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Abstract.  We calculate in this work the Navier–Stokes transport coefficients 
from the Boltzmann equation for d-dimensional inelastic Maxwell models. By 
granular gas we mean here a low density system of identical spheres that 
lose a fraction of their kinetic energy after collisions. In the present work, 
the granular gas is fluidized by the presence of a thermostat that aids the 
system to reach a steady state. The thermostat is composed of two terms: a 
random force and a drag force. The combined action of both forces, which act 
homogeneously on the granular gas, tries to mimic the interaction of the set of 
particles with a surrounding fluid. The Chapman–Enskog method is applied to 
solve the inelastic Boltzmann equation to first order in the deviations of the 
hydrodynamic fields from their values in the homogeneous steady state. Since 
the collisional cooling cannot be compensated locally for by the heat produced 
by the driving forces, the reference (zeroth-order) distribution function f (0) 
depends on time through its dependence on the granular temperature. To 
simplify the analysis and obtain explicit forms for the transport coefficients, 
the steady state conditions are considered. A comparison with previous results 
obtained for inelastic hard spheres is also carried out.
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1.  Introduction

Granular matter (systems composed of many mesoscopic particles) under rapid flow 
conditions can be modeled as a ‘granular gas’, namely a gas of hard spheres dissipating 
part of their kinetic energy during binary collisions (inelastic hard spheres, IHS). In 
the simplest model, the spheres are completely smooth and the degree of inelasticity is 
characterized by the so-called coefficient of normal restitution α  1, that is assumed 
to be constant. At the level of kinetic theory, all the relevant information on the state 
of the gas is provided by the one-particle velocity distribution function f tr v( , , ). For 
a low-density gas, the Boltzmann equation has been conveniently modified to account 
for inelastic binary collisions [1, 2] and the corresponding Navier–Stokes transport 
coefficients [3] for states with small spatial gradients have been obtained by means of 
the Chapman–Enskog expansion [4] around the local version of the homogeneous cool-
ing state. Similarly to the case of a gas with elastic collisions, the exact form of the 
Navier–Stokes transport coefficients is not known since they are given in terms of the 
solutions of a coupled set of linear integral equations. A good approach to the exact 
form of these coefficients can be obtained by considering the leading terms in a Sonine 
polynomial expansion of the distribution function f tr v( , , ) [4]. Despite this approach, 
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the theoretical predictions compare in general quite well with computer simulations 
even for relatively small values of the coefficient of restitution α [5].

On the other hand, due to collisional kinetic energy loss, an additional source of 
energy is needed in order to keep the system under rapid flow and reach a steady state. 
This external energy can be supplied to the system from the boundaries (for instance, 
from vibrating walls [6]) or by bulk driving as in air-fluidized beds [7, 8]. Under certain 
experimental conditions, the bulk driving is homogeneous and this is the case we con-
sider in this work. In fact, it is quite usual in computer simulations to homogeneously 
heat the system by the action of an external driving force [9, 10]. This type of external 
forces are called ‘thermostats’ [11]. Although thermostats have been widely used in the 
past to study granular flows, their influence on the dynamic properties of the system 
(for elastic and granular fluids) is not completely understood yet [12–14].

We will consider in this work that the granular gas is fluidized by a thermostat 
composed by two different terms: (i) a drag force proportional to the velocity of the 
particle and (ii) a stochastic force with the form of a Gaussian white noise where the 
particles are randomly kicked between collisions [17]. While the first term attempts to 
model the friction of grains with a viscous interstitial fluid, the second term models 
the energy transfer from the surrounding fluid to granular particles. The transport 
coefficients of the granular gas driven by this combined thermostat have been recently 
determined [15]. Like in the undriven case [3], the forms of the transport coefficients 
involve the evaluation of certain collision integrals that cannot be exactly computed due 
to the complex mathematical structure of the (linearized) Boltzmann collision operator 
for IHS. Thus, in order to get explicit expressions for the above coefficients one has to 
consider additional approximations. A possible way of circumventing these technical 
difficulties inherent to IHS, while keeping the structure of the Boltzmann collision oper-
ator, is to consider the so-called inelastic Maxwell models (IMM), i.e., models for which 
the collision rate is independent of the relative velocity of the two colliding particles. In 
the case of hard spheres with elastic collisions (conventional molecular gases), Maxwell 
models are characterized by a repulsive potential that (in three dimensions) is propor-
tional to the inverse fourth power of distance between particles. For inelastic collisions, 
Maxwell models can be introduced in the framework of the Boltzmann equation at the 
level of the cross section, without any reference to a specific interaction potential [18]. 
In addition, apart from its academic interest, it is worthwhile remarking that experi-
ments [19] for magnetic grains with dipolar interactions are well described by IMM.

Therefore, the motivation of the paper is twofold. On the one hand, the knowledge 
of the first collisional moments for IMM allows one to re-examine the problem stud-
ied in [15] in the context of the (inelastic) Boltzmann equation and without taking 
any additional and sometimes uncontrolled approximations. On the other hand, the 
comparison between the results obtained from IMM with those derived from IHS [15] 
can be used again as a test to assess the reliability of IMM as a prototype model for 
characterizing real granular flows. Previous comparisons have shown a mild qualitative 
agreement in the freely cooling case [24, 25] while the agreement between IMM and IHS 
significantly increases for low order velocity moments in the case of driven states (for 
instance, the simple shear flow problem) [26–29].

The main advantage of using IMM instead of IHS is that a velocity moment of 
order k of the Boltzmann collision operator only involves moments of order less than 
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or equal to k. This allows to evaluate the Boltzmann collision moments without the 
explicit knowledge of the distribution function [20]. This property opens up the search 
of exact solutions to the Boltzmann equation and justifies the interest of physicists and 
mathematicians in IMM in the last years [21, 22]1. Thus, in this paper, we determine 
the exact forms of the shear viscosity η, the thermal conductivity κ and the transport 
coefficient μ (that relates the heat flux with the density gradient) as a function of the 
coefficient of restitution α and the thermostat forces intensity. As for IHS [15], the 
expressions of η, κ and μ are obtained by solving the Boltzmann equation for IMM 
up to first order in the spatial gradients by means of the Chapman–Enskog expansion 
[4]. A subtle point of the Chapman–Enskog solution derived here is that the zeroth-
order distribution f (0) is not in general a stationary distribution since the collisional 
cooling cannot be compensated locally for by the energy supplied by the thermostat 
[15, 16]. Such energy unbalance introduces new contributions to the transport coeffi-
cients, which not were considered in previous works [23] where local steady state was 
assumed at zeroth-order.

