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Hydrodynamic granular segregation induced by boundary heating and shear
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Segregation induced by a thermal gradient of an impurity in a driven low-density granular gas is studied. The
system is enclosed between two parallel walls from which we input thermal energy to the gas. We study here
steady states occurring when the inelastic cooling is exactly balanced by some external energy input (stochastic
force or viscous heating), resulting in a uniform heat flux. A segregation criterion based on Navier-Stokes
granular hydrodynamics is written in terms of the tracer diffusion transport coefficients, whose dependence
on the parameters of the system (masses, sizes, and coefficients of restitution) is explicitly determined from a
solution of the inelastic Boltzmann equation. The theoretical predictions are validated by means of Monte Carlo
and molecular dynamics simulations, showing that Navier-Stokes hydrodynamics produces accurate segregation

criteria even under strong shearing and/or inelasticity.
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I. INTRODUCTION

Segregation of particulate matter is a problem with impor-
tant practical applications [1] that are of obvious interest for
industry, technology, and biomedical sectors [1-4]. In fact,
not only is granular matter one of the most used materials
in human applications [5] but also granular dynamics is
present in many biophysics problems [6] and in a variety of
ecosystems [7,8]. In particular, in a number of applications
(fluidized beds, to name just one example [9]) separating grains
according to their mass and/or size, the so-called segregation
process, is of interest, as well as the opposite effect (mixing
of disparate particles [3]). Either result may be needed for
industry applications. Itis thus of interest in a multidisciplinary
context to develop theoretical criteria capable of predicting
the behavior of granular segregation. Quite surprisingly, and
in spite of the high economic impact that efficient grain
segregation has on many industries [5], and also in spite of
the extensive observations of grain segregation phenomena,
no comprehensive transport theory has been extensively and
systematically tested against measurements in computer or
laboratory experiments [10,11]. We perform this task in the
present work, presenting strong evidence of validation of
one of the few complete kinetic theories on granular gas
segregation.

The use of hydrodynamic transport theories has been
extended to granular gases [12,13], i.e., sparse granular
systems where the dynamics is dominated by particle col-
lisions [14]. Several works have studied thermal diffusion
segregation from kinetic theories for dilute [15-17] and
moderately dense [18-21] granular gases. In this paper,
we show that Navier-Stokes (NS) hydrodynamics derived
from kinetic theory accurately predicts segregation for steady
granular flows, even under strong collisional dissipation. The
agreement covers an entire flow class characterized by having
a uniform heat flux. Moreover, since this class of flows
has elements with and without shear [22], we show that
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our NS segregation criterion works well for both thermal-
induced and shear-induced granular gas segregation. It must
be remarked that our segregation criterion involves the set of
diffusion transport coefficients of the impurity mass flux. The
dependence of these transport coefficients on the parameter
space of the problem (masses, sizes, and coefficients of
restitution) is explicitly determined by solving the inelastic
Boltzmann equations for the system (impurity plus granular
gas) by means of the Chapman-Enskog method [23] adapted
to dissipative dynamics. Theoretical results are compared with
numerical solutions of the kinetic equations of the system
[direct simulation Monte Carlo (DSMC) method] and also
with molecular dynamics (MD) simulations. Good agreement
is found among the three independent solutions. To the best
of our knowledge, the comparison carried out in this paper
can be considered as one of the most stringent quantitative
assessments of kinetic theory to date for conditions of practical
interest for thermal diffusion segregation in granular gases.

The plan of the paper is as follows. In Sec. II we offer a brief
description of the set of inelastic Boltzmann kinetic equations
for the granular gas and the impurities. Section III presents a
description of the steady flows over which we analyze granular
impurity segregation (driven states with uniform heat flow).
There is also a discussion of the derivation of the thermal
diffusion factor A, a magnitude that provides the segregation
criterion. By using an NS hydrodynamic description, A is ex-
pressed in terms of the impurity diffusion coefficients, whose
explicit dependence on the masses, sizes, and coefficients
of restitution is obtained from a Chapman-Enskog solution
of the inelastic Boltzmann and Boltzmann-Lorentz kinetic
equations.The reliability of the NS thermal diffusion factor is
assessed versus computer simulations in Sec. IV. A remarkable
agreement between kinetic theory and simulations is found for
conditions of practical interest (strong dissipation and particle
dissimilarity). Two types of simulations are performed for this
task: a numerical solution of the Boltzmann equations from the
DSMC method and MD simulations. In Sec. IV we propose
a hypothetical granular segregation laboratory experiment.
With this we expect to help future experimental research
and applications to use our theoretical results for segregation.
The paper is closed in Sec. VI with a brief discussion of the
results.
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II. KINETIC THEORY DESCRIPTION

