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Transport coefficients of a granular gas of inelastic rough hard spheres
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Departamento de Fı́sica and Instituto de Computación Cientı́fica Avanzada (ICCAEx),
Universidad de Extremadura, E-06071 Badajoz, Spain
(Received 24 May 2014; published 27 August 2014)

The Boltzmann equation for inelastic and rough hard spheres is considered as a model of a dilute granular
gas. In this model, the collisions are characterized by constant coefficients of normal and tangential restitution,
and hence the translational and rotational degrees of freedom are coupled. A normal solution to the Boltzmann
equation is obtained by means of the Chapman-Enskog method for states near the homogeneous cooling state.
The analysis is carried out to first order in the spatial gradients of the number density, the flow velocity, and
the granular temperature. The constitutive equations for the momentum and heat fluxes and for the cooling rate
are derived, and the associated transport coefficients are expressed in terms of the solutions of linear integral
equations. For practical purposes, a first Sonine approximation is used to obtain explicit expressions of the
transport coefficients as nonlinear functions of both coefficients of restitution and the moment of inertia. Known
results for purely smooth inelastic spheres and perfectly elastic and rough spheres are recovered in the appropriate
limits.

DOI: 10.1103/PhysRevE.90.022205 PACS number(s): 45.70.Mg, 05.20.Dd, 51.10.+y, 05.60.−k

I. INTRODUCTION

As is well known, the prototypical model of a granular gas is
a system composed of smooth, frictionless hard spheres which
collide inelastically with a constant coefficient of normal
restitution 0 < α � 1 [1–3]. In the dilute and moderately dense
regimes, the microscopic description of the gas is given by
the one-particle velocity distribution function f obeying the
(inelastic) Boltzmann and Enskog kinetic equations [1,4,5].
At a more phenomenological level, the gas can also be
described by the Navier-Stokes-Fourier (NSF) hydrodynamic
equations for the densities of mass, momentum, and energy
with appropriate constitutive equations for the stress tensor,
heat flux, and cooling rate. The Chapman-Enskog method
[6,7] bridges the gap between the kinetic and hydrodynamic
descriptions, thus providing explicit expressions for the NSF
transport coefficients in terms of the coefficient of normal
restitution. This task was first accomplished in the quasismooth
limit [8–10], the results being subsequently extended to
finite degree of inelasticity for monocomponent [11,12] and
multicomponent [13–16] granular gases.

In spite of the interest and success of the smooth hard-sphere
model of granular gases, grains in nature are typically fric-
tional, and hence energy transfer between the translational and
rotational degrees of freedom occurs upon particle collisions.
The simplest model accounting for particle roughness (and
thus including the particle angular velocity as an additional
mechanical variable) neglects the effect of sliding collisions
and is characterized by a constant coefficient of tangential
restitution β [17]. This parameter ranges from −1 (perfectly
smooth spheres) to 1 (perfectly rough spheres). A more sophis-
ticated model incorporates the Coulomb friction coefficient as
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a third collision constant, so that collisions become sliding
beyond a certain impact parameter [18–21]. On the other
hand, this three-parameter model significantly complicates
the kinetic description, while the simpler two-parameter (α,β)
model captures the essential features of granular flows when
particle rotations are relevant. This explains the wide use of
the latter model in the literature [4,17,20–47].

Needless to say, an important challenge is the derivation
of the NSF hydrodynamic equations of a granular gas of
inelastic rough hard spheres, with explicit expressions for the
transport coefficients as functions of α and β. Previous at-
tempts have been restricted to nearly elastic collisions (α � 1)
and either nearly smooth particles (β � −1) [17,20,21] or
nearly perfectly rough particles (β � 1) [17,24]. The goal of
this paper is to uncover the whole range of values of the
two coefficients of restitution α and β and derive explicit
expressions for the NSF transport coefficients of a dilute
granular gas beyond the above limiting situations.

In the case of conventional gases (i.e., when energy is
conserved upon collisions), the set of hydrodynamic variables
is related to densities of conserved quantities, namely, the
particle density n (conservation of mass), the flow velocity
u (conservation of momentum), and the temperature T

(conservation of energy). If the particles are perfectly elastic
and rough (α = β = 1), what is conserved is the sum of the
translational and the rotational kinetic energies and thus the
granular temperature T has translational (Tt ) and rotational
(Tr ) contributions [6,48,49]. Moreover, since the angular
velocity of the particles is not a collisional invariant, the
mean spin � is not included either in the set of hydrodynamic
variables or in the definition of the rotational contribution (Tr )
to the temperature [6,48,49].

For granular gases, although the total kinetic energy is
dissipated by collisions, the granular temperature is typically
included as a hydrodynamic field in most studies, and,
consequently, a sink term appears in the corresponding balance
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equation. For nearly smooth spheres (β � −1), some authors
[17,20,21] have chosen (in addition to n and u) the two partial
contributions Tt and Tr to the temperature, as well as the mean
spin �, as hydrodynamic variables. On the other hand, in this
paper we will choose as hydrodynamic fields for dissipative
gases the same as in conservative systems, i.e., n, u, and T .
In this way, the hydrodynamic description encompasses the
conservative gases as special limits. The advantage of the
choice of the set {n,u,T } instead of the set {n,u,�,Tt ,Tr}
is analogous to the advantage of the set {n1,n2,u,T } instead
of {n1,n2,u1,u2,T1,T2} in a binary mixture of inelastic smooth
hard spheres, as discussed in Refs. [50,51].

The plan of the paper is as follows. Section II is devoted to
the definition of the model of inelastic rough hard spheres
and their description in the low-density regime by means
of the Boltzmann equation. The exact balance equations for
the densities of mass, momentum, and energy are obtained
from the Boltzmann equation, and the associated fluxes of
momentum and energy, as well as the cooling rate, are
identified. The so-called homogeneous cooling state (HCS)
is studied in Sec. III. Special attention is paid to the time
evolution of the mean spin �. While the temperature ratio
Tr/Tt reaches a well-defined value for long times, the ratio
I�2/Tr (I being the moment of inertia) decays to zero with a
characteristic time typically smaller (except near β = −1) than
the relaxation time of the temperature ratio (see Fig. 2). This
clearly justifies the exclusion of � as a hydrodynamic field.
Next, the Chapman-Enskog method is applied in Sec. IV to
derive the linear integral equations for the velocity-dependent
functions characterizing the distribution function to first-order
in the hydrodynamic gradients. In Sec. V the NSF transport
coefficients (shear and bulk viscosities, thermal conductivity,
Dufour-like coefficient, and cooling rate transport coefficient)
are expressed in terms of integrals involving the solutions of
the linear integral equations. Next, a first Sonine polynomial
approximation is used to obtain practical results from this
formulation, thus providing explicit forms for the transport
coefficients as nonlinear functions of both α and β (see
Table I). Some technical details of the calculations are
relegated to the Appendix. The results are discussed in
Sec. VI, where known expressions in the limiting cases
of inelastic smooth spheres (α < 1, β = −1) and perfectly
elastic and rough spheres (α = β = 1) are recovered. The
intricate dependence of the transport coefficients on both
coefficients of restitution is illustrated by some representative
cases. Finally, the paper closes with some concluding remarks
in Sec. VII.

