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Abstract. The Boltzmann equation for d-dimensional inelastic Maxwell
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solid suspensions. The influence of the interstitial gas phase on the dynamics
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method is applied to solve the inelastic Boltzmann equation to first order in
the deviations of the hydrodynamic fields from their values in the homogeneous
cooling state. Explicit expressions for the Navier–Stokes transport coefficients are
exactly obtained in terms of both the coefficient of restitution and the friction
coefficient characterizing the amplitude of the external force. The conditions
under which a hydrodynamic regime independent of the initial conditions is
reached are widely discussed. Finally, the results derived here are compared with
those previously obtained for inelastic hard spheres in steady state conditions by
using the so-called first Sonine approximation.
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1. Introduction

Granular gases are usually modeled as a gas of hard spheres whose collisions are inelastic
(inelastic hard spheres, IHS). In the simplest model, the spheres are completely smooth
and the inelasticity of collisions is characterized by a (positive) constant coefficient of
normal restitution α � 1. The case α = 1 corresponds to elastic collisions (ordinary gases).
In addition, although in nature granular matter is usually surrounded by an interstitial
fluid (like air), the effect of the latter on the dynamic properties of solid particles is usually
neglected in most of the theoretical works. However, it is known that the influence of the
interstitial gas phase on solid particles can be important in a wide range of practical
applications and physical phenomena, like for instance species segregation [1]. Needless
to say, at a kinetic theory level, the description of rapid gas–solid flows is an intricate
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problem since it involves two phases and hence, one would need to solve a set of two
coupled Boltzmann kinetic equations for each one of the different phases. In order to gain
some insight into this problem, a usual approach [2,3] is to consider a single Boltzmann
equation for the solid particles where the effect of the gas phase on the latter ones is
incorporated by means of an effective external force.

Recently, a model for a monodisperse gas–solid suspension described by the Enskog
kinetic theory (and hence, it applies to moderate densities) has been proposed [4]. Unlike
previous efforts for similar suspensions, the gas phase contribution to the instantaneous
acceleration appearing in the Enskog equation is modeled through a Langevin like term.
Although the model can be in principle applied to a wide parameter space (e.g. high
Reynolds numbers), the theory [4] was limited to low Reynolds number flow. The model
proposed in [4] presents some similarities with a model widely used by Puglisi and co-
workers [5, 6] in computer simulations to homogeneously fluidize a granular gas by an
external driving force. The use of this sort of ‘thermostats’ is very common in simulations
as a way to inject energy into the system and reach stationary states. More specifically, the
external force employed in [4–6] is composed by two terms: (i) a drag force proportional
to the velocity of the particle and (ii) a stochastic force (Langevin model) with the form
of a Gaussian white noise where the particles are randomly kicked between collisions [7].
While the first term tries to mimic the friction of grains with a viscous interstitial fluid, the
second term attempts to model the energy transfer from the surrounding fluid to granular
particles. It must be noted that while the friction coefficient associated with the drag
force and the amplitude of the stochastic force of the model proposed in [5] are related
in the same way as in the well-known fluctuation-dissipation theorem [8] of molecular
gases, those coefficients are independent in the model of [4] since they are defined in
terms of parameters such as the Reynolds number, the volume fraction and the ratio of
the densities of the solid and gas phases. This is the main difference between the models
introduced in [4] and [5]. In particular, when the mean flow velocities of solid and gas
phases coincide, then the coefficient associated with the Langevin-like term vanishes (see
equation (8.2) of [4]) and the presence of the interstitial fluid is only accounted for by the
external drag force.

On the other hand, even for the dry granular case (i.e. when the gas phase effects
over grains are neglected) [9, 10], the forms of the Navier–Stokes transport coefficients
of IHS cannot be exactly obtained [4, 6] and hence, one has to consider additional
approximations such as the truncation of a Sonine polynomial expansion. A possible
way of circumventing the technical difficulties associated with the complex mathematical
structure of the (linearized) Enskog–Boltzmann collision operator for IHS is to consider
the so-called inelastic Maxwell models (IMM), namely, models where the collision rate is
independent of the relative velocity of the two colliding spheres. The use of IMM allows
one to get in a clean way and without any uncontrolled approximation the dependence
of the transport coefficients on the coefficient of restitution [11]. Very recently [12], the
Boltzmann kinetic equation for a driven granular gas of IMM has been solved by means of
the Chapman–Enskog method [13]. As in previous works [5,6], the gas was fluidized by a
thermostat composed by both the drag and stochastic terms. In addition, for the sake of
simplicity, the coefficients associated with both forces were not considered as independent
parameters. However, in spite of the above simplification, the evaluation of the transport
coefficients in the driven case for general unsteady states requires to numerically solve a
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set of differential equations and hence, only exact expressions were derived under steady
state conditions [12].

In this paper, we consider a simplified version of the model of suspensions used
in [4, 6, 12] where only the drag force term is accounted for. As mentioned before, this
situation could correspond to a gas–solid flow where the mean velocity of the particles
follows the velocity of the fluid (such as in the case of the simple shear flow [14]). It must
be remarked that the above drag force model has been recently considered in different
papers [15–17] to study the shear rheology of frictional hard-sphere suspensions. The use
of this drag model allows one to get exact results for the transport coefficients for general
unsteady conditions.

The main advantage of using IMM instead of IHS is that a collision moment of order k
of the Boltzmann collision operator can be exactly expressed in terms of moments of order
less than or equal to k [18,19]. These collisional moments are proportional to an effective
collision frequency ν0, which in principle can be freely chosen. As in previous works [20],
we will consider here two classes of IMM: (a) a collision frequency ν0 independent of
temperature (model A) and (b) a collision frequency ν0(T ) monotonically increasing with
temperature, namely, ν0 ∝ nT q (model B). While model A is closer to the original model
of Maxwell molecules for elastic gases [18,19], model B (with q = 1

2) is closer to IHS. The
possibility of considering a general function ν0(T ) is akin to the class of inelastic repulsive
models introduced by Ernst and co-workers [21].

The plan of the paper is as follows. In section 2, the Boltzmann equation for
IMM of granular gases driven by an external drag force is introduced and the explicit
expressions of the collisional moments needed to get the transport coefficients are given.
Section 3 addresses the study of the so-called homogeneous cooling state (HCS) where a
scaling solution is proposed that depends on granular temperature T only through the
dimensionless velocity c = v/v0(T ) (v0(T ) =

√
2T/m being the thermal velocity). This

solution is similar to the one obtained in previous works on dry granular gases [22]. The
Chapman–Enskog expansion around the local version of the HCS is described in section 4
while the expressions of the Navier–Stokes transport coefficients η (shear viscosity),
κ (thermal conductivity) and µ (not present for elastic collisions) are determined in
section 5. The dependence of the above transport coefficients on the parameter space
of the problem is analyzed and compared with results of IHS in the case of low Reynolds
numbers and for steady states in section 6. The paper is closed in section 7 with some
conclusions.