We consider a set of identical inelastic smooth hard
disks (d = 2) or spheres (d = 3) of mass m and diameter
o at low density (granular gas). Particles collide, losing a
fraction of their kinetic energy after collisions. The degree
of inelasticity is characterized by the (constant) coefficient of
normal restitution «, which ranges from 1 (elastic collision,
no energy loss) to O (perfectly inelastic collision) [12]. In
our system there is also another set of particles with mass
mo and diameter oy, in general different from the values
m and o, respectively. The relative concentration of this
second set of particles is very low compared to that of the
other (granular gas) component, and for this reason we call
it an impurity or intruder. Collisions between impurity-gas
particles are also inelastic and characterized by a coefficient of
restitution .

Since the relative concentration of impurity particles
is very low compared to that of the other (solvent or
excess) component, one can assume that the state of the
granular gas is not affected by the presence of impurity.
Moreover, the collisions among impurity particles themselves
can be neglected compared with their interactions with the
particles of granular gas. At a kinetic theory level, this
implies that the velocity distribution function f(r,v,t) of
the gas particles obeys the closed (inelastic) Boltzmann
equation, while the velocity distribution function fy(r,v,?) of
the impurity particles obeys the (linear) Boltzmann-Lorentz
equation.

The Boltzmann kinetic equation for the granular gas is given
by [24]

Of +v-VIi+Ff=JILS] ey

where
Jilfof]= 0! / av, / 160G -2 - g)
la 2 f OV FOVY) — FODFO] ()

is the (inelastic) Boltzmann collision operator. In Eq. (1), F
is an operator representing the effect of an external force that
injects energy into the granular gas, allowing it to reach a
steady state. Moreover, @ is a unit vector along the line joining
the centers of the two colliding spheres, ® is the Heaviside step
function, g = v| — v; is the relative velocity, and the primes
on the velocities denote the initial values {v},v,} that lead to
{vi,v,} following a binary collision:

Via=ViaF %(1 +a @ - g)0. 3)

At a hydrodynamic level, the relevant quantities are the
density n, the flow velocity u, and the granular temperature 7 .
They are defined as

n = / v F(v), @)

n=1 / vV (W), )
n
m 2

r=" f vV F(v), ©)
dn
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where V = v — u is the peculiar velocity. The macroscopic
balance equations for number density n, momentum density
mu, and energy density %nT follow directly from Eq. (1) by

multiplying by 1, mV, and %m V2 and integrating over v:

Din+nV-u=0, (7)
Du+ (mn)"'V.P =0, (8)

2
D, T + %(V “q+ PVju) = -G —op)T.  (9)

Here, D, = 0, + u - V is the material time derivative,
P,-j=m / dv V,ij(V) (10)

is the pressure tensor,

m 2
q=§ dv V-V £(v) (11
is the heat flux, and

m 2
{=———" dv V2JIvIf, f] (12)

dnT

is the cooling rate characterizing the rate of energy dissipated
in collisions. In addition,

or =

2
T dv V-F f(v) (13)

is the source term measuring the rate of heating due to
the external force. In Egs. (7)—(9), it is assumed that the
external driving does not change the number of particles or
the momentum; i.e.,

/dv}'f(v):/ dv V. F f(v) = 0. (14)

The Boltzmann-Lorentz kinetic equation for impurities is
given by [17]

O fo+v-Vfo+Ffo=JIVfo.fl, (15)

where the collision operator Jy[v| fo, f] is

Jowilf f1=5"" f dv, f doO@ -2)@ - g
x [ag fo VD F (V) — fo(v) f(v)].  (16)

Here, @ = (09 + 0)/2 and the precollisional velocities are
given by

Vi=v — m0+m(1 +a,")@ - 2)7, (17)

V) =vy+ (I14+a,")@ - g)5. (18)

mo+m

Impurities may freely lose or gain momentum and energy
when they collide with particles of the gas, and hence the
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number density

1o =/ dv fo(v) 19)

is the only collisional invariant of Jy[ fo, f]. Its conservation
equation is

Vo
Ding+nogV -u=— , (20)
mo
where
jo = mo f av V fo(v) 1)

is the mass flux of impurities relative to the (local) flow u.
Upon deriving Eq. (20), we have assumed that the external
driving force does not change the number of impurities.