II. GRANULAR GAS OF INELASTIC ROUGH HARD
SPHERES: BOLTZMANN DESCRIPTION

A. Collision rules

Let (v,v1) and (ω,ω1) denote the linear and the angular
precollisional velocities, respectively, of two rough spherical
particles with the same mass m, diameter σ , and moment of
inertia I , while (v′,v′

1) and (ω′,ω′
1) correspond to their post-

collisional velocities. The pre- and postcollisional velocities

TABLE I. Summary of explicit expressions.
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are related by

mv′ = mv − Q, Iω′ = Iω − σ

2
σ̂×Q, (2.1a)

mv′
1 = mv1 + Q, Iω′

1 = Iω1 − σ

2
σ̂×Q, (2.1b)

where Q denotes the impulse exerted by the unlabeled particle
on the labeled one and σ̂ is the unit collision vector joining
the centers of the two colliding spheres and pointing from the
center of the unlabeled particle to the center of the labeled
one. Furthermore, the relationship between the center-of-mass
relative velocities (g = v − v1,g′ = v′ − v′

1) and the relative
velocities (g,g′) of the points of the spheres which are in contact
during a binary encounter are

g = g − σ

2
σ̂×(ω + ω1), (2.2a)

g′ = g′ − σ

2
σ̂×(ω′ + ω′

1). (2.2b)

Combining Eqs. (2.1) and (2.2), one obtains

g′ = g − 2

m
Q + 2

mκ
σ̂×(σ̂×Q)

= g − 2

m

κ + 1

κ
Q + 2

mκ
(σ̂ · Q)σ̂ , (2.3)

where in the second step use has been made of the mathemat-
ical property σ̂×(σ̂×Q) = (σ̂ · Q)σ̂ − Q and

κ = 4I

mσ 2
(2.4)

is a dimensionless moment of inertia, which may vary from
zero to a maximum value of 2/3, the former corresponding to
a concentration of the mass at the center of the sphere, while
the latter corresponds to a concentration of the mass on the
surface of the sphere. The value κ = 2/5 refers to a uniform
distribution of the mass in the sphere.

The inelastic collisions of rough spherical particles are
characterized by the relationships

σ̂ · g′ = −α(σ̂ · g), σ̂×g′ = −β(σ̂×g), (2.5)

where 0 < α � 1 and −1 � β � 1 are the normal and tangen-
tial restitution coefficients, respectively. For an elastic collision
of perfectly smooth spheres one has α = 1 and β = −1, while
α = 1 and β = 1 for an elastic encounter of perfectly rough
spherical particles.

Insertion of Eq. (2.3) into Eq. (2.5) gives σ̂ · Q = mα̃(σ̂ ·
g) and σ̂×Q = mβ̃(σ̂×g), where the following abbreviations
have been introduced:

α̃ ≡ 1 + α

2
, β̃ ≡ 1 + β

2

κ

κ + 1
. (2.6)

Therefore, the impulse can be expressed as

Q = mα̃(σ̂ · g)σ̂ − mβ̃σ̂×(σ̂×g)

= mα̃(σ̂ · g)σ̂ − mβ̃σ̂×
(

σ̂×g + σ
ω + ω1

2

)
. (2.7)

Equations (2.1) and (2.7) express the postcollisional veloci-
ties in terms of the precollisional velocities and of the collision
vector [52]. From these results it is easy to obtain that the

change of the total (translational plus rotational) kinetic energy
reads

�K = m

2

(
v′2 + v′2

1 − v2 − v2
1

) + I

2

(
ω′2 + ω′2

1 − ω2 − ω2
1

)
= −m

1 − β2

4

κ

κ + 1

[
σ̂×

(
σ̂×g + σ

ω + ω1

2

)]2

−m
1 − α2

4
(σ̂ · g)2. (2.8)

The right-hand side vanishes for elastic collisions of perfectly
smooth spheres (α = 1,β = −1) and for elastic collisions of
perfectly rough spherical particles (α = 1,β = 1). In those
cases the total energy is conserved in a collision.

Apart from the linear momentum, the angular momentum
is conserved, namely,

m(r×v + r1×v1) + I (ω + ω1)

= m(r×v′ + r1×v′
1) + I (ω′ + ω′

1), (2.9)

where r and r1 = r + σ σ̂ are the position vectors of the two
colliding particles.

B. Boltzmann equation

A direct encounter is characterized by the precolli-
sional velocities (v,v1; ω,ω1), by the postcollisional velocities
(v′,v′

1; ω′,ω′
1), and by the collision vector σ̂ . For a restitution

encounter the pre- and postcollisional velocities are denoted by
(v∗,v∗

1; ω∗,ω∗
1) and (v,v1; ω,ω1), respectively, and the collision

vector by σ̂ ∗ = −σ̂ . It is easy to verify the relationship
σ̂ ∗ · g = −α(σ̂ ∗ · g∗) = −σ̂ · g. The modulus of the Jaco-
bian of the transformation (v∗,v∗

1; ω∗,ω∗
1) → (v,v1; ω,ω1) is

given by ∣∣∣∣∂(v∗,v∗
1; ω∗,ω∗

1)

∂(v,v1; ω,ω1)

∣∣∣∣ = 1

αβ2
. (2.10)

Thus,

(σ̂ ∗ · g∗) dv∗ dω∗ dv∗
1 dω∗

1 = 1

α2β2
(σ̂ · g) dv dω dv1 dω1.

(2.11)

From Eq. (2.11) we may infer that the Boltzmann equation
for granular gases of rough spherical particles without external
forces and torques is given by

∂f

∂t
+ v · ∇f = J [f,f ], (2.12a)

J [f,f ] = σ 2
∫

dv1

∫
dω1

∫
+

dσ̂ (σ̂ · g)

(
f ∗

1 f ∗

α2β2
− f1f

)
,

(2.12b)

where f (r,v,ω,t) is the one-particle distribution function in
the phase space spanned by the positions and the linear and
angular velocities of the particles. As usual, in Eq. (2.12b) the
notation f1 = f (v1,ω1), f ∗ = f (v∗,ω∗), f ∗

1 = f (v∗
1,ω

∗
1) has

been employed. Also, the subscript (+) in the integration over
σ̂ denotes the constraint σ̂ · g > 0.

The so-called transfer equation is obtained from the
multiplication of the Boltzmann equation by an arbitrary
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KREMER, SANTOS, AND GARZÓ PHYSICAL REVIEW E 90, 022205 (2014)

function ψ(r,v,ω,t) and integration of the resulting equation
over all values of the velocities v and ω, yielding

∂t (n〈ψ〉) + ∇ · (n〈vψ〉) − n〈(∂t + v · ∇)ψ〉 = J [ψ |f,f ],

(2.13)

where

n(r,t) =
∫

dv
∫

dω f (r,v,ω,t) (2.14)

is the local number density,

〈ψ〉 = 1

n(r,t)

∫
dv

∫
dω ψ(r,v,ω,t)f (r,v,ω,t) (2.15)

is the local average value of ψ , and

J [ψ |f,f ] ≡
∫

dv
∫

dω ψ(r,v,ω,t)J [f,f ]

= σ 2

2

∫
dv

∫
dω

∫
dv1

∫
dω1

∫
+

dσ̂ (σ̂ · g)

× (ψ ′
1 + ψ ′ − ψ1 − ψ)f1f (2.16)

is the collisional production term of ψ . In the second step
of Eq. (2.16) we have used the relationship (2.11) and the
standard symmetry properties of the collision term.

