) coefficient of restitution α for an equimolar mixture
(x1 = 1

2 ) with σ1/σ2 = 1 and m1/m2 = 2. Different driven
systems have been plotted. The free cooling system is also
plotted for the sake of completeness. First, as expected, the
thermostat does not play a neutral role on mass transport since
the α dependence of the diffusion coefficients between the
driven and undriven systems is clearly different. On the other
hand, at a more quantitative level, it is quite apparent that the
results derived in this paper for the diffusion D∗ and pressure
diffusion D∗

p coefficients are closer to their corresponding
undriven counterparts [16] than those obtained by using the
local stochastic thermostat. In fact, the theoretical predictions
for both coefficients obtained from the (global) stochastic
thermostat compare quite well with the free cooling results
even for quite strong values of dissipation (say, for instance,
α � 0.7). The biggest discrepancy between both theories is for
the thermal diffusion coefficient D∗

T since, while this transport
coefficient is negative in the driven case, it becomes positive
in the undriven case. The change of sign of D∗

T could have
some implications in processes related to thermal diffusion
segregation [41,42].

The shear viscosity coefficient η is given by Eq. (90) where
the partial contributions η∗

i are

η∗
1 = χ−1

1 τ22 − χ−1
2 τ12

τ11τ22 − τ12τ21
, η∗

2 = χ−1
2 τ11 − χ−1

1 τ21

τ11τ22 − τ12τ21
. (103)

Although the expression of η for a driven granular mixture
has not been previously derived, a simple inspection of the
integral equation (67) shows that the form (103) also holds for
the case of the local stochastic thermostat. Figure 5 shows the
dependence of the ratio η(α)/η(1) on α for σ1/σ2 = 1, x1 = 1

2 ,
and for several values of the mass ratio (m1/m2 = 1, 2, and
4). Here, η(1) is the shear viscosity of the binary mixture for
elastic collisions. Some DSMC data obtained in Ref. [43] for
a single granular gas (m1 = m2) of inelastic hard spheres have
been also included. A good agreement with theory is observed.
We also see that the deviation of η from its functional form
for elastic collisions is less significant than the one found for
undriven mixtures [44,45]. Moreover, except for a single gas
of hard disks, we observe that the shear viscosity of a driven
granular mixture increases with respect to its elastic value as
the inelasticity increases.

C. General driven system: Stochastic bath with friction

The analysis of the general case (ξ 2
b �= 0 and γb �= 0)

is more difficult than when the system is only driven by
the stochastic thermostat. This is especially apparent for the
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FIG. 4. (Color online) Reduced diffusion coefficients D∗, D∗
p ,

and D∗
T as a function of the (common) coefficient of restitution

α11 = α12 = α22 ≡ α for an equimolar binary mixture (x1 = 1
2 ) of

hard disks (d = 2) with σ1/σ2 = 1 and m1/m2 = 2. Different driven
systems are plotted: (a) global stochastic thermostat (γb = 0, λ = 0),
(b) local stochastic thermostat (γb = 0, λ = 0), (c) stochastic bath
with friction (ξ 2

b = 0.2, γb = 0.1,λ = 2, and β = 1), and (d) undriven
system (ξ 2

b = γb = 0).

diffusion coefficients D∗, D∗
p, and D∗

T , since their evaluation
requires one to get all the derivatives of the temperature ratio
(i.e., the derivatives of χ1 with respect to ξ ∗, ω∗, and x1)
in the vicinity of the steady state. To illustrate the behavior
of the diffusion coefficients and the shear viscosity, we have
considered an equimolar binary mixture driven by the model
parameters ξ 2

b = 0.2 and γb = 0.1 with λ = 2 and β = 1.
The α dependence of the (reduced) diffusion coefficients

for the above driven system has been also included in Fig. 4.
We observe that the behavior of these coefficients is in general
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FIG. 5. (Color online) Plot of the (reduced) shear viscosity
coefficient η(α)/η(1) versus the (common) coefficient of restitution
α11 = α12 = α22 ≡ α for an equimolar binary mixture (x1 = 1

2 )
of hard disks (top panel) and hard spheres (bottom panel) with
σ1/σ2 = 1 and three different values of the mass ratio: (a) m1/m2 = 1,
(b) m1/m2 = 2, and (c) m1/m2 = 4. The lines correspond to the
theoretical results derived for the stochastic thermostat (γb = 0, λ =
0). The symbols are the DSMC results for a mixture of mechanically
equivalent particles driven by the stochastic thermostat (Ref. [43]).

quite different to that of the stochastic thermostat, especially in
the cases of the pressure diffusion D∗

p and the thermal diffusion
D∗

T coefficients. Thus, while both coefficients increase as α

decreases in the general case (ξ 2
b �= 0 and γb �= 0), the opposite

happens for the stochastic thermostat (ξ 2
b �= 0 but γb = 0). On

the other hand, the dependence of the diffusion coefficient D∗
on the coefficient of restitution is qualitatively similar in both
driven systems since D∗ increases with increasing inelasticity.