The plan of the paper is as follows. In section 2, the Boltzmann equation for driven 
IMM is introduced and the explicit expressions for the second and third-degree colli-
sional moments are given. Section 3 deals with the steady homogeneous state where a 
scaling solution is proposed that depends on granular temperature through two dimen-
sionless parameters (dimensionless velocity and reduced noise strength) [30]. Section 4 
addresses the Chapman–Enskog expansion around the unsteady reference distribution 
f tr v( , , )(0)  while the Navier–Stokes transport coefficients are obtained in section 5. 
The explicit dependence of η, κ and μ on the parameters of the system requires in gen-
eral to solve numerically a set of nonlinear differential equations. As for IHS [15], those 
differential equations become simple algebraic equations when the steady state condi-
tions are considered. The dependence of the transport coefficients on the coefficient of 
restitution is illustrated and compared with the results for IHS [15] in section 5. The 
comparison shows in general a good qualitative agreement, although quantitative dis-
crepancies between both interaction models appear as inelasticity increases. The paper 
is closed in section 6 with a brief discussion of the results derived in this paper.

2.  Inelastic Maxwell models

Let us consider a granular fluid modeled as a Maxwell gas of inelastic particles. 
Inelasticity in the translational degrees of freedom of the grains is measured by a 
constant and positive coefficient of restitution α  1. As said in the Introduction, the 
granular gas is driven by two different external nonconservative forces: (i) a stochastic 
force where the particles are randomly kicked between collisions [17] and (ii) a viscous 
drag force which mimics the interaction of the grains with an effective background 
‘bath’. Under these conditions, the one-particle velocity distribution function f (r, v, t) 
obeys the inelastic Boltzmann equation

· ·
γ

ξ∂
∂

+ ∇ − ∂
∂

− ∂
∂

= |f

t
f

m
f

v
f J f fv

v
V v

1

2
[ , ].b

b
2

2

2� (1)

1  For a recent review on IMM, see for instance [22].
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Here, γb is a drag parameter with a characteristic interaction time τ γ=− m/b,1
1

b  (m 
being the mass of a particle) and ξb2 represents the strength of the correlation in the 
Gaussian white noise of the stochastic force, this having a characteristic interaction 
time τ ξ=− v/b,2

1
b
2

0
2, with =v T m(2 / )0

2  and T is the granular temperature. Moreover, the 
Boltzmann collision operator J[f, f] for IMM is [22]

�∫ ∫ν ασ| =
Ω

− 
− ′ ′J f f

t

n t
f t f t f t f tv

r

r
v r v r v r v r v[ , ]

( , )

( , )
d d [ ( , , ) ( , , ) ( , , ) ( , , ) ,

d
1 2

1
1 2 1 2

�
(2)

where

∫=n t f tr v r v( , ) d ( , , )� (3)

is the number density, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions and �σ 
is a unit vector along the line of the two colliding spheres. In addition, the primes on 
the velocities denote the initial values { }′ ′v v,1 2  that lead to {v1, v2} following a binary 
collision:

· ·� � � �α ασ σ σ σ= − + = + +′ − ′ −v v g v v g
1

2
(1 ) ( ) ,

1

2
(1 ) ( ) ,1 1

1
12 2 2

1
12� (4)

where g12 = v1−v2 is the relative velocity of the colliding pair.
The collision frequency ν tr( , ) is independent of velocity but depends on space 

and time through its dependence on density and temperature. It can be seen as a free 
parameter of the model that can be chosen to optimize the agreement with the proper-
ties of interest of the original Boltzmann equation for IHS. For instance, in order to 
correctly describe the velocity dependence of the original IHS collision rate, one usu-
ally assumes that the IMM collision rate is proportional to Tq with q = 1/2. Here, the 
granular temperature is defined as

∫=T t
m

dn t
V t f tr

r
v r r v( , )

( , )
d ( , ) ( , , ),2

� (5)

where V(r, t) ≡ v−U(r, t) is the peculiar velocity and

∫=t
n t

f tU r
r

vv r v( , )
1

( , )
d ( , , )� (6)

is the mean flow velocity. In this paper, we take q as a generalized exponent so that 
different values of q can be used to mimic different potentials. As in previous works 
on IMM [27–29], we will assume that ν ∝ nTq, with q  0. The case q = 0 is closer to 
the original Maxwell model of elastic particles while the case q = 1/2 is closer to hard 
spheres. Thus, the collision frequency can be written as [22]

ν= AnT ,q� (7)

where the value of the quantity A will be chosen later.
The macroscopic balance equations for density, momentum and energy follow 

directly from equation (1) by multiplying with 1, mv and (1/2)mv2 and integrating 
over v. The result is

·+ ∇ =Dn n U 0 ,t� (8)
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+ ∇ =−DU mn P( ) 0 ,t i j ij
1

� (9)

· γ ξ ζ+ ∇ + ∇ = − + −DT
n

P U
T

m
m Tq

2

d
( )

2
.t ij j i b b

2
� (10)

Here, Dt = ∂t + U   ⋅  ∇ and the microscopic expressions for the pressure tensor P, the 
heat flux q and the cooling rate ζ are given, respectively, by

∫=P t m f tr v VV r v( , ) d ( , , ),� (11)

∫=t mV f tq r v V r v( , ) d
1

2
( , , ),2

� (12)

∫ζ = − |t
dn t T t

m V J f tr
r r

v r v( , )
1

( , ) ( , )
d [ , ( )].2

� (13)

The balance equations (8)–(10) apply regardless of the details of the interaction model 
considered. The influence of the collision model appears through the α-dependence of 
the cooling rate and of the momentum and heat fluxes.