Apart from the fluxes, a relevant quantity at a kinetic level
is the temperature of the impurity (or tracer temperature) 7.
It is defined as

T, = 20 f av V2 fo(w). (22)
di’l()

The partial temperature 7 measures the mean kinetic energy
of the impurity. This quantity is in general different from the
granular temperature 7.

III. THERMAL DIFFUSION SEGREGATION IN DRIVEN
STEADY STATES

A. Hydrodynamic profiles

The main goal of this paper is to study the conditions
for which, in driven steady states, impurity particles tend to
separate (segregate) from the granular gas. Let us first briefly
describe the physical situation we are interested in. The system
is enclosed between two infinite parallel walls at y = —h/2
and y = +h/2 by which it is heated and (optionally) also
sheared. The upper-wall input temperatures and velocities are,
respectively, T, and U, while the lower-wall inputs are 7_
and U_. Here, we consider always T, > T_. Also, we study
situations where the energy input from the walls is sufficiently
strong at all times so that the influence of gravity is not
important. Additionally there is an energy input in the granular
gas volume that, in our case, we model as a white noise [25].
A sketch of the geometry of the problem is given in Fig. 1.

In our problem, and for steady base states, spatial gradients
occur only along the y direction [22]. More specifically, we

T Impurity
Ui y=-+h/2
o ° A o
° ° °
° o
o o ° ° o o
y=-h/2 T,U

FIG. 1. (Color online) Sketch of the system. In this case the
impurity is represented as a particle bigger than the gas particles.
Energy is input to the system from the boundaries, which consist of
two infinite parallel walls with temperature and shear sources.
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consider in this work only states with uniform heat flux. In this
case, the energy balance equation, (9), reads [26]
%——(—lnT(g—a)—P %—0 (23)
ay 2 iy T

Here, viscous heating —P,,d,u, and volume energy input
(d/2)nTor balance the inelastic cooling term —(d/2)nT¢.
We consider in this work two types of uniform-heat-flux steady
flows.

(a) Case I: Uy = 0 (no shear), which implies u,(y) =0
in Eq. (23). As we said, we assume here that the system is
driven by means of a stochastic Langevin force representing a
Gaussian white noise [27]. The covariance of the stochastic
acceleration £2 [25] is chosen to be the same for both
species (impurity and gas particles) [28]. In the context of
the kinetic equations, (1) and (15), this external force is
represented by a Fokker-Planck operator [29] of the form
F = —1£%3%/9v%. In this case, the production of the energy
term is o7 = mé&2/ T . Stochastic external forcing is frequently
used in computer simulations [25,30-34] and has also been
proved experimentally [31,35].

(b) Case II: No volume driving (o7 = 0) and boundary
shear (U_ — U} # 0), i.e., both walls are in relative motion
(sheared granular gas). In this case, inelastic cooling is
compensated by viscous heating.

Note that in both case I and case II inelastic cooling may be
achieved locally for all points in the system [22,36]. It is also
important to remark that the bulk hydrodynamic profiles of the
above situations are not simple since, for the uniform-heat-flux
flow class, the hydrodynamic profiles fulfill [22]

u(y) oc y*3, 24)

the latter applying only in the sheared system. Furthermore, as
we noted in a previous work [22], with uniform heat flux and
at fixed T at the walls, the dimensionless temperature profile
(scaled with proper units) is universal, namely, independent
of the shearing or inelasticity conditions. As a consequence,
cases I and II share the same T (y) profiles. This surprising
result is a consequence of the applicability of hydrodynamics
to granular gases, even for strong dissipation. Moreover, it
allows us to obtain segregation conditions in applications in a
much simpler way, as we see below.