C. Balance equations

A macroscopic description of a rarefied granular gas of
rough spheres can be characterized by the following basic
fields: the particle number density n(r,t) [see Eq. (2.14)],
the hydrodynamic flow velocity u(r,t), and the granular
temperature T (r,t). The two latter quantities are defined as

u = 〈v〉, T = 1
2 (Tt + Tr ), (2.17)

where

Tt = m

3
〈V 2〉, Tr = I

3
〈ω2〉 (2.18)

are the (partial) translational and rotational temperatures,
respectively, and the averages 〈· · · 〉 are defined by Eq. (2.15).
In Eq. (2.18), V = v − u is the (translational) peculiar velocity.
On the other hand, in the definition of Tr we have chosen not
to refer the angular velocities to the mean value

� = 〈ω〉 (2.19)

because the latter is not a conserved quantity. Had we defined
the granular temperature as T = (Tt + T r )/2 with T r =
I
3 〈(ω − �)2〉, then T would not be a conserved quantity in the
case of completely rough and elastic collisions (α = β = 1),
even though �K = 0 in that case [see Eq. (2.8)]

The balance equations for the basic fields are obtained from
the transfer equation (2.13) with the following choices for the
arbitrary function ψ(r,v,ω,t):

(1) Balance of particle number density (ψ = 1),

Dt n + n∇ · u = 0. (2.20)

(2) Balance of momentum density (ψ = mv),

ρDtu + ∇ · P = 0. (2.21)

(3) Balance of temperature (ψ = mV 2/2 + Iω2/2),

Dt T + 1

3n
(∇ · q + P : ∇u) + T ζ = 0. (2.22)

In the above balance equations, ρ = mn is the mass density,
Dt = ∂t + u · ∇ denotes the material time derivative, and the
following quantities have been introduced: the pressure tensor

Pij = ρ〈ViVj 〉, (2.23)

the heat flux vector

q = qt + qr (2.24)

with

qt = ρ

2
〈V 2V〉, qr = In

2
〈ω2V〉, (2.25)

and the cooling rate

ζ = Tt

2T
ζt + Tr

2T
ζr (2.26)

with

ζt = − m

3nTt

J [v2|f,f ], (2.27a)

ζr = − I

3nTr

J [ω2|f,f ]. (2.27b)

For further use, we note that the hydrostatic pressure p is
defined as one third of the trace of the pressure tensor, so that

p = nTt . (2.28)

Also, the balance equations for the partial temperatures are

Dt Tt + 2

3n
(∇ · qt + P : ∇u) + Ttζt = 0, (2.29)

Dt Tr + 2

3n
∇ · qr + Trζr = 0. (2.30)

Combination of Eqs. (2.29) and (2.30) yields Eq. (2.22).
It is worth noting that the conservation of angular mo-

mentum, Eq. (2.9), does not generate a balance equation with
J [ψ |f,f ] = 0 for the quantity ψ = mr×v + Iω because of
the difference r1 − r = σ σ̂ between the centers of the two
colliding spheres.

III. HOMOGENEOUS COOLING STATE

Before considering the transport properties in inhomoge-
neous states, it is convenient to characterize the main properties
of homogeneous states. In those cases, Eqs. (2.20) and (2.21)
imply n = const and u = const, while Eqs. (2.29) and (2.30)
become

∂tTt + Ttζt = 0, ∂tTr + Trζr = 0. (3.1)

The exact forms for the cooling rates ζt and ζr cannot
be determined, unless the distribution function f (v,ω,t) is
known. Good estimates of those quantities can be obtained by
assuming the approximation

f (v,ω) →
(

m

2πTt

)3/2

e−mV 2/2Tt fr (ω), (3.2)
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where

fr (ω) =
∫

dv f (v,ω) (3.3)

is the marginal distribution of angular velocities. Equation
(3.2) can be justified by maximum-entropy arguments, except
that the explicit expression of fr (ω) does not need to be
specified. Substitution of (3.2) into Eqs. (2.27) and evaluation
of the collision integrals given by Eq. (2.16) yields [42]

ζt = 5

12

[
1 − α2 + κ

1 + κ
(1 − β2) − κ

(1 + κ)2
(1 + β)2

× θ

(
1 + X − 1

θ

) ]
ν, (3.4)

ζr = 5

12

1 + β

1 + κ

[
(1 − β)(1 + X) + κ

1 + κ
(1 + β)

×
(

1 + X − 1

θ

) ]
ν, (3.5)

where

θ ≡ Tr

Tt

, X ≡ I�2

3Tr

, (3.6)

and

ν ≡ 16
5 σ 2n

√
πTt/m (3.7)

is an effective collision frequency. Note that X = 1 − T r/

Tr � 1. The total cooling rate is, according to Eq. (2.26),

ζ = 5

12

1

1 + θ

[
1 − α2 + 1 − β2

1 + κ
θ

(
κ

θ
+ 1 + X

)]
ν. (3.8)

Since Eqs. (3.4) and (3.5) involve the norm �2 of the mean
angular velocity, we need to complement Eq. (3.1) with the
evolution equation for �2. By using again the approximation
(3.2) one obtains [42]

∂t�
2 + 2ζ��2 = 0, ζ� = 5

6

1 + β

1 + κ
ν. (3.9)

By introducing the time variable s(t) = ∫ t

0 dt ′ ν(t ′), which
measures the (nominal) number of collisions per particle from
the initial time to time t , the solution to Eq. (3.9) is

�2(s) = �2(0)e−2ζ ∗
�s, ζ ∗

� ≡ ζ�/ν. (3.10)

This allows us to solve the set of coupled equations (3.1)
to obtain the time dependence of the temperatures Tt (s) and
Tr (s). Both quantities asymptotically decrease in time due to
energy dissipation. On the other hand, the relevant quantity is
the temperature ratio θ (s). Analogously, rather than the time
decay of �2(s), and since Tr (s) also tends to decay in time, the
relevant quantity is the ratio X(s). The evolution equations for
both quantities are

∂sθ + (ζ ∗
r − ζ ∗

t )θ = 0, (3.11a)

∂sX + (2ζ ∗
� − ζ ∗

r )X = 0, (3.11b)

where ζ ∗
t ≡ ζt/ν and ζ ∗

r ≡ ζr/ν. Since

2ζ ∗
� − ζ ∗

r = 5

12

1 + β

(1 + κ)2

×
[

3 − X + β(1 + X) + 2κ(1 − X) + κ
1 + β

θ

]
(3.12)

is positive definite, it follows that X → 0 monotonically, no
matter the initial condition. On the other hand, the evolution
equation for θ admits a nonzero stationary solution given by
the condition ζ ∗

r = ζ ∗
t . Such a solution is

θ∞ =
√

1 + h2 + h (3.13)

with

h ≡ 1 + κ

2κ(1 + β)

[
(1 + κ)

1 − α2

1 + β
− (1 − κ)(1 − β)

]
. (3.14)

A standard linear stability analysis of the stationary solution
X = 0 and θ = θ∞ shows that the two associated eigenvalues
are

�1 = θ∞
∂(ζ ∗

r − ζ ∗
t )

∂θ

∣∣∣∣
θ=θ∞,X=0

= 5

12
κ

(
1 + β

1 + κ

)2 1 + θ2
∞

θ∞
,

(3.15)

�2 = 2ζ ∗
� − ζ ∗

r |θ=θ∞,X=0

= 5

12

1 + β

(1 + κ)2

(
3 + β + 2κ + κ

1 + β

θ∞

)
. (3.16)

As expected, both eigenvalues are positive definite, what
proves the stability of the stationary solution (θ,X) = (θ∞,0)
against homogeneous perturbations. The time evolution of
X(s) is governed by the eigenvalue �2 only, so that the
relaxation time (in units of number of collisions per particle)
of X(s) is s ∼ �−1

2 . As for θ (s), its relaxation time is s ∼ �−1
1 if

X(0) = 0 and s ∼ max(�−1
1 ,�−1

2 ) if X(0) 
= 0. Figure 1 shows
the dependence of both relaxation times on roughness for the
representative case α = 0.8. Except in a narrow roughness

FIG. 1. (Color online) Plot of the characteristic relaxation times
�−1

1 and �−1
2 as functions of β for κ = 2

5 and α = 0.8.
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FIG. 2. (Color online) Plot of (a) X = I�2/3Tr and (b) θ =
Tr/Tt as functions of the number of collisions per particle (s) scaled
by (1 + β)−2 for κ = 2

5 , α = 0.8, and β = −0.5, 0, 0.5, and 1, starting
from the initial condition θ (0) = 1, X(0) = 1

2 . The horizontal lines
in panel (b) correspond to the respective stationary values θ∞.

region adjacent to β = −1, one has �−1
1 > �−1

2 , so that X(s)
relaxes more rapidly than θ (s).