2. Boltzmann kinetic theory for inelastic Maxwell models of driven granular gases

Let us consider a granular fluid modeled as an inelastic Maxwell gas of hard disks (d = 2)
or spheres (d = 3). The inelasticity of collisions among all pairs is accounted for by
a constant (positive) coefficient of restitution α � 1 that only affects the translational
degrees of freedom of grains. As said in the Introduction, in order to assess the effects of
the interstitial fluid on particles, an external nonconservative force is incorporated into
the corresponding kinetic equation of the solid particles. Under these conditions, in the
low-density regime, the one-particle velocity distribution function f(r,v, t) of grains obeys
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the inelastic Boltzmann equation
∂f

∂t
+ v · ∇f + Ff = J [v|f , f ], (1)

where

J [v1|f , f ] =
ν

nΩd

∫
dv2

∫
dσ̂

[
α−1f(v′

1)f(v′
2) − f(v1)f(v2)

]
(2)

is the Boltzmann collision operator for IMM. Here,

n =
∫

dvf(v) (3)

is the number density, ν is an effective collision frequency assumed to be independent of
the coefficient of restitution α, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions
and σ̂ is a unit vector along the line of the two colliding spheres. In addition, the primes
on the velocities denote the initial values {v′

1,v
′
2} that lead to {v1,v2} following a binary

collision:

v′
1 = v1 − 1

2
(
1 + α−1) (σ̂ · g12)σ̂, v′

2 = v2 +
1
2

(
1 + α−1) (σ̂ · g12)σ̂ , (4)

where g12 = v1 −v2 is the relative velocity of the colliding pair. Moreover, in equation (1)
F is an operator representing the effect of an external force.

A very usual form of the fluid-solid interaction force in high-velocity gas–solid flows is
a viscous drag force given by

Fdrag = −mγ(v − Ug) (5)

where m is the mass of a particle, v is the particle velocity and Ug is the (known) mean
velocity of the interstitial fluid [15–17]. The friction coefficient γ is proportional to the
viscosity µg of the surrounding fluid and will be assumed to be a constant. Thus, according
to equation (5), the drag force contributes to the Boltzmann equation with a term of the
form

Ff = −γ∆U · ∂f

∂V
− γ

∂

∂V
· Vf , (6)

where ∆U = U − Ug, V ≡ v − U is the peculiar velocity and

U =
1
n

∫
dv v f(v) (7)

is the mean flow velocity of solid particles. The Boltzmann equation (1) can be more
explicitly written when one takes into account the form (6) of the forcing term Ff :

∂f

∂t
+ v · ∇f − γ∆U · ∂f

∂V
− γ

∂

∂V
· Vf = J [v|f , f ]. (8)

It is important to remark that when ∆U = 0, the model proposed in [4] for monodisperse
suspensions reduces in the dilute limit to the Boltzmann equation (8) since the Langevin-
like term due to fluid-particle interactions (which is proportional to ∆U) is zero in this
situation [23]. In this context, the results derived in this paper can be considered of
practical interest to analyze linear transport in dilute gas–solid flows when the mean flow
velocity of solid and gas phases are the same [14]. Moreover, it has been also shown [24]
that in the case of hard spheres the drag force term ∂v · vf arises from a (logarithmic)
change in the time scale of the hard sphere system without external force.
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The other relevant hydrodynamic velocity moment of the distribution f is the so-called
granular temperature. It is defined as

T =
m

dn

∫
dv V 2 f(v). (9)

The corresponding macroscopic balance equations for density, momentum, and energy
follow directly from equation (1) by multiplying with 1, mv, and 1

2mv2 and integrating
over v. The result is

Dtn + n∇ · U = 0 , (10)

DtUi + ρ−1∇jPij = −γ∆Ui , (11)

DtT +
2
dn

(∇ · q + Pij∇jUi) = −(2γ + ζ)T . (12)

Here, ρ = mn is the mass density, Dt ≡ ∂t + U · ∇ and the microscopic expressions for
the pressure tensor P, the heat flux q, and the cooling rate ζ are given, respectively, by

P =
∫

dv mVV f(v), (13)

q =
∫

dv
1
2
mV 2V f(v), (14)

ζ = − 1
dnT

∫
dv m V 2 J [v|f , f ]. (15)

The balance equations (10)–(12) apply regardless of the details of the interaction model
considered. The influence of the collision model appears through the α-dependence of the
cooling rate and of the momentum and heat fluxes.

One of the advantages of the Boltzmann equation for Maxwell models (both elastic and
inelastic) is that the collisional moments of the operator J [f , f ] can be exactly evaluated
in terms of the moments of the distribution f , without the explicit knowledge of the
latter [18, 19]. More explicitly, the collisional moments of order k are given as a bilinear
combination of moments of order k′ and k′′ with 0 � k′ + k′′ � k. In the case of IMM, the
collisional moments involved in the calculation of the momentum and heat fluxes as well
as in the fourth cumulant are given by [11,20]∫

dv m ViVj J [f , f ] = −ν0|2 (Pij − pδij) − ν2|0pδij, (16)∫
dv

m

2
V 2 V J [f , f ] = −ν2|1q, (17)∫

dv V 4 J [f , f ] = −ν4|0〈V 4〉 + λ1d
2 pT

m2 − λ2

nm2 (Pij − pδij) (Pji − pδij) . (18)

Here, p = nT is the hydrostatic pressure,

ν0|2 =
(1 + α)(d + 1 − α)

2d
ν0, ν2|0 =

d + 2
4d

(1 − α2)ν0, (19)

ν2|1 =
(1 + α) [5d + 4 − α(d + 8)]

8d
ν0, (20)
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ν4|0 =
(1 + α) [12d + 9 − α(4d + 17) + 3α2 − 3α3]

16d
ν0, (21)

λ1 =
(d + 2)(1 + α)2 (4d − 1 − 6α + 3α2)

16d2 ν0, (22)

λ2 =
(1 + α)2 (1 + 6α − 3α2)

8d
ν0, (23)

and we have introduced the fourth-degree isotropic velocity moment

〈V 4〉 =
∫

dv V 4 f(v). (24)

In equations (19)–(23), we have called ν0 ≡ 2ν/(d + 2). According to equations (16) and
(19), ν0 represents the effective collision frequency associated with the shear viscosity of a
dilute elastic gas in the absence of the drag force. Moreover, the expression of the cooling
rate ζ of IMM can be exactly obtained from equation (16):

ζ =
d + 2
4d

(1 − α2)ν0. (25)

The results (16)–(23) apply regardless of the specific form of the collision frequency ν0.
On physical grounds ν0 ∝ n. In the case of elastic Maxwell molecules, ν0 is independent
of temperature. However, in order to correctly describe the velocity dependence of the
original IHS collision rate, one usually assumes that ν0 is proportional to T q with q = 1

2 .
Here, as in previous works on IMM [12, 20], we take ν0 ∝ nT q, with 0 � q � 1

2 . The case
q = 0 is closer to the original Maxwell model of elastic particles while the case q = 1

2 is
closer to hard spheres. We will refer here to model A when q = 0 while the case q �= 0
will be referred to as model B.