T(y) o< y*°,

B. Segregation criterion

As said before, the only relevant space direction in our
problem is orthogonal to the walls (y axis). In this case,
the thermal diffusion factor A characterizes the amount of
segregation parallel to the thermal gradient. It is defined
through the relation [37]

A81nT _ dIn(ng/n)

ay oy
It is interesting to note that uniform heat flux profiles, from
Egs. (24), do not show an absolute minimum or maximum in
the bulk of the fluid. Thus, no change of segregation behavior,
as given by Eq. (25), occurs in the system as a function of
space coordinates. This is important for applications since

the uniform-heat-flux flow class yields a clear and unique
segregation behavior for a given experimental configuration.

(25)
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When the impurity is larger than the gas particles (op > o)
and concentrated in the opposite direction to gravity, the
system displays the so-called Brazil nut effect [2]. Otherwise,
the so-called reverse Brazil nut effect is observed [4]. In this
work we consider arbitrary values for the mass . = mg/m and
size w = oy /o ratios, and also, gravity effects are negligible.
Thus, we do not use this terminology and just refer to the
sign of A. For our boundary conditions and taking into
account Eq. (25), when A < O the impurities drift to the
hot wall (upwards), while if A > 0 the impurities go down
to the cold wall (downwards). Segregation changes sign (the
region of preference of the impurity switches) at the marginal
points A = 0. Exactly at A =0 points, the impurity has
no region of preference and mixing occurs. Moreover, as
simulations clearly show, the factor A is uniform in the bulk
region. Consequently, the segregation criterion derived from
the condition A = 0 is a global feature of the bulk domain and
is not restricted to specific regions of the system.

In the steady state, the momentum balance equation, (8),
implies P,, = const and P,, = const. In addition, since
V-u=0 in cases I and II, the mass flux jo, vanishes in
the steady state according to Eq. (20). To close the problem
of determining A one needs a constitutive equation for the
mass flux jo . In the first order in the spatial gradients (NS
approximation), jo,y is given by [20]

D— —ZpT—,  (26)
y

where Dy, D, and D7 are the impurity diffusion transport
coefficients. The condition jy , = 0 along with Eq. (26) yields

D™ — D} — D*

A =
Dy

, 27
where we have introduced the reduced transport coeffi-
cients DT* = (pv/noT)DT, D} = (m3v/pT)Dy, and D* =
(mov/noT)D. Here, v = no?"1/2T/m is an effective colli-
sion frequency. As for elastic collisions, the (reduced) diffusion
coefficients DT*, D§, and D* are given in terms of the
solutions of a set of coupled linear integral equations. The
standard method consists of approximating the unknowns
by Maxwellians (at different temperatures) times truncated
Sonine polynomial expansions. In the simplest approximation,
only the lowest Sonine polynomial (first Sonine approxima-
tion) is retained, and the result when the gas is heated by the
stochastic force (case I) is [20]

pjm=2. prm=2"% pm=-L.
Vb Vb Vb

I

(28)

where Dj[1], DT*[1], and D*[1] refer to the first Sonine
approximation to D, DT* and D*, respectively. In addition,
x = Ty/T is the temperature ratio and v}, is a known collision
frequency. Substitution of expressions (28) into Eq. (27) yields
A = 0; namely, the first Sonine approximation does not predict
segregation (A = 0) in the driven states analyzed here for
dilute systems. Note that the first Sonine solution to A yields
segregation (A # 0) for dense systems [28]. Thus, as for
binary elastic mixtures [38], one has to determine the diffusion
coefficients by considering the second Sonine approximation
(two polynomials in the Sonine polynomial expansion) to
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the distribution functions. The explicit second Sonine forms
Dgjl2], DT*[2], and D*[2] for a dilute system are given in the
Appendix.

We are considering a unique 7 (y) profile (once 7 are fixed
at the boundaries), thus [see Eq. (25)] a unique segregation
profile no(y)/n(y) also results, except for the constant factor
A. Furthermore, A is usually employed to describe granular
segregation problems but in fact it is only when 7'(y) unique-
ness applies (as here) that A is purposeful. Thus, we only need
to provide an accurate value of the A = A(E, ) function
in order to properly describe the segregation behavior. Here,
E = {o,a0,1,w} denotes the set of mechanical properties of
the system. It must be noted that the temperature ratio x is
also uniform for steady base states in our geometry [39].

