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a b s t r a c t

The formation of velocity vortices and density clusters is an intriguing phenomenon of freely

cooling granular flows. In this work, the critical length scale Lc for the onset of instability

is determined via stability analysis of the linearized Navier–Stokes hydrodynamic equations

of d-dimensional granular binary mixtures at moderate densities. In contrast to previous at-

tempts, the analysis is not restricted to nearly elastic systems since it takes into account the

nonlinear dependence of the transport coefficients and the cooling rate on the collisional dis-

sipation. As expected from previous results obtained in the very dilute regime, linear stability

shows d − 1 transversal (shear) modes and a longitudinal (“heat”) mode to be unstable with

respect to long enough wavelength excitations. The theoretical predictions also show that the

origin of the instability is driven by the transversal component of the velocity field that be-

comes unstable when the system length L > Lc. An explicit expression of Lc is obtained in terms

of the masses and diameters of the mixture, the composition, the volume fraction and the co-

efficients of restitution. Previous results derived in the limit of both mechanically equivalent

particles and low-density mixtures are consistently recovered. Finally, a comparison with pre-

vious theoretical works which neglect the influence of dissipation on the transport coefficients

shows quantitative discrepancies for strong dissipation.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Granular media are involved in many industrial and nat-

ural phenomena. In fact, it has been estimated that granular

media is the second most used type of material in industry

after water [1]. This is perhaps the main reason for which the

study of granular matter has attracted the attention of physi-

cists and engineers in the past few years. Although granular

media form an extremely vast family constituted by grains of

different sizes and shapes, all these systems share relevant

features. In particular, when granular materials are exter-

nally excited (rapid flow conditions), they behave like a fluid.

In this regime, binary collisions prevail and hence, kinetic
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theory may be considered as a quite useful tool to describe

the kinetics and hydrodynamics of the system. The main dif-

ference with respect to ordinary or molecular fluids is that

granular systems are constituted by macroscopic grains that

collide inelastically so that the total energy decreases with

time. In this context, a granular fluid can be considered as

a complex system that inherently is in a non-equilibrium

state. In the case that the system is heated by an external

driving force that compensates for the energy dissipated by

collisions, a non-equilibrium steady state is achieved. Under

these conditions, some attempts have been recently made to

formulate a fluctuation–response theorem based on the in-

troduction of an effective temperature [2–9]. The general-

ization of the equilibrium fluctuation–response theorem to

non-equilibrium states has been also confirmed in real ex-

periments of intruders in driven granular fluids [10]. Another

interesting experiments in granular matter have studied the
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response of a sheared granular medium in a Couette geom-

etry [11] and the behaviour of a freely rotating asymmetric

probe immersed in a vibrated granular media [12].

On the other hand, although significant progresses have

been made in the past on the understanding of granular

flows, there are still important open challenges in the re-

search of granular gases. One of the main reasons for which

the theoretical description of these systems is quite intri-

cate is that the number of relevant parameters needed to de-

scribe them is relatively large. This gives rise to a wide ar-

ray of complexities that arise during the derivation of kinetic

theory models. Thus, in order to gain some insight into the

description of these systems under real conditions, one usu-

ally models a granular fluid as a system composed by smooth

hard spheres or disks with inelastic collisions. In this sim-

plest model, the inelasticity of collisions is only accounted

for by a (positive) constant coefficient of normal restitution α
≤ 1 that only affects the translational degrees of freedom of

grains. Nevertheless, in spite of the simplicity of the model, it

has been shown as a reliable prototype to explain some of the

physical mechanisms involved in granular flows, especially

those directly related to collisional dissipation.

One of the most characteristic features of granular fluids

is the spontaneous formation of velocity vortices and den-

sity clusters in freely cooling flows (homogeneous cooling

state, HCS). The origin of this kind of instability is associated

with the dissipative nature of collisions and is likely the most

characteristic feature that makes granular flows so distinct

from ordinary (elastic) fluids. Detected first by Goldhirsch

and Zanetti [13] and McNamara [14] in computer simula-

tions, the instabilities in a free granular fluid can be well de-

scribed by a linear stability analysis of the Navier–Stokes hy-

drodynamic equations. This analysis provides a critical length

Lc so that the system becomes unstable when its linear size

is larger than Lc. In the case of a monodisperse low-density

granular gas, the dependence of Lc on the coefficient of resti-

tution obtained from the (inelastic) Boltzmann kinetic equa-

tion [15,16] compares quite well with numerical results [17]

obtained by using the direct simulation Monte Carlo (DSMC)

method [18]. For higher densities, theoretical results for Lc

based on the (inelastic) Enskog equation [19] shows an excel-

lent agreement with molecular dynamics (MD) simulations

for a granular fluid at moderate density [20,21]. The stabil-

ity analysis reported in Ref. [19] extends to finite dissipation

some previous attempts [22,23] carried out in the context

of the Enskog kinetic theory but neglecting any dependence

of the pressure and the transport coefficients on inelasticity.

Nevertheless, while the study of the stability of the HCS has

been widely covered in the case of granular fluids, much less

has been made in the important subject of granular mixtures

(namely, systems composed by grains of different masses, di-

ameters, composition).

Needless to say, the analysis of the stability of the HCS

for polydiperse granular systems is much more complicated

than for a single granular gas. Not only the number of trans-

port coefficients involved in the determination of the critical

size Lc is higher than for a monodisperse gas but also they

depend on more parameters, such as the set of coefficients

of restitution characterizing the binary collisions between

different species. Many of the early attempts [24–27] to ob-

tain the Navier–Stokes coefficients of granular mixtures were
performed by assuming the equipartition of granular energy.