As an illustration of the evolution of θ (s) and X(s), Fig. 2
shows both quantities for α = 0.8 and β = −0.5, 0, 0.5, and
1, starting from the initial condition θ (0) = 1, X(0) = 1

2 . It
is quite apparent that θ reaches its stationary value (3.13) in
about 30/(1 + β)2 collisions per particle, while X goes to zero
in a significantly shorter period.

The special quasismooth limit β → −1 deserves further
comments [53]. In that case, the asymptotic rotational-
translational temperature ratio θ∞ diverges as θ∞ →
[(1 + κ)2/κ](1 − α2)(1 + β)−2, the two eigenvalues becom-
ing �1 → 5

12 (1 − α2), which is just the cooling rate of per-
fectly smooth spheres [54], and �2 → 5

6 (1 + β)/(1 + κ) → 0.
Therefore, if X(0) = 0, (1 + β)2θ (s) relaxes to (1 + β)2θ∞
after a finite number of collisions per particle on the order of
�−1

1 . On the other hand, if X(0) 
= 0, (1 + β)2θ (s) evolves in
two well-defined stages. The first stage lasts a characteristic
time ∼ �−1

1 and is very similar to that of the case X(0) = 0.
This first stage is followed by a much slower relaxation (with
s ∼ �−1

2 ∼ (1 + β)−1 → ∞ collisions per particle) toward the
asymptotic value. This singular scenario in the quasismooth
limit is illustrated by Fig. 3 for β = −0.99 and α = 0.8.

The stationary solution (3.13) represents the value of the
temperature ratio in the HCS [28,31–33,38]. In such a state the
whole time dependence of the distribution function only occurs
through the granular temperature T (t), so that the Boltzmann

FIG. 3. (Color online) Plot of X = I�2/3Tr (dashed line) and
(1 + β)2θ = (1 + β)2Tr/Tt (solid line) as functions of the number of
collisions per particle (s) scaled by (1 + β)−1 for κ = 2

5 , α = 0.8, and
β = −0.99, starting from the initial condition θ (0) = 1, X(0) = 1

2 .
The dash-dotted line represents (1 + β)2θ if X(0) = 0. The horizontal
line corresponds to the stationary value (1 + β)2θ∞.

equation (2.12a) becomes

−ζT ∂T f = J [f,f ], (3.17)

where, according to Eq. (3.8), ζ = ζ ∗ν with

ζ ∗ = 5

12

1

1 + θ∞

[
1 − α2 + (1 − β2)

θ∞ + κ

1 + κ

]
. (3.18)

The dependence of the HCS (reduced) cooling rate ζ ∗ on both
α and β is displayed in Fig. 4. As can be observed, at a given
value of α a maximum of ζ ∗ occurs around β ≈ 0. In the
region close to β = −1, where θ∞ � 1, Eq. (3.18) becomes
ζ ∗ ≈ 5

12 (1 − β2)/(1 + κ). Therefore, limβ→−1 ζ ∗ = 0.
The HCS distribution function has the scaling form

f (v,ω,t) = n

(
mI

τtτr

)3/2

[T (t)]−3 φ(c(t),w(t)), (3.19)

where

c(t) = V√
2τtT (t)/m

, w(t) = ω√
2τrT (t)/m

, (3.20)

with the time-independent temperature ratios

τt ≡ Tt (t)

T (t)
= 2

1 + θ∞
, τr ≡ Tr (t)

T (t)
= 2θ∞

1 + θ∞
. (3.21)

Hence, according to Eq. (3.19), one has the relation

T ∂T f = −1

2

(
∂

∂V
· V + ∂

∂ω
· ω

)
f. (3.22)

In the particular case of perfectly elastic and smooth
particles (α = 1, β = −1), the rotational velocities must
be ignored (i.e., τr = 0, τt = 2), and the solution of
Eq. (3.17) is just the equilibrium distribution of translational
velocities. In the other conservative case of perfectly elastic
and rough spheres (α = β = 1), the solution of Eq. (3.17)
is the equilibrium distribution with a common temperature
(i.e., τr = τt = 1). In the general dissipative case, however,
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FIG. 4. (Color online) (a) Reduced cooling rate ζ ∗ as a function
of β for κ = 2

5 and α = 0.6, 0.8, and 1. (b) Reduced cooling rate ζ ∗

as a function of α for κ = 2
5 and β = −0.5, 0, 0.5, and 1, as well

as in the quasismooth limit β → −1 and for purely smooth spheres
(β = −1). (c) Density plot of the reduced cooling rate ζ ∗ for κ = 2

5 .
The contour lines correspond to ζ ∗ = 0.025,0.05, . . . ,0.35.

the solution of Eq. (3.17) is not exactly known, although good
approximations are given in the form of a two-temperature
Maxwellian multiplied by truncated Sonine polynomial ex-
pansions [28,30–33,35,38,39,41,44,45,47].

IV. CHAPMAN-ENSKOG METHOD

A. Outline of the method

To determine the distribution function from the Chapman-
Enskog method [6,7], we write the Boltzmann equation (2.12a)
as

Dt f + εV · ∇f = J [f,f ], (4.1)

where ε is a uniformity parameter (set equal to unity at the
end of the calculations) measuring the strength of the spatial
gradients. According to the method, the distribution function

and the material time derivative are expanded in terms of the
parameter ε as follows:

f = f (0) + εf (1) + ε2f (2) + · · · , (4.2)

Dt = D(0)
t + εD(1)

t + ε2D(2)
t + · · · . (4.3)

Substitution of Eq. (4.2) into the definitions of the fluxes and
the cooling rate gives

Pij = p(0)δij + εP
(1)
ij + ε2P

(2)
ij + · · · , (4.4)

q = εq(1) + ε2q(2) + · · · , (4.5)

ζ = ζ (0) + εζ (1) + ε2ζ (2) + · · · , (4.6)

where p(0) = nτtT ,

ζ (0) = − 1

6nT

∫
dv

∫
dω (mV 2 + Iω2)J [f (0),f (0)], (4.7)

ζ (1) = 1

6nT

∫
dv

∫
dω (mV 2 + Iω2)Lf (1)

= τt

2
ζ

(1)
t + τr

2
ζ (1)
r . (4.8)

In Eq. (4.8) L is the linearized collision operator defined as

L� = −J [�,f (0)] − J [f (0),�]. (4.9)

Thus, ζ (1) = JL[mV 2 + Iω2|f (1)]/6nT , with the notation

JL[ψ |�] ≡
∫

dv
∫

dω ψ(r,v,ω,t)L�

= σ 2

2

∫
dv

∫
dω

∫
dv1

∫
dω1

∫
+

dσ̂ (σ̂ · g)

× (ψ1 + ψ − ψ ′
1 − ψ ′)