We make the ansatz that the dependence of the A function
(which results from the calculation of the transport coefficients
characterizing the mass flux of impurities) on & and x is com-
mon for all flows in the class, sheared or not, since all of them
have common heat flux and temperature profile properties.
Thus, for given values of the parameters of the system, A will
be obtained from Eq. (27) by using the shear-independent
forms [28] of the diffusion coefficients displayed in the
Appendix. The NS coefficients D[2], DT*[2], and D*[2] are
functions of the temperature ratio x. Nevertheless, the value
of x strongly depends not only on the mechanical properties
E but also on the shearing conditions [40]. Therefore, in case
I, the temperature ratio x fulfills the condition [41,42]

xi5o = ng*, 29)
while in case I, x is given by
g*P(;kXV
Xn = —. (30)
& Py

In Egs. (29) and (30), the cooling rates ¢* and ¢; (which
measure the rate of change of Tj) are

\/En.(dfl)/Z 5
e — (1 — , 31
¢ ar (4 o) (31)
N 47@=D2 /1 4w -t n+x 1/2
fo = dr (4) ( 2 > 1+u< 1" )
M+ X
x (1 +C(O)|:1 - m(l +a0)]. (32)

Moreover, in Eq. (30), the pressure tensors of gas particles
P;j and impurity Py ;; = f dvmgV; V; fo have been determined
from Grad’s moment method for sheared (or non-Newtonian)
base states with uniform heat flux [40]. This ansatz yields two
A values: A(E, xp) for case I and A(E, xi1) for case II. The
final expressions for the thermal diffusion factor A(E, x) and
the temperature ratios x; and yjy are rather involved and may
be found in previous works [28,40].

IV. COMPARISON BETWEEN KINETIC THEORY AND
COMPUTER SIMULATIONS

In order to canvass our ansatz, we have performed DSMC
simulations of the kinetic equations and also MD simulations
(event-driven algorithm [43,44]) for hard spheres (d = 3).
With DSMC simulations we validate the NS theory (first order
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FIG. 2. (Color online) Temperature ratio vs (common) coeffi-
cient of restitution o = « for w = 1 and several values of relative
mass u: u = 1/4 (black), u = 1/2 (blue), u =2 (red), and u = 4
(brown). Dashed and solid lines refer to the theoretical values obtained
for case I (no shear) [28] and case II (shear) [40], respectively.
Open symbols represent case I simulations; filled symbols, case II
simulations (triangles, MD; squares, DSMC). All figures in this work
represent spheres (d = 3).

in spatial gradients) compared to the kinetic equations from
which it results, while with MD simulations we validate the
kinetic equations themselves (since MD simulations avoid any
assumptions inherent in the kinetic theory, such as the molecu-
lar chaos hypothesis). All simulations have been performed for
T,/T- =5andh = 15X, where & = (v/27710%)"! is the mean
free path and 7 is the average particle density. Thus, there is a
unique temperature profile in this work: the one corresponding
to conventional Fourier flow (without shearing) for a molecular
gas heated from two parallel walls with the same boundary con-
ditions for temperature [22]. The packing fraction in MD sim-
ulations is ¢ >~ 0.0071, which corresponds to a very dilute gas.

Numerical methods for both types of simulations corre-
spond to the traditional DSMC method for the Boltzmann
equation and event-driven algorithms and they are described in
more detail elsewhere [22,44-46]. Itis worthwhile, however, to
comment on the energy inputs in the simulations. Temperature
sources at the walls (cases I and II) are modeled as regular
hard walls (the normal component particle velocity to the
wall is inverted), whereas boundary shear (only for case II) is
performed by adding the wall velocity to the horizontal particle
velocity. With respect to volume forcing (case I), a random
velocity is added to all particle velocities in each simulation
step, this random velocity being drawn from a Gaussian
distribution function whose typical width is determined by
the white-noise intensity £2. In this case, this intensity varies
with the space coordinate so as to satisfy the uniform-heat-flux
condition, (23).

The dependence of the temperature ratios x; and xj on
the (common) coefficient of restitution o = « is plotted in
Fig. 2 for ® = 1 and four values of the mass ratio. Comparison
between theory and simulations shows clearly a very good
agreement for both case I and case II. It is also apparent that
the values x; and xy are quite similar in the different systems,
except for the most disparate case, my/m = 4. Needless to
say, the excellent agreement found here at the level of x is an
important prerequisite for an accurate theoretical segregation
criterion, as we explained.
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FIG. 3. (Color online) Thermal diffusion factor A vs (common)
coefficient of restitution @ = « for w = 1. Two relative mass cases
are represented: u = 1/2 (blue) and p = 2 (red). Dashed and solid
lines correspond to theoretical predictions obtained for case I and
case II, respectively. Both cases show rather similar curves. Open
symbols, case I simulation data; filled symbols, case II simulation
data (triangles, MD; squares, DSMC).

