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Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases
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The hydrodynamic Burnett equations and the associated transport coefficients are exactly evaluated for
generalized inelastic Maxwell models. In those models, the one-particle distribution function obeys the inelastic
Boltzmann equation, with a velocity-independent collision rate proportional to the γ power of the temperature.
The pressure tensor and the heat flux are obtained to second order in the spatial gradients of the hydrodynamic
fields with explicit expressions for all the Burnett transport coefficients as functions of γ , the coefficient of normal
restitution, and the dimensionality of the system. Some transport coefficients that are related in a simple way
in the elastic limit become decoupled in the inelastic case. As a byproduct, existing results in the literature for
three-dimensional elastic systems are recovered, and a generalization to any dimension of the system is given.
The structure of the present results is used to estimate the Burnett coefficients for inelastic hard spheres.
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I. INTRODUCTION

Kinetic theory provides a fundamental and systematic
way of deriving closed hydrodynamic equations for dilute
molecular gases by means of the Chapman-Enskog (CE)
method [1]. The essential ingredients of the method are a
Boltzmann-like kinetic equation for the distribution function,
an identification of the hydrodynamics fields, and an expansion
in powers of gradients of those hydrodynamic fields [1,2].
The generality of the above scheme allows for the use of the
CE method in the study of different systems, the reliability
of the resulting description being dependent, on the one
hand, on the validity of the kinetic equation used and the
choice of the hydrodynamic variables and, on the other
hand, on the fulfillment of the hypothesis of weak spatial
gradients.

For granular fluids, which can be briefly defined as systems
composed by macroscopic particles with short-ranged inelastic
interactions (collisions), a closed hydrodynamic description
based on the CE method has been derived for different models.
Two of them are relevant here, the inelastic hard-sphere model
(IHSM) and the inelastic Maxwell model (IMM) [3–7]. The
minimal version of the IHSM corresponds to a collection of
smooth hard spheres or disks that undergo inelastic collisions,
with a velocity-independent coefficient of normal restitution
α [8,9]. More sophisticated models, close to the IHSM,
consider particle rotations with coefficients of normal and
tangential restitution [10–16], velocity-dependent coefficients
of restitution [9,17,18], polydispersity [19], presence of an
interstitial fluid [20–23], etc. Some conclusions of the research
carried out along the last few years in the minimal version of the
IHSM, and also in some others, are that the inelastic Boltzmann
equation is able to describe dilute (and moderately dense)
systems (the fundamental hydrodynamic variables being the
same as that of the ordinary elastic case, i.e., density, velocity,
and temperature) and the Navier–Stokes (NS) hydrodynamic
equations provided by the CE method are applicable for a
generality of accessible situations with small spatial gradients.
Therefore, the current attempts to extend the NS hydrodynamic
description for dilute granular gases [24,25] focus on several
fronts: denser regimes [26–28], even taking into account
velocity correlations [29], inclusion of non-Newtonian states

like the uniform shear flow [30–34], the Fourier state [35,36],
and high gradients [37].

The latter limitation (i.e., the weakness of the spatial
gradients) of the usual hydrodynamic description is addressed
in this work. More specifically, we apply the CE method to
the next order to the NS one, namely the Burnett order, where
the irreversible momentum and heat fluxes are obtained to
second order in the hydrodynamic gradients. The importance
of going beyond the NS order in granular gases, due to the
inherent coupling between inelasticity and spatial gradients,
was pointed out by pioneering works a few years ago [37,38].
On the other hand, the derivation of the Burnett equations in
the framework of the Boltzmann equation for the IHSM is an
extremely difficult task that requires the use of approximations
to get high-degree collisional moments. In fact, to the best of
our knowledge, the existing Burnett hydrodynamics descrip-
tion of the IHSM [37] makes use of the elastic forms of the
Burnett transport coefficients [1].

A way of circumventing the above difficulty, while keeping
the structure of the nonlinear Boltzmann equation, consists of
using the IMM, where calculations can be made exactly for any
degree of dissipation. In this model, the collision rate of the
inelastic Boltzmann equation is assumed to be independent
of the relative velocity of the colliding particles, just as in
the case of elastic collisions [39,40]. Furthermore, in order
to capture in an effective way the velocity dependence of the
original IHSM collision rate, one usually assumes that the
IMM collision rate is proportional to T γ with γ = 1

2 , where
T is the local granular temperature. In this paper, we take γ

as a generalized exponent, so that different values of γ can
be used to mimic different interactions. For instance, in the
case of elastic collisions, a repulsive potential of the form
φ(r) ∼ r−s corresponds to γ = 1/2 − (d − 1)/s, where d is
the dimensionality of the system [41], so that γ = 0 defines the
standard Maxwell model [s = 2(d − 1)], while γ = 1

2 mimics
hard spheres (s→∞).

The derivation of the Burnett equations for the IMM can
be essentially done thanks to the exact knowledge of the
collisional moments up to fourth degree for arbitrary values
of the coefficient of restitution and the dimensionality of
the system [42]. The price paid for obtaining exact results
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is to have a less realistic description than with the IHSM.
Nevertheless, it has been shown that the transport properties
obtained from the IMM compare quite well with those of the
IHSM [43–47]. Moreover, experiments for magnetic grains
can be well described by means of the IMM [48]. In addition,
the structure of the Burnett constitutive equations of the IMM
are expected to be the same as that of IHSM. Apart from that,
the results of the present work have their own interest since they
constitute a natural extension of the Burnett hydrodynamic
description of Maxwell molecules [1] to granular gases. As
we will see, some Burnett transport coefficients having simple
relationships in the elastic limit decouple in the inelastic case.

While the knowledge of the Burnett constitutive equations
can be useful for the description of non-Newtonian gran-
ular flows, some caution is required because, as reported
for ordinary gases in Bobylev’s pioneering work [49], the
Burnett hydrodynamic equations are artificially unstable. On
the other hand, several methods of regularization of the
Burnett equations have been proposed to overcome the above
difficulty [38,50–54]. In principle, those methods could be
applied to the inelastic case in order to disentangle Bobylev’s
instability from the clustering instability that can be present in
granular gases [55,56].

This work is organized as follows. In Sec. II, the general
CE method is applied to the inelastic Boltzmann equation.
The IMM is introduced in Sec. III and the existing results
in the literature for the zeroth (Euler) and first (NS) orders
in gradients are generalized to arbitrary γ . In Sec. IV, the
Burnett transport coefficient of the pressure tensor and the
heat flux are calculated. They are explicitly given in terms
of the coefficient of normal restitution, the dimensionality of
the system, and the parameter γ . The most technical details
are relegated to Appendixes B and C. The results are widely
discussed in Sec. V, where the α dependence of the Burnett
transport coefficients is presented and explicit expressions of
the above coefficients in the elastic limit (α = 1) are given and
compared with those in the literature. In addition, based on the
formal structure of the results for the IMM, estimates of the
Burnett coefficients for the IHSM are displayed. Finally, the
paper is closed in Sec. VI with some concluding remarks.

II. FROM KINETIC TO HYDRODYNAMIC DESCRIPTIONS

In this section, the CE method is described for a d-
dimensional system composed by inelastic particles of mass
m and coefficient of normal restitution α (0 � α � 1).

First, the Boltzmann equation for a force-free d-
dimensional granular gas is considered,

(∂t + v · ∇) f (r,v,t) = J [v|f,f ], (2.1)

where f (r,v,t) is the distribution function of a particle at
position r, with velocity v at time t . The explicit form of the
collision operator J [v|f,f ] is so far not needed, except that
it must reflect the collision rules relating the precollisional
velocities {v′

1,v
′
2} to the postcollisional velocities {v1,v2}:

v′
1 = v1 − 1

2 (1 + α−1)(g · σ̂ )σ̂ , (2.2a)

v′
2 = v2 + 1

2 (1 + α−1)(g · σ̂ )σ̂ , (2.2b)

where g = v1 − v2 is the relative velocity and σ̂ is a unit vector
directed along the line of centers of the two colliding particles.