3. Homogeneous cooling state

Before analyzing inhomogeneous states, it is quite convenient first to study the HCS
problem. In this case, the density n is constant and the time-dependent temperature T (t)
is spatially uniform. Moreover, for the sake of simplicity, we also assume that U = Ug = 0.
Consequently, the Boltzmann equation (1) for the homogeneous distribution fh becomes

∂fh

∂t
− γ

∂

∂v
· vfh = J [v|fh, fh]. (26)

The balance equations (10)–(12) yield ∂tn = 0, ∂tU = 0 and
∂tT = −(ζ + 2γ)T . (27)

Upon deriving equation (27) we have accounted for that the heat flux vanishes and the
pressure tensor is diagonal, namely, Pij = pδij. In the case of model A (q = 0), ν0 does
not depend on time and the solution to equation (27) is simply

T (t)
T0

= e−(2γ+ζ)t, (28)

where T0 is the initial temperature. On the other hand, in the case of model B with q = 1
2 ,

ν0(t) ∝
√

T (t) and the solution to equation (27) can be cast into the form [23]
T (t)
T0

=
4γ∗2

0 e−2γ∗
0 t∗

[2γ∗
0 + ζ∗ (1 − e−γ∗

0 t∗)]2
, (29)
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Figure 1. Temperature versus (dimensionless) time for a three dimensional
system with γ∗

0 = 0.1 and α = 0.8. The solid line corresponds to model B with
q = 1

2 , the dashed red line corresponds to model A and the blue dash–dotted
line corresponds to the results of model B in the dry granular case (γ∗

0 = 0).

where γ∗
0 ≡ γ/ν0(T0), ζ∗ ≡ ζ/ν0 = ((d + 2)/4d)(1 − α2) and t∗ ≡ ν0(T0)t. To illustrate

the time dependence of the temperature, figure 1 shows the ratio T (t)/T0 versus the
(dimensionless) time t∗ for models A and B (with q = 1

2) for the (initial) reduced friction
coefficient γ∗

0 = 0.1 and the coefficient of restitution α = 0.8. The dry granular limit
case (γ∗

0 = 0) of model B is also presented for comparison. As expected, the temperature
decays in time more slowly in the dry limit case than in the case of viscous suspensions.
Moreover, we observe that this decay is more pronounced in the case of model A (where
the collision frequency ν0 is constant) than in the case of model B.

In the hydrodynamic regime, since the time dependence of fh only occurs through the
granular temperature T , then

∂fh

∂t
=

∂fh

∂T

∂T

∂t
= −(ζ + 2γ)T

∂fh

∂T
, (30)

and the Boltzmann equation (26) becomes

− (ζ + 2γ)T
∂fh

∂T
− γ

∂

∂v
· vfh = J [v|fh, fh]. (31)

In the absence of the viscous drag force (γ = 0), equation (31) admits the solution [22]

fh(v) = nv−d
0 ϕh(c), (32)

where the scaling distribution ϕh is an unknown function of the dimensionless velocity

c =
v
v0

, (33)

where we recall that v0 ≡
√

2T/m is the thermal velocity. When γ �= 0, according to
the previous results [12,25,26] derived for the complete model of suspensions (drag force
plus stochastic force), the scaled distribution ϕh could have an additional dependence on
the granular temperature through the dimensionless friction coefficient γ∗ ≡ γ/ν0. On the
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other hand, it can be seen by direct substitution that the form (32) is also a solution of
equation (31) and hence ϕh does not explicitly depend on γ∗. Thus,

T
∂fh

∂T
= −1

2
∂

∂v
· vfh, (34)

and equation (31) reduces to
1
2
ζ

∂

∂v
· vfh = J [fh, fh]. (35)

Equation (35) is fully equivalent to the one obtained in the HCS of a dry granular gas
(namely, when γ∗ = 0).

To confirm the scaling (32), let us first analyze the evolution of the kurtosis or fourth-
cumulant

a2 =
1

d(d + 2)
m2

nT 2

∫
dv v4fh(v) − 1. (36)

Although the exact form of the homogeneous distribution function is not known, the
knowledge of a2 provides an indirect information of the deviation of ϕh from its Gaussian
form. In order to determine a2(t), we multiply equation (26) by v4 and integrate over
velocity. The result can be written as

∂a2

∂τ
+ ω∗

4|0a2 =
d

d + 2

(
λ∗

1 − d + 2
d

ω∗
4|0

)
, (37)

where

ω∗
4|0 ≡ ν4|0 − 2ζ

ν0
=

(1 + α)2(4d − 7 + 6α − 3α2)
16d

, (38)

λ∗
1 ≡ λ1/ν0, and

τ(t) =

t∫
0

dt′ν0(t′). (39)

The dimensionless time scale τ is therefore an average number of collisions per particle in
the time interval between 0 and t. The solution to equation (37) is

a2(τ) = a2(0)e−ω∗
4|0τ + a2,dry, (40)

where a2(0) denotes the initial value of a2 and

a2,dry =
d

d + 2

λ∗
1 − d+2

d
ω∗

4|0

ω∗
4|0

=
6(1 − α2)2

4d − 7 + 3α(2 − α)
(41)

is the value of a2 in the case of a dry granular gas [11]. For long times (hydrodynamic
solution), since ω∗

4|0 > 0 then a2 → a2,dry and the results obtained for the (scaled) fourth-
degree moment of fh in the presence or in the absence of the drag force are the same.

A similar analysis to the one carried out for a2 can be made for the remaining
(isotropic) moments

M2k =
∫

dv v2kfh = n

(
2T
m

)k ∫
dc c2kϕh ≡ n

(
2T
m

)k

M∗
2k, (42)
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where the second identity defines the (dimensionless) moments M∗
2k of degree 2k. We want

to see if actually the hydrodynamic expressions of M∗
2k are identical to those obtained for

a dry granular gas. To get those moments, we multiply both sides of equation (26) by v2k

and integrate over velocity. After some algebra, we achieve the result

∂M∗
2k

∂τ
+ ω∗

2k|0M
∗
2k =

†∑
k′,k′′

λ∗
k′k′′M∗

2k′M∗
2k′′ , (43)

where ω∗
2k|0 = ν∗

2k|0 − kζ∗ and the dagger in the summation denotes the constraint
k′ + k′′ < k. The dimensionless quantities ν∗

2k|0 and λ∗
k′k′′ are nonlinear functions of

the coefficient of restitution α but they are independent of the drag coefficient γ∗. In
addition, upon deriving equation (43) use has been made of the mathematical structure
of the collision operator for IMM that implies that a collisional moment of degree 2k can
be expressed in terms of velocity moments of a degree less than or equal to 2k. Assuming
that the velocity moments M2k′ of degree 2k′ smaller than 2k have reached their steady
(dry) values (independent of the initial conditions), the solution of (43) can be cast into
the form

M∗
2k(τ) = M∗

2k(0)e−ω∗
2k|0τ + M∗

2k,dry, (44)

where

M∗
2k,dry = −ω∗−1

2k|0

†∑
k′,k′′

λ∗
k′k′′M∗

2k′,dryM
∗
2k′′dry. (45)

Thus, for long times, if ω∗
2k|0 > 0 then M∗

2k(τ) → M∗
2k,dry and hence, the hydrodynamic

expression of the (reduced) velocity moments M∗
2k is fully consistent with the scaling

solution (32) since they do not have an explicit dependence on γ∗.

4. Chapman–Enskog method

Let us assume that we slightly disturb the homogeneous time-dependent state studied in
section 3 by small spatial perturbations. In this case, the momentum and heat fluxes are
not zero and the corresponding transport coefficients can be identified. The evaluation
of these coefficients as functions of both the coefficient of restitution α and the friction
coefficient γ is the main goal of the present work.