Next, we compare simulation measurements of A with the
NS theoretical expressions [28] for A(E, x1) and A(E, xu).
The quantitative agreement here is also very good, as we show
in Figs. 3 and 4, except in the region of large impurities, where
the agreement is qualitative. In Fig. 3, A vs inelasticity is
analyzed, whereas we study A vs the mass and size ratios in
Fig. 4. We can observe from Figs. 3 and 4 that the dependence
of both A(E, x1) and A(E, x11) on « (Fig. 3) and u or w (Fig. 4)
is actually quite similar. It is also particularly noticeable from
Figs. 3 and 4 that kinetic theory reproduces very well the
change of sign of A for cases I and II.

An accurate prediction of the marginal or critical points
A =0 is crucial for applications. For this reason, a phase
diagram delineating the regions between A > 0 and A < 0 in
the (w, ) plane is shown in Fig. 5 for « = 0.9 and «p = 0.7.
We observe first that both cases draw rather similar theoretical
curves over the whole range of values of i and @ explored.
Moreover, it is quite apparent that the agreement between
theory and simulation is excellent, even for a relatively strong

1.2

1

0.8
0.6

< 04
0.2

0

-0.2
-0.4

FIG. 4. (Color online) Thermal diffusion factor A vs relative
mass u and diameter w. The case o = oy = 0.9: for relative size
w = 1 and variable relative mass p (blue) and for 4 = 1 and variable
relative size w (red). The meaning of the lines and the symbols is the
same as in Fig. 3.
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1.2
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0.6 - towards hot wall
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FIG. 5. Plot of the marginal segregation curve (A = 0) for a
system with @ = 0.9 and «p = 0.7. Dashed and solid lines represent
theoretical predictions derived for cases I and II, respectively. Open
symbols, case I simulations; filled symbols, case II simulations
(triangles, MD; squares, DSMC). Error bars were estimated by using
the difference between the values obtained in the bulk region (which
are plotted) and those obtained in the whole system.

degree of inelasticity of impurity-gas particles. Also, the points
corresponding to case II are under strong shearing [22], and
even in that case (which goes beyond the NS description) the
agreement with theory is good.

V. EXPERIMENTAL SETUP OUTLINE

In this section, we propose an experimental setup capable of
reproducing in a laboratory the physical situation considered
in this paper. Therefore, we need to produce a temperature
gradient in the vertical direction (gravity’s direction). In this
case, we can think of a parallelepiped system of dimensions
(h/2) x (h/2) x h, h being the dimension in the vertical
direction. The top and bottom walls should be perpendic-
ular to the vertical direction and attached to one (or two)
accelerometer(s) capable of reproducing accelerations of up
to 25g (g ~ 10 m/s” is gravity acceleration). When using just
one accelerometer, producing different wall-particle contact
surfaces in each wall may be enough to generate a vertical
temperature gradient. This type of configuration has been
devised in a large number of theoretical works, but not yet
directly compared with similar experimental configurations.
For theoretical works see, in additionally to the text, Ref. [47]
for a study of steady flows and Ref. [18] for a study of granular
segregation due to a temperature gradient.

A. Dimensions and density

First, we need the system to be sparse enough, for instance,
with a packing fraction ¢ = 1072 or less. We define ¢ as
b4 1
¢ = gna3 ~ Ena3, (33)
where n = N/ V is the particle density, N being the number
of particles and V = L3/4 the volume of the system.

The other requirement is that the particles should not be not
too large or heavy. Stainless-steel balls with a diameter o =
1072 m are an option. They yield a coefficient of restitution
near the quasielastic limit (¢ =~ 0.95) [13,48]. Stainless steel is
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also convenient for having a small sliding effect (small sliding
coefficient u >~ 0.099) and a roughness (8 =~ 0.4) [48] in the
range of nearly Maxwellian behavior [49].

Thus, we pick the reference values ¢ = 1072 and o =
10~3 m and, based on them, other relevant magnitudes. Our
reference particle size for stainless steel implies a particle mass
of approximately m = 0.028 304 462 g [48,50].