Secondly, as usual, the hydrodynamic fields are chosen to
be the number density,

n(r,t) =
∫

dvf (r,v,t), (2.3)

the flow velocity,

u = 1

n

∫
dv vf (v,r,t), (2.4)

and the granular temperature,

T (r,t) = m

nd

∫
dv V 2f (v,r,t), (2.5)

where V = v − u is the peculiar velocity. By taking moments
in the Boltzmann equation with respect to 1,v, and v2, the
balance equations are obtained:

∂tn + ∇ · (nu) = 0, (2.6)

∂tui + uj∇jui + 1

ρ
∇jPij = 0, (2.7)

∂tT + u · ∇ T + 2

nd
(P : ∇ u + ∇ · q) = −ζT . (2.8)

In Eq. (2.7), ρ = mn is the mass density. The pressure tensor
P, the heat flux q, and the cooling rate ζ are defined in terms
of the distribution function as

P(r,t) = m

∫
dv VVf (r,v,t), (2.9)

q(r,t) = m

2

∫
dv V 2Vf (r,v,t), (2.10)

ζ (r,t) = − m

nT d

∫
dv v2J [v|f,f ]. (2.11)

As the collision operator J conserves the number of particles
and linear momentum, in the expression of the cooling
rate (2.11), v2 can be replaced by V 2.

Finally, the CE method is applied. This method provides a
normal solution to the Boltzmann equation, i.e., a solution
where all space and time dependence occurs through the
hydrodynamic fields,

f (r,v,t) = f [v|n(r,t),u(r,t),T (r,t)], (2.12)

and, as a consequence, a closed hydrodynamic description is
obtained. The functional dependence on the hydrodynamic
fields in Eq. (2.12) is made local in space by an expansion in
spatial gradients as

f (r,v,t) = f (0)(r,v,t) + εf (1)(r,v,t) + ε2f (2)(r,v,t) + · · · ,

(2.13)

where the superscript denotes the order of the gradient and
ε is a nonuniformity parameter. In this way, the perturbative
orders denoted by ε are associated with the gradients, and
hence the hydrodynamic fields are of zeroth order. The mean
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difference of the CE method with respect to other perturbative
schemes is the association of different time scales to different
orders in gradients [2]. Therefore, the time derivative is also
expanded as

∂t = ∂
(0)
t + ε∂

(1)
t + ε2∂

(2)
t + · · · . (2.14)

Once the ingredients of the method have been put together,
the distribution function (and also a closed set of hydrodynamic
equations) are obtained at the desired order in the gradients.
In particular, the pressure tensor, the heat flux, and the cooling
rate can be written as

P = P(0) + εP(1) + ε2P(2) + · · · , (2.15)

q = q(0) + εq(1) + ε2q(2) + · · · , (2.16)

ζ = ζ (0) + εζ (1) + ε2ζ (2) + · · · , (2.17)

where the different powers of ε correspond to retaining the
orders of the expansion (2.13) of the distribution function in
the definitions (2.9)–(2.11). When the zeroth and first-order
terms in Eqs. (2.15)–(2.17) are inserted into the balance equa-
tions (2.6)–(2.8), the Euler and NS hydrodynamic equations
are obtained, respectively. The second-order terms yield the
Burnett hydrodynamic equations. As said in Sec. I, the main
objective of this paper is to derive the Burnett constitutive
equations for the IMM with explicit expressions for all the
involved transport coefficients.

III. INELASTIC MAXWELL MODELS. EULER
AND NAVIER–STOKES ORDERS

The IMM collisional operator is [7]

J [v1|f,f ] = (d + 2)ν0

2n
d

∫
dv2

∫
dσ̂ [α−1f (r,v′

1,t)

× f (r,v′
2,t) − f (r,v1,t)f (r,v2,t)], (3.1)

where 
d = 2πd/2/�(d/2) is the total solid angle in d

dimensions and ν0 is an effective collision frequency that is
taken here to be proportional to the density and the γ power
of the temperature,

ν0 ∝ nT γ . (3.2)

The factor (d + 2)/2 appearing on the right-hand side of
Eq. (3.1) has been introduced to guarantee that the NS shear
viscosity in the elastic limit (α = 1) is simply η0 = p/ν0,
where p = nT is the hydrostatic pressure. The class of
models with general γ mimic other inelastic models with
a collision rate proportional to a power of the relative
velocity [57–59].

The specific IMM form (3.1) allows one to exactly express
any collisional moment of degree k in terms of the moments
of f of degree equal to or smaller than k. In particular, the
cooling rate ζ is [43]

ζ = d + 2

4d
(1 − α2)ν0. (3.3)

As a consequence, ζ does not depend on the hydrodynamic
gradients and hence Eq. (2.17) implies

ζ = ζ (0), (3.4)

ζ (i) = 0, i � 1. (3.5)

In the case of the IHSM, ζ (1) = 0 in the dilute limit [24,26] but
ζ (2) �= 0, although its influence on the energy balance equation
is relatively very small.

A. Euler order

To zeroth order, Eq. (2.1) becomes

∂
(0)
t f (0) = J [v|f (0),f (0)]. (3.6)

As the time dependence of f (0) occurs through the hydrody-
namic fields, the time derivative can be written as

∂
(0)
t f (0) = ∂f (0)

∂n
∂

(0)
t n + ∂f (0)

∂ui

∂
(0)
t ui + ∂f (0)

∂T
∂

(0)
t T . (3.7)

The balance equations (2.6)–(2.8) to zeroth order read
∂

(0)
t n = ∂

(0)
t ui = 0 and

∂
(0)
t T = −ζT , (3.8)

where in Eq. (3.8) we have taken into account Eq. (3.4). Using
Eq. (3.8), Eq. (3.6) becomes

− T ζ∂T f (0) = J [v|f (0),f (0)]. (3.9)

As Eq. (3.9) is also verified by the distribution function of the
homogeneous cooling state (HCS), the distribution function
of zeroth order f (0) is the local version of the latter with the
replacement v→V. Since f (0) is an isotropic function (with
respect to V), then

P
(0)
ij = pδij = nT δij , (3.10)

q(0) = 0. (3.11)

Although the solution to Eq. (3.9) is not known, its velocity
moments can be in principle obtained in a recursive way [5,6].
In particular, the fourth-degree cumulant is [43]

c ≡ d

d + 2

〈V 4〉
〈V 2〉2

− 1 = 6(1 − α)2

4d − 7 + 3α(2 − α)
, (3.12)

where 〈A(V)〉 = n−1
∫

dvA(V)f (0).

B. NS order

Once f (0) is characterized, it is possible to consider the first
order. Now, the equation for f (1) reads

∂
(0)
t f (1) + Lf (1) = −(

∂
(1)
t + v · ∇ )

f (0), (3.13)

where

Lf (1) = −J (1)[f,f ] = −J [f (1),f (0)] − J [f (0),f (1)]

(3.14)

is the linearized (inelastic) Boltzmann collision operator acting
on f (1).

052201-3
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The right-hand side of Eq. (3.13) can easily be evaluated
taking into account that the balance equations to first order
become

∂
(1)
t n + ∇ · (nu) = 0, (3.15)

∂
(1)
t ui + uj∇jui + ρ−1∇i p = 0, (3.16)

∂
(1)
t T + u · ∇ T + 2

d
T ∇ · u = 0. (3.17)

Equation (3.13) is a linear integral equation for f (1) with
an inhomogeneous term given by the right-hand side. It is
straightforward to check that the inhomogeneous term is
orthogonal to (1,v,v2), i.e., the subspace associated with the
null eigenvalue of the linear operator acting on f (1) (solubility
conditions) [60]. The general solution to Eq. (3.13) is of the
form [24,43],

f (1)(r,v,t) = Ai(V)∇i ln n + Bi(V)∇i ln T

+ Cij (V)

(
∇iuj + ∇jui − 2

d
δij∇ · u

)
, (3.18)

where Ai(V), Bi(V), and Cij (V) obey a set of linear integral
equations. The absence of an independent scalar term propor-
tional to ∇ · u in Eq. (3.18) implies that any isotropic moment
of f (1) must vanish. On the other hand, for dense gases the
above property does not apply [26,61].