Finally, we analyze in Fig. 6 the shear viscosity of the
mixture. As in Fig. 5, we plot η(α)/η(1) as a function of
the (common) coefficient of restitution. We observe that the
influence of dissipation on η for the general case is opposite
to the one found in Fig. 5 for the stochastic thermostat since
the ratio η(α)/α(1) decreases with decreasing α in the former
case. Thus the main effect of inelasticity of collisions when the
granular mixture is fluidized by the combination of a stochastic
bath with friction is to inhibit its momentum transport with
respect to the elastic collision case. However, the deviation of
η from its elastic value is much smaller than the one obtained
for the diffusion coefficients since the inelastic shear viscosity
differs less than 2% from its corresponding elastic form η(1).
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FIG. 6. (Color online) Plot of the (reduced) shear viscosity
coefficient η(α)η/η(1) versus the (common) coefficient of restitution
α11 = α12 = α22 ≡ α for an equimolar binary mixture (x1 = 1

2 )
of hard disks (top panel) and hard spheres (bottom panel) with
σ1/σ2 = 1 and three different values of the mass ratio: (a) m1/m2 = 1,
(b) m1/m2 = 2, and (c) m1/m2 = 4. The lines are the results derived
for the general driven system with model parameters ξ 2

b = 0.2, γb =
0.1,λ = 2, and β = 1.

VII. DISCUSSION

The main objective of this work has been to determine the
transport coefficients of a granular binary mixture driven by a
stochastic bath with friction. The results have been obtained
from the set of nonlinear (inelastic) Boltzmann equations for
the mixture and are expected to apply at low densities. The
derivation of the hydrodynamic equations consists of two
steps. First, the macroscopic balance equations (18)–(20) for
the partial densities, the total momentum, and energy are
obtained from the set of coupled Boltzmann equations (7).
Then, the fluxes and the cooling rate appearing in these
hydrodynamic equations have been determined from a solution
of the Boltzmann equations by means of the CE method. Their
forms have been expressed in terms of the hydrodynamic fields
and their spatial gradients. The corresponding constitutive
equations for the mass, heat, and momentum fluxes to
first order in spatial gradients are given by Eqs. (72)–(74),
respectively, and the associated transport coefficients are
defined by Eqs. (76)–(79) for the mass flux, Eqs. (80)–(83)
for the heat flux, and Eq. (84) for the pressure tensor. It is
worthwhile noticing that all the above results are exact within
the framework of the Boltzmann equation.

As in the undriven case [16], the transport coefficients are
given in terms of the solution of the set of coupled linear
integral equations (64)–(69). A practical evaluation of these
coefficients requires the truncation of a Sonine polynomial
expansion. Thus, although these results are approximated, they
are not limited in principle to weak inelasticity and apply to
arbitrary values of the coefficients of restitution, the mass and
size ratios, and the concentration of the mixture. In addition,
they also depend on the driven parameters γb (which represents
the friction coefficient of the drag force) and ξ 2

b (which
represents the strength of the stochastic force). The explicit
determination of the complete set of transport coefficients
(nine coefficients) as functions of the full parameter space
is beyond the scope of this paper and we have focused here on
the diffusion and the shear viscosity coefficients.

As pointed out in our previous effort [12] for monocompo-
nent gases, a subtle point is the generalization of the driving
external forces (which are usually introduced in homogeneous
situations) to inhomogeneous states. This is a quite important
issue since one has to consider first small perturbations to
steady homogeneous states to determine the fluxes from the
CE solution and then identify the corresponding transport
coefficients. These quantities are intrinsic properties of the
driven granular mixture. Although the above generalization is
a matter of choice, it has important implications on the form
of the transport coefficients [18]. For the sake of simplicity,
in previous works carried out by one of the authors of the
present paper [19], it was assumed that the external driving
force has the same expression as in the homogeneous case,
except that the parameters of the force are chosen to get
stationary values of the pressure p and temperature T of the
mixture in the CE zeroth-order approximation (i.e., ∂

(0)
t p =

∂
(0)
t T = 0). Nevertheless, this is a particular choice for the

perturbations since, in general, it is expected that the pressure
and temperature are specified separately in the local reference
state f