(
f

(0)
1 � + f (0)�1

)
,

(4.10)

where ψ1 ≡ ψ(v1,ω1), ψ ′ ≡ ψ(v′,ω′), ψ ′
1 ≡ ψ(v′

1,ω
′
1),

f
(0)
1 ≡ f (0)(v1,ω1), �1 ≡ �(v1,ω1), and in the last step use

has been made of Eq. (2.16).
Insertion of the expansions (4.2) and (4.3) into the

Boltzmann equation (4.1) leads to the corresponding integro-
differential equations for the different orders f (k). In particular,
the two first equations are

D(0)
t f (0) = J [f (0),f (0)], (4.11)(

D(0)
t + L

)
f (1) = −(

D(1)
t + V · ∇)

f (0). (4.12)

Since the distribution function in (4.2) depends on time and
space only through its dependence on the hydrodynamic fields
n, u, and T , the action of the operator D(k)

t can be written as

D(k)
t = (

D(k)
t n

) ∂

∂n
+ (

D(k)
t u

) · ∂

∂u
+ (

D(k)
t T

) ∂

∂T
. (4.13)
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From the balance equations (2.20)–(2.22) it follows that

D(0)
t n = 0, D(1)

t n = −n∇ · u, (4.14)

D(0)
t u = 0, D(1)

t u = −τt

ρ
(n∇T + T ∇n) , (4.15)

D(0)
t T = −T ζ (0), D(1)

t T = −T ζ (1) − τt

3
T ∇ · u. (4.16)

Taking into account that D(0)
t � = −ζ (0)T ∂T �, it is ob-

vious that Eq. (4.11) is formally equivalent to the HCS
equation (3.17). This means that f (0) is the local version of
the HCS distribution. Moreover, in the approximation (3.2),
ζ ∗ = ζ (0)/ν is given by Eq. (3.18).

B. First-order distribution

The first-order function f (1) obeys the linear equa-
tion (4.12). By using the properties (4.13)–(4.16), the inho-
mogeneous term of Eq. (4.12) becomes

− (
D(1)

t + V · ∇)
f (0) = A · ∇ ln T + B · ∇ ln n + Cij∇jui

+ E∇ · u + T ζ (1)∂T f (0), (4.17)

where

A = −T

(
V∂T + τt

m
∂V

)
f (0), (4.18)

B = −
(

V + τtT

m
∂V

)
f (0), (4.19)

Cij =
(

∂Vi
Vj − 1

3
δij ∂V · V

)
f (0), (4.20)

E = 1

3
(∂V · V + τtT ∂T ) f (0). (4.21)

In the case of pure smooth particles, f (0) is a function of
the translational velocity only, there is no rotational energy
and hence τr = 0, τt = 2, and T ∂T f (0) = − 1

2∂V · Vf (0). As
a consequence, E = 0 and one recovers the known results
for inelastic smooth particles [11]. Thus, the presence of
roughness induces a nonvanishing function E, even in the
conservative case of perfectly rough particles (α = β = 1)
[6,55]. A subtler consequence of roughness is the symmetry
breakdown of the traceless tensor Cij . Isotropy implies that
f (0)(V,ω) is a function of the three scalars V 2, ω2, and
χ2 ≡ (V · ω)2. Therefore,

Cij − Cji = 2
∂f (0)

∂χ2
(V · ω)(Vjωi − Viωj ). (4.22)

If one neglects the orientational correlations between V and ω

in the HCS so that the dependence of f (0) on χ2 is ignored,
then Cij = Cji , as happens in the pure smooth case.

Taking into account Eq. (4.17), the solution to Eq. (4.12)
has the form

f (1) = A · ∇ ln T + B · ∇ ln n + Cij∇jui + E∇ · u, (4.23)

where the vectors A and B, the traceless tensor Cij , and the
scalar E are unknown functions to be determined. Combination
of Eqs. (4.8) and (4.23) allows us to write the first-order

contribution to the cooling rate as

ζ (1) = −ξ∇ · u (4.24)

with

ξ = 1
2 (τt ξt + τrξr ), (4.25)

where

ξt = − m

3nτtT
JL[V 2|E], ξr = − I

3nτrT
JL[ω2|E] (4.26)

are the translational and rotational contributions to ξ .
Substitution of Eq. (4.23) into Eq. (4.12) gives the following

set of linear integral equations:(
−ζ (0)

2
− ζ (0)T ∂T + L

)
A = A, (4.27)

(−ζ (0)T ∂T + L)B = B + ζ (0)A, (4.28)

(−ζ (0)T ∂T + L)Cij = Cij , (4.29)

(−ζ (0)T ∂T + L)E + ξT ∂T f (0) = E. (4.30)

In Eqs. (4.27) and (4.28) use has been made of the property

D(0)
t ∇ ln T = ∇D(0)

t ln T = −∇ζ (0)

= −ζ (0) (∇ ln n + 1
2∇ ln T

)
. (4.31)

According to Eqs. (4.18)–(4.21), the functions A, B, Cij ,
and E are orthogonal to {1,V,mV 2 + Iω2,ω}, i.e.,

∫
dv

∫
dω

⎛⎜⎝ 1
V

mV 2 + Iω2

ω

⎞⎟⎠ · (A,B,Cij ,E) = 0. (4.32)

Therefore, the Fredholm alternative [56] implies that the
necessary conditions for the existence of solutions (solubility
conditions) to Eqs. (4.27)–(4.30) are

∫
dv

∫
dω

⎛⎜⎝ 1
V

mV 2 + Iω2

ω

⎞⎟⎠ · (A,B,Cij ,E) = 0. (4.33)

The solubility conditions associated with {1,V,mV 2 + Iω2}
mean that, by construction, the hydrodynamic quantities n, u,
and T are fully contained in f (0). As for the solubility condition
associated with ω, it implies

�(1) = 1

n

∫
dv

∫
dω ωf (1) = 0. (4.34)

V. NAVIER-STOKES-FOURIER TRANSPORT
COEFFICIENTS

A. Exact formal expressions

From Eq. (4.23) one can express the first-order pressure
tensor and heat flux as

P
(1)
ij = −η

(∇iuj + ∇jui − 2
3δij∇ · u

) − ηbδij∇ · u, (5.1)

q(1) = −λ∇T − μ∇n, (5.2)
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where the transport coefficients are

η = − m

10

∫
dv

∫
dω

(
ViVj − V 2

3
δij

)
Cij , (5.3)

ηb = −m

3

∫
dv

∫
dω V 2E, (5.4)

λ = τtλt + τrλr , μ = μt + μr, (5.5)

with

λt = − m

6τtT

∫
dv

∫
dω V 2V · A, (5.6)

λr = − I

6τrT

∫
dv

∫
dω ω2V · A, (5.7)

μt = − m

6n

∫
dv

∫
dω V 2V · B, (5.8)

μr = − I

6n

∫
dv

∫
dω ω2V · B. (5.9)

In the constitutive equations (5.1) and (5.2), η is the shear
viscosity, ηb is the bulk viscosity, λ is the thermal conductivity,
and μ is a Dufour-like coefficient. The two latter coefficients
have translational (λt , μt ) and rotational (λr , μr ) contributions.

By multiplying Eq. (4.27) by V 2V and ω2V, and integrating
over velocity one obtains

λt = 5nτtT

2m

1 + 2a
(0)
20

νλt
− 2ζ (0)

, (5.10)

λr = 3nτtT

2m

1 + 2a
(0)
11

νλr
− 2ζ (0)

, (5.11)

where

νλt
=

∫
dv

∫
dω V 2V · LA∫

dv
∫

dω V 2V · A , (5.12)

νλr
=

∫
dv

∫
dω ω2V · LA∫

dv
∫

dω ω2V · A (5.13)

are the associated collision frequencies and

a
(0)
20 = m2

15nτ 2
t T 2

∫
dv

∫
dω V 4f (0) − 1, (5.14)

a
(0)
11 = mI

9nτtτrT 2

∫
dv

∫
dω V 2ω2f (0) − 1, (5.15)

are cumulants of the HCS distribution f (0) [47]. Upon deriving
Eqs. (5.10) and (5.11) we have taken into account that,
by dimensional analysis, T ∂T λt = 1

2λt and T ∂T λr = 1
2λr .