Since the strength of the spatial gradients is small, the Boltzmann equation (8) is
solved by means of the Chapman–Enskog method [13] conveniently adapted for inelastic
collisions. The Chapman–Enskog method assumes the existence of a normal solution in
which all the space and time dependence of the distribution function only occurs through
a functional dependence on the hydrodynamic fields, i.e.

f(r,v, t) = f [v|n(r, t),U(r, t), T (r, t)] . (46)

The notation on the right hand side indicates a functional dependence on the density,
temperature and flow velocity. This functional dependence can be made local by an
expansion of f(r,v, t) in powers of the spatial gradients of n, U, and T :

f = f (0) + f (1) + f (2) + · · · , (47)
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where the approximation f (k) is of order k in spatial gradients. In addition, to collect the
different level of approximations in equation (8), one has to characterize the magnitude
of the drag coefficient γ and the velocity difference ∆U relative to the gradients as well.
As in recent previous studies on suspensions [4], we take both parameters to be at least of
zeroth-order in gradients. In any case, it is easy to see that the expressions of the transport
coefficients derived in section 5 are not modified in the case that we would consider ∆U
to be of first-order in gradients.

The expansion (47) yields the corresponding expansions for the fluxes when one
substitutes (47) into their definitions (13) and (14):

P = P(0) + P(1) + . . . , q = q(0) + q(1) + . . . . (48)

In contrast to the results for IHS [22], the cooling rate of IMM is exactly given by the
expression (25) and so, ζ(k) = 0 for k � 1. Finally, as usual in the Chapman–Enskog
method, the time derivative is also expanded as

∂t = ∂
(0)
t + ∂

(1)
t + . . . , (49)

where the action of each operator ∂
(k)
t is obtained from the macroscopic balance

equations (10)–(12) when one represents the fluxes and the cooling rate in their
corresponding series expansion (48). In this paper, we will restrict our calculations to the
Navier–Stokes hydrodynamic order (first order contributions to the fluxes). The Burnett
hydrodynamic equations (second order contributions to the fluxes) of a dry granular gas
of IMM have been recently derived in [27].

4.1. Zeroth-order approximation

To zeroth-order, the Boltzmann equation (8) for f (0) reads

∂
(0)
t f (0) − γ∆U · ∂f (0)

∂V
− γ

∂

∂V
· Vf (0) = J [f (0), f (0)]. (50)

The balance equations at zeroth-order give ∂
(0)
t n = 0 and

∂
(0)
t U = −γ∆U, ∂

(0)
t T = −(ζ + 2γ)T . (51)

Since f (0) qualifies as a normal solution, then

∂
(0)
t f (0) =

∂f (0)

∂n
∂

(0)
t n +

∂f (0)

∂Ui

∂
(0)
t Ui +

∂f (0)

∂T
∂

(0)
t T = γ∆U · ∂f (0)

∂V
+

1
2
(ζ + 2γ)

∂

∂V
· Vf (0),

(52)

where in the last step we have taken into account that f (0) depends on U through its
dependence on V. Substitution of equation (52) into equation (50) yields

1
2
ζ

∂

∂V
· Vf (0) = J [f (0), f (0)]. (53)

A solution to equation (53) is given by the local version of the time-dependent scaled
distribution (32). The isotropic properties of f (0) lead to P

(0)
ij = pδij and q(0) = 0.
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5. First-order approximation: Navier–Stokes transport coefficients

The analysis to first order in the gradients is worked out in the appendix A. The first
order velocity distribution function f (1)(V) verifies the kinetic equation(

∂
(0)
t + L

)
f (1) − γ

∂

∂V
· Vf (1)

= A · ∇ ln T + B · ∇ ln n + Cij
1
2

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
, (54)

where
Lf (1) = −

(
J [f (0), f (1)] + J [f (1), f (0)]

)
(55)

is the linearized Boltzmann collision operator and the quantities A(V), B(V), and Cij(V)
are given by equations (A5)–(A7), respectively. It must noted that for q = 1

2 , equation (54)
has the same structure as that of the Boltzmann equation for IHS [6]. The only difference
between IMM and IHS lies in the explicit form of the operator L that prevents to achieve
exact results in the case of IHS.

Although the first-order distribution f (1)(V) is not explicitly known for IMM, the
fact that the collisional moments of Lf (1) can be exactly computed opens the possibility
of determining the Navier–Stokes transport coefficients. They are defined through the
constitutive equations

P
(1)
ij = −η

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
, (56)

q(1) = −κ∇T − µ∇n, (57)
where η is the shear viscosity coefficient, κ is the thermal conductivity coefficient and µ is a
new transport coefficient not present for ordinary gases. The evaluation of those transport
coefficients will be carried out in this section. Let us consider each flux separately.

5.1. Pressure tensor

The first-order contribution to the pressure tensor is

P(1) =
∫

dv mVVf (1)(V). (58)

In order to determine P
(1)
ij , we multiply both sides of equation (54) by mViVj and integrates

over velocity. After some algebra, one gets(
∂

(0)
t + ν0|2

)
P

(1)
ij + 2γP

(1)
ij = −p

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
, (59)

where use has been made of equation (16) to first-order, namely,∫
dv mViVj Lf (1) = ν0|2P

(1)
ij , (60)

where ν0|2 is defined by equation (19). The solution to equation (59) is given by
equation (56) where the shear viscosity η verifies the time-dependent equation(

∂
(0)
t + ν0|2

)
η + 2γη = p. (61)

In the hydrodynamic regime, it is expected that the shear viscosity coefficient η can be
written as

η = η0η
∗(α, γ∗), γ∗(T ) ≡ γ/ν0(T ), (62)
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where η0 = p/ν0 is the Navier–Stokes shear viscosity of a dilute elastic gas in the absence
of the drag force. The dimensionless function η∗ can depend on temperature through its
dependence on the (reduced) friction coefficient γ∗. Since η0 ∝ T 1−q and γ∗ ∝ T−q, then
∂

(0)
t η = η∗∂

(0)
t η0 + η0∂

(0)
t η∗ = [η∗(∂T η0) + η0(∂T η∗)] (∂(0)

t T )

= −(ζ + 2γ)η0

[
(1 − q)η∗ − qγ∗ ∂η∗

∂γ∗

]
. (63)

Consequently, in dimensionless form, equation (61) can be written as

− (ζ∗ + 2γ∗)
[
(1 − q)η∗ − qγ∗ ∂η∗

∂γ∗

]
+ (ν∗

0|2 + 2γ∗)η∗ = 1, (64)

where ν∗
0|2 ≡ ν0|2/ν0.

In the case of a dry granular gas (γ∗ = 0), the solution to equation (64) is

η∗
dry =

1
ω∗

0|2 + qζ∗ , (65)

where

ω∗
0|2 ≡ ν∗

0|2 − ζ∗ =
(1 + α)2

2
. (66)

Equation (65) is consistent with previous results derived for IMM when q = 1
2 [11]. In

the case of model A (q = 0), γ∗ ≡ const. and equation (64) becomes a simple algebraic
equation independent of γ∗ whose solution is

η∗ =
1

ω∗
0|2

. (67)

Thus, for model A, the (reduced) shear viscosity η∗ does not explicitly depend on the
friction parameter and so, the drag force plays a neutral role on the momentum transport
for this simple interaction model. This behavior is also present in the case of ordinary
(elastic) Maxwell gases under uniform shear flow [28] where there is a close relationship
between the distribution functions with and without the drag force (5) (with Ug = U).
However, such a relationship does not exist when other interaction potentials for ordinary
gases are considered [19].