As said in the Introduction, one of the advantages of the Boltzmann equation for 
Maxwell models (both elastic and inelastic) is that the collisional moments of the 
operator J[f, f] can be exactly evaluated in terms of the moments of the distribution 
f, without the explicit knowledge of the latter [34]. More explicitly, the collisional 
moments of order k are given as a bilinear combination of moments of order k′ and 
k′′ with 0  k′+k′′  k. In particular, the collisional moments involved in the cal-
culation of the momentum and heat fluxes as well as in the fourth cumulant are 
given by [20, 24]

∫ ν δ ν δ= − − −| |m VV J f f P p pvd [ , ] ( ) ,i j ij ij ij0 2 2 0� (14)

∫ ν= −m
V J f fv V qd

2
[ , ] ,2

2 1� (15)

∫ ν λ λ δ δ= − 〈 〉 + − − −V J f f V d
pT

m nm
P p P pvd [ , ] ( ) ( ) ,ij ij ji ij

4
4 0

4
1

2

2

2

2� (16)

where p = nT is the hydrostatic pressure,

ν α α ν ν α ν= + + −
+

= −d

d d d

(1 )( 1 )

( 2)
,

1

2
,0 2 2 0

2

� (17)

ν α α ν= + + − +
+

d d

d d

(1 )[5 4 ( 8) ]

4 ( 2)
,2 1� (18)

ν α α α α ν= + + − + + −
+

d d

d d

(1 )[12 9 (4 17) 3 3 ]

8 ( 2)
,4 0

2 3

� (19)
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λ α α α ν= + − − +d

d

(1 ) (4 1 6 3 )

8
,1

2 2

2� (20)

λ α α α ν= + + −
+d d

(1 ) (1 6 3 )

4 ( 2)
,2

2 2

� (21)

and we have introduced the fourth-degree isotropic velocity moment

∫〈 〉 =V V fv vd ( ).4 4
� (22)

The cooling rate ζ for IMM can be determined by taking the trace in equation (14). 
It is given by [24]

ζ α ν= −
d

1

2
.

2

� (23)

Note that while in the case of IHS, the cooling rate ζ is also expressed as a functional 
of the hydrodynamic fields, ζ is just proportional to ν in the case of IMM.

In order to compare the results derived here for IMM with those obtained [15] for 
IHS, we now need a criterion to fix the parameter ν (or the quantity A in equation 
(7)). Analogously to previous works on IMM [20, 22], [24–27], an appropriate choice to 
optimize the agreement with the IHS results seems to pick ν as given by equation (23) 
with q = 1/2. With this choice, the cooling rate of IMM will be the same as the one 
obtained for IHS (as evaluated in the Maxwellian approximation) [31, 32]. With this 
choice, the collision frequency ν is

ν ν= +d 2

2
,0� (24)

where

ν
π

σ= Ω
+

−

d
n

T

m

4

( 2)
.d d

0
1

� (25)

The collision frequency ν0 is the one associated with the Navier–Stokes shear viscosity 
of an ordinary gas (α = 1) of both Maxwell molecules and hard spheres, i.e., η0 = p/ν0.

3. Homogeneous steady states

Before analyzing inhomogeneous states, it is quite convenient first to study the homo-
geneous problem. In this case, the density n is constant, the flow velocity vanishes and 
the temperature T(t) is spatially uniform. Consequently, the Boltzmann equation (1) 
becomes

·
γ

ξ∂ − ∂
∂

− ∂
∂

=f
m

f
v

f J f f
v

v
1

2
[ , ].t

b
b
2

2

2� (26)
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Since the heat flux vanishes and the pressure tensor is diagonal (Pij = pδij), then the 
energy balance equation (10) reads simply

γ ξ ζ∂ = − + −T
T

m
m T

2
.t b b

2
� (27)

In the hydrodynamic regime, the time dependence of f only occurs through the relevant 
fields. In the homogeneous state, the only (time) varying field is the granular tempera-
ture T:

γ ξ ζ∂ = ∂
∂

∂ = −
 − + 




∂
∂

f
f

T
T

m

m

T
T

f

T

2
.t t b b

2
� (28)

Substitution of equation (28) into equation (26) yields

·γ ξ ζ
γ

ξ−
 − + 




∂
∂

− ∂
∂

− ∂
∂

=
m

m

T
T

f

T m
f

v
f J f f

v
v

2 1

2
[ , ].b b

2 b
b
2

2

2� (29)

For ordinary (elastic) gases (α = 1), ζ = 0 and the solution to equation (29) is the 
Maxwellian distribution

π
=











−



f v n

m

T

mv

T
( )

2
exp

2

d

M
b

/2 2

b

� (30)

where

ξ
γ

=T
m

2
b

2
b
2

b

� (31)

is the temperature of the (equilibrium) background bath [35]. The relation (31) is a 
consequence of the well-known fluctuation-dissipation theorem [36] relating the dissipa-
tion resulting from the action of an external force to the spontaneous fluctuations at 
thermal equilibrium. For granular gases (α≠ 1 and so ζ≠ 0), the fluctuation-dissipation 
theorem does not strictly apply and hence, the bath is not at equilibrium. In this case, 
the drag coefficient γb and the amplitude of the stochastic force ξb2 are generally not 
related (namely, they can be chosen as independent parameters). On the other hand, 
as we will show later, we shall consider a relation between both parameters (see equa-
tion (50) below) to simplify the calculations performed to determine the transport 
coefficients.

In the steady state, the first term on the left hand side of equation (29) vanishes and 
the steady temperature Ts is given by

ζ
γ

ξ+ =T
m

T m
2

,s s
b

s b
2

� (32)

where subscript s stands for the steady state. By combining relations (29) and (32) we 
can write, for the steady state,

· ·ζ ξ ξ∂
∂

− ∂
∂

− ∂
∂

=f
m

T
f

v
f J f f

v
v

v
v

1

2 2

1

2
[ , ].s s

b
2

s
s b

2
2

2 s s s� (33)
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Equation (33) shows that fs depends on the driven parameter ξb2. Thus, dimension-
less analysis requires that fs has the form [30]

*ξ ϕ ξ= −f n vv c( , ) ( , ) ,d
s b

2
s 0 s s� (34)

where ϕs is an unknown function of the dimensionless parameters

*ξ ξ
ν

≡ =
v

m

T
c

v
, ,

0
s

b
2

s s
� (35)

where =v T m2 /0 s  is the thermal velocity and ν = An Tq
s s s .

As already noted in previous studies of IHS [30, 33], the scaled distribution ϕs 
depends on the granular temperature through the scaled velocity c and also through 
the (reduced) noise strength *ξs . On the contrary, in the homogeneous cooling state and 
in the case of only one thermostat force, the dependence of ϕs is only encoded by the 
single parameter c [24]. In dimensionless form, equation (33) can be written as

* * · * *ζ ξ ϕ ξ ϕ ϕ ϕ− ∂
∂

− ∂
∂

=
c

J
c

c
1

2
( )

1

4
[ , ],s s ss

2

2 s s s� (36)

where *ζ ζ ν α≡ = − d/ (1 ) / 2s s s
2  and * ϕ ϕ ν≡J v J f f n[ , ] [ , ] / ( )d

s s 0 s s s s .
In reduced units, the steady state condition (32) can be written as

* * *γ ξ ζ= −2 ,s s s� (37)

where *γ γ ν≡ m/ ( )s b s . Since *γs  is definite positive, then equation (37) requires that * *ξ ζ≥s s .  
Thus, at a given value of α, there is a minimum threshold value * *ξ α ζ=( ) sth  needed to 
achieve a steady state. In particular, for spheres (d = 3), the smallest value of *ξ α( )th  is 1/6 
(which corresponds to α = 0) while the smallest value of *ξ α( )th  for disks (d = 2) is 1/4.