An important point is to reproduce the experiment with
different degrees of inelasticity in the binary collisions. An
impurity made of a different material may also be needed if
we want to perform experiments with op # «. When using
different materials for balls in the experiments, and since
our model does not include the effects of roughness, it is
convenient that the differences in inelasticity are essentially
due to the coefficient of normal restitution «, and not to the
tangential (8) or sliding () friction coefficients [51]. In this
respect, the use of metallic balls is always convenient, assuring
a relatively small sliding effect (u ~ 0.1) and little variation
in the tangential coefficient of restitution (8 =~ 0.4 for most
metals) [48].

With respect to the ball mass, it has an effect on the
thermalization of the system (through the collision frequency)
but not directly on the dimensions (via the mean free path).
The mean free path A is actually of the order [47] A ~ (no?)~!.
Taking this definition into account, we may rewrite the packing
fraction, (33), as

¢ =12""o. (34)
Another alternative expression for the packing fraction ¢ in
terms of the number of particles N is

o\3
¢ = 2N(—> . (35)
h
From Eq. (34) we obtain
A=~ =Bh (36)
=55 = Bk

where in the second equality B is a proportionality constant
necessarily small in order to have L >> A. We need this
condition in order to get an experimental hydrodynamic region
(since boundary layers in gases are typically of the order of
A) [13,26]. Thus, from Eq. (36) one has

h>5x1072B 'm, (37)

In addition, by combining conditions (35) and (37), and for
o = 1073 m, we get, approximately, that

N >6x 10*°B73. (38)

Areasonable value of Bis B = 0.1, which yields, according
to Eq. (36), a system 10 times larger than the mean free path,
sufficient to obtain a wide hydrodynamic central region, even
very far from equilibrium states [26]. Thus, for o = 107> m
and B = 0.1 we obtain from Eqgs. (37) and (38), respectively,
h 205 m and N > 6 x 10° particles. These seem to be
reasonable values [50,52,53] but can be decreased as long as
the ratio N/ i3 is maintained, in order to always get ¢ = 1072,
Nevertheless, relation (36) must be taken into account: for the
same ball size, packing fraction, and, consequently, mean free
path [see Eq. (34)], a decrease in & leads to an increase in B,
which is not convenient, since as we said, B~! is a measure of
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the hydrodynamic region size. Thus, if we stick with the same
ball size, we might not have a wide valid margin for parameter
values.

B. Energy input

Regarding the input acceleration I', we need it to be larger
than the acceleration of gravity. Therefore, for a vibrating wall
with amplitude A and angular frequency w, we would have

I = Ao’ = yg, (39)

where y is a factor larger than 1 and g is the acceleration
of gravity. Thus, for A ~ 107° m (an amplitude similar to
the ball size and not, we suggest, larger) and a reasonable
frequency f = 80 Hz, which lies in the range of previous and
related experimental works [50,52,53], we obtain y = 23, i.e.,
I' ~ 23g, which should be large enough for our purposes. In
fact, for & = 0.5 m, as we said, and assuming approximately
constant particle velocities, then, from v? ~ Aw?h, we achieve
an average velocity v ~ 10 m/s, which gives an approximate
idea of the speed of particles during experiments while shaking
at these frequencies. Of course if experiments under no-gravity
conditions are to be performed, there is no need to reach such
high input accelerations, and if the absence of gravity is limited
in laboratory time, we also have the advantage that the steady
state is, in theory, rapidly reached, usually in fewer than 30
collisions per particle [54].

VI. DISCUSSION

In this paper, we have shown that NS granular hydrody-
namics with the diffusion transport coefficients derived from
the inelastic Boltzmann kinetic theory describes very well the
thermal diffusion segregation of an impurity in a low-density
granular gas in a steady state with uniform heat flux. The
results reported here contain a systematic validation by means
of simulations of the kinetic theory of granular segregation.
The comparison is exhaustive since it covers a wide range
of conditions, including moderate and strong dissipation
and particle dissimilarity. Furthermore, we show evidence
of quantitative agreement between granular hydrodynamics
and simulations, for both thermal-induced and shear-induced
granular segregation. The focus on the uniform-heat-flux
case actually does cover a variety of common situations.
For instance, in case I, the noise intensity may simulate a
surrounding molecular gas that fluidizes the granular gas,
analogously to a previous work [35]. In our case this molecular
gas shows the typical Fourier flow temperature profile (since it
has uniform heat flux), which seems the most natural situation
for a molecular gas heated by two parallel walls. Furthermore,
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cases I and II may be relevant also for granular active matter
systems, where spontaneous steady flow may appear [6]. Our
study obviously also applies to pipe granular flow applications,
where knowledge of shear-induced segregation is important.
We have proposed a test experiment, which we think is
relatively easy to set up, in order to check our theory.