(0)
i of each species and so p and T are in general

time-dependent quantities (i.e., ∂ (0)
t p �= 0 and ∂

(0)
t T �= 0). This

latter feature gives rise to new technical difficulties in the
evaluation of the transport coefficients since one would need
in particular to numerically integrate the differential equations
verifying some velocity moments of the distributions f

(0)
i to

get the time dependence of the transport coefficients. This
is quite an intricate problem. On the other hand, since we
are interested here in evaluating the fluxes in the first order
in the deviations from the steady homogeneous state, the
transport coefficients associated to the mass, momentum, and
heat fluxes can be determined to zeroth order in the deviations
(steady-state conditions). As said before, in this paper we have
explicitly obtained the transport coefficients associated to the
mass flux and the pressure tensor. Their explicit forms are
given by Eqs. (86)–(89) for the diffusion coefficients D, Dp,
DT , and DU , respectively, and Eqs. (90) and (91) for the shear
viscosity coefficient η.

The expressions derived for the set {D,Dp,DT ,DU,η}
clearly show the complex dependence of these coefficients on
the concentration, the mechanical parameters of the mixture
(masses, diameters, and coefficients of restitution), and the
driven model parameters γb and ξ 2

b . Our results also indicate
that, while the expressions of the diffusion coefficients derived
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FIG. 7. (Color online) Plot of the (reduced) diffusion coefficient
D∗ as a function of the (common) coefficient of restitution α11 =
α12 = α22 ≡ α for an equimolar binary mixture (x1 = 1

2 ) of hard
disks with σ1/σ2 = 2 and m1/m2 = 8. Here, the mixture is driven
by a global stochastic thermostat (γb = 0, λ = 0). The solid line is
the result derived from Eq. (102), while the dashed line has been
obtained by neglecting the derivatives of χ1 and ζ ∗

0 with respect to ξ ∗

in Eq. (102).

here differ from those previously obtained [19] by using a
local thermostat, the form of the shear viscosity is the same
for both choices of thermostat. This is an expected result
since the evaluation of η does not involve any contribution
coming from the action of the operator ∂

(0)
t on the pressure

and temperature gradients. In addition, a careful evaluation of
the transport coefficients for a variety of mass and diameter
ratios and coefficients of restitution has shown that the impact
of collisional dissipation on transport in driven mixtures is
less significant than the one previously observed in undriven
mixtures [16].

It is worthwhile to remark that, although we evaluate the
transport coefficients under steady-state conditions, the time
dependence of the reference states f

(0)
i is inherited through

the derivatives of the temperature ratio χ1 and the (reduced)
cooling rate ζ ∗

0 with respect to the (reduced) model parameters
ω∗ and ξ ∗. This additional dependence can be easily seen
in particular in the expressions (100)–(102) for the diffusion
coefficients D∗

p, D∗
T , and D∗, respectively. In order to gauge

the effect of those derivatives on mass transport, Fig. 7 shows
D∗ versus α as given by Eq. (102) and the result for D∗ by
neglecting the derivatives ∂χ1/∂ξ ∗ and ∂ζ ∗

0 /∂ξ ∗ in Eq. (102).
We have considered a binary mixture composed by disks
of the same mass density (σ1/σ2 = 2 and m1/m2 = 8) with
x1 = 1

2 . Clearly, inclusion of those derivatives becomes more
significant as the inelasticity increases.

Apart from its academic interest, we think that our results
could be relevant also from a more practical point of view since
many of the simulations reported [6,7] for flowing granular
mixtures have considered the use of external driving forces.
In this context, it is convenient to provide simulators with
the expressions of the transport coefficients when the granular
mixture is driven by the sort of thermostat used here. As a
matter of fact, given the lack of theoretical results covering this
problem, in most of the cases the elastic forms of the transport
coefficients are used to compare simulations with theoretical
results. Moreover, as pointed out in the Introduction, the

driven Boltzmann equations (7) could be considered also as
an alternative way to model bidisperse suspensions. In this
context, the coefficients γb and ξ 2

b of the model could be
adjusted to optimize the agreement with some property of
interest measured in simulations or real experiments. This was
the procedure followed in Ref. [22] in the case of monodisperse
gas-solid suspensions. Finally, given that the results reported
in this paper are restricted to the low-density regime, the
extension of the present results to dense driven systems could
be an interesting project for the future. In this case, the revised
Enskog theory could be a good starting point [46] to determine
the influence of external driven parameters on transport at
moderate densities.
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APPENDIX A: EVALUATION OF THE DERIVATIVES OF
THE TEMPERATURE RATIO χ1 WITH RESPECT TO ξ ∗, ω∗,