In the case of elastic collisions (α = 1), *ζ = 0s  and the solution to equation (36) is 
the gaussian distribution ϕ π= − −c e( ) d c

M
/2 2

. On the other hand, if α≠ 1, then *ζ ≠0s  and 
the solution to equation (36) is not exactly known. An indirect information of the devi-
ation of ϕs(c) from its gaussian form ϕM(c) is given by the kurtosis or fourth-cumulant

=
+

〈 〉−a
d d

c
4

( 2)
1,2,s

4
� (38)

where

∫ ϕ〈 〉 =c c ccd ( ).k k
s� (39)

In order to determine a2,s, we multiply equation (36) by c4 and integrate over velocity. 
The result is

* * * * *ζ ξ ξ ν λ− + + = + −
+

a a
d

d
2( )(1 ) 2 (1 )

( 2)
,s s s2,s 2,s 4 0 1� (40)

where *ν ν ν≡| | /4 0 4 0 s, *λ λ ν≡ /1 1 s and use has been made of equation (16). The solution to 
equation (40) is

* * *
* * * *
ζ ν λ
ν ζ ξ

α
α α ξ

=
− +
− −

= −
− + − + +

+a
d d d

2

2( )

6(1 )

4 7 3 (2 ) 16 ( 2)
,

s
d

d

s s

2,s

4 0 2 1

4 0

2 2

s

� (41)
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where the explicit forms of *ζs  and *ν4 0 have been considered. In the absence of friction 
(γb = 0), the steady state condition (37) becomes * *ξ ζ= ss  and we have double checked 
that equation (41) yields back the results of the theory of a driven granular gas heated 
only by the stochastic thermostat [24]

α α
α α α

= − +
+ − + + −

a
d d

6(1 ) (1 )

12 9 (4 17) 3 (1 )
.2,s

2

2� (42)

Moreover, when *ξ = 0s , equation (41) is consistent with the one obtained for IMM in 
the freely cooling case [24].

Figure 1 shows the steady value of the fourth-cumulant a2,s versus the coefficient 
of restitution α for a three-dimensional system. The theoretical results derived here 
for IMM given by equation (41) and in [30] (see equation (B.7)) for IHS are compared 
with those obtained by numerically solving the Boltzmann equation for IMM and IHS, 
respectively, by means of the direct simulation Monte Carlo (DSMC) method [39]. 
The parameters of the simulations for IMM and IHS have been chosen to get *ξ = 0.62s  
in the steady state. It is seen that the homogeneous state of IMM deviates from the 
gaussian distribution ϕM(c) (which corresponds to a2 = 0) slightly more than the homo-
geneous state of IHS. This behavior contrasts with the results obtained in the freely 
cooling case [24] where the magnitude of a2 for IMM is much larger than that of IHS. 
As expected, the simulation data for IMM and IHS show an excellent agrement with 
the exact result for IMM (equation (41)) and with the first Sonine approximation for 
IHS (equation (B.7)), even for quite small values of α.

4. Chapman–Enskog method for states close to homogeneous steady states

Let us slightly disturb the homogeneous steady state by small spatial perturbations. In 
this case, the momentum and heat fluxes are not zero and their corresponding Navier–
Stokes transport coefficients can be identified. The evaluation of these coefficients as 

Figure 1. The (steady) fourth-cumulant a2,s as a function of the coefficient of restitution 
for a three-dimensional system (d = 3) for *ξ = 0.62s . The solid and dashed lines are 
the analytic results obtained for IMM and IHS, respectively. The symbols refer to the 
Monte Carlo simulation results for IMM (circles) and IHS (squares).
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functions of the coefficient of restitution and the parameters of the external force is the 
main goal of the present paper.

As long as the spatial gradients keep small, the Boltzmann equation (1) may be 
solved by means of the Chapman–Enskog method [4] adapted to inelastic collisions. 
The Chapman–Enskog method assumes the existence of a normal solution in which 
all the space and time dependence of the distribution function occurs only through a 
functional dependence on the hydrodynamic fields, i.e.,

= |f t f n t T t tr v v r r U r( , , ) [ ( , ), ( , ), ( , ) ] .� (43)

The notation on the right hand side indicates a functional dependence on the density, 
temperature and flow velocity. This functional dependence can be made local by an 
expansion of f (r, v, t) in powers of the spatial gradients of n, U and T:

�= + + +f f f f ,(0) (1) (2)
� (44)

where the approximation f (k) is of order k in spatial gradients. In addition, to collect the 
different level of approximations in equation (1), one has to characterize the magnitude 
of the external driven parameters with respect to the gradients as well. As in [15], we 
assume that the parameters γb and ξb2 are taken to be of zeroth order in gradients since 
they do not create any new contribution to the irreversible fluxes and only modify the 
form of the transport coefficients.

The expansion (44) yields the corresponding expansions for the fluxes when one 
substitutes (44) into their definitions (11) and (12):

= + + … = + + …q q q, .(0) (1) (0) (1)P P P� (45)

Note that the cooling rate is exactly given by the expression (23) and so, ζ(k) = 0 for 
k  0. In the case of IHS, ζ(1) is different from zero but very small [15]. Finally, as usual 
in the Chapman–Enskog method, the time derivative is also expanded as

∂ = ∂ + ∂ + …,t t t
(0) (1)

� (46)

where the action of each operator ∂t
k( ) is obtained from the macroscopic balance equa-

tions (8)–(10) when one represents the fluxes and the cooling rate in their correspond-
ing series expansion (45). In this paper, only the first order contributions to the fluxes 
will be considered.