The NS constitutive equations for the pressure tensor and
the heat flux have the form,

P
(1)
ij = −η

(
∇iuj + ∇jui − 2

d
δij∇ · u

)
, (3.19)

q(1) = −μ∇ n − κ∇ T , (3.20)

where, by dimensional analysis, the shear viscosity η, the
thermal conductivity κ , and the coefficient μ have the
following scaling properties:

η = η0η
∗(α), κ = κ0κ

∗(α), μ = T κ0

n
μ∗(α). (3.21)

Here, η0 = p/ν0 and κ0 = [d(d + 2)/2(d − 1)]η0/m are the
shear viscosity and thermal conductivity coefficients in the
elastic limit.

In the case of the IMM, the transport coefficients can
be obtained without the need of determining the unknown
functions Ai(V), Bi(V), and Cij (V). The method consists
of multiplying Eq. (3.13) by ViVj − d−1V 2δij and V 2V,
integrating over velocity, and applying Eqs. (3.15)–(3.17). The
results are

η∗ = 1

ν∗
0|2 − (1 − γ )ζ ∗ , (3.22)

κ∗ = d − 1

d

1 + 2c

ν∗
2|1 − 2ζ ∗ , (3.23)

μ∗ = κ∗

1 + 2c

ζ ∗ + ν∗
2|1c

ν∗
2|1 − (2 − γ )ζ ∗ . (3.24)

Upon deriving these equations, use has been made of the
exact expressions for the second- and third-degree collisional
moments for IMM [see Eqs. (2.17) and (2.20) of Ref. [42]]. In
Eqs. (3.22)–(3.24),

ν∗
0|2 = (1 + α)(d + 1 − α)

2d
, (3.25)

ν∗
2|1 = (1 + α)[5d + 4 − α(d + 8)]

8d
, (3.26)

and ζ ∗ = ζ/ν0. Equations (3.22)–(3.24) for γ = 1
2 were

first obtained in Ref. [43]. Here, they are generalized to
arbitrary γ .

It is interesting to observe that the structure of Eqs. (3.22)–
(3.24) for the NS transport coefficients (with γ = 1

2 ) coincides
with that of the IHSM, except that the α dependence of the
cumulant c, the cooling rate ζ ∗, and the collision frequencies
ν∗

0|2 and ν∗
2|1 are different [24,62–65]. The IHSM expressions

can be found in Appendix A.

IV. BURNETT ORDER

In this section, the Burnett constitutive equations for the
pressure tensor and heat flux are derived and the corresponding
transport coefficients are evaluated. The procedure is similar
to the one followed at zeroth and first orders and makes use of
the preceding results. As is usually done in the case of elastic
collisions [1,60,66], we will choose p = nT instead of n as a
hydrodynamic variable in the Burnett order.

To second order in ε, the kinetic equation for f reads

∂
(0)
t f (2) + (

∂
(1)
t + v · ∇ )

f (1) + ∂
(2)
t f (0) = J (2)[f,f ], (4.1)

where

J (2)[f,f ] = J [f (2), f (0)] + J [f (0),f (2)] + J [f (1),f (1)].

(4.2)

Equation (4.1) can be rewritten as

∂
(0)
t f (2) + Lf (2) = −(

∂
(1)
t + v · ∇ )

f (1)

− ∂
(2)
t f (0) + J [f (1),f (1)]. (4.3)

As in the case of Eq. (3.13), the inhomogeneous term (right-
hand side) of Eq. (4.3) is orthogonal to (1,v,v2), so that the
solubility conditions are satisfied. To evaluate ∂

(2)
t f (0), the

balance equations to second order are needed,

∂
(2)
t n = 0, (4.4)

∂
(2)
t ui + 1

ρ
∇jP

(1)
ij = 0, (4.5)

∂
(2)
t T + 2

nd

(
P

(1)
ij ∇iuj + ∇ · q(1)) = 0. (4.6)

The aim of this section is to determine the pressure tensor
and heat flux to second order in the spatial gradients. This
is accomplished by taking the corresponding moments in
Eq. (4.1). Each quantity will be considered separately. Since
the algebra involved is rather cumbersome, we give here
the final results, the mathematical details being postponed to
Appendixes B and C.
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A. Pressure tensor

The Burnett constitutive equation for the pressure tensor P
(2)
ij can be written as

P
(2)
ij = a1

κ0

ν0

(
∇i∇j T − 1

d
δij∇2T

)
+ a2

T κ0

pν0

(
∇i∇jp − 1

d
δij∇2p

)
+ a3

κ0

T ν0

[
(∇iT )(∇j T ) − 1

d
δij (∇ T )2

]
+ a4

T κ0

p2ν0

[
(∇ip)(∇jp) − 1

d
δij (∇ p)2

]
+ a5

κ0

pν0

[
(∇iT )(∇jp) + (∇ip)(∇j T ) − 2

d
δij (∇ p) · (∇ T )

]
+ a6

η0

ν0
D

(
Dij − 1

d
δijD

)
+ a7

η0

ν0

[
DikDkj − ωikωkj − 1

d
δij (D�kDk� − ω�kωk�) + ωikDkj − Dikωkj

]
, (4.7)

where

D ≡ ∇ · u, (4.8)

Dij ≡ 1
2 (∇iuj + ∇jui), (4.9)

ωij ≡ 1
2 (∇jui − ∇iuj ). (4.10)

The terms in Eq. (4.7) fall into two classes [66]: those which
are linear in second derivatives of T and p and those which are
quadratic in the first derivatives of T , p, and u. The coefficients
a1 and a2 correspond to the first class, while the coefficients
a3–a7 correspond to the second class.

The reduced Burnett coefficients ai are dimensionless
quantities that are consistently determined in Appendix B.
While the coefficients a1–a5 (involving terms associated with
pressure and temperature gradients) obey a set of coupled
linear equations, the coefficients a6 and a7 are decoupled from
the rest. They are given by

a6 = 2

d

d − 2(2 − γ )

ν∗
0|2 − (1 − 2γ )ζ ∗ η∗, (4.11)

a7 = 2η∗

ν∗
0|2 − (1 − 2γ )ζ ∗ . (4.12)

As shown in Appendix D, the coefficients a6 and a7 agree
with the results obtained in the zero strain rate limit of the
viscometric functions defined in the non-Newtonian uniform
shear and uniform longitudinal flows.

The two linear Burnett coefficients a1 and a2 obey a closed
set of two equations whose solution is

a1 = 4

(d + 2)�

{
[ν∗

0|2 − (3 − 2γ )ζ ∗](κ∗ − μ∗)

+ (1 − γ )ζ ∗
(

d − 1

d
η∗ − μ∗

) }
, (4.13)

a2 = − 4

(d + 2)�

[
d − 1

d
− μ∗

η∗ − ζ ∗(κ∗ − μ∗)

]
, (4.14)

where

� ≡ [ν∗
0|2 − (2 − γ )ζ ∗][ν∗

0|2 − 2(1 − γ )ζ ∗]. (4.15)

The remaining three coefficients are given by⎛⎝a3

a4

a5

⎞⎠ = L−1 · X, (4.16)

where L is the square matrix,

L =

⎛⎜⎝ ν∗
0|2 0 2(1 − γ )ζ ∗

0 ν∗
0|2 − 2(2 − γ )ζ ∗ −2ζ ∗

−ζ ∗ (1 − γ )ζ ∗ ν∗
0|2 − (2 − γ )ζ ∗

⎞⎟⎠ ,

(4.17)

and X is the column matrix,

X = 4

d + 2

⎛⎜⎝ (1 − γ )(κ∗ − μ∗)
d−1
d

η∗ − μ∗(
1 − γ

2

)
μ∗ − d−1

2d
η∗

⎞⎟⎠

−

⎛⎜⎝γ (1 − γ )ζ ∗ −(1 − γ )(2 − γ )ζ ∗

0 −2ζ ∗

− γ ζ ∗ 2(1 − γ )ζ ∗

⎞⎟⎠ (
a1

a2

)
. (4.18)

B. Heat flux

The structure of the Burnett constitutive equation for the heat
flux q(2) is

q
(2)
i = b1

T κ0

ν0
∇2ui + b2

T κ0

ν0
∇iD + b3

κ0

ν0
Dij∇j T

+ b4
η0

ρν0
Dij∇jp + b5

κ0

ν0
ωij∇j T + b6

η0

ρν0
ωij∇jp

+ b7
κ0

ν0
D∇iT + b8

η0

ρν0
D∇ip. (4.19)

Analogously to the case of the pressure tensor, Eq. (4.19)
contains linear Burnett terms (with coefficients b1 and b2) and
nonlinear Burnett terms (with coefficients b3–b8).