AND x1 IN THE VICINITY OF THE STEADY STATE

In this Appendix we will evaluate the derivatives of the
temperature ratio χ1 with respect to ξ ∗, ω∗, and x1 in the
vicinity of the steady state. These derivatives are needed to
determine the complete set of transport coefficients of the
mixture. First, in order to determine ∂χ1/∂ξ ∗ we start from
Eq. (62) for i = 1:

3

2
�∗ξ ∗ ∂χ1

∂ξ ∗ = χ1�
∗ − �∗

1, (A1)

where

�∗
1 = 2ω∗ξ ∗1/3 χ1

M
β

1

− ξ ∗

Mλ−1
1

+ χ1ζ
∗
1,0. (A2)

Here, �∗ = x1�
∗
1 + x2�

∗
2 and ζ ∗

0 = x1χ1ζ
∗
1,0 + x2χ2ζ

∗
2,0.

According to Eq. (43), the dependence of ζ ∗
1,0 on x1, ω∗, and

ξ ∗ can be computed from the relation

ζ ∗
1,0 = χ

1/2
1 M

−1/2
1 ζ ′

1(x1,θ ), (A3)

where θ = M1χ2/(M2χ1), χ2 = (1 − x1χ1)/x2, and

ζ ′
1(x1,θ ) =

√
2π (d−1)/2

d�
(

d
2

) x1

(
σ1

σ12

)d−1(
1 − α2

11

)
+ 4π (d−1)/2

d�
(

d
2

) x2μ21(1 + θ )1/2(1 + α12)

×
[

1 − 1

2
μ21(1 + α12)(1 + θ )

]
. (A4)

At the steady state, �∗
1 = �∗

2 = �∗ = 0, and so one has to
take care in Eq. (A1) since the expression of the derivative
∂χ∗

1 /∂ξ ∗ becomes indeterminate. This difficulty can be fixed
by means of l’Hôpital’s rule. In this case, we take first the
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derivative with respect to ξ ∗ in both sides of Eq. (A1) and then
take the steady-state limit. The result is

∂χ1

∂ξ ∗ =
∂�∗
∂ξ∗ χ1 − ∂�∗

1
∂ξ∗

3
2ξ ∗ ∂�∗

∂ξ∗
, (A5)

where it is understood that all the derivatives are evaluated at
the steady state. The derivatives appearing in the numerator
and denominator of Eq. (A5) can be expressed in terms of the
unknown � = (∂χ∗

1 /∂ξ ∗)s. Here, the subindex s means that the
derivative is evaluated in the steady state. After some algebra,
it is straightforward to see that � obeys the quadratic equation

3

2
ξ ∗�(ξ )

1 �2 +
(

3

2
ξ ∗�(ξ )

0 − χ1�
(ξ )
1 + �

(ξ )
11

)
�

+�
(ξ )
10 − χ1�

(ξ )
0 = 0, (A6)

where �
(ξ )
0 = x1�

(ξ )
10 + x2�

(ξ )
20 , �

(ξ )
1 = x1�

(ξ )
11 + x2�

(ξ )
21 , and

�
(ξ )
10 = 2

3
ω∗ξ ∗−2/3 χ1

M
β

1

− M1−λ
1 , (A7)

�
(ξ )
11 = 2ω∗ξ ∗1/3

M
β

1

+ 3

2
ζ ∗

1,0 − χ
−1/2
1

M
1/2
1

x2M2

∂ζ ′
1

∂θ
, (A8)

�
(ξ )
20 = 2

3
ω∗ξ ∗−2/3 χ2

M
β

2

− M1−λ
2 , (A9)

�
(ξ )
21 = −x1

x2

2ω∗ξ ∗1/3

M
β

2

− 3

2

x1

x2
ζ ∗

2,0 − M1

x2M
3/2
2

χ
3/2
2

χ2
1

∂ζ ′
2

∂θ
.

(A10)

An analysis of the solutions to Eq. (A6) shows that in general
one of the roots leads to unphysical behavior of the diffusion
coefficients in the quasielastic limit. We take the other root as
the physical root of the quadratic equation (A6).