4.1. Zeroth-order approximation

Substitution of equations (44)–(46) into equation (1) yields the kinetic equation for f (0)

·
γ

ξ∂ − ∂
∂

− ∂
∂

= |f
m

f
v

f J f f
v

V V
1

2
[ , ].t

(0) (0) b (0)
b
2

2

2

(0) (0) (0
� (47)

To lowest order in the expansion, the balance equations yield

γ ξ ζ∂ = ∂ = ∂ = − + −n T
T

m
m TU 00, ,

2
,t t t

(0) (0) (0)
b b

2
� (48)
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where ζ is given by equation (23). Note that the cooling rate depends on space 
and time through the density n tr( , ) and temperature T tr( , ) fields. Moreover, 
∂ → ∂ ∂f f T( )( )t T t

(0) (0) (0) (0)  and thus, equation (47) becomes

·γ ξ ζ
γ

ξ−
 − + 




∂
∂

− ∂
∂

− ∂
∂

=
m

m

T
T

f

T m
f

v
f J f f

v
V

2 1

2
[ , ].b b

2
(0)

b (0)
b
2

2

2

(0) (0) (0)
� (49)

As already noted in the case of IHS [15], since density and temperature are specified 
separately in the local reference state f (0), the collisional cooling and the action of the 
thermostats do not in general cancel each other at all points in the system. Thus, 
∂ ≠T 0t

(0)  and f (0) depends on time through its dependence on the temperature.
As said before, in the case of elastic collisions, the fluctuation-dissipation theorem 

yields equation (31) where Tb is the bath temperature. In the case of inelastic collisions, 
the above theorem does not hold and the model parameters γb and ξb2 does not necessar-
ily obey the relation (31). However, to simplify the calculations in the time-dependent 
problem, we assume that those parameters verify the generic relation

γ β ξ= m

T
,b

2
b
2

b
� (50)

where β is a constant and Tb is an arbitrary (known) temperature. Here, to make con-
tact with some works [35] that have previously used the kind of thermostat considered 
in this paper, we have taken Tb as the temperature of the background bath when the 
latter is at equilibrium. The relation (50) was also assumed in the previous work for 
IHS [15]. When β = 0 (or equivalently, when γb = 0 but γbTb ≡ finite) our thermostat 
reduces to the usual stochastic thermostat [17, 33] while the choice β = 1/2 yields back 
the conventional Fokker–Planck model [35–38]. Thus, we will consider henceforth these 
two physically relevant values (β = 0, 1/2). Equation (50) can be rewritten as

* * * *γ β ξ θξ= = +T ,q q/(1 )
� (51)

where T* ≡ T/Tb and

θ β ξ≡






+

+
m

AnT
.

q

q

b
2

b
1

1/(1 )

� (52)

Upon writing equation (51), use has been made of the identity βT* = θ/ξ*1/(1+q), where

*ξ ξ
ν

ξ≡ = +

m

T T

m

AnT( )
.

q

b
2

b
2

1� (53)

According to equation (52), for the simplest model q = 0, θ can be interpreted as the 
(dimensionless) white noise intensity reduced with respect to the bath temperature Tb. 
On the other hand, the (dimensionless) noise strength ξ* has been reduced with respect 
to the actual granular temperature T. Note that θ depends on space through its depen-
dence on n while ξ* depends on space through its dependence on n and T.

In the unsteady state, dimensional analysis also requires that the zeroth-order dis-
tribution f tr v( , , )(0)  has the scaled form (34) (once one uses the relation (51)), namely

*ϕ θ ξ= −f t n t v tr v r r c( , , ) ( , ) ( , ) ( , , ) ,d(0)
0� (54)
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where now ≡ vc V / 0, = −V v U being the peculiar velocity. The temperature depen-
dence of the reduced distribution ϕ is encoded by the dimensionless velocity c and the 
(reduced) noise strength ξ*. Consequently, according to equation (54), one gets

· *
*

ξ
ξ

∂
∂

= − ∂
∂

− + ∂
∂

T
T

f f q f
V

V
1

2
(1 ) ,(0) (0) (0)

� (55)

and the scaled distribution ϕ obeys the kinetic equation

* * * *
*

* * · * *β ξ ζ ξ ϕ
ξ

ζ ξ ϕ ξ ϕ ϕ ϕ+ − + ∂
∂

+ − ∂
∂

− ∂
∂

=q T
c

J
c

c(1 )[(2 1) ]
1

2
( )

1

4
[ , ],

2

2� (56)

where use has been made of the identity (51).
An implicit expression of the fourth-cumulant a2(ξ*) (defined by equation (38)) can 

be obtained for unsteady states by multiplying both sides of equation (56) by c4 and 
integrating over velocity. The result is

* * * *
*

* * * *β ξ ζ ξ
ξ

λ ζ ν ξ+ − + ∂
∂

=
+

+ + − −q T
a d

d
a a(1 )[(2 1) ]

2
(1 )(2 ) 2 .2

1 2 4 0 2� (57)

In equation (57), the function a2(ξ*) must be obtained numerically. As we will show 
later, evaluation of the Navier–Stokes transport coefficients in the steady state requires 
the knowledge of the derivatives ∂a2/∂ξ* and ∂a2/∂θ in this state.

4.2. First-order approximation

The analysis to first order in the gradients follows similar steps as those made for IHS 
[15]. The velocity distribution function f (1) verifies the kinetic equation

· ·L
γ

ξ∂ + − ∂
∂

− ∂
∂

= − ∂ + ∇f
m

f
v

f f
v

V v( )
1

2
( ) ,t t

(0) (1) b (1)
b
2

2

2

(1) (1) (0)
� (58)

where L is the linearized Boltzmann collision operator

L = − +f J f f J f f( [ , ] [ , ] ) .(1) (0) (1) (1) (0)
� (59)

The macroscopic balance equations (8)–(10) to first order in the gradients are

·= − ∇ = − ∇−D n n D U mn pU, ( ) ,t t i i
(1) (1) 1� (60)

·= − ∇D T
p

dn
U

2
,t

(1)
� (61)

where ·≡∂ + ∇D Ut t
(1) (1)  and p = nT is the hydrostatic pressure. Use of equations (60) 

in equation (58) leads to

·

· · · ·

γ
ξ

δ

∂ + − ∂
∂

− ∂
∂

= ∇ + ∇ + 
∇ + ∇ − ∇ 


 + ∇

L f
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f
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f

T n C U U
d

D
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A B U U
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2

ln ln
1

2

2
,

t

ij i j j i ij

(0) (1) b (1)
b
2

2

2
(1)

� (62)
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where

ρ
= − ∂

∂
− ∂

∂
T

f

T

p f
A V V

V
( ) ,

(0) (0)

� (63)

ρ
= − ∂

∂
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∂
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f
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p f
B V V

V
( ) ,

(0) (0)

� (64)

= ∂
∂

C V
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V
V( ) ,ij i
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(0)

� (65)

·= ∂
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+ ∂
∂

− + ∂
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D
d

f
d
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f

T
f n

f

nV
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1
( )

2
.(0)

(0)
(0)

(0)

� (66)

In equations (61) and (62), T∂Tf 
(0) is given by equation (55) while, according to equa-

tions (50) and (51), the term n∂nf 
(0) can be more explicitly written as

*
*

ξ
ξ

θ
θ

∂
∂

= − ∂
∂

−
+

∂
∂

n
f

n
f

f

q

f

1
.