The procedure to obtain the coefficients bi is described in
Appendix C. In the case of the linear Burnett coefficients b1

and b2, the results are

b1 = d − 1

d(d + 2)

ψ − (d + 2)η∗

ν∗
2|1 − 2(1 − γ )ζ ∗ , (4.20)

b2 =
(d−1)(d−2)

d2(d+2) [ψ − (d + 2)η∗] − 2
d
κ∗ − μ∗

ν∗
2|1 − 2(1 − γ )ζ ∗ , (4.21)

where

ψ ≡ (d + 4)(1 + c) + dλ∗η∗

ν∗
2|2 − (2 − γ )ζ ∗ , (4.22)
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with

ν∗
2|2 = (1 + α)

8d(d + 4)
[7d2 + 31d + 18 − α(d2 + 14d + 34)

+ 3α2(d + 2) − 6α3], (4.23)

λ∗ = (1 + α)2

8d2
[d2 + 5d − 2 − 3α(d + 4) + 6α2]. (4.24)

The remaining coefficients obey pairs of linear equations
whose solutions are(

b3

b4

)
= M−1 ·

(
A1

A2

)
, (4.25)

(
b5

b6

)
= M−1 ·

(
B1

B2

)
, (4.26)

(
b7

b8

)
= M−1 ·

(
C1

C2

)
, (4.27)

where

M =
(

ν∗
2|1 − (1 − γ )ζ ∗ − 2(d−1)

d(d+2) (γ − 1)ζ ∗

− d(d+2)
2(d−1) ζ

∗ ν∗
2|1 − (3 − 2γ )ζ ∗

)
, (4.28)

A1 = 2(d − 1)

d

[
2 − γ

d + 2
ψ − (1 − γ )η∗

]
+ 4(κ∗ − μ∗)

d + 2
,

(4.29)

A2 = −2

(
η∗ − d

d − 1
μ∗

)
, (4.30)

B1 = 2(κ∗ − μ∗), B2 = d + 2

d − 1
μ∗, (4.31)

C1 = −2(d − 1)

d2

[
2 − γ

d + 2
ψ − (1 − γ )η∗

]
+ d2 + 2γ (d + 2) − 8

d(d + 2)
(κ∗ − μ∗), (4.32)

C2 = 2

d
η∗ + d2 + 2γ (d + 2) − 8

2(d − 1)
μ∗. (4.33)

V. DISCUSSION

A. Structure of the Burnett coefficients

The main results of the paper, derived for the IMM, are
summarized by Eqs. (4.7) and (4.19), complemented by the
explicit expressions for the (reduced) Burnett transport coef-
ficients {ai} and {bi}. They are exactly given by Eqs. (4.11)–
(4.16), (4.20), (4.21), and (4.25)–(4.27) for arbitrary values
of the dimensionality d, the model parameter γ , and the
coefficient of normal restitution α.

In principle, the coefficients of DikDkj − 1
d
δijD�kDk�,

1
d
δijω�kωk� − ωikωkj , and ωikDkj − Dikωkj in Eq. (4.7) do

not need to be the same. However, our results show that the
three coefficients degenerate into a single one (a7) in the IMM.

The seven coefficients {ai} associated with the pressure
tensor depend on α only through a dependence on the reduced

TABLE I. Relationship between the coefficients �i and ai and
between the coefficients θi and bi .

P
(2)
ij coefficients q

(2)
i coefficients

�1 = a6 + 6
d
a7 θ1 = d(d+2)

2(d−1)

(
d−2
d

b1 − b2 + b3+b5
d

+ b7

)
�2 = − d(d+2)

2(d−1) a2 θ2 = d2(d+2)
4(d−1)

(
d−2
d

b1 − b2

)
� ′

2 = d(d+2)
2(d−1) a4 θ ′

2 = d(d+2)
4(d−1) b5

� ′′
2 = a7 θ3 = b4 + b6

�3 = d(d+2)
2(d−1) a1 θ4 = d(d+2)

d−1 b1

�4 = d(d+2)
2(d−1) (2a5 + a4) θ5 = d(d+2)

6(d−1) (b3 + b5)

�5 = d(d+2)
2(d−1) a3 θ6 = 1

d
(b4 + b6) + b8

�6 = 4a7 θ7 = −b6

cooling rate ζ ∗ and the three dimensionless NS coefficients η∗,
κ∗, and μ∗. Note that the dependence on ν∗

0|2 can be eliminated
in favor of η∗ and ζ ∗ via Eq. (3.22). Therefore, there must
exist only three α-independent equations relating the seven
coefficients {ai}. One of those relations is, simply,

a6

a7
= 1 − 2(2 − γ )

d
. (5.1)

In the case of the eight coefficients {bi} associated with the
heat flux, they depend on α through the same coefficients as
before (ζ ∗, η∗, κ∗, and μ∗) plus the coefficient ψ . Note that
the dependence on ν∗

2|1 can be eliminated in favor of κ∗, μ∗,
and ζ ∗ via Eqs. (3.23) and (3.24). Therefore, there must exist
again only three independent relations among the coefficients
{bi}. Finally, the 15 coefficients {ai} and {bi} depend on the
five coefficients ζ ∗, η∗, κ∗, μ∗, and ψ , so that the total number
of constraints is 10. Since six of them involve either only
the {ai} or the {bi}, there are four conditions relating all the
coefficients.

The Burnett constitutive equations (4.7) and (4.19) can be
written in other equivalent forms [1,60,66]. In particular, in the
form found in Chapman and Cowling’s standard textbook [1],
the pressure tensor is

P
(2)
ij = �1

η2
0

p
DD̃ij − η2

0

2p
�ijk�

{
�2ρ

−1∇k∇�p

+� ′
2(∇kρ

−1)(∇�p) + � ′′
2 [(∇kum)(∇mu�)

+ 2(∇kum)D̃m�] − �3
p

ρT
∇k∇�T

−�4
1

ρT
(∇kp)(∇�T ) − �5

p

ρT 2
(∇kT )(∇�T )

−�6D̃kmD̃m�

}
, (5.2)

where

D̃ij ≡ Dij − D

d
δij , �ijk� ≡ δikδj� + δi�δjk − 2

d
δij δk�.

(5.3)

The first column of Table I shows the relations between the
coefficients �i of Eq. (5.2) and the coefficients ai of Eq. (4.7).
Note that in Ref. [1], which is restricted to elastic gases, �2 =
� ′

2 = � ′′
2 . This degeneracy is broken in the inelastic case.
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TABLE II. Burnett coefficients in the elastic limit (α = 1).