Once the derivative � is known, we can determine the
remaining derivatives ∂χ1/∂ω∗ and ∂χ1/∂x1 in a similar
way. In order to get ∂χ1/∂ω∗, we take first the derivative of
Eq. (A1) with respect to ω∗ and then consider the steady-state
conditions. The final result is(

∂χ1

∂ω∗

)
s

= χ1�
(γ )
0 − �

(γ )
10 − 3

2ξ ∗��
(γ )
0

3
2ξ ∗��

(ξ )
1 − χ1�

(ξ )
1 + �

(ξ )
11

, (A11)

where �
(γ )
0 = x1�

(γ )
10 + x2�

(γ )
20 and

�
(γ )
10 = 2ξ ∗1/3 χ1

M
β

1

, �
(γ )
20 = 2ξ ∗1/3 χ2

M
β

2

. (A12)

Analogously, the derivative ∂χ1/∂x1 is(
∂χ1

∂x1

)
s

= χ1�
(x1)
0 − �

(x1)
10 − 3

2ξ ∗��
(x1)
0

3
2ξ ∗��

(ξ )
1 − χ1�

(ξ )
1 + �

(ξ )
11

, (A13)

where

�
(x1)
10 = χ

3/2
1 M

−1/2
1

(
∂ζ ′

1

∂x1

)
θ

, (A14)

�
(x1)
20 = χ

3/2
2 M

−1/2
2

(
∂ζ ′

2

∂x1

)
θ

+ χ2 − χ1

x2

(
2
ω∗ξ ∗1/3

M
β

2

+ 3

2
ζ ∗

2,0

)
,

(A15)

�
(x1)
0 = �∗

1 − �∗
2 + x1�

(x1)
10 + x2�

(x1)
20 . (A16)

APPENDIX B: FIRST-ORDER APPROXIMATION

In this Appendix we provide some technical details in the
derivation of the first-order approximation f

(1)
1 . To first order

in the gradients, the equation for f
(1)
1 is

∂
(0)
t f

(1)
1 − γb

m
β

1

∂

∂v
· Vf

(1)
1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
f

(1)
1 + L1f

(1)
1

+M1f
(1)
2 = −(

D
(1)
t + V · ∇)

f
(0)
1 + γb

m
β

1

�U · ∂

∂V
f

(0)
1 ,

(B1)

where D
(1)
t = ∂

(1)
t + U · ∇ and the linear operators L1 and

M1 are defined in Eqs. (70) and (71), respectively. The
kinetic equation for f

(1)
2 can be easily obtained from Eq. (B1)

by setting 1 ↔ 2. The action of the operator D
(1)
t on the

hydrodynamic fields is

D
(1)
t x1 = 0, (B2)

D
(1)
t p = −d + 2

d
p∇ · U − ζ (1)p, (B3)

D
(1)
t T = − 2

d
T ∇ · U − ζ (1)T , (B4)

D
(1)
t U = −ρ−1∇p − γb

ρ

2∑
i=1

j(1)
i

m
β

i

− γb

ρ

2∑
i=1

ρi

m
β

i

�U, (B5)

where use has been made of the result j(0)
i = q(0) = 0. Note that

in contrast to the undriven case [16], there is a nonzero first-
order contribution ζ (1) to the cooling rate. Since the cooling
rate is a scalar, its corrections to first order in the gradients can
arise only from the divergence of the velocity vector ∇ · U.
Thus ζ (1) can be simply written as

ζ (1) = ζU∇ · U. (B6)

The time derivative D
(1)
t f

(0)
1 can be evaluated by taking into

account Eqs. (B2)–(B5) with the result

D
(1)
t f

(0)
1 = ∂f

(0)
1

∂p
D

(1)
t p + ∂f

(0)
1

∂T
D

(1)
t T + ∂f

(0)
1

∂Ui

D
(1)
t Ui

= ρ−1 ∂f
(0)
1

∂V
∇p −

[(
d + 2

d
+ ζU

)
p

∂f
(0)
1

∂p

+
(

2

d
+ ζU

)
T

∂f
(0)
1

∂T

]
∇ · U

+ γb

ρ

∂

∂V
f

(0)
1

2∑
i=1

j(1)
i

m
β

i

+ γb

ρ

2∑
i=1

ρi

m
β

i

∂

∂V
f

(0)
i · �U, (B7)

where use has been made of the property

∂f
(0)
1

∂Ui

= −∂f
(0)
1

∂Vi

. (B8)
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With the use of Eq. (B7), Eq. (B1) can be written as

∂
(0)
t f

(1)
1 − γb

m
β

1

∂

∂v
· Vf

(1)
1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
f

(1)
1 + L1f

(1)
1

+M1f
(1)
2 = A1 · ∇x1 + B1 · ∇p + C1 · ∇T

+D1,k�

1

2

(
∇kU� + ∇�Uk − 2

d
δk�∇ · U

)
+E1∇ · U + G1 · �U. (B9)

The coefficients of the field gradients on the right side are
functions of V and the hydrodynamic fields. They are given by