However, given that the lack of energy equipartition [28] has

been widely confirmed by computer simulations [29–33] and

observed in real experiments of agitated mixtures [34,35],

the hypothesis of energy equipartition can only be acceptable

for nearly elastic systems. In fact, in those previous works

[24–27] the forms of the transport coefficients are the same

as those obtained for ordinary mixtures [36] and the influ-

ence of inelasticity is only considered in the presence of a

sink term in the energy balance equation. A more rigorous

derivation of linear transport for granular mixtures has been

made by Garzó and Dufty [37] in the dilute regime and more

recently by Garzó, Dufty and Hrenya [38–40] for moderate

densities. In these works, given that non-equipartition ef-

fects on transport have been considered, the corresponding

Navier–Stokes transport coefficients exhibit an intricate non-

linear dependence on the coefficients of restitution of the

mixture. As for single granular gases, the theoretical results

(which have been obtained in the so-called fist Sonine ap-

proximation) compare in general quite well with computer

simulations [41–46] for conditions of practical interest, such

as strong inelasticity.

The knowledge of the Navier–Stokes transport coeffi-

cients of granular mixtures opens the possibility of obtaining

the critical length Lc from the (linear) stability analysis of the

hydrodynamic equations. For dilute systems, the theoretical

predictions of kinetic theory [47,48] for Lc has been shown to

agree very well with the DSMC simulations of the Boltzmann

equation [48]. On the other hand, in spite of the explicit

knowledge of the Enskog transport coefficients for a granular

mixture [38–40], I am not aware of any previous solution of

the linearized hydrodynamic equations for moderately dense

granular mixtures. The goal of this paper is to perform a lin-

ear stability analysis around the HCS in order to identify the

conditions for stability as functions of the wave vector,

the volume fraction, the dimensionality of the system d and

the parameters of the mixture (masses, sizes, composition

and the coefficients of restitution). As expected, the stability

analysis shows d − 1 transversal (shear) modes and a longi-

tudinal heat mode to be unstable with respect to long wave-

length excitations. In addition, the results also show that the

origin of the instability lies in the transversal shear mode

(except for quite large dissipation) and hence, for sizes of the

system larger than the critical length Lc the transversal veloc-

ity becomes unstable. As for dilute mixtures [48], theoretical

predictions for Lc compare well with recent MD simulations

of hard spheres [49]. A preliminary short report of some of

the results presented here has been given in Ref. [49].

The plan of the paper is as follows. First, in Section 2

the hydrodynamic equations and associated fluxes to Navier–

Stokes order are recalled. The explicit dependence of some

of the transport coefficients on dissipation is illustrated for

different systems showing that the influence of inelasticity

on transport is in general quite significant. Section 3 is de-

voted to the linear stability analysis around the HCS. This

Section presents the main results of the paper. The depen-

dence of the critical size Lc on the parameter space is widely

investigated in Section 4 by varying the parameters of the

system in the case of a common coefficient of restitution

(α11 = α22 = α12 ≡ α). The paper is closed in Section 5 with

a brief discussion of the results.
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2. Hydrodynamic description

We consider a binary mixture of inelastic, smooth, hard

spheres (d = 3) or disks (d = 2) of masses m1 and m2, and di-

ameters σ 1 and σ 2. The inelasticity of collisions among all

pairs is characterized by three independent constant coeffi-

cients of normal restitution α11, α22, and α12 = α21, where

αij is the coefficient of restitution for collisions between par-

ticles of species i and j. At a kinetic level, all the relevant infor-

mation on the state of the mixture is given through the one-

particle velocity distribution function of each species fi(r, v,

t) (i = 1, 2). This quantity gives the average number of parti-

cles of species i that at instant t are located around the point

r with a velocity about v. At moderate densities, the distri-

bution functions fi are accurately described by the coupled

set of inelastic Enskog kinetic equations [50,51]. From this set

one can derive the (macroscopic) hydrodynamic equations

for the particle number density of each species,

ni(r, t) =
∫

dv fi(r, v, t), (1)

the mean flow velocity

U(r, t) = 1

ρ(r, t)

2∑
i=1

∫
dvmiv fi(r, v, t), (2)

and the granular temperature

T(r, t) = 2

dn(r, t)

2∑
i=1

∫
dvmi(v − U(r, t))

2 fi(r, v, t). (3)

The hydrodynamic equations are given by Garzó et al. [38]:

Dt ni + ni∇ · U + ∇ · ji

mi

= 0, i = 1, 2 (4)

Dt U + ρ−1∇ · P = 0 , (5)

Dt T − T

n

2∑
i=1

∇ · ji

mi

+ 2

dn
(∇ · q + P : ∇U) = −ζT . (6)

In the above equations, Dt = ∂t + U · ∇ is the material deriva-

tive, ρ = m1n1 + m2n2 is the total mass density, n = n1 + n2

is the total number density, ji is the mass flux for species i, q

is the heat flux, P is the pressure tensor, and ζ is the cooling

rate. In addition, the mass fluxes j1 and j2 are not indepen-

dent since j2 = −j1.

For the two component mixture considered here there are

d + 3 independent fields, n1, n2, T, and U. To obtain a closed

set of hydrodynamic equations, expressions for ji