Analogously, from Eq. (4.28) one gets

μt = τtT

n

λtζ
(0) + (5nτtT /2m)a(0)

20

νμt
− 3

2ζ (0)
, (5.16)

μr = τrT

n

λrζ
(0) + (3nτtT /2m)a(0)

11

νμr
− 3

2ζ (0)
, (5.17)

where

νμt
=

∫
dv

∫
dω V 2V · LB∫

dv
∫

dω V 2V · B , (5.18)

νμr
=

∫
dv

∫
dω ω2V · LB∫

dv
∫

dω ω2V · B , (5.19)

and use has been made of T ∂T μt = 3
2μt and T ∂T μr = 3

2μr .
Next, multiplication of Eq. (4.20) by ViVj − 1

3δijV
2 and

integration over velocity yields

η = nτtT

νη − 1
2ζ (0)

, (5.20)

where

νη =
∫

dv
∫

dω
(
ViVj − V 2

3 δij

)
LCij∫

dv
∫

dω
(
ViVj − V 2

3 δij

)
Cij

. (5.21)

Finally, multiplying Eq. (4.30) by V 2 allows us to obtain

ηb = τt τrnT

ζ (0)

(
ξt − ξr − 2

3

)
. (5.22)

In Eqs. (5.20) and (5.22) we have made use of the properties
T ∂T η = 1

2η and T ∂T ηb = 1
2ηb.

The existence of a nonzero bulk viscosity induces a
breakdown of energy equipartition additional to the one
already present in the HCS. Taking the trace in Eqs. (4.4)
and (5.1), one has

Tt = τtT − ηb

n
∇ · u + · · · , (5.23)

where the ellipses denote terms of at least second order in the
hydrodynamic gradients. Since the total temperature T is not
affected by the gradients, then

Tr = τrT + ηb

n
∇ · u + · · · . (5.24)

Thus the temperature ratio becomes

Tr

Tt

= τr

τt

[
1 + 2

ξt − ξr − 2
3

ζ (0)
∇ · u + · · ·

]
, (5.25)

where use has been made of Eq. (5.22).
Equations (5.10), (5.11), (5.16), (5.17), (5.20), and (5.22)

are formally exact but require the solution of the set of
linear integral equations (4.27)–(4.30). As happens in the
conservative case [6,7], the exact solution of those equations
is not known. Since A is a vector, it can be expressed as a sum
of projections along the three polar vectors V, (V · ω)ω, and
V×ω [57], namely,

A = A1V + A2(V · ω)ω + A3V×ω, (5.26)

where Ai are unknown isotropic scalar functions; i.e., they
depend on V 2, ω2, and χ2 = (V · ω)2 only. Of course, the
vector function B has a similar structure. The tensor Cij can
be expressed as a combination of traceless dyadic products of
the three vectors V, (V · ω)ω, and V×ω with unknown scalar
coefficients. Finally, E is an unknown scalar function.

In Sec. V B we derive explicit expressions for the transport
coefficients by considering the leading terms in a Sonine
polynomial expansion.
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KREMER, SANTOS, AND GARZÓ PHYSICAL REVIEW E 90, 022205 (2014)

B. Sonine approximation

As said in Sec. III, the HCS distribution function f (0) is not
exactly known. In a recent paper [47], the first four relevant
cumulants (in particular, a

(0)
20 and a

(0)
11 ) have been studied

theoretically by means of a Sonine polynomial expansion
and also computationally by means of the direct simulation
Monte Carlo (DSMC) method [58] and event-driven molecular
dynamics. The results show that three of the cumulants are in
general relatively small. On the other hand, the cumulant

a
(0)
02 = I 2

15nτ 2
r T 2

∫
dv

∫
dω ω4f (0) − 1 (5.27)

measuring the kurtosis of the angular velocity distribution can
take values larger than unity in the region of small roughness.
Outside that region, a

(0)
02 decreases as roughness increases.

As an example (see Fig. 3 of Ref. [47]), at α = 0.9, |a(0)
20 | �

0.02 and |a(0)
11 | � 0.07 for the whole range −1 � β � 1, and

a
(0)
02 � 0.2 in the range −0.5 � β � 1.

From a practical point of view, it must be noted that
most of the materials are characterized by positive values
of the roughness parameter (typically, β ∼ 0.5) [59] and in
those cases the cumulants are small. As a consequence, the
HCS distribution can be rather well approximated by the
two-temperature Maxwellian

f (0) → f
(0)
M = n

(
mI

4π2τt τrT 2

) 3
2

e−c2−w2
, (5.28)

where we recall that the scaled translational and angular
velocities c and w are defined by Eq. (3.20). In this Maxwellian
approximation, the functions (4.18)–(4.21) reduce to

A → −f
(0)
M v0(c2 + w2 − 4)c, (5.29)

B → 0, (5.30)

Cij → −2f
(0)
M

(
cicj − 1

3c2δij

)
, (5.31)

E → 1
3f

(0)
M

[
τt

(
w2 − 3

2

) − τr

(
c2 − 3

2

)]
, (5.32)

where

v0 ≡
√

2τtT /m (5.33)

is the (translational) thermal speed.
The Maxwellian forms (5.29)–(5.32) suggest to approxi-

mate the unknown functions A, B, Cij , and E by

A → −f
(0)
M

v0

ν

[
γAt

(
c2 − 5

2

)
+ γAr

(
w2 − 3

2

)]
c, (5.34)

B → −f
(0)
M

v0

ν

[
γBt

(
c2 − 5

2

)
+ γBr

(
w2 − 3

2

)]
c, (5.35)

Cij → −f
(0)
M

γC

ν

(
cicj − 1

3
c2δij

)
, (5.36)

E → f
(0)
M

γE

ν

[
τt

(
w2 − 3

2

)
− τr

(
c2 − 3

2

)]
, (5.37)

where ν is defined by Eq. (3.7) (with Tt = τtT ) and the γ

coefficients are directly related to the transport coefficients by

η = nτtT

ν

γC

2
, ηb = nτtτrT

ν
γE, (5.38)

λt = 5

2

nτtT

mν
γAt

, λr = 3

2

nτtT

mν
γAr

, (5.39)

μt = 5

2

τ 2
t T 2

mν
γBt

, μr = 3

2

τt τrT
2

mν
γBr

. (5.40)

It can be checked that the forms (5.34)–(5.37) are consistent
with the solubility conditions (4.33).

The basic Sonine approximations (5.34)–(5.37) allow us
to evaluate explicitly the transport coefficients. The main
steps are described in the Appendix, and the final results are
displayed in Table I [60].