We think it is of particular interest that segregation has
almost the same behavior for cases I and II (see Figs. 3-5),
which, in principle, could look like very different from each
other: in case I the heat flux balance is produced by a volume
stochastic force and the system is not sheared, whereas in case
II there are no volume forces or heat flux balance. Of course,
since the reduced T (y) profiles are the same for both cases (for
all uniform heat flux flows, as we know [22]), the surprising
fact is reduced to the coincidence in the balance of the different
diffusion coefficients, as we can see from Eq. (26). Therefore,
it seems that the common transport properties that connect
all flows with uniform heat flux for a monodisperse granular
gas [22] may be extended to impurity segregation behavior. In
addition, although our present description is restricted to dilute
granular gases, we expect that the main results reported here
for thermal diffusion segregation can be extended to higher
densities and different flow classes.

Given that segregation is one of the most important open
challenges in granular flow research and granular-transport-
related industries, the results reported in the present paper
could be of great value not only to experts in kinetic theory
for granular gases but also to more applied scientists and en-
gineers. In fact, according to the relatively small experimental
setup to measure segregation in a granular gas proposed in
Sec. VI, we think that the reliability of our results could be
assessed via a comparison with experimental data since they
have a direct application in laboratory experiments.
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APPENDIX: EXPLICIT EXPRESSIONS FOR
D;[2], DT*[2], AND D*[2]

The explicit forms of the second Sonine approximations to
the diffusion transport coefficients in the low-density limit are
displayed in this Appendix. They can be easily obtained from
the expressions displayed in the Appendix of Ref. [28] when
the volume fraction vanishes. They are given by

vy X
D{[2 4 Al
= Ty (A1)
ey = VO = 1= 0T —vix (= x(5/v9) )
- Vivy —vi(E —¢%) ’
* ,uv4
D*[2] = A3
(2] VR — i (E =27 (A3)
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where

. 2mwh2 e\ At 1+6\"?

i= ey (0) maren (50) "

. @b e\t o

szdr—(g)(5> M+ a)6(1 +6)]7'/2, (AS)

. 2072 e\l pq2 52 Iy
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* 1 PRS— — 1 — . Al

V3 id+D ﬁr(d/z)( +a)( 3 +16(d+8)( oe)) (A10)

Here, M = m/(m + mg), My = mg/(m + myg), and 6 = moT/mTy = u/x is the mean square velocity of the gas particles
relative to that of the impurity particle. In addition, ¢* is given by Eq. (31) and in Egs. (A7)-(A9) we have introduced the

quantities

140 d+3
_2M2< 5 )(2(13— 5

x [(11 +d)ag —5d — 7] — 6~
+3(d 4+ 322072 [d 4+ 54 (d + 2)0] + 240~
—(@d+2)A+0)07%[d+ 3+ (d + 2],

= (d 4+ 2)(1 +21) + M(1 + 6){(d + 2)(1 — ) —

d
+2M? (205% _ar

d+3

C =2M?*(146)? <2a3 —

x [(11 + d)ag — 5d — 7] + 0120 + d(15 — Targ) + d*(1 — axp)

+3(d +3)A2[d+2+(d+50] —
—(d+2)A+60)[d+2+(d+3)8],

1120 4 d(15 — Tag) + d*(1 — ap) —
244+ 11d + d*> + (d +2)*0] + (d +2)07'[d + 3 + (d + 8)F]

ao+d+ 1) [d 45+ (d+2)0] — M1 +60){1072[(d + 5) + (d + 2)6]

28a0] — (d + 2)*(1 — ap)}
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—2M? (2015— —21- 0612+d+1)(1+9)2+(d+2)(1+9)s

where A = My(1 — x ).

(A11)
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3a12+d+ 1> 0714 6) —(d +2)067'1+0), (A12)
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