A1(V) = −V
∂f

(0)
1

∂x1
+ γb

(
m

β

2 − m
β

1

)
ρ2(m1m2)β−1

p

T
D

∂f
(0)
1

∂V
, (B10)

B1(V) = −V
∂f

(0)
1

∂p
− ρ−1 ∂f

(0)
1

∂V
+ γb

(
m

β

2 − m
β

1

)
p(m1m2)β

Dp

∂f
(0)
1

∂V
,

(B11)

C1(V) = −V
∂f

(0)
1

∂T
+ γb

(
m

β

2 − m
β

1

)
T (m1m2)β

DT

∂f
(0)
1

∂V
, (B12)

D1,k�(V) = Vk

∂f
(0)
1

∂V�

, (B13)

E1(V) =
(

d + 2

d
+ ζU

)
p

∂f
(0)
1

∂p
+

(
2

d
+ ζU

)
T

∂f
(0)
1

∂T

+ 1

d
V · ∂f

(0)
1

∂V
, (B14)

G1(V) = γb

ρ

m
β

2 − m
β

1

(m1m2)β
(ρ2 + DU )

∂f
(0)
1

∂V
. (B15)

The solution to Eq. (B9) is of the form (63). The coefficients
A1, B1, C1, D1,k�, E1, and G1 appearing in Eq. (63) are
unknown functions of the peculiar velocity. The partial
temperatures and the cooling rate depend on space through
their dependence on x1, p, and T . The time derivative ∂

(0)
t

acting on A1, B1, . . . can be evaluated by the replacement
∂

(0)
t → −�(0)(p∂p + T ∂T ). In addition, there are also

contributions coming from the action of the operator ∂
(0)
t on

the temperature and pressure gradients. They are given by

∂
(0)
t ∇T =

[
ξ 2

b
mλ−1

2 − mλ−1
1

(m1m2)λ−1
− T

∂ζ (0)

∂x1
− 2γbT

m
β

2 − m
β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)]
∇x1

−
(

2γb

2∑
i=1

xiχi

m
β

i

+ 2γbT
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T
+ ζ (0) + T

∂ζ (0)

∂T

)
∇T −

(
2γbT

m
β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p
+ T

∂ζ (0)

∂p

)
∇p, (B16)

∂
(0)
t ∇p =

[
p

T
ξ 2

b
mλ−1

2 − mλ−1
1

(m1m2)λ−1
− p

∂ζ (0)

∂x1
− 2γbp

m
β

2 − m
β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)]
∇x1

−
(

ξ 2
b

p

T 2

2∑
i=1

xi

mλ−1
i

+ p
∂ζ (0)

∂T
+ 2γbp

m
β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T

)
∇T

−
(

2γb

2∑
i=1

xiχi

m
β

i

+ 2γbp
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p
− ξ 2

b
1

T

2∑
i=1

xi

mλ−1
i

+ ζ (0) + p
∂ζ (0)

∂p

)
∇p. (B17)

Upon deriving Eqs. (B16) and (B17), use has been made of the relations ∇x1 = −∇x2 and ∇(x1χ1) = −∇(x2χ2).
The corresponding integral equations for the unknowns A1, B1, C1, D1,k�, E1, and G1 are identified as the coefficients of the

independent gradients in Eq. (B9). This yields the following set of coupled linear integral equations:

−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
A1 − γb

m
β

1

∂

∂v
· VA1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
A1 + L1A1 + M1A2

+
[
ξ 2

b
1

T

mλ−1
2 − mλ−1

1

(m1m2)λ−1
− 2γb

m
β

2 − m
β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)
− ∂ζ (0)

∂x1

]
(pB1 + T C1) = A1, (B18)

−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
B1 − γb

m
β

1

∂

∂V
· VB1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
B1 + L1B1 + M1B2 −

(
2γb

2∑
i=1

xiχi

m
β

i

+ 2γbp
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p

− ξ 2
b

1

T

2∑
i=1

xi

mλ−1
i

+ ζ (0) + p
∂ζ (0)

∂p

)
B1 = B1 +

(
2γbT

m
β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂p
+ T

∂ζ (0)

∂p

)
C1, (B19)

−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
C1 − γb

m
β

1

∂

∂V
· VC1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
C1 + L1C1 + M1C2 −

(
2γb

2∑
i=1

xiχi

m
β

i

+ 2γbT
m

β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T

+ ζ (0) + T
∂ζ (0)

∂T

)
C1 = C1 +

(
2γbp

m
β

2 − m
β

1

(m1m2)β
x1

∂χ1

∂T
+ ξ 2

b

p

T 2

2∑
i=1

xi

mλ−1
i

+ p
∂ζ (0)