The case of model B (q �= 0) is more intricate since the (reduced) friction coefficient is
also a function of time (γ∗(t) ∝ T (t)−q). In this case, the general solution to equation (64)
can be written as

η∗(α, γ∗) = Cη∗
0(α, γ∗) + Fη(α, γ∗), (68)

where C is a constant to be determined from the initial conditions and

η∗
0(α, γ∗) = exp

{
1

qζ∗

[
ω∗

0|2 ln(2γ∗ + ζ∗) − (ω∗
0|2 + qζ∗) ln(2γ∗)

]}
, (69)

Fη(α, γ∗) =
η∗

dry

ζ∗
(
ω∗

0|2 + 2qζ∗
) (

1 +
2γ∗

ζ∗

)ω∗
0|2/qζ∗

ζ∗ (
ω∗

0|2 + 2qζ∗)
2F1

(ω∗
0|2

qζ∗ , 1 +
ω∗

0|2

qζ∗ , 2

+
ω∗

0|2

qζ∗ , −2γ∗

ζ∗

)
− 2γ∗ (

ω∗
0|2 + qζ∗)

2F1

(
1 +

ω∗
0|2

qζ∗ , 2 +
ω∗

0|2

qζ∗ , 3 +
ω∗

0|2

qζ∗ , −2γ∗

ζ∗

)
,

(70)
where 2F1 (a, b; c; z) is the hypergeometric function [29]. In the absence of the drag force
(γ∗ = 0), as expected Fη(α, 0) = η∗

dry.
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Figure 2. Plot of the ratio η∗
0(γ∗)/Fη(γ∗) versus the dimensionless friction

coefficient γ∗ for d = 3, α = 0.5 and two different values of the interaction
parameter q: q = 1

2 (solid line) and q = 1
4 (dashed line).

A hydrodynamic expression for the shear viscosity, independent of the initial
conditions, is expected to hold after a transient period. In the long-time limit, T (t) → 0
and so, γ∗ → ∞. Thus, to analyze whether the system reaches a hydrodynamic regime we
have to see if actually the ratio η∗

0/Fη goes to zero when γ∗ → ∞. Although we have not
shown it analytically, we have numerically observed this behavior for different values of
α and q. As an illustration, figure 2 shows η∗

0/Fη versus γ∗ for α = 0.5 and two different
values of the interaction parameter q. It is quite apparent that limγ∗→∞ η∗

0/Fη = 0 and
hence, for sufficiently long times one can neglect the initial term in equation (68) and the
hydrodynamic form of the shear viscosity coefficient η for model B is

η(α, γ∗) = η0Fη(α, γ∗). (71)
The simple expression (67) for model A is recovered by taking the limit q → 0 in
equation (71).

Figure 3 shows the dependence of the ratio Fη(α, γ∗)/Fη(1, γ∗) on the coefficient of
restitution α for model B with q = 1

2 and two different values of γ∗. We observe that
the impact of the interstitial fluid on the shear viscosity increases with the collisional
dissipation. Moreover, at a given value of α, it is quite apparent that the magnitude of
η∗ decreases as γ∗ increases and hence, the shear viscosity of a dry granular gas is larger
than that of its corresponding gas–solid suspension.

5.2. Heat flux vector

The heat flux to first-order is

q(1) =
∫

dv
m

2
V 2Vf (1)(V). (72)

As in the case of the pressure tensor, to obtain q(1) we multiply both sides of equation (54)
by m

2 V 2V and integrate over v. After some algebra, one gets

∂
(0)
t q(1) +

(
ν2|1 + 3γ

)
q(1) = −d + 2

2
p

m
(1 + 2a2) ∇T − d + 2

2
T 2

m
a2∇n, (73)
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Figure 3. Plot of the ratio Fη(α, γ∗)/Fη(1, γ∗) as a function of the coefficient of
restitution α for model B with q = 1

2 and three different values of γ∗: γ∗ = 0
(solid line), γ∗ = 10 (dotted line), and γ∗ = 50 (dash–dotted line).

where use has been made of equation (17) to first-order, namely,∫
dv

m

2
V 2VLf (1) = ν2|1q(1), (74)

where ν2|1 is defined by equation (20). In addition, upon writing equation (73), the
following results have been used:∫

dv
m

2
V 2ViAj(V) = −d + 2

2
pT

m
δij (1 + 2a2) , (75)∫

dv
m

2
V 2ViBj(V) = −d + 2

2
pT

m
a2δij. (76)

The solution to equation (73) is given by the constitutive equation (57). As in the case of
the shear viscosity, the coefficients κ and µ appearing in equation (57) can be written as

κ = κ0κ
∗(α, γ∗), µ =

Tκ0

n
µ∗(α, γ∗), (77)

where

κ0 =
d(d + 2)
2(d − 1)

η0

m
(78)

is the Navier–Stokes thermal conductivity of a dilute elastic gas in the absence of the
drag force. Note that the one-dimensional case (d = 1) for κ0 deserves some care since it
diverges at d = 1 [30]. However, as we will show below the thermal conductivity κ is well
defined at d = 1 for dry granular gases (α < 1).

The action of the operator ∂
(0)
t over the heat flux q(1) in equation (73) gives

∂
(0)
t q(1) = −(∂(0)

t κ)∇T − κ∇(∂(0)
t T ) − (∂(0)

t µ)∇n

= κ0

{
2 [ζ + (2 − q)γ] κ∗ − q(ζ + 2γ)γ∗ ∂κ∗

∂γ∗

}
∇T

+
Tκ0

n

{
ζκ∗ + (ζ + 2γ)

[
(2 − q)µ∗ − qγ∗ ∂µ∗

∂γ∗

]}
∇n. (79)

The differential equations defining the transport coefficients κ and µ can be obtained by
substituting equation (79) into equation (73) and identifying coefficients of ∇T and ∇n.
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In dimensionless form, the corresponding equations for κ∗ and µ∗ are[
ω∗

2|1 − 1
2
ζ∗ − 2γ∗

(
1
2

− q

)]
κ∗ + q(ζ∗ + 2γ∗)γ∗ ∂κ∗

∂γ∗ =
d − 1

d
(1 + 2a2) , (80)

[
ω∗

2|1 +
(

q − 1
2

)
(ζ∗ + 2γ∗)

]
µ∗ + q(ζ∗ + 2γ∗)γ∗ ∂µ∗

∂γ∗ =
d − 1

d
a2 + ζ∗κ∗, (81)

where ν∗
2|1 ≡ ν2|1/ν0 and

ω∗
2|1 ≡ ν∗

2|1 − 3
2
ζ∗ =

d − 1
4d

(1 + α)2. (82)

In the absence of the gas phase (γ∗ = 0), the solution to equations (80) and (81) is

κ∗
dry =

d − 1
d

1 + 2a2

ω∗
2|1 − 1

2ζ
∗ , (83)

µ∗
dry =

d−1
d

a2 + ζ∗κ∗
dry

ω∗
2|1 +

(
q − 1

2

)
ζ∗ . (84)

When q = 1
2 , equations (83) and (84) agree with those previously derived [11] for an

undriven granular gas of IMM. As for the shear viscosity, the set of nonlinear differential
equations (80) and (81) become a set of algebraic equations for model A (q = 0), whose
solution is

κ∗ =
d − 1

d

1 + 2a2

ω∗
2|1 − 1

2ζ
∗ − γ∗ , (85)

µ∗ =
d−1

d
a2 + ζ∗κ∗

ω∗
2|1 − 1

2ζ
∗ − γ∗ . (86)

Equations (85) and (86) become unphysical when γ∗ � ω∗
2|1 − 1

2ζ
∗ since κ∗ and µ∗ become

divergent or negative. This singular behavior has been also found in the case of the self-
diffusion coefficient of an ordinary Maxwell gas in the presence of a nonconservative drag
force [31].