(0)
(0)

(0) (0)

� (67)

It is worth noticing that for q = 1/2, equations (62)–(66) have the same structure as 
that of the Boltzmann equation for IHS [15]. The only difference between both models 
lies in the explicit form of the linearized operator L.

5. Navier–Stokes transport coefficients

This section is devoted to the calculation of the Navier–Stokes transport coefficients of 
the driven granular gas. These coefficients can be identified from the expressions of the 
first-order contributions to the pressure tensor

∫=P m fv VV Vd ( ),(1) (1)
� (68)

and the heat flux vector

∫= m
V fq v V Vd

2
( ).(1) 2 (1)� (69)

The evaluation of the above fluxes has been worked out in appendix A. Only the 
final results are presented in this section. The pressure tensor Pij

(1) is given by

·η δ= − 
∇ + ∇ − ∇ 


P U U

d
U

2
,ij i j j i ij

(1)
� (70)

while the heat flux q(1) is

κ µ= − ∇ − ∇T nq .(1)
� (71)

Here, η is the shear viscosity coefficient, κ is the thermal conductivity coefficient and 
μ is a new transport coefficient not present for ordinary gases. These transport coef-
ficients can be written in the form
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* * *η η η κ κ κ µ κ µ= = = T

n
, , ,0 0

0
� (72)

where η0 = (d + 2)(p/2ν) and κ0 =  [d(d + 2)/2(d − 1)](η0/m) are the shear viscos-
ity and thermal conductivity coefficients, respectively, of a dilute ordinary gas. The 
reduced coefficients η*, κ* and μ* depend on temperature through its dependence on the 
(reduced) noise strength ξ*. They verify the following first-order differential equations:

* * * *
*

* * *η ξ η
ξ

ν γ ηΛ
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 − − + ∂

∂
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+| )q q
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,0 2� (73)
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* * * * * *

*
*

κ ξ κ
ξ

ξ ζ ν γ κ

ξ
ξ

Λ




 − − + ∂

∂




 + Λ − − + +

= −
+





 + − + ∂

∂






| )q q q

d

d d
a q

a

(1 ) (1 ) ( 3

2( 1)

( 2)
1 2 (1 ) ,

2 1

2
2
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* * * *
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* * *
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Here,

* * * *ξ γ ζΛ = − −2 ,� (76) 
*ν ν ν≡| | /0 2 0 2  and *ν ν ν≡| | /2 1 2 1 , where ν0|2 and ν2|1 are given by equations (17) and (18), 

respectively.
Apart from the Navier–Stokes transport coefficients (which are directly related to 

the second- and third-degree velocity moments of the the first order distribution func-
tion f (1)), another interesting velocity moment of f (1) corresponds to its fourth degree 
isotropic moment defined as

∫=
+

e
d d

m

nT
V fv

1

2 ( 2)
d .D

2

2

4 (1)
� (77)

In dimensionless form, the coefficient eD is given by

* ·ν= ∇−e e U,D D
1

� (78)

where *eD is the solution of the first-order differential equation

* * * *
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* * * *
*

ξ
ξ

ν γ ξ
ξ

θ
θ

Λ




 − − + ∂

∂




 + + = − + + ∂

∂
−

+
∂
∂| )q e q

e
e

q d

d

a

q

a
(2 ) (1 ) ( 4

2(1 )

2

1
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D
D4 0

2 2
� (79)

Here, *ν ν ν≡| | /4 0 4 0  where ν4|0 is given by equation (19).
In the elastic limit (α  =  1), *ζ = 0s , a2,s  =  0, * *γ ξ= / 2s s , *ν = +d2 / ( 2)0 2  and 
*ν = − +d d d2( 1) / ( 2)2 1 . In this case, * *µ = =e 0Ds  and the coefficients *ηs  and *κs  become, 

respectively,
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Another interesting situation is the freely cooling gas (γ* = ξ* = 0). In this case, 
Λ* = −ζ* and equation (79) gives *=e 0D . In addition, the solution to equations (73)–
(75) can be written as

*
* *

η
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+ − −d q

2

2

1
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,

0 2
� (81)
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* * * *
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µ κ ζ ν
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q1 2 (2 )
.

2

2 1 2

2 1
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When q =  1/2, equations (81)–(83) agree with those previously derived [24] for an 
undriven granular gas of IMM.

Apart from the above two situations (elastic collisions and undriven granular gas), the 
evaluation of the transport coefficients (η*, κ*, μ* and *e )D  for the general case of unsteady 
states requires to solve the differential equations (73)–(75) and (79). However, even for 
the simplest model (q = 0), it is not possible to obtain an exact solution to this system 
of equations, except in the steady state limit. For the steady state (Λ* = 0), one has to 
still evaluate the derivatives of ∂a2/∂ξ* and ∂a2/∂θ. The steady state expressions of these 
derivatives may be easily deduced, as we will show, from the simplified steady state form 
of equation (57). We present the results for steady states in the next subsection.

5.1. Transport coefficients under steady state

Under steady state (Λ* = 0), the set of differential equations (73)–(75) and (79) become 
a simple set of algebraic equations whose solution is
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where * * *γ ξ ζ= −( ) / 2s s s  and

* *
*θ ξ ζ ξ= − +

2
.q q

s
s s

s
/(1 )� (88)

The derivatives (∂a2/∂ξ*)s and (∂a2/∂θ)s appearing in equations (85)–(87) can be 
easily obtained from equation (57). According to equation (57), the derivative ∂a2/∂ξ* 
is given by

*
* * * *

* * * *ξ
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∂
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+ + − −

+ − +
+a a a

q T

(1 )(2 ) 2

(1 ) [(2 1) ]
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d

d2 2 1 2 4 0 2

� (89)

In the steady state, the numerator and denominator of equation (89) vanish so that, 
the quantity ∂a2/∂ξ* becomes indeterminate. This problem can be solved by applying 
l’Hopital’s rule. The final result is
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Upon deriving equation (90), use has been made of the identity
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2

1
1.� (91)

To obtain ∂a2/∂θ in the steady state, we derive first both sides of equation (57) with 
respect to θ. The result is

* * * *
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In the steady state, the first term of the left hand side of (92) vanishes and hence, one 
gets
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where use has been made of the result

*
* *θ

β
θ

θ
ξ ξ

∂
∂

= ∂
∂

=+ +T(2 )
2 2

.
q q1/(1 ) 1/(1 )� (94)

Figure 2 shows the dependence of the derivative 
*ξ

∆≡




∂
∂





a2

s

 on the coefficient of 

restitution α when the gas is heated by the stochastic thermostat (β = 0 and * *ξ ζ=s s ). 
The results obtained from equation (90) when q = 1/2 are compared with those derived 
for IHS in [15] and [33] by using two different methods. First, it is quite apparent that 
the results obtained for IHS are practically indistinguishable, showing that the expres-
sions of Δ obtained in [15] and [33] are consistent with each other. When comparing 
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very small for not too strong dissipation (α  0.6), although they increase as the coef-
ficient of restitution decreases.