∂T

)
B1, (B20)
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−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
D1,k� − γb

m
β

1

∂

∂v
· VD1,k� − 1

2

ξ 2
b

mλ
1

∂2

∂v2
D1,k� + L1D1,k� + M1D2,k� = D1,k�, (B21)

−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
E1 − γb

m
β

1

∂

∂v
· VE1 − 1

2

ξ 2
b

mλ
1

∂2

∂v2
E1 + L1E1 + M1E2 = E1, (B22)

−�(0)

(
p

∂

∂p
+ T

∂

∂T

)
G1 − γb

m
β

1

∂

∂V
· VG1 − 1

2

ξ 2
b

mλ
1

∂2

∂V 2
G1 + L1G1 + M1G2 = G1. (B23)

As noted in Sec. IV, in the first order of the deviations from the steady state, we only need to know the transport coefficients
to zeroth order in the deviations, namely, when �(0) = 0. This implies that the first term appearing in the left-hand side of
Eqs. (B18)–(B23) vanishes and the integral equations defining the transport coefficients are given by Eqs. (64)–(69).

APPENDIX C: LEADING SONINE APPROXIMATIONS

In this Appendix, we obtain the explicit expressions of the
diffusion transport coefficients D, Dp, DT , and DU and the
shear viscosity coefficient η in the first Sonine approximation.
The diffusion coefficients are defined by Eqs. (76)–(79),
respectively, while η is defined by Eq. (84). The procedure
to get these coefficients is quite similar to the one previously
used in the free cooling case [16]. Only some partial results
will be presented here.

In the case of the coefficients D, Dp, and DT , the leading
Sonine approximations (lowest degree polynomial) of the
quantities Ai , Bi , and Ci are, respectively,

A1(V) → −f1,MV
m1m2nD

ρn1T1
, A2(V) → f2,MV

m1m2nD

ρn2T2
,

(C1)

B1(V) → −f1,MV
ρDp

pn1T1
, B2(V) → f2,MV

ρDp

pn2T2
,

(C2)

C1(V) → −f1,MV
ρDT

T n1T1
, C2(V) → f2,MV

ρDT

T n2T2
,

(C3)

where fi,M are the Maxwellian distributions

fi,M (V) = ni

(
mi

2πTi

)d/2

exp

(
−miV

2

2Ti

)
. (C4)

In order to determine the above diffusion coefficients, we
substitute first Ai , Bi , and Ci by their leading Sonine
approximations in Eqs. (64)–(66). Then, we multiply these
equations by m1V and integrate over velocity. After some
algebra, the corresponding algebraic equations for the (re-
duced) coefficients D∗, D∗

p, and D∗
T [defined by Eq. (85)] can

be written as

a11D
∗ + a12(D∗

p + D∗
T ) = a10, (C5)

a22D
∗
p + a23D

∗
T = a20, (C6)

a32D
∗
p + a33D

∗
T = a30, (C7)

where

a11 = νD + mβω∗ξ ∗1/3 ρ1m
β

1 + ρ2m
β

2

ρ(m1m2)β
, (C8)

a12 = −2ω∗ξ ∗1/3M
−β

1

m
β

2 − m
β

1

m
β

2

∂

∂x1
(x1χ1)

+ ξ ∗M1−λ
1

mλ−1
2 − mλ−1

1

mλ−1
2

− ∂ζ ∗
0

∂x1
, (C9)

a10 = ∂

∂x1
(x1χ1), (C10)

a23 = −2ω∗ξ ∗1/3M
−β

1

m
β

2 − m
β

1

m
β

2

x1p
∂χ1

∂p
− p

ν0

∂ζ (0)

∂p
, (C11)

a22 = a11 + a23, (C12)

a20 = x1χ1 − ρ1

ρ
+ x1p

∂χ1

∂p
, (C13)

a32 = −2ω∗ξ ∗1/3M
−β

1

m
β

2 − m
β

1

m
β

2

x1T
∂χ1

∂T

− ξ ∗ ∑
i

xiM
1−λ
i − T

ν0

∂ζ (0)

∂T
, (C14)

a33 = a11 + a32, (C15)

a30 = x1T
∂χ1

∂T
. (C16)

In the above equations, ν0 is the effective frequency defined in
the second identity of Eq. (60) and νD is the (reduced) collision
frequency [45]

νD = − 1

dn1T1

∫
dV1m1V1 · (

J12
[
v1

∣∣f1,MV1,f
(0)
2

]
− x1T1

x2T2
J12

[
v1

∣∣f (0)
1 ,f2,MV2

])
= 2π (d−1)/2

d�
(

d
2

) (1 + α12)

(
θ1 + θ2

θ1θ2

)1/2

× (
x2M

−1
1 + x1M

−1
2

)
. (C17)

The solution to Eqs. (C5)–(C7) is given by Eqs. (86)–(88).
The coefficient DU is decoupled from the other diffusion

coefficients. The leading Sonine approximations to G1 and G2
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are

G1(V) → −f1,MV
DU

n1T1
,G2(V) → f2,MV

DU

n2T2
. (C18)

The expression (89) for DU can be easily obtained from
Eqs. (69) and (C18).