Eqs. (4.7) and (4.19) Eqs. (5.2) and (5.5)

a1 = 4
d+2 �1 = 2(d+2+2γ )

d

a2 = − 4(d−1)
d(d+2) �2 = 2

a3 = 4(1−γ )
d+2 � ′

2 = � ′′
2 = 2

a4 = 4(d−1)
d(d+2) �3 = 2d

d−1

a5 = − 2(d−1)
d(d+2) �4 = 0

a6 = 2(d−4+2γ )
d

�5 = 2d(1−γ )
d−1

a7 = 2 �6 = 8

b1 = 2
d+2 θ1 = d(d+2)(d+2+2γ )

2(d−1)2

b2 = − 2(5d−2)
d(d−1)(d+2) θ2 = d2(d+2)

2(d−1)2

b3 = 2[d2+7d−6−2(d−1)γ ]
(d−1)(d+2) θ ′

2 = d2(d+2)
2(d−1)2

b4 = − 2d

d−1 θ3 = − 2d

d−1

b5 = 2d

d−1 θ4 = 2d

d−1

b6 = 0 θ5 = d[2d2+9d−6−2(d−1)γ ]
3(d−1)2

b7 = d3−2d2−18d+12+2(d2+4d−2)γ
d(d−1)(d+2) θ6 = 0

b8 = 2
d−1 θ7 = 0

It is also interesting to note that, according to Eq. (5.1), the
following relations hold for any α:

�6 = 4� ′′
2 = 4d

d + 2 + 2γ
�1. (5.4)

In the case of the heat flux, one can rewrite Eq. (4.19) as [1]

q
(2)
i = η2

0

ρT

[
θ1D∇iT − 2

d
θ2∇i(DT ) − 2θ ′

2(∇iuj )(∇j T )

+ θ3
T

p
D̃ij∇jp + θ4T ∇j D̃ij + 3θ5D̃ij∇j T

+ θ6
T

p
D∇ip + θ7

T

p
(∇iuj )(∇jp)

]
, (5.5)

where the relations between the coefficients θi defined in
Eq. (5.5) and bi defined in Eq. (4.19) are given in the second
column of Table I.

B. Elastic limit

Before analyzing the α dependence of the Burnett coeffi-
cients, it is worthwhile considering the elastic limit (α = 1).
In that case, one has c = ζ ∗ = μ∗ = 0, η∗ = κ∗ = ν∗

0|2 = 1,
ν∗

2|1 = (d − 1)/d, and ψ = d + 4. Inserting those values into
the expressions of the coefficients ai and bi , one obtains the
values displayed in the first column of Table II. The values of
the alternative coefficients �i and θi are then obtained from the
expressions in Table I, the results being shown in the second
column of Table II.

Obviously, some of the Burnett coefficients depend explic-
itly on the parameter γ . In the elastic case, it is legitimate to
relate that parameter with the power of a repulsive interaction
potential φ(r) ∼ r−s as s = 2(d − 1)/(1 − 2γ ). In that case,
it is well known that η0 ∝ T 1−γ . The generalization to any
(short-range) interaction potential can be simply achieved by
the replacement γ→1 − ∂ ln η0/∂ ln T in Table II. Particular-
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a i

α

(a)

a3

a1a4

a2

a5

a6

a7

-2

-1

0

1

2

3

 0.7  0.8  0.9 1

a i

α

(b)

a3

a1

a4

a2
a5

a6

a7

FIG. 1. (Color online) IMM Burnett transport coefficients
a1, . . . ,a7 as functions of the coefficient of normal restitution in the
case γ = 1

2 for (a) d = 2 and (b) d = 3.

izing to three-dimensional systems (d = 3), one then recovers
the expressions for the coefficients �i and θi given in Ref. [1]
for an arbitrary potential in the first (Sonine) approximation.
This is a stringent consistency test of the results derived in
this paper. Moreover, Table II, with the replacement γ→1 −
∂ ln η0/∂ ln T , provides a generalization to any dimensionality
of the Burnett coefficients given by Ref. [1] in the first
approximation. To the best of our knowledge, this general-
ization had not been derived before. In particular, the results
of Table II show that the exact universal relations [1,39,67]
�3 = θ4, �3 + �4 + θ3 = 0, (d/2)�1/�2 = (d/2)θ1/θ2 =
(d + 4)/2 − ∂ ln η0/∂ ln T hold for any dimensionality.

It is instructive to note that the simple relations (holding in
the elastic case) �2 = � ′

2 = � ′′
2 , �4 = 0, θ2 = θ ′

2, and θ6 =
θ7 = 0 disappear if α < 1. Except for �2 = � ′

2, this is due to
the presence of the NS transport coefficient μ in the coefficients
cP,i and cq,i appearing in Eqs. (B13) and (C12). On the other
hand, while cP,2 = −pcP,4, the relation a2 = −a4, and hence
�2 = � ′

2, is broken down in the inelastic case due to the fact
that ∂

(0)
t T �= 0.

C. Inelastic case

The Burnett transport coefficients ai associated with the
pressure tensor are plotted in Fig. 1 as functions of α for
two- and three-dimensional systems. In both cases, we have
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FIG. 2. (Color online) IMM Burnett transport coefficients
b1, . . . ,b8 as functions of the coefficient of normal restitution in the
case γ = 1

2 for (a) d = 2 and (b) d = 3.

chosen γ = 1
2 , which, as said before, mimics the hard-sphere

model. Similarly, Fig. 2 shows the α dependence of the Burnett
transport coefficients bi associated with the heat flux.

Within the range 0.7 � α � 1, we observe that, whereas
some coefficients (a3, a6, b1, b3, and b7) exhibit a weak
dependence on dissipation, other coefficients (a2, a4, b2, b4,
and b6) are quite sensitive to α. The remaining coefficients
(a1, a5, a7, b5, and b8) present an intermediate behavior. It
is especially interesting to note that the coefficient b6, which
vanishes in the elastic limit, grows very rapidly with increasing
dissipation. In general, the impact of dissipation on the Burnett
coefficients is more significant for d = 2 than for d = 3.

It is known that the heat flux NS coefficients κ∗ and
μ∗ for the two- and three- dimensional IMM diverge, thus
implying a breakdown of hydrodynamics, for very low values
of α [7,43,68]. As seen from Eq. (3.23), the threshold for the
divergence occurs when ν∗

2|1 = 2ζ ∗, i.e., at α = (4 − d)/3d,
what corresponds to α = 1

3 and 1
9 for d = 2 and 3, respectively.

While the Burnett coefficients a6 and a7 are always convergent,
the remaining coefficients may diverge. This is discussed
in Appendix E. The regions in the (α,γ ) plane where the
coefficients diverge are presented in Fig. 3.

In any case, from a practical point of view, all the NS and
Burnett coefficients are well defined in the region of physical
interest α � 0.5.

FIG. 3. (Color online) (a) Regions in the (α,γ ) plane where the
IMM Burnett coefficients for a two-dimensional system diverge. The
coefficient b1 diverges in region AI, while the coefficients a1–a5 and
b2–b8 diverge in regions AI and AII. (b) Regions in the (α,γ ) plane
where the Burnett coefficients for a three-dimensional system diverge.
The coefficient b1 diverges in region AI, while the coefficients b2–b8

diverge in regions AI and AII, the coefficients a1 and a2 diverge in
regions AI, AII, and BI, and the coefficients a3–a5 diverge in regions
AI, AII, BI, and BII.

D. Estimates of IHSM coefficients

Although this paper is focused on the IMM, it is tempting
to use the results derived here to estimate the Burnett transport
coefficients for the more realistic case of the IHSM. It
is reasonable to expect that the mathematical structures of
the constitutive equations (4.7) and (4.19) are essentially
preserved in the IHSM case.

As said before, the structure of the NS coefficients,
Eqs. (3.22)–(3.24), is exactly the same for both inelastic
models, the differences lying in the α dependence of the
cumulant c, cooling rate ζ ∗, and collision frequencies ν∗

0|2 and
ν∗

2|1. Although the latter quantities are not exactly known for
the IHSM, good estimates have been obtained from improved
Sonine approximations [24,63–65]. Their expressions are
given in Appendix A.