VI. DISCUSSION

Let us now analyze the dependence of the five transport
coefficients on both α and β. In order to define dimensionless
quantities, we will take as a reference the transport coefficients
(shear viscosity and thermal conductivity) of a gas made
of elastic and smooth spheres at the same translational
temperature τtT as that of the HCS of the granular gas, i.e.,

η0 = nτtT

ν
, λ0 = 15

4

η0

m
. (6.1)

More specifically, the dimensionless shear and bulk viscosities
are

η∗ = η

η0
, η∗

b = ηb

η0
, (6.2)

while the dimensionless thermal conductivity and Dufour-like
coefficients are

λ∗ = λ

λ0
, μ∗ = μ

λ0

n

T
. (6.3)

A. Limiting cases

Before considering the case of general α and β, it is worth
considering some limiting cases. We start with the case of
a granular gas constituted by purely smooth inelastic hard
spheres (β = −1 with arbitrary α). In such a gas, the rotational
degrees of freedom are irrelevant and should not contribute to
the transport properties. A convenient way of isolating the
relevant translational properties consists in formally setting
θ∞ = 0 (i.e., τr = 0 and τt = 2) in the general expressions
of Table I, apart from taking β = −1. Alternatively, one can
take θ∞ = 0 and κ = 0, the latter defining spheres with a
vanishing moment of inertia. In both cases one obtains the
results presented in Table II, which are consistent with those
previously derived for smooth inelastic hard spheres [11,61].

Next, we consider the quasismooth limit β → −1. The
results differ from those obtained before for pure smooth
spheres because, as shown in Sec. III, the HCS rotational-
translational temperature ratio diverges as θ∞ ∼ (1 + β)−2,
and thus the rotational contributions cannot be neglected.
The final expressions, which are independent of the reduced
moment of inertia κ , are also included in Table II. In contrast,
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TABLE II. Special limiting cases.

Pure smooth Quasismooth limit Perfectly rough and elastic
Quantity (β = −1) (β → −1) (α = β = 1)

η∗ 24

(1 + α)(13 − α)

24

(1 + α)(19 − 7α)

6(1 + κ)2

6 + 13κ

η∗
b 0

8

5(1 − α2)

(1 + κ)2

10κ

λ∗ 64

(1 + α)(9 + 7α)

48

25(1 + α)

12(1 + κ)2(37 + 151κ + 50κ2)

25(12 + 75κ + 101κ2 + 102κ3)

μ∗ 1280(1 − α)

(1 + α)(9 + 7α)(19 − 3α)
0 0

ξ 0 0 0

it can be checked that the expressions in the limit of small
moment of inertia (κ → 0) depend on β.

Finally, let us analyze the physically important case of
perfectly elastic and rough spheres (α = β = 1). This defines a
conservative system (i.e., the total kinetic energy is conserved
by collisions) that has been used for a long time to model
polyatomic gases [6,48,49,55]. The results obtained in this
limit are displayed in the last column of Table II and fully
agree with those first derived by Pidduck [48].

B. General α and β

Now we go back to a granular gas with general values
of α, β, and κ , in which case the expressions for the five
transport coefficients are given in Table I. For the sake of
concreteness, let us restrict ourselves to spheres with a uniform
mass distribution, so that κ = 2

5 .
Figures 5–9 show the dependence of the reduced transport

coefficients η∗, η∗
b , λ∗, μ∗, and ξ , respectively, on both α and β.

As in Fig. 4, in the top panels the quantities are plotted versus
β for three representative values of the coefficient of normal
restitution (α = 0.6, 0.8, and 1). The middle panels present
the dependence on α for a few representative values of the
coefficient of tangential restitution, namely β = −0.5, 0, 0.5,
and 1. Additionally, the quasismooth limit (β → −1) and the
case of purely smooth spheres (β = −1) are also considered.
Finally, the bottom panels represent density plots in the α-β
plane.

Let us start analyzing the three transport coefficients that
are also present in the case of purely smooth particles, i.e., the
(reduced) shear viscosity, thermal conductivity, and Dufour-
like coefficient (Figs. 5, 7, and 8, respectively). We observe
that, at fixed α, those coefficients present a nonmonotonic β

dependence with maxima around β ≈ 0. On the other hand,
the dependence on α is rather sensitive to the value of β,
showing an intricate interplay between both coefficients of
restitution. Typically, the transport coefficients increase with
increasing inelasticity, although some exceptions are found
(see, for instance, η∗ at β = 1 and λ∗ and μ∗ at β = −0.5).
Furthermore, an interesting observation from Figs. 5, 7, and
8 is that the impact of the coefficient of normal restitution
on the transport coefficients η∗, λ∗, and μ∗ is much milder
in the case of rough spheres than for purely smooth spheres.
Comparison between Fig. 4, on the one hand, and Figs. 5, 7,

and 8, on the other hand, shows that the general dependencies
of the transport coefficients η∗, λ∗, and μ∗ on both α and β (in
particular, the maxima around β ∼ 0) are highly correlated to

FIG. 5. (Color online) (a) Reduced shear viscosity η∗ as a func-
tion of β for κ = 2

5 and α = 0.6, 0.8, and 1. (b) Reduced shear
viscosity η∗ as a function of α for κ = 2

5 and β = −0.5, 0, 0.5, and
1, as well as in the quasismooth limit β → −1 and for purely smooth
spheres (β = −1). (c) Density plot of the reduced shear viscosity η∗

for κ = 2
5 . The contour lines correspond to η∗ = 1,1.05, . . . ,1.4.
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FIG. 6. (Color online) Same as in Fig. 5 but for the reduced
bulk viscosity η∗

b . The contour lines in panel (c) correspond to
η∗

b = 0.5,0.75, . . . ,3.5.

that of the cooling rate ζ ∗. This explains that fair qualitative
estimates can be obtained by using the expressions for smooth
spheres [11,12] with the cooling rate replaced by the one for
rough spheres [46].

Next, we consider the two transport coefficients that vanish
for purely smooth particles. As observed from Fig. 6, the bulk
viscosity η∗

b exhibits a highly nontrivial behavior. It reaches
especially high values in the quasielastic and quasismooth
region, diverging in the limit α → 1, β → −1. Outside that
region, the bulk viscosity can be larger than the shear viscosity.
For instance, η∗

b/η
∗ � 1.26 at α = 0.7 and β = −0.2. As for

the cooling rate transport coefficient ξ (see Fig. 9), it also
presents a complex behavior. A remarkable feature is that it
becomes negative in a certain region of the α-β plane near
α = 1. Of course, this does not mean that the cooling rate itself
is negative or signals any breakdown of the Chapman-Enskog
method, the Sonine approximation, or the friction model used.
According to Eqs. (4.6) and (4.24), a negative value of the

FIG. 7. (Color online) Same as in Fig. 5 but for the reduced
thermal conductivity λ∗. The contour lines in panel (c) correspond to
λ∗ = 1,1.25, . . . ,3.75.

transport coefficient ξ simply implies that the cooling rate ζ

is larger (smaller) than its HCS value ζ (0) if ∇ · u is positive
(negative).

VII. CONCLUDING REMARKS

In this work we have developed a hydrodynamic theory for
a dilute granular gas modeled as a system of identical inelastic
and rough hard spheres. Energy dissipation in collisions
is characterized by two constant coefficients of restitution:
the normal (0 < α � 1) and the tangential (−1 � β � 1)
coefficients. In this model both the translational velocity (v) of
the center of mass and the angular velocity (ω) of the particles
are mutually influenced by collisions.

The methodology has been based on the Boltzmann kinetic
equation for the one-particle velocity distribution function
f (r,v,ω,t). The kinetic equation has been solved by means of
the Chapman-Enskog method [6,7] for states with small spatial
gradients of the hydrodynamic fields: the number density
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FIG. 8. (Color online) Same as in Fig. 5 but for the reduced
Dufour-like coefficient μ∗. The contour lines in panel (c) correspond
to μ∗ = 0.25,0.5, . . . ,3.5.

n(r,t), the flow velocity u(r,t), and the (total) granular temper-
ature T (r,t). The solution provides the constitutive equations
for the pressure tensor Pij (r,t), the heat flux q(r,t), and the
cooling rate ζ (r,t). The associated five transport coefficients
(shear viscosity η, bulk viscosity ηb, thermal conductivity λ,
Dufour-like coefficient μ, and cooling rate transport coefficient
ξ ) are exactly expressed in terms of integrals involving the
solutions of a set of linear integral equations. In particular,
the existence of ηb and ξ imply that, in the case of a
compressible flow (i.e., ∇ · u 
= 0), the rotational-translational
temperature ratio and the cooling rate differ from their forms
in the reference HCS.