In the case of the pressure tensor, the leading Sonine
approximation for the function Di,k� is

Di,k�(V) → −fi,M (V)
ηi

T
Ri,k�(V), i = 1,2, (C19)

where

Ri,k�(V) = mi

(
VkV� − 1

d
V 2δk�

)
, (C20)

and

ηi = − 1

(d − 1)(d + 2)

T

niT
2
i

∫
dv Ri,k�(V)Di,k�(V). (C21)

The shear viscosity η is given by Eq. (90) where η∗
i = ν0ηi .

The integral equations for the (reduced) coefficients η∗
i are

decoupled from the diffusion transport coefficients. The two
coefficients η∗

i are obtained by multiplying Eqs. (67) by Ri,k�

and integrating over velocity to get the coupled set of equations⎛⎝ τ11 + 2ω∗ξ∗1/3

M
β

1

τ12

τ21 τ22 + 2ω∗ξ∗1/3

M
β

2

⎞⎠ (
η∗

1
η∗

2

)
=

(
χ−1

1
χ−1

2

)
. (C22)

The (reduced) collision frequencies τij are defined by

τii = 1

(d − 1)(d + 2)

1

niT
2
i ν0

∫
dv1Ri,αβLi(fi,MRi,αβ),

(C23)

τij = 1

(d − 1)(d + 2)

1

niT
2
i ν0

∫
dv1Ri,αβMi(fj,MRj,αβ),

(C24)

where it is understood that i �= j . The evaluation of these
collision integrals has been carried out elsewhere [45]. Their
explicit forms are given by

τ11 = 2π (d−1)/2

d(d + 2)�
(

d
2

){
x1

(
σ1

σ12

)d−1

(2θ1)−1/2(3 + 2d − 3α11)(1 + α11) + 2x2μ21(1 + α12)θ3/2
1 θ

−1/2
2

×
[

(d + 3)(μ12θ2 − μ21θ1)θ−2
1 (θ1 + θ2)−1/2 + 3 + 2d − 3α12

2
μ21θ

−2
1 (θ1 + θ2)1/2 + 2d(d + 1) − 4

2(d − 1)
θ−1

1 (θ1 + θ2)−1/2

]}
,

(C25)

τ12 = 4π (d−1)/2

d(d + 2)�
(

d
2

)x2
μ2

21

μ12
θ

3/2
1 θ

−1/2
2 (1 + α12)

[
(d + 3)(μ12θ2 − μ21θ1)θ−2

2 (θ1 + θ2)−1/2

+ 3 + 2d − 3α12

2
μ21θ

−2
2 (θ1 + θ2)1/2 − 2d(d + 1) − 4

2(d − 1)
θ−1

2 (θ1 + θ2)−1/2

]
. (C26)

The expressions for τ22 and τ21 can be obtained by setting
1 ↔ 2. The solution of Eq. (C22) is elementary and yields
Eq. (91).

APPENDIX D: LOCAL STOCHASTIC THERMOSTAT

In this Appendix we display the expressions of the (reduced)
diffusion coefficients D∗, D∗

p, and D∗
T by using a local

stochastic thermostat (∂ (0)
t p = ∂

(0)
t T = 0). The expressions of

the diffusion coefficients [19] are

D∗ = ν−1
D

(
χ1 + x1

∂χ1

∂x1

)
, (D1)

D∗
p = ν−1

D

(
x1χ1 − ρ1

ρ

)
, D∗

T = 0, (D2)

where νD is given by Eq. (C17).
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[29] V. Garzó and J. W. Dufty, Phys. Rev. E 60, 5706 (1999).
[30] A. Sarracino, D. Villamaina, G. Costantini, and A. Puglisi,

J. Stat. Mech. (2010) P04013.
[31] J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87, 1051

(1997).
[32] T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998).
[33] C. Henrique, G. Batrouni, and D. Bideau, Phys. Rev. E 63,

011304 (2000).
[34] A. Barrat and E. Trizac, Granular Matter 4, 57 (2002).
[35] S. R. Dahl, C. M. Hrenya, V. Garzó, and J. W. Dufty, Phys. Rev.
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