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Transport equations are developed by applying the Hilbert method to the Liu model [ Phys. 
Fluids A 2,277 ( 1990) 1. The pressure tensor and the heat flux vector are calculated to Burnett 
hydrodynamic order for potentials of the form r- @. The results are compared with those 
obtained from the Boltzmann equation. 

I. INTRODUCTION 
The normal solution of the nonlinear Boltzmann equa- 

tion provides an adequate way of obtaining transport coeffi- 
cients for a dilute gas. However, because of the mathematical 
complexity of the Boltzmann collision operator, it is, in gen- 
eral, very difficult to find explicit results. This probIem has 
motivated the search of mathematically simpler kinetic 
models that preserve the main physical properties such as 
the equilibrium solution and the conservation laws. Perhaps 
one of the most widely used has been the nonlinear model of 
the Boltzmann equation proposed by Bhatnagar, Gross, and 
Krook (BGK) +I The BGK equation has been solved by us- 
ing the Hilbert perturbative expansion, and constitutive rela- 
tions for the pressure tensor and the heat flux vector for r- c1 
potentials up to the Burnett approximation2 have been de- 
rived. The results have been shown to be identical to those 
obtained from the Chapman-Enskog method in the hard 
spheres case.3 

Although the BGK model has been shown to be very 
fruitful in the past years, it also presents some insufficiencies. 
For this reason, Liu has recently suggested a new kinetic 
model4 to improve some of the results predicted by the BGK 
equation. The model is constructed by requiring that, in two 
limiting cases (viscous flow and molecular flow), solutions 
obtained from the Liu equation are the same as those of the 
BoItzmann equation. This requirement leads him to propose 
a collision term proportional to the Chapman-Enskog first 
approximation to the distribution function, which is the so- 
lution to the linearized Boltzmann equation. Obviously, the 
Navier-Stokes transport coefficients calculated from the 
Liu model happen to be the same as those derived from the 
Boltzmann equation. Now, the question arises as to whether 
the agreement between the Boltzmann and Liu equations is 
maintained when higher-order hydrodynamic terms (Bur- 
nett, super-Burnett, . . . . ) in the normal solution are retained. 

The purpose of this paper is to derive the nonlinear Bur- 
nett hydrodynamic equations from the Liu model and to 
compare them with the ones derived from the Boltzmann 
equation. In the same way as in the previous BGK results,’ 
the Hilbert expansion is used to explicitly evaluate the pres- 
sure tensor and the heat flux vector. Then, the transport 
coefficients that appear in the expansion of the transport 
fluxes can be compared with those obtained from the Boltz- 
mann equation.’ 
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II. NONLlNEAR TRANSPORT EQUATIONS 
Neglecting external forces, the Liu equation can be con- 

veniently written in the form4 

g+ v*Vf 

= 
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wheref( r,v;t) is the one-particle distribution function, and 
f( r,t) is an average collision frequency similar to that of the 
BGK model. Here, V = v - u, and fLE (r,v;t) is the local 
equilibrium distribution function defined in terms of the lo- 
cal number density n(r,t), local temperature T(r,t>, and Io- 
cal velocity u,(r,t). Furthermore, the Liu equation intro- 
duces the coefficients of viscosity rlCE = 3 nk, T/v, and 
thermal conductivity/z,, = gS k, vcE /m given by the Chap- 
man-Enskog theory. Here, v( r,t) is a velocity-independent 
collision frequency but it can depend upon the density and 
temperature. In order to carry out explicit calculations, from 
now on we will consider generic interaction potentials of the 
form P-J’ for which’ Y = v,nTZ, ye being a constant and 
a=t- ( 2/,u ) . it is clear that a similar dependence on space 
and time must be taken for 5. In the same manner as in the 
BGK equation, Eq. ( 1) satisfies the conservation laws and 
has an N theorem. It is noteworthy that, in the particular 
case where the coefficients rjcn and /z CE are substituted by 
their corresponding BGK values,’ Eq. ( I) reduces to the 
BGK equation. According to Eq. ( 1 ), the Liu model is the 
BGK equation [first term on the right-hand side of Eq. ( 1) ] 
plus a single term related with the Chapman-Enskog first 
approximation. This term depends on the ratio of the colli- 
sion frequencies g/v, which may be left as arbitrary for the 
moment. It should be clear that some particular choices of 
the ratio c/v may simplify the collision term of the starting 
equation ( 1). In particular, if one takes c = $II, the term 
proportional to Vjui disappears. Also, if 5 = @, the term 
proportional to V In T disappears. As we will see later, such 
choices lead to a good agreement between Liu and Boltz- 
mann results. Then, an adequate choice of the relation 
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C/V may allow us to adjust the transport coefficient derived 
from the Liu model with the corresponding coefficient ob- 
tained from the Boltzmann equation. This possibility, using 
only one collision frequency has been used to compare re- 
sults derived from the BGK and Boltzmann equations in 
several transport problems.6 