The solution to equations (80) and (81) for model B (q �= 0) is much more intricate. On
the other hand, an inspection to both equations shows that in the case q = 1

2 a particular
(hydrodynamic) solution to them corresponds to the expressions of κ∗ and µ∗ obtained in
the dry limit case, namely, κ∗ = κ∗

dry (see equation (83)) and

µ∗ =
d−1

d
a2 + ζ∗κ∗

dry

ω∗
2|1

=
d − 1

d

ζ∗(1 + 2a2) + a2(ω∗
2|1 − 1

2ζ
∗)

ω∗
2|1(ω

∗
2|1 − 1

2ζ
∗)

. (87)

For general values of the interaction parameter q, the solution to equation (80) can be
cast into the form

κ∗(α, γ∗) = Cκ∗
0(α, γ∗) + Fκ(α, γ∗), (88)

where C is a constant to be determined from the initial conditions and

κ∗
0(α, γ∗) = exp

{
1

qζ∗

[
(
1
2
ζ∗ − ω∗

2|1) ln(2γ∗) + (ω∗
2|1 − qζ∗) ln(2γ∗ + ζ∗)

]}
, (89)
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Figure 4. Plot of the ratio κ∗
0(γ

∗)/Fκ(γ∗) versus the dimensionless friction
coefficient γ∗ for d = 3, α = 0.5 and two different values of the interaction
parameter q: q = 1

4 (solid line) and q = 1
3 (dashed line).

Fκ(α, γ∗) =
κ∗

dry

(ζ∗ + 2γ∗)
[
ω∗

2|1 + (q − 1
2)ζ

∗
] (

1 +
2γ∗

ζ∗

)ω∗
2|1/qζ∗

×ζ∗
[
ω∗

2|1 + (q − 1
2
)ζ∗

]
2F1

(
− 1

2q
+ ω∗

2|1

qζ∗ , −1 +
ω∗

2|1

qζ∗ , 1 − 1
2q

+
ω∗

2|1

qζ∗ , −2γ∗

ζ∗

)

+2γ∗
(

1
2
ζ∗ − ω∗

2|1

)
2F1

(
1 − 1

2q
+

ω∗
2|1

qζ∗ ,
ω∗

2|1

qζ∗ , 2 − 1
2q

+
ω∗

2|1

qζ∗ , −2γ∗

ζ∗

)
.

(90)

It is important to note that the expression (90) for Fκ (which is independent of the initial
condition) is consistent with the particular solution (83) for model B with q = 1

2 and with
equation (85) for model A (q = 0). Moreover, in the absence of the drag force (γ∗ = 0),
as expected Fκ(α, 0) = κ∗

dry and one recovers the results for dry granular gases.
As for the shear viscosity, one expects that after a transient period, the coefficient

κ∗ achieves its hydrodynamic value Fκ. To check it, we have to analyze the asymptotic
behavior of the ratio κ∗

0/Fκ in the long time limit (γ∗ → ∞). Figure 4 shows κ∗
0/Fκ versus

γ∗ for d = 3, α = 0.5 and two values of q. Although the function κ∗
0/Fκ decreases as γ∗

increases, it decays much more slowly than in the case of the shear viscosity (see figure 2).
In fact, for very large values of γ∗, the numerical results obtained for κ∗

0/Fκ seem to
indicate that this ratio reaches a constant asymptotic value (plateau) different from zero
(for instance, for q = 1

3 and α = 0.5, κ∗
0/Fκ 	 0.1813 when γ∗ → ∞). Therefore, for q � 1

2 ,
the presence of the drag force could prevent the existence of a hydrodynamic solution for
κ∗ for the above range of values of the interaction parameter q. A similar behavior can be
expected for the coefficient µ∗ since the equation defining it (see equation (81)) involves to
the thermal conductivity. The confirmation of the absence of hydrodynamic forms for the
heat flux transport coefficients of model B could be achieved by numerically solving the
Boltzmann equation by means of the direct simulation Monte Carlo (DSMC) method [32].
This is quite an interesting problem to be addressed in the near future.
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Figure 5. Plot of the ratio κ∗(α, γ∗)/κ∗(1, γ∗) (left panel) and µ∗(α, γ∗) (right
panel) as functions of the coefficient of restitution α for model A (q = 0) and
for three different values of γ∗: γ∗ = 0 (solid lines), γ∗ = 0.1 (dashed lines)
and γ∗ = 0.2 (dash–dotted lines). The results obtained for model B with q = 1

2
(which are independent of γ∗) have been also included. Note that in the case
of the thermal conductivity the results of models A (with γ∗ = 0) and B (with
q = 1

2) are the same.

To illustrate the dependence of κ∗ and µ∗ on both the coefficient of restitution α
and the (reduced) friction coefficient γ∗, figure 5 shows the ratio κ∗(α, γ∗)/κ∗(1, γ∗) and
the dimensionless coefficient µ∗(α, γ∗) as functions of α for three values of γ∗. We have
considered here the most interesting physical models: model A (q = 0) and model B with
q = 1

2 . The first case corresponds to an interaction model closer to ordinary Maxwell
molecules while the second case is closer to IHS. In the case of model B with q = 1

2 ,
we have plotted the particular (hydrodynamic) solutions given by equation (83) for κ∗

and equation (87) for µ∗. In addition, the (dimensionless) coefficient µ∗(α, γ∗) is plotted
rather than the ratio µ∗(α, γ∗)/µ∗(1, γ∗) since the latter diverges for elastic collisions
(µ∗ = 0 for α = 1). As in the case of the shear viscosity, the influence of the gas phase
on the thermal conductivity becomes more significant as the dissipation increases. With
respect to the coefficient µ∗, at a given value of α, we see that this coefficient decreases
as the interaction becomes harder. Regarding the influence of the gas phase on µ∗, we
observe that the impact of γ∗ on µ∗ is larger than the one predicted for the thermal
conductivity.