5.2. Comparison with the Navier–Stokes transport coefficients of IHS in the steady state

The Navier–Stokes transport coefficients of IHS have been derived in [15] in the first 
Sonine approximation for a driven granular dense gas. For the sake of completeness, 
the expressions of the reduced coefficients *ηs , *κs , *µs  and *eD are listed in appendix B 
for a low-density granular gas.

Figures 3–6 show the α-dependence of the reduced transport coefficients * *η η/s s,0,  
* *κ κ/s s,0, *µs  and *eD , respectively, for *ξ = 1s . Here, since we are mainly interested in 

analyzing the influence of dissipation on transport, the shear viscosity and thermal 
conductivity coefficients have been reduced with respect to their corresponding elastic 

Figure 2. Plot of the derivative 
*ξ

∆≡




∂
∂





a2

s

 versus the coefficient of restitution α for 

the stochastic thermostat * *ξ ζ=( )s s  for disks (d = 2) and spheres (d = 3). The solid 
lines are the results given by equation (90) for q = 1/2 while the dotted and dashed 
lines are the results obtained for IHS in [15] and [33], respectively. Please note that the 
dotted and dashed lines overlap in the full interval represented here, meaning that 
both approaches in [15] and [33] lead to identical results for this magnitude.

Figure 3. Plot of the reduced shear viscosity * *η η/s s,0 as a function of the coefficient of 
restitution α for β = 1/2 in the case of a two- (d = 2) and three-dimensional (d = 3) 
system of IMM with q =  1/2 (solid lines) and IHS (dashed lines). The value of the 
(reduced) noise strength is *ξ = 1s .
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values *ηs,0 and *κs,0, respectively. Note that the coefficients *µs  and *eD vanish for elastic 
collisions. In addition, we have taken β = 1/2 and the Maxwell model with the power 
q = 1/2. This latter choice is closer to inelastic hard spheres.

We observe that in general the qualitative dependence of the Navier-Stokes trans-
port coefficients on dissipation of IHS is well captured by IMM. The shear viscos-
ity (as expected because the same behavior is observed in analogous systems [24]) 
increases with inelasticity. However, this increase is faster for IMM. The (reduced) 
thermal conductivity of IHS presents a non-monotonic dependence with dissipation, 

Figure 4. The same as in figure 3 for the reduced thermal conductivity * *κ κ/s s,0.
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Figure 5. The same as in figure 3 for the reduced coefficient *µ µ κ= n T/s s 0 .
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Figure 6. The same as in figure 3 for the reduced coefficient *eD .

d 2

0.5 0.6 0.7 0.8 0.9 1.0
0.005

0.000

0.005

0.010

0.015

0.020

α

e D

d 3

0.5 0.6 0.7 0.8 0.9 1.0

0.002

0.000

0.002

0.004

0.006

0.008

α

e D

http://dx.doi.org/10.1088/1742-5468/2014/06/P06008


Navier–Stokes transport coefficients for driven inelastic Maxwell models

20doi:10.1088/1742-5468/2014/06/P06008

J. S
tat. M

ech. (2014) P
06008

since first it decreases as α decreases in the region of weak dissipation, reaches a 
minimum and then, the ratio * *κ κ/s s,0 increases with inelasticity. This behavior dif-
fers from the one observed for IMM where * *κ κ/s s,0 always increases with inelasticity. 
With respect to the new transport coefficient *µs  (not present for elastic collisions), 
both interaction models predict that this coefficient is much smaller than the ther-
mal conductivity so that, the impact of the term −μ∇n on the heat flux q(1) is much 
smaller than the Fourier’s law term −κ∇T. Notice also that the quantitative differ-
ences between the Navier–Stokes transport coefficients of IMM and IHS increase with 
inelasticity, especially in the two-dimensional case. However and compared to freely 
cooling granular gases [24], these quantitative differences between both models are 
much less important for driven systems. Therefore, we think the results in this paper 
are particularly useful also for studying the transport properties of the analogous IHS 
driven system.

6. Discussion

Calculation of the Navier–Stokes transport coefficients in driven granular gases from 
the Boltzmann equation for IHS is a quite difficult problem. In particular, one has to 
compute three different collision integrals to get the explicit forms of the Navier–Stokes 
transport coefficients. However, given that these integrals cannot be exactly evaluated, 
one usually considers the leading terms in a Sonine polynomial expansion of the veloc-
ity distribution function (first-Sonine approximation) to estimate them [4]. In spite of 
the simplicity of this approach, the corresponding expressions of the Navier–Stokes 
transport coefficients compare in general quite well with computer simulations. On the 
other hand, it could be desirable to introduce interaction models more tractable ana-
lytically than IHS that were also capable of capturing the most important properties of 
the latter (at least within the domain of velocities near thermal velocity).

Based on the experience of elastic particles, a possible alternative that may over-
come the technical difficulties embodied in the Boltzmann collision operator of IHS is 
to consider IMM. In the Boltzmann equation for IMM, the collision rate of the underly-
ing system of IHS is replaced by an effective collision rate independent of the relative 
velocity of the two colliding particles. This property allows us to evaluate exactly the 
velocity moments of the Boltzmann collision operator without the explicit knowledge 
of the velocity distribution function.

In this paper the expressions of the Navier–Stokes transport coefficients of an 
inelastic Maxwell gas driven by a stochastic bath with friction have been obtained. 
This type of thermostat (used in a number of works by other authors [9]) is proposed 
to model the effect of the interstitial fluid on the dynamic properties of grains. As 
noted in the Introduction, the evaluation of the transport coefficients of IMM is an 
interesting problem by itself since it allows to understand in a clean way the influ-
ence of collisional dissipation on transport properties. In addition, the comparison 
between the exact results for IMM with those obtained for IHS by using approxi-
mate analytical methods allows us to gauge the degree of reliability of IMM for the 
description of granular flows. Here, we have accomplished this comparison with the 
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results for IHS derived by the authors in a recent work [15] by using the same type 
of thermostat.