As happens in the conventional case of elastic particles
[6], explicit expressions for the transport coefficients can be
obtained by expanding the zeroth- and first-order distributions
in Sonine polynomials and truncating the expansions at the
simplest level (the so-called first Sonine approximation). This
has allowed us to determine the five transport coefficients
as nonlinear functions of α, β, and the reduced moment of

FIG. 9. (Color online) Same as in Fig. 5 but for the cooling rate
transport coefficient ξ . The contour lines in panel (c) correspond to
ξ = 0,0.05, . . . ,0.4.

inertia κ . For easy reference, the final results are displayed
in Table I.

Our results extend to arbitrary values of α and β previous
works for inelastic and purely smooth spheres (α<1, β = −1)
[11] and elastic and perfectly rough spheres (α = β = 1)
[6,48,55], as shown in Table II. Due to the coupling between
translational and rotational degrees of freedom in the HCS, the
quasismooth limit β → −1 yields results differing from those
for purely smooth spheres.

As Figs. 5–9 clearly show, the dependence of the transport
coefficients on both α and β is rather intricate. On the other
hand, it must be noted that, since the deviations of the
reference HCS from the two-temperature Maxwellian (5.28)
are important in the region −1 � β � −0.5 only [47], the
expressions derived here are expected to be especially reliable
in the region −0.5 � β � 1, which is likely the one of practical
interest from an experimental point of view [59]. A more
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KREMER, SANTOS, AND GARZÓ PHYSICAL REVIEW E 90, 022205 (2014)

rigorous hydrodynamic theory in the region of small roughness
(β � −1) would likely require, apart from accounting for
strong non-Maxwellian features of the HCS distribution, the
inclusion of the mean spin � as an additional hydrodynamic
variable.

The present work opens new challenges to explore. First,
we plan to carry out a linear stability analysis [62] of the
NSF hydrodynamic equations to determine the critical length
Lc beyond which the HCS becomes unstable and assess the
impact of roughness on Lc [46]. Given that most of the
experimental setups consider granular systems confined in
two dimensions, we intend to determine the NSF transport
coefficients for systems of inelastic rough hard disks by using
a methodology similar to the one followed here. Moreover,
the structure of the collisional frequencies derived in the
Appendix can be exploited to obtain the NSF transport
coefficients of driven granular gases, in analogy to the case
of smooth spheres [63–65]. Finally, we will test the transport
coefficients obtained from the first Sonine approximation
against DSMC numerical solutions of the Boltzmann equation
by methods similar to those employed for smooth spheres
[63,66–71].
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APPENDIX: EXPLICIT EXPRESSIONS
IN THE SONINE APPROXIMATION

This Appendix provides the steps needed to determine
the transport coefficients within the Sonine approximations
(5.34)–(5.37). The task requires the evaluation of the collision
integrals appearing in the collision frequencies (5.12), (5.13),
(5.18), (5.19), and (5.21). The algebra involved in those
collision integrals is rather tedious, so here we only provide
the final results.

First, the collision frequency associated with the shear
viscosity turns out to be

ν∗
η ≡ νη

ν
= (̃α + β̃)(2 − α̃ − β̃) + β̃2θ∞

6κ
, (A1)

where α̃ and β̃ are defined by Eq. (2.6) and the
HCS temperature ratio θ∞ is given by Eqs. (3.13) and
(3.14). The shear viscosity coefficient is directly obtained
from Eq. (5.20).

Now we consider the collision integrals (4.26). Insertion of
Eq. (5.37) gives

ξt = γE�t , ξr = γE�r, (A2)

with

�t = 5

8
τr

[
1 − α2 + (1 − β2)

κ

1 + κ

− κ

3
(θ∞ − 5)

(
1 + β

1 + κ

)2 ]
, (A3)

�r = 5

8
τt

1 + β

1 + κ

[
θ∞ − 2

3
(1 − β) + κ

3
(θ∞ − 5)

1 + β

1 + κ

]
.

(A4)

Combination of Eqs. (5.22), (5.38), and (A2) yields

γE = 2

3

1

�t − �r − ζ ∗ . (A5)

This closes the evaluation of the bulk viscosity ηb. Moreover,
the cooling rate coefficient ξ defined by Eq. (4.24) is, according
to Eqs. (4.25) and (A2)–(A4),

ξ = 5

16
τt τrγE

[
1 − α2 +

(
1 + 1

3

θ∞ − 5

1 + κ

)
(1 − β2)

]
.

(A6)

Next, we turn our attention to the heat flux coefficients. The
collision frequencies νλt

, νλr
, νμt

, and νμr
turn out to be given

by

ν∗
λt

≡ νλt

ν
= Yt + Zt

γAr

γAt

, (A7)

ν∗
λr

≡ νλr

ν
= Yr

γAt

γAr

+ Zr, (A8)

ν∗
μt

≡ νμt

ν
= Yt + Zt

γBr

γBt

, (A9)

ν∗
μr

≡ νμr

ν
= Yr

γBt

γBr

+ Zr, (A10)

with

Yt = 41

12
(̃α + β̃) − 33

12
(̃α2 + β̃2) − 4

3
α̃β̃ − 7θ∞

12

β̃2

κ
,

(A11)

Zt = −5θ∞
6

β̃2

κ
, (A12)

Yr = 25

36

(
β̃

κ
− 3

β̃2

θ∞κ
− β̃2

κ2

)
, (A13)

Zr = 5

6
(̃α + β̃) + 5

18

β̃

κ

(
7 − 3

β̃

κ
− 6β̃ − 4α̃

)
. (A14)

From Eqs. (5.10), (5.11), (5.39), (A7), and (A8) one obtains
a set of two algebraic linear equations for γAt

and γAr
whose
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solution is

γAt
= Zr − Zt − 2ζ ∗

(Yt − 2ζ ∗) (Zr − 2ζ ∗) − YrZt

, (A15)

γAr
= Yt − Yr − 2ζ ∗

(Yt − 2ζ ∗) (Zr − 2ζ ∗) − YrZt

. (A16)

Upon deriving these equations we have made use of the
approximation a

(0)
20 = a

(0)
11 = 0, in consistency with Eq. (5.28).

Equations (A15) and (A16), together with Eq. (5.39), close
the determination of the thermal conductivity coefficients λt

and λr .

Analogously, once the coefficients γAt
and γAr

are known,
Eqs. (5.16), (5.17), (5.40), (A9), and (A10) yield a set of two
linear equations with the solution

γBt
= ζ ∗ γAt

(
Zr − 3

2ζ ∗) − γAr
Zt(

Yt − 3
2ζ ∗) (

Zr − 3
2ζ ∗) − YrZt

, (A17)

γBr
= ζ ∗ γAr

(
Yt − 3

2ζ ∗) − γAt
Yr(

Yt − 3
2ζ ∗) (

Zr − 3
2ζ ∗) − YrZt

. (A18)

This closes the evaluation of the Dufour-like coefficients μt

and μr .
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[15] V. Garzó, C. M. Hrenya, and J. W. Dufty, Phys. Rev. E 76,

031304 (2007).
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