6. Some illustrative systems

6.1. Low mean-flow Reynolds numbers

Although the expressions derived in section 5 for the Navier–Stokes transport coefficients
of monodisperse gas–solid flows have been obtained in the framework of IMM, it is
tempting to establish some connection with the results obtained for suspensions modeled
as IHS. In particular, according to the results reported in [4] for hard spheres (d = 3), the
(dimensionless) friction coefficient γ∗ can be written as

γ∗ =
3π√
2φ

ρg

ρs

Re−1
T , (91)
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Figure 6. Plot of the ratios η/ηdry, κ/κdry and µ/µdry as functions of the
Reynolds number ReT for φ = 0.01, ρs/ρg = 1000 and three different values
of the coefficient of restitution: α = 0.9(a), α = 0.8(b) and α = 0.7(c). In the
case of the shear viscosity, η is given by equation (70) with q = 1

2 while the
thermal conductivity κ and the coefficient µ are given by equations (85) and
(86) of model A (q = 0), respectively.

where φ = (π/6)nσ3 is the solid volume fraction for spheres, σ is the particle diameter,
ρg and ρs are the mass density of gas and solid particles, respectively, and

ReT =
ρgσ

µg

√
T

m
(92)

is the Reynolds number associated with the particle velocity fluctuations. In equation (92),
µg is the dynamic viscosity of the gas phase. Note that the relation (91) only holds for low
mean-flow Reynolds numbers and for very dilute systems [4]. The dependence of the ratios
η/ηdry, κ/κdry and µ/µdry on ReT is plotted in figure 6 for φ = 0.01 (low-density granular
system) with ρs/ρg = 1000. Three different values of the coefficient of restitution are
considered. Given that in the case of model A, η does not depend on the friction coefficient
γ, we have plotted in figure 6 the value of the shear viscosity defined by equation (70) for
model B with q = 1

2 . On the other hand, in the cases of κ and µ we have plotted their
corresponding simple expressions (85) and (86), respectively, derived for model A (q = 0).
Moreover, in figure 6 ηdry is given by equation (65) with q = 1

2 while κdry and µdry are
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given by equations (83) and (84), respectively, with q = 0. It must be also remarked that
the range of values of the Reynolds number as well as the values of φ and ρs/ρg used in
the above figure are typical values encountered in a circulating fluidized bed [4].

We observe first that the gas phase displays a larger impact on the shear viscosity for
lower ReT while in the other extreme of higher ReT, the granular limit (η/ηdry → 1) is
approached, as expected. It is also apparent that the gas phase effect on shear viscosity
is more pronounced for higher dissipation levels (lower α). A comparison with the results
derived in [4] at the level of the shear viscosity of IHS shows a good qualitative agreement
between both interaction models. Regarding the thermal conductivity, figure 6 clearly
shows a significant influence of the interstitial fluid on κ for model A, especially at lower
Reynolds numbers. This contrasts with the results obtained here for κ in the case of
model B with q = 1

2 (which is the IMM closer to IHS) since the (exact) expression (90)
for κ turns out to be independent of γ for this interaction model. On the other hand,
this surprising result agrees qualitatively well with the findings of IHS [4] since the latter
shows a negligible impact of the gas phase on κ over the range of parameters examined.
Finally, in stark contrast with the shear viscosity, we see that the gas phase serves to
increase the value of the coefficient µ (i.e. µ/µdry > 1). This is consistent with the results
of IHS [4]. However, at a more quantitative level, the results for IHS are the opposite (see
figure 9 of [4]) as those obtained here for IMM since the latter shows that the impact of
gas phase on µ is more noticeable at higher dissipation levels (smaller α).

6.2. Steady states

Apart from modeling the friction of solid particles with the surrounding fluid in gas–
solid suspensions, the drag force (5) has been also used in nonequilibrium problems as a
thermostatic force to achieve steady states. For instance, in the case of sheared ordinary
fluids, the friction coefficient γ is a (positive) shear-rate dependent function chosen to
compensate for the viscous heating produced by shear work [19,31,33,34]. On the other
hand, in the case of granular gases in homogenous states, when γ < 0 the system is
heated by an ‘antidrag’ force chosen to exactly compensate for collisional cooling and
reach a steady state. According to equation (27), the condition ∂tT = 0 yields γ = −1

2ζ,
namely,

γ(α) = −d + 2
8d

(1 − α2)ν0. (93)

Therefore, γ is taken as a negative coefficient coupled to the coefficient of restitution
α [35]. The expressions of the (reduced) transport coefficients η∗

s , κ∗
s and µ∗

s in the steady
state can be easily obtained from the general results derived in section 5 by replacing γ
by its α-dependent form (93). They are given by

η∗
s =

1
ω∗

0|2
, (94)

κ∗
s =

d − 1
d

1
ω∗

2|1 − qζ∗ , (95)

µ∗
s =

d−1
d

a2 + ζ∗κ∗

ω∗
2|1

. (96)
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Figure 7. Plot of the steady (dimensionless) transport coefficients η∗
s , κ∗

s and µ∗
s

as functions of the coefficient of restitution α as obtained from model B with
q = 1

2 (solid lines) and from IHS (dashed lines) for disks (a) and spheres (b).
In the case of the shear viscosity η∗

s , the solid line refers to model B for both
disks and spheres (its expression is independent of the dimensionality of the
system) while the dash–dotted and dashed lines correspond to d = 2 and d = 3,
respectively, for IHS.

The expressions of η∗
s , κ∗

s and µ∗
s for IHS have been recently derived by considering the

first Sonine approximation [12]. Their explicit forms are displayed in the appendix B.
Figure 7 shows the dependence of η∗

s , κ∗
s and µ∗

s on α for two and three dimensions. We
have considered here the theoretical results obtained for model B of IMM with the power
q = 1

2 (equations (94)–(96)) and the results for IHS (equations (B1) and (B2)). We observe
that in general the qualitative dependence of the Navier–Stokes transport coefficients on
dissipation of IHS is well captured by IMM. As expected (because the same behavior is
observed in analogous systems [11, 12]), the dependence of the transport coefficients on
inelasticity is more significant in IMM than in IHS. The quantitative differences between
both interaction models increase with inelasticity (especially in the two-dimensional case)
and they are much more important in the case of the thermal conductivity than in the
cases of the shear viscosity and the coefficient µ. However, and compared with the free
cooling case [11], the discrepancies found here between IMM and IHS are much less
important than those observed in the undriven case.
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7. Conclusions

In this paper, the influence of the interstitial fluid on the dynamic properties of solid
particles in a monodisperse suspension has been studied. The fluid-solid interaction force
has been modeled via a viscous drag force proportional to the particle velocity. This type
of external force has been recently used in different works [15–17] to study the shear
rheology of frictional hard-sphere suspensions. Our goal here has been to determine the
forms of the Navier–Stokes transport coefficients in terms of the relevant parameters of
the suspension (coefficients of restitution α and friction γ).

To address the above issue in the context of the (inelastic) Boltzmann equation
without having to resort to approximate methods or computer simulations, one has
to consider simplified collision models. As for elastic collisions [19], the IMM renders
itself to an analytical treatment for transport properties since the velocity moments
of the Boltzmann collision operator can be exactly evaluated without the knowledge
of the velocity distribution function. Those collisional moments are given in terms of
an effective collision frequency ν0 independent of the coefficient of restitution α. As in
previous works [20], two different classes of IMM have been studied here: model A, where
ν0 is independent of temperature, and model B where ν0 is an increasing function of
temperature (ν0 ∝ T q).