The Navier–Stokes transport coefficients have been obtained by solving the 
Boltzmann equation for IMM by means of the Chapman–Enskog expansion up to first 
order in the spatial gradients. As noted in the previous work for IHS [15], collisional 
cooling cannot be necessarily balanced at all points in the system by the thermostat 
and/or external forces from the boundaries. As a consequence, the zeroth-order solu-
tion f (0) depends on time through its dependence on the granular temperature. The 
fact that ∂ ≠T 0t

(0)  gives rise to conceptual and mathematical difficulties not present 
in previous works [23, 24] where the parameters of the force were chosen to impose a 
steady temperature in the reference state f (0). In particular, we would need to solve 
numerically (which we have not done in the present work) a set of coupled first-order 
differential equations (see equations (73)–(75)), in order to obtain the dependence of 
the transport coefficients on dissipation and the thermostat forces parameters. This 
technical difficulty is present even in the simplest Maxwell model where the collision 
frequency ν is independent of temperature T (i.e., when q = 0 in equation (7)). Thus, 
we have considered the steady state conditions and have been able to obtain analyti-
cal expressions of all transport coefficients for this particular state. The steady state 
expressions are given by equation (84) for the (dimensionless) shear viscosity η*, equa-
tion (85) for the (dimensionless) thermal conductivity κ*, equation (86) for the coef-
ficient μ* and equation (87) for the first-order contribution *eD to the fourth-cumulant. 
The three first coefficients provide the momentum and heat fluxes in the first order of 
the spatial gradients.

As in previous works [24, 27, 28], we choose the collision frequency ν appearing in 
the Boltzmann equation for IMM (see equation (2)) to reproduce the cooling rate ζ of 
IHS (evaluated in the Maxwellian approximation). With this choice, the comparison 
between IMM and IHS (see figures 3–6 for d = 2 and 3) shows that IMM reproduce 
qualitatively well the trends observed for IHS, even for strong dissipation. On the other 
hand, at a more quantitative level, discrepancies between both interaction models 
increase with inelasticity, especially in the case of hard disks (d = 2). In any case, the 
results found in this paper contrast with those obtained in the freely cooling case [24] 
where IMM and IHS exhibit much more significant differences. Thus, the reliability of 
IMM as a prototype model for granular flows can be considered more robust in driven 
states than in the case of undriven states. This conclusion agrees with the results 
derived in the case of the simple shear flow problem [26] and more complex shear-
induced laminar flows [40]. In this context, the search for exact solutions for driven 
IMM and comparison with computer simulations or experiments, can be considered as 
an interesting problem in the near future.
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Appendix A. First-order contributions to the fluxes

In this appendix we determine the first-order contributions to the momentum and heat 
fluxes. Let us consider each flux separately. The first order contribution to the pressure 
tensor Pij

(1) is defined by equation (68). To obtain it, we multiply both sides of equation 
(58) by m ViVj and integrate over v. The result is

·ν
γ

δ∂ + + = − 
∇ + ∇ − ∇ 


P P

m
P p U U

d
U

2 2
.t ij ij ij i j j i ij

(0) (1)
0 2

(1) b (1)� (A.1)

Upon writing equation (A.1), use has been made of the result

L∫ ν=mVV f Pvd ,i j ij
(1)

0 2
(1)� (A.2)

where ν0|2 is given by equation (17). The solution to equation (A.1) can be written in 
the form (70), where the shear viscosity coefficient η obeys the time dependent equation

η ν
γ
η∂ +



 +



 =

m
p

2
.t

(0)
0 2

b� (A.3)

The shear viscosity can be written in the form (72) where η* is a dimensionless 
function of the reduced noise strength ξ* (or the reduced drag parameter γ* through 
equation (51)) and the coefficient of restitution α. Thus,

* * *
*

η η η η η η ξ η
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
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where

ξ γ
ζΛ≡ − −m

T m

2
.b b

2

� (A.5)

Equation (73) for η* can be easily obtained when one takes into account the relation 
(A.4) in equation (A.3).

The first order contribution to the heat flux is defined by equation (69). As in the 
case of the pressure tensor, to obtain q(1) we multiply both sides of equation (58) by 
m

V V
2

2  and integrate over v. After some algebra, one gets
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Upon writing equation (A.6), the following results have been used:

L∫ ν=m
V fv V qd

2
,2 (1)

2 1
(1)� (A.7)
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In equation (A.7), ν2|1 is defined by equation (18). The solution to equation (A.6) is 
given by equation (71), where κ is the thermal conductivity coefficient and μ is a new 
coefficient not present for elastic collisions. The Navier-Stokes transport coefficients 
κ and μ can be written in the form (72), where the (reduced) coefficients κ* and μ* 
depend on T through their dependence on ξ*:
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Moreover, there are also contributions to equation (A.6) coming from the term

ξ ζ ζ∇∂ =

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The corresponding differential equations for κ* and μ* can be obtained when one 
takes into account the constitutive form (69) and the relations (A.10)–(A.12) in equa-
tion (A.6). These equations are given by equation (74) for κ* and equation (75) for μ*.

We consider finally the isotropic fourth degree moment (77). Since eD is a scalar, it 
can be only coupled to the divergence of flow velocity ·∇ U :

* ·ν= ∇−e e U.D D
1� (A.13)

In order to determine the (reduced) coefficient *eD , we multiply both sides of equa-
tion (43) by V4 and integrate over velocity. After some algebra one arrives to equation 
(79) where use has been made of the partial result
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Appendix B. Navier–Stokes transport coefficients for IHS in the steady state

In this appendix we display the explicit expressions of the Navier–Stokes transport 
coefficients obtained in [15] for a moderately dense gas by considering the leading 
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terms in a Sonine polynomial expansion. In the low-density limit, the forms of 
the dimensionless coefficients *ηs , *κs , and *µs  for IHS in the steady state are given, 
respectively, by

*
* *

η
ν γ
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+ +ηd
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In addition, the quantities Δξ and Δθ are related to the derivatives (∂a2/∂ξ*)s and 
(∂a2/∂θ)s, respectively. The derivative (∂a2/∂ξ*)s obeys the quadratic equation (A6) 
of [15]. However, given that the magnitude of this derivative is in general quite small, 
one can neglect the nonlinear term (∂a2/∂ξ*)2 in this quadratic equation and get an 
explicit expression for this derivative. In this approximation, the quantities Δξ and Δθ 
can be written as
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where
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Finally, the coefficient *eD is
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