We recall that, according to Eqs. (4.11)–(4.18), the IMM
Burnett coefficients a1–a7 associated with the pressure tensor
depend on α only through the four quantities c, ζ ∗, ν∗

0|2, and
ν∗

2|1. This suggests that educated guesses for the corresponding
IHSM Burnett coefficients can be obtained by inserting the
corresponding IHSM values for c, ζ ∗, ν∗

0|2, and ν∗
2|1 into

Eqs. (4.11)–(4.18) with γ = 1
2 . The results are displayed in

Fig. 4. Comparison with Fig. 1 shows qualitatively similar
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FIG. 4. (Color online) Estimates of the IHSM Burnett transport
coefficients a1, . . . ,a7 as functions of the coefficient of normal
restitution for (a) d = 2 and (b) d = 3.

behaviors, except that the influence of inelasticity is milder in
the IHSM than in the IMM. This is essentially related to the
different types of high-velocity tails of the HCS distribution.
While the tail is algebraic in the case of the IMM [69,70], it
has a stretched exponential form in the case of the IHSM [63].
As a matter of fact, we have checked that the only diverging
coefficients (at α = 0.046 and α = 0.015 for d = 2 and d = 3,
respectively) are a3–a5. This divergence takes place when
ν∗

0|2 = 2ζ ∗, but it cannot be discarded that the divergence
would disappear if more accurate expressions for ν∗

0|2 and ζ ∗
were used in the region of extreme inelasticity.

In the case of the Burnett coefficients b1–b8 associated with
the heat flux, Eqs. (4.20)–(4.33), b5 and b6 depend on α only
through c, ζ ∗, ν∗

0|2, and ν∗
2|1, but the remaining ones include an

extra dependence through the quantity ψ , which is unknown
in the IHSM. On the other hand, the combinations,

b2 ≡ b2 − d − 2

d
b1 = −

2
d
κ∗ + μ∗

ν∗
2|1 − 2(1 − γ )ζ ∗ , (5.6)

b4 ≡ b4 − d(d + 2)

2(d − 1)

ζ ∗

ν∗
2|1 − (3 − 2γ )ζ ∗ b3

= A2

ν∗
2|1 − (3 − 2γ )ζ ∗ , (5.7)
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FIG. 5. (Color online) Estimates of the IHSM Burnett transport
coefficients b2, b4, b5, b6, and b8 as functions of the coefficient of
normal restitution for (a) d = 2 and (b) d = 3.

b8 ≡ b8 − d(d + 2)

2(d − 1)

ζ ∗

ν∗
2|1 − (3 − 2γ )ζ ∗ b7

= C2

ν∗
2|1 − (3 − 2γ )ζ ∗ , (5.8)

do not include ψ and thus can be estimated for the IHSM
(with γ = 1

2 ). The results for b2, b4, b5, b6, and b8 are plotted
in Fig. 5. A comparison with a similar plot for the IMM (not
shown) again exhibits qualitative similarities with a weaker
dependence on inelasticity in the case of the IHSM.

VI. CONCLUSIONS

The main objective of this paper was to derive the
constitutive equations for the pressure tensor and the heat flux
of a granular gas by means of the CE method up to second
(Burnett) order in the hydrodynamic gradients, with explicit
expressions for the corresponding transport coefficients. Given
the formidable difficulties of the task, and in order to obtain
results free from uncontrolled approximations, we used the
IMM, which allowed us to achieve exact results. The final
expressions apply to any value of the coefficient of normal
restitution α, any dimensionality d, and any value of the
“interaction” parameter γ . As a bonus, in the elastic limit
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(α = 1), our results provide the explicit forms of the Burnett
transport coefficients of a classical gas for any number of
dimensions (see Table II), which, to the best of our knowledge,
had not been derived before.

It is interesting to remark that the structure of the inelastic
Burnett constitutive equations is more general than that of the
elastic counterpart. While the terms involving second-order
gradients are the same in both situations, some Burnett coeffi-
cients that are degenerate in the elastic case [�2 = � ′

2 = � ′′
2

in Eq. (5.2) and θ2 = θ ′
2 in Eq. (5.5)] become different when

α �= 1. In general, the dependence of the Burnett coefficients
on inelasticity is far from being trivial (see Figs. 1 and 2): While
some coefficients tend to increase or decrease with increasing
inelasticity, other ones are hardly sensitive to α.

We also exploited the formal structure of the results for the
IMM to obtain reasonable estimates of the Burnett coefficients
for the IHSM. We plan to derive expressions for those
coefficients by starting from the genuine Boltzmann equation
for the IHSM and using similar Sonine approximations, as
made before in the case of the NS coefficients. It will be
instructive to use those expressions to assess the degree of
reliability of the ones estimated here. Previous studies [37]
considered a double expansion in the spatial gradients and in
the degree of inelasticity up to second order, so that the Burnett
transport coefficients coincided with their elastic forms.

Finally, it is worthwhile noting the potential usefulness
of the Burnett-order hydrodynamic equations, as compared
to the NS equations, to describe physical problems where
gradients are not small. In fact, this is the typical situation
in granular fluids due to the coupling between inelasticity and
gradients [8]. On the other hand, some care must be taken since
the Burnett equations, as noted in Sec. I, need some kind of
regularization to avoid artificial instabilities [38,49–54].
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APPENDIX A: IHSM EXPRESSIONS
FOR c, ζ ∗, ν∗

2|0, AND ν∗
2|1

In the case of the IHSM, accurate estimates are [64,65]

c = 16(1 − α)(1 − 2α2)

25 + 24d − α(57 − 8d) − 2(1 − α)α2
, (A1)

ζ ∗ = d + 2

4d
(1 − α2)

(
1 + 3c

16

)
, (A2)

ν∗
0|2 = (1 + α)

[
d + 3

2 (1 − α)
]

2d

(
1 + 7c

16

)
, (A3)

ν∗
2|1 = 1 + α

8d

[
11

2
d + 8 − 3

2
α(d + 8)

+ 296 + 217d − 3(160 + 11d)α

32
c

]
. (A4)

These expressions are employed in Sec. V D to estimate the
Burnett coefficients in the IHSM.

APPENDIX B: EVALUATION OF P (2)
i j

Multiplying both sides of Eq. (4.1) by mViVj and integrat-
ing over v one gets(

∂
(0)
t + ν0|2

)
P

(2)
ij = −m

∫
dv ViVj

(
∂

(1)
t + v · ∇ )

f (1)

+ δij

2

d

(∇ · q(1) + P
(1)
k� ∇�uk

)
, (B1)

where use has been made of the relation (4.6) and the
collisional moment [42],

m

∫
dv ViVjJ

(2)[f,f ] = −ν0|2P
(2)
ij , (B2)

where νr|s = ν∗
r|sν0 and ν∗

0|2 is given by Eq. (3.25). The first
term on the right-hand side of Eq. (B1) can be easily evaluated
with the result,

m

∫
dv ViVj

(
∂

(1)
t + v · ∇ )

f (1)

= D
(1)
t P

(1)
ij + ∇kQ

(1)
ijk + P

(1)
ij ∇ · u + P

(1)
kj ∇kui + P

(1)
ki ∇kuj ,

(B3)

where D
(1)
t = ∂

(1)
t + u · ∇ is the material derivative and the

tensor Q
(1)
ijk is defined as

Q
(1)
ijk = m

∫
dv ViVjVkf

(1). (B4)

We now evaluate separately ∇kQ
(1)
ijk and D

(1)
t P

(1)
ij .