The Chapman–Enskog method [13] has been used to derive Navier–Stokes-order
constitutive equations for the momentum and heat fluxes. The results indicate in general a
non-negligible influence of the gas phase on the shear viscosity η, the thermal conductivity
κ and the coefficient µ (relating the heat flux with the density gradient). Specifically, the
presence of the gas phase lowers η and increases κ and µ (see figure 6). However, for model
B with q = 1

2 , the exact results derived here show that the hydrodynamic forms of κ and
µ are independent of the friction coefficient γ. This surprising feature agrees qualitatively
well with the previous results derived in [4] for IHS in the case of the thermal conductivity,
since a negligible influence of the gas phase on κ was found for this interaction model.
With respect to the influence of the initial conditions, our expressions for the heat flux
transport coefficients also show that in the case of model B the presence of the drag
force could prevent the existence of hydrodynamic forms for κ and µ. The confirmation
of this point requires the performance of computer simulations by means of the DSMC
method [32].

The analysis shows that while the (scaled) zeroth-order distribution function f (0) does
not explicitly depend on γ∗, the transport coefficients associated with the first-order dis-
tribution f (1) present in general a complex dependence on the (dimensionless) friction
coefficient. This result is fully consistent with previous results [31] derived for ordinary
(elastic) gases where it was exactly shown that the effect of the drag force (5) for homoge-
neous systems of particles interacting via repulsive potentials is just to scale the velocities
and to introduce a new time scale. On the other hand, the above scaling fails for inhomo-
geneous situations (due essentially to the presence of the inhomogeneous term v · ∇f (0)

in f (1)) and the (scaled) transport coefficients are affected by the drag force. The results
derived here extend to inelastic systems the conclusions made in [31] since the external
force does not play a neutral role for transport and hence, the expressions of the (scaled)
transport coefficients obtained with and/or without the drag force are in general different.
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Furthermore, the present results generalize to granular flows recent results [36]
obtained for ordinary gases subjected to a drag force of the form (5). In this previous work
[36], it was assumed for the sake of simplicity that the friction coefficient γ(r, t) ∝ ν(r, t)
and so, γ∗ ≡ const. The expressions of the Navier–Stokes transport coefficients when γ∗

is constant can be easily derived by following similar steps as those made here. Their
forms are provided in the appendix C and extend to inelastic collisions (α �= 1) the results
reported in [36].

The knowledge of the Navier–Stokes transport coefficients allows one in principle to
solve the linearized hydrodynamic equations around the homogenous time-dependent
state (HCS) for solid particles. The determination of the critical length scale Lc in
freely cooling flows offers one of the most interesting applications of the Navier–Stokes
hydrodynamics and is likely the phenomenon that makes granular flows so different from
ordinary gases [37–40]. On the other hand, given that the dimensionless friction coefficient
γ∗ ∝ T (t)−q depends on time in our model of suspensions, the determination of Lc is an
intricate problem since it requires to numerically solve the corresponding set of differential
equations for the hydrodynamic fields. This contrasts with the stability analysis performed
recently for driven ordinary gases (γ∗ ≡ const.) where Lc was analytically determined [36].
We plan to perform a linear stability analysis of the Navier–Stokes equations derived in
this paper to assess the impact of the surrounding viscous fluid over previous analytical
results obtained for dry granular gases [9, 41]. Another possible direction of study is the
extension of the present results for the transport coefficients to the important subject
of polydisperse gas–solid suspensions. Previous works carried out for IMM [42] have
shown the tractability of the Maxwell kinetic theory for these complex systems and
stimulate the performance of this study. In particular, given the difficulties associated
with multicomponent systems, the tracer limit (a binary mixture where the concentration
of one of the species is negligible) could be perhaps a good starting point to provide some
insight into the general problem. Work along these lines will be carried out in the near
future.
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Appendix A. First-order approximation

In this appendix, some technical details of the application of the Chapman–Enskog method
to the first-order approximation are provided. Up to first order in spatial gradients, the
velocity distribution function f (1)(V) obeys the kinetic equation

∂
(0)
t f (1) − γ

∂

∂V
· Vf (1) + Lf (1) = −

(
D

(1)
t + V · ∇

)
f (0), (A1)
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where the linear operator Lf (1) is defined by equation (55) and D
(1)
t ≡ ∂

(1)
t + U · ∇. The

macroscopic balance equations (10)–(12) to first order in the gradients are
D

(1)
t n = −n∇ · U, D

(1)
t Ui = −ρ−1∇ip, (A2)

D
(1)
t T = −2T

d
∇ · U. (A3)

Use of equations (A2) and (A3) in equation (A1) yields(
∂

(0)
t + L

)
f (1) − γ

∂

∂v
· Vf (1)

= A · ∇ ln T +B · ∇ ln n + Cij
1
2

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
, (A4)

where

A (V) = −VT
∂f (0)

∂T
− p

ρ

∂f (0)

∂V
, (A5)

B (V) = −Vf (0) − p

ρ

∂f (0)

∂V
, (A6)

Cij (V) = Vi
∂f (0)

∂Vj

. (A7)

Upon deriving equations (A5)–(A7), use has been made of the spherical symmetry of
f (0)(V) which allows to express the tensor derivative of the flow field ∇iUj in terms of its
independent tracer and traceless parts, namely,

Vi
∂f (0)

∂Vj

∇iUj =
1
2
Vi

∂f (0)

∂Vj

(∇iUj + ∇jUi)

=
1
2
Vi

∂f (0)

∂Vj

(
∇iUj + ∇jUi − 2

d
δij∇ · U

)
+

1
d
V · ∂f (0)

∂V
∇ · U. (A8)

Appendix B. Inelastic hard spheres results for steady states

In this appendix we give the expressions of the transport coefficients of IHS under steady
state conditions (γ∗ = −ζ∗/2) [6]. For the sake of simplicity and given that the fourth
cumulant a2 is very small, we take the Gaussian approximation for the zeroth-order
distribution f (0) and hence a2 = 0. In this case, the expressions of η∗

s , κ∗
s and µ∗

s are
(see appendix B of [12])

η∗
s =

1
ν∗

η − ζ∗ , (B1)

κ∗
s =

d − 1
d

1
ν∗

κ − 2ζ∗ , µ∗
s =

ζ∗κ∗

ν∗
κ − 3

2ζ
∗ , (B2)

where

ζ∗ =
d + 2
4d

(1 − α2), (B3)

ν∗
η =

3
4d

(
1 − α +

2
3
d

)
(1 + α), ν∗

κ =
1 + α

d

[
d − 1

2
+

3
16

(d + 8)(1 − α)
]

. (B4)
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Appendix C. Transport coefficients when γ∗ is constant

In this appendix we provide the explicit expressions of the transport coefficients when the
(reduced) friction coefficient γ∗ is constant. They are given by

η∗ =
1

ω∗
0|2 + q(ζ∗ + 2γ∗)

, (C1)

κ∗ =
d − 1

d

1 + 2a2

ω∗
2|1 −

(
1
2ζ

∗ + γ∗
) , µ∗ =

d−1
d

a2 + (ζ∗ + 2γ∗)κ∗

ω∗
2|1 + (q − 1

2) (ζ∗ + γ∗)
. (C2)

In the case of elastic hard spheres (α = 1 and d = 3), equations (C1) and (C2) agree with
those recently obtained for Maxwell molecules [36].
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Pastenes J, Géminard J C and Melo F 2014 Phys. Rev. E 89 062205

[2] Koch D L 1990 Phys. Fluids A 2 1711
[3] Koch D L and Hill R J 2001 Annu. Rev. Fluid Mech. 33 619
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