Assuming that the distribution function f depends on 
space and time through the locally conserved variables, we 
look for normal solutions of Eq. ( 1) of the form 

f=,go@f’k~, (2) 

where E is an auxiliary parameter that may be set equal to 
unity at the end of the calculations. Analogously, in the Hil- 
bert theory the hydrodynamic fields must also be expanded 
in powers of E. Introducing these expansions into Eq. ( 1) 
and separating terms of the same order in E, one obtains a set 
of algebraic equations that may be solved sequentially. 
Further details of the Hilbert theory can be found in Ref. 2. 
Here, we will be concerned only with the explicit expressions 
of the hydrodynamic fluxes. They are defined through 

P, = 
s 

dvm Vi VJ, (3) 

J; = dvy V’vf; 
s 

Pi, being the pressure tensor and J, the heat flux vector. In 
zeroth order,f”’ = f i$), namely the local equilibrium func- 
tion defined from the variables n’“‘,u’o’, and T(O). Then, we 
immediately find j”’ = 0 and P:;“’ =pCo)Gii, with 
P (0’ = ncO’kB T’O’ . Solving recursively, and using from now 
on the notation given in Ref. 2, the first approximation to the 
transport fluxes may be written as 

Py =p”‘& - ‘1(20;0’ - ~&#O~), (5) 
Jj” = - /zVT,‘O’. (6) 

Here, p”’ = n”‘k, T”’ + nco)k, T”‘, and we have intro- 
duced the coefficients of shear viscosity 77 = &p’o)/~(o) and 
thermal conductivity /z = 9 k,v/m given by the Hilbert 
theory. The expressions for these coefficients exactly coin- 
cide with those given by the Hilbert theory applied to the 
Boltzmann equation’ for the particular case of Maxwell mol- 
ecules (a = 0). For other types of interactions, the accor- 
dance only holds in the first approximation to 77 and /2. 

In the Burnett hydrodynamic order, after some tedious 
algebra one gets the constitutive relations for the pressure 
tensor and heat flux vector: 
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where 

P (0’ = mn(o’, 

P (2) = ?zB (o'kJ'2 + n'2'k,T'O' + n("k,T"', 

and we have expressed the results in terms of the strain rate 
D bk’ and the vorticity wi/ . (k) As expected, the Burnett rela- 
tions consist of terms up to second derivatives in II(‘) and 
T(O), up to first derivatives in u(l) and T(l), and combina- 
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I 

tions of these plus a linear form of the pressurep’“‘. It must 
be noticed that no explicit dependence on the collision fre- 
quency 5 upon the density and temperature has to be taken in 
order to derive Eqs. (7) and ( 8). Moreover, these relations 
explicitly depend on the ratio g/v. 

The results show that the derived Burnett equations 
happen to be analogous to those obtained from the BGK and 
Boltzmann equations, although, in principle, the transport 
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coefficients are different. As a matter of fact, Eqs. (7) and 
(8) reduce to the BGK results’ when r] and il are substituted 
by their explicit values given by the BGK model, namely 
ri BGK = p’O’/~ (0) and /z BGK = $p’D)kB/mg (‘I. As noted 
above, there exist different ways to choose the relation be- 
tween land v. Then, in an attempt to carry out a comparison 
with the Burnett transport coefficients obtained from the 
Boltzmann equation, particular values for the ratio C/Y 
must be taken. For instance, if one takes l= $Y (for which 
71=)7 BGK), all the transport coefficients that appear in the 
pressure tensor (7) coincide exactly with the ones arising 
from the Boltzmann equation.5 This means that the contri- 
butions to P(‘) coming from Boltzmann collision integrals 
can be exactly recovered through the use of simple collision 
frequencies. This is the great usefulness of the kinetic mod- 
els, since for simple interaction potentials, the dynamics of 
collisions can be exactly modeled by introducing effective 
parameters. It must be noticed that the values of the Boltz- 
mann-Burnett coefficients are only exact for Maxwell mole- 
cules, although it may be expected that they will not be far 
from the true values for other molecular models. On the 
other hand, the above choice defines transport coefficients in 
the heat flux different to those derived from the Boltzmann 
equation, even in the Maxwell case. But, now their numeri- 
cal values are closer to the Boltzmann coefficients (with a 
discrepancy of around 33% ) than the ones reported by the 
BGK equation. Analogous conclusions are obtained for the 
heat flux when one chooses c = f-3” Y (for which R = /2 BGK ) . 
In this case, the discrepancy in the pressure tensor coeffi- 
cients for Maxwell molecules is also around 33%. 

In summary, the Liu equation for a dilute gas has been 

solved using the Hilbert method for r-&I potentials, In the 
nonlinear Burnett order, the transport coefficients that ap- 
pear in the pressure tensor or the heat flux vector are identi- 
cal to those reported from the Boltzmann equation for some 
particular values of the ratio of the two collision frequencies. 
In this way, one may conclude that the results derived from 
the Liu model improve notably some insufficiencies present 
in the BGK equation. This conclusion encourages our actual 
objective of extending to the Liu model some recent results 
derived from the BGK kinetic equation.6.8 
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