The NS quantity Q
(1)
ijk can be evaluated in a way similar to

the evaluation of q(1). First, we multiply Eq. (3.13) by ViVjVk

and integrate over velocity. The result is

∂
(0)
t Q

(1)
ijk + ∇�M

(0)
ijk� − p

ρ
(δij∇kp + δjk∇ip + δik∇jp)

= m

∫
dv ViVjVkJ

(1)[f,f ], (B5)

where

M
(0)
ijk� = m

∫
dv ViVjVkV�f

(0)

= pT

m
(1 + c)(δij δk� + δikδj� + δi�δjk). (B6)

The right-hand side of Eq. (B5) can be explicitly evaluated
as [42]

m

∫
dv ViVjVkJ

(1)[f,f ]

= −3

2
ν0|2Q

(1)
ijk + 2

d + 2

(
3

2
ν0|2 − ν2|1

)
× (

δij q
(1)
k + δjkq

(1)
i + δikq

(1)
j

)
, (B7)
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where ν∗
2|1 is given by Eq. (3.26). Substitution of Eq. (B7)

into (B5) yields

(
∂

(0)
t + 3

2
ν0|2

)
Q

(1)
ijk

= −∇�M
(0)
ijk� + p

ρ
(δij∇kp + δjk∇ip + δik∇jp)

+ 2

d + 2

(
3

2
ν0|2 − ν2|1

)(
δij q

(1)
k + δjkq

(1)
i + δikq

(1)
j

)
.

(B8)

The solution to Eq. (B8) has the form

Q
(1)
ijk = −aQ(δij∇k ln p + δjk∇i ln p + δik∇j ln p)

− bQ(δij∇k ln T + δjk∇i ln T + δik∇j ln T ), (B9)

where the coefficients aQ and bQ are determined by consis-
tency. They can be easily obtained by taking into account the
identity q

(1)
k = 1

2Q
(1)
iik with the result

aQ = 2

d + 2
nμ, bQ = 2

d + 2
(T κ − nμ). (B10)

Thus, the gradient of Q
(1)
ijk is

∇kQ
(1)
ijk = − 2

d + 2

nμ

p
(δij∇2p + 2∇i∇jp) − 2

d + 2

(
κ − nμ

T

)
(δij∇2T + 2∇i∇j T )

− 2

d + 2

nμ

pT

{
(2 − γ )δij (∇ p) · (∇ T ) + (2 − γ )[(∇ip)(∇j T ) + (∇jp)(∇iT )] − T

p
δij (∇ p)2 − 2

T

p
(∇ip)(∇jp)

}
− 2

d + 2
T −1

(
κ − nμ

T

)
(1 − γ )[δij (∇ T )2 + 2(∇iT )(∇j T )]. (B11)

Now we turn to the evaluation of D
(1)
t P

(1)
ij . Using Eq. (3.19) for the pressure tensor at NS order and the balance equations (3.15)–

(3.17), one finds

D
(1)
t P

(1)
ij = 2

d
(1 − γ )η(∇ · u)

(
∇iuj + ∇jui − 2

d
δij∇ · u

)
+ η

{
∇i

(
1

ρ
∇jp

)
+ ∇j

(
1

ρ
∇ip

)
+ (∇iuk)(∇kuj )

+ (∇juk)(∇kui) − 2

d
δij

[
∇ ·

(
1

ρ
∇ p

)
+ (∇�uk)(∇ku�)

]}
. (B12)

Substitution of Eqs. (B11) and (B12) into Eq. (B1) yields(
∂

(0)
t + ν0|2

)
P

(2)
ij = cP,1

(
∇i∇j T − 1

d
δij∇2T

)
+ cP,2

(
∇i∇jp − 1

d
δij∇2p

)
+ cP,3

[
(∇iT )(∇j T ) − 1

d
δij (∇ T )2

]
+ cP,4

[
(∇ip)(∇jp) − 1

d
δij (∇ p)2

]
+ cP,5

[
(∇iT )(∇jp) + (∇ip)(∇j T ) − 2

d
δij (∇ p) · (∇ T )

]
+ cP,6D

(
Dij − 1

d
δijD

)
+ cP,7

[
DikDkj − ωikωkj − 1

d
δij (D�kDk� − ω�kωk�) − Dikωkj − Djkωki

]
,

(B13)

where the coefficients cP,i are

cP,1 = 4

d + 2

(
κ − nμ

T

)
, (B14)

cP,2 = −pcP,4 = 4

d + 2

nμ

p
− 2η

ρ
, (B15)

cP,3 = − 4

d + 2
(γ − 1)T −1

(
κ − nμ

T

)
, (B16)

cP,5 = 2

d + 2
(2 − γ )

nμ

Tp
− ηρ−1T −1, (B17)

cP,6 = − 2

d
η(4 − d − 2γ ), (B18)

cP,7 = 2η. (B19)

The structure of Eq. (B13) shows that the constitu-
tive equation for P

(2)
ij has the form (4.7), where the di-

mensionless coefficients ai can be determined by inserting
Eq. (4.7) into Eq. (B13) and equating coefficients of the
same type of gradients. After tedious algebra one finally gets
Eqs. (4.11)–(4.16).

It is interesting to remark that, while cP,2 = −pcP,4, one
has a2 �= −a4 (except in the elastic limit). This is due to the
different action of the operator ∂

(0)
t on p−1(∇ip)(∇jp) and

∇i∇jp.

APPENDIX C: EVALUATION OF q(2)

The evaluation of q(2) proceeds along similar lines as in the
case of P

(2)
ij . First, by multiplying both sides of Eq. (4.1) by

052201-11
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m
2 V 2Vi and integrating over velocity, one obtains

(
∂

(0)
t + ν2|1

)
q

(2)
i = −m

2

∫
dv V 2Vi

(
∂

(1)
t + v · ∇ )

f (1)

+ d + 2

2

p

ρ
∇jP

(1)
ij , (C1)

where use has been made of the relation (4.5) and [42]

m

2

∫
dv V 2ViJ

(2)[f,f ] = −ν2|1q
(2)
i . (C2)

The first term on the right-hand side of Eq. (C1) becomes

m

2

∫
dvV 2Vi

(
∂

(1)
t + v · ∇ )

f (1)

= D
(1)
t q

(1)
i + ∇jR

(1)
ij + Q

(1)
ijk∇kuj

+ q
(1)
i ∇ · u + q

(1)
j ∇jui − ρ−1P

(1)
ij ∇jp, (C3)

where

R
(1)
ij = m

2

∫
dv V 2ViVjf

(1). (C4)

In order to evaluate R
(1)
ij , let us multiply both sides of

Eq. (3.13) by m
2 V 2ViVj and integrate over velocity to obtain

∂
(0)
t R

(1)
ij = −pT

m
(d + 4)(1 + c)

(
Dij − D

d
δij

)
+ m

2

∫
dv V 2ViVjJ

(1)[f,f ]. (C5)

The collision integral is [42]

m

2

∫
dv V 2ViVjJ

(1)[f,f ]

= −ν2|2R
(1)
ij +dp

2ρ
λP

(1)
ij + m

2
δij (ν2|2 − ν4|0)M (1)

4|0, (C6)

where ν∗
2|2 = ν2|2/ν0 and λ∗ = λ/ν0 are given by Eqs. (4.23)

and (4.24), respectively, ν4|0 can be found in Ref. [42] but will
not be needed here, and

M
(1)
4|0 =

∫
dv V 4f (1)(v). (C7)

However, as said in Sec. III B, M
(1)
4|0 = 0 [see Eq. (3.18)].

Consequently, Eq. (C5) becomes

(
∂

(0)
t + ν2|2

)
R

(1)
ij = −pT

m

[
(d + 4)(1 + c) + d

p
λη

]
×

(
Dij − D

d
δij

)
. (C8)

Its solution is

R
(1)
ij = −T η0

m
ψ

(
Dij − D

d
δij

)
, (C9)

ψ being given by Eq. (4.22). The divergence of the tensor
R

(1)
ij is

∇jR
(1)
ij = −η0

m
(2 − γ )ψ

(
Dij − 1

d
δijD

)
∇j T

− T η0

2m
ψ

(
∇2ui + d − 2

d
∇iD

)
. (C10)

From Eq. (3.20) and the balance equations (3.15)–(3.17), one
gets

D
(1)
t q

(1)
i = 2

d
(2 − γ )

[
nμ

p
D∇ip +

(
κ − nμ

T

)
D∇iT

]
+

(
2

d
κ + nμ

T

)
T ∇iD + nμ

p
(∇iuj )(∇jp)

+
(
κ − nμ

T

)
(∇iuj )(∇j T ). (C11)

Using Eqs. (C10) and (C11), Eq. (C1) reduces to(
∂

(0)
t + ν2|1

)
q

(2)
i = cq,1∇2ui + cq,2∇iD + cq,3Dij∇j T

+ cq,4Dij∇jp + cq,5ωij∇j T

+ cq,6ωij∇jp + cq,7D∇iT + cq,8D∇ip,

(C12)

where the coefficients cq,i are

cq,1 = T η0

2m
[ψ − (d + 2)η∗], (C13)

cq,2 = d − 2

d

T η0

2m
[ψ − (d + 2)η∗] − 2

d
T κ − nμ, (C14)

cq,3 = (d + 2)
η0

m

[
2 − γ

d + 2
ψ − (1 − γ )η∗

]
+ 4

d + 2

(
κ − nμ

T

)
, (C15)

cq,4 = 4

d + 2

nμ

p
− 2η

ρ
, (C16)

cq,5 = 2

(
κ − nμ

T

)
, cq,6 = 2

nμ

p
, (C17)

cq,7 = −(d + 2)
η0

dm

[
2 − γ

d + 2
ψ − (1 − γ )η∗

]
+ d2 − 8 + 2γ (d + 2)

d(d + 2)

(
κ − nμ

T

)
, (C18)

cq,8 = 2η

dρ
+ nμ

p

d2 − 8 + 2γ (d + 2)

d(d + 2)
. (C19)

Equation (C12) shows that the constitutive equation for
q

(2)
i has the structure (4.19). The dimensionless coefficients bi

are obtained by inserting Eq. (4.19) into Eq. (C12). The final
results are displayed by Eqs. (4.20), (4.21), and (4.25)–(4.27).
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APPENDIX D: NON-NEWTONIAN UNIFORM SHEAR AND
UNIFORM LONGITUDINAL FLOWS

1. Unsteady uniform shear flow

The uniform shear flow (USF) is an incompressible flow
characterized by uniform density and temperature (∇ n =
∇ T = 0) and a uniform shear rate, i.e., ∇iuj = a∗ν0δiyδjx

with ∇ a∗ = 0.
Proceeding in a way analogous to the case of the Boltzmann

equation for the IHSM in the Grad approximation [31] or with
a simple kinetic model [71–74], it is possible to eliminate time
in favor of the reduced shear rate a∗ to obtain a coupled set of
two equations for the rheological dependence of P ∗

xy and P ∗
yy

on a∗, where P ∗
ij = Pij /p. In the case of our generalized IMM

model, those two equations are exact and read [46]

γ

(
2a∗

d
P ∗

xy + ζ ∗
)

∂P ∗
xy

∂a∗ = −P ∗
yy + 2

d
P ∗2

xy − ν∗
0|2 − ζ ∗

a∗ P ∗
xy,

(D1)

γ

(
2a∗

d
P ∗

xy + ζ ∗
)

∂P ∗
yy

∂a∗ = 2

d
P ∗

yyP
∗
xy − ν∗

0|2 − ζ ∗

a∗
(
P ∗

yy − 1
)
.

(D2)

The numerical solution of this set of equations provides
P ∗

xy(a∗) and P ∗
yy(a∗) for any a∗ [47]. Here, however, we are

interested in the analytical results to second order in a∗. In that
case,

P ∗
xy(a∗) = −η∗a∗ + O(a∗3), (D3)

P ∗
yy(a∗) = 1 + �

d
a∗2 + O(a∗4), (D4)

where η∗ is the (reduced) NS shear viscosity and � is
a viscometric function. Inserting Eqs. (D3) and (D4) into
Eqs. (D1) and (D2), and equating terms of the same order in a∗
one recovers Eq. (3.22) and obtains � = a7, where a7 is given
by Eq. (4.12). It is straightforward to check that Eq. (4.7), when
particularized to the USF conditions, indeed yields Eq. (D4)
with � = a7.

2. Unsteady uniform longitudinal flow

The uniform longitudinal flow (ULF) shares with the
USF the conditions ∇ n = ∇ T = 0, but it is a compressible
flow because now ∇iuj = a∗ν0δixδjx , ∇ a∗ = 0 [72–75].
Eliminating again time in favor of the reduced strain (or
longitudinal rate) a∗ it is possible to find a closed equation
for P ∗

xx(a∗):

γ

(
2a∗

d
P ∗

xx + ζ ∗
)

∂P ∗
xx

∂a∗

= −2P ∗
xx

(
1 − P ∗

xx

d

)
− ν∗

0|2 − ζ ∗

a∗ (P ∗
xx − 1). (D5)

To second order in a∗ one can write

P ∗
xx = 1 − 2

d − 1

d
η∗a∗ + d − 1

d
�a∗2 + O(a∗3), (D6)

where η∗ is again the (reduced) NS shear viscosity but �

is a viscometric function different from �. Substitution of
Eq. (D6) into Eq. (D5) allows one to recover Eq. (3.22) and
obtain � = a6 + a7, where a6 and a7 are given by Eqs. (4.11)
and (4.12), respectively. As before, it can be checked that
Eq. (D6) is indeed equivalent to Eq. (4.7) particularized to the
ULF conditions.

APPENDIX E: DIVERGENCE OF THE BURNETT
COEFFICIENTS

In this appendix we analyze the regions in the (α,γ ) plane
where the Burnett coefficients for the IMM diverge.

It can be checked that ν∗
0|2 − ζ ∗ > 0 for all α, so that η∗, a6,

and a7 are finite [cf. Eqs. (3.22), (4.11), and (4.12)]. Next, from
Eqs. (4.13) and (4.14) one finds that the divergence threshold
α

(a1,a2)
th for a1 and a2 takes place either at α = (4 − d)/3d or

when � = 0, i.e., ν∗
0|2 − (2 − γ )ζ ∗ = 0, whatever comes first.

Therefore,

α
(a1,a2)
th =

{
4−d
3d

, d−2
2(d−1) � γ � 1

2 ,

1−(d+2)γ /2
d+1−(d+2)γ /2 , 0 � γ � d−2

2(d−1) .
(E1)

Regarding the coupled coefficients a3, a4, and a5, the determi-
nant of the matrix L is (ν∗

0|2 − 2ζ ∗)�, so that the divergence of
κ∗ and μ∗ is preempted by ν∗

0|2 − 2ζ ∗ = 0. Thus,

α
(a3,a4,a5)
th = 1

d + 1
. (E2)

Now we turn to the heat flux Burnett coefficients. It can be
checked that ν∗

2|2 − 2ζ ∗ > 0 for all α, so that ψ is finite. As

a consequence, the threshold value α
(b1)
th for b1 occurs when

ν∗
2|1 − 2(1 − γ )ζ ∗ = 0 [cf. Eq. (4.20)]. This implies

α
(b1)
th = 4 − d − 4(d + 2)γ

3d − 4(d + 2)γ
. (E3)

In the case of b2 [cf. Eq. (4.21)], its divergence is due to that
of κ∗ and μ∗, i.e.,

α
(b2)
th = 4 − d

3d
. (E4)

Finally, the determinant of the matrix M is [ν∗
2|1 − (2 −

γ )ζ ∗][ν∗
2|1 − 2(1 − γ )ζ ∗], so that the divergence of b3–b8 is

again due that of κ∗ and μ∗:

α
(b3–b8)
th = 4 − d

3d
. (E5)

The regions of divergence of the coefficients for d = 2 and
d = 3 are depicted in Fig. 3.
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[17] N. V. Brilliantov and T. Pöschel, in Granular Gases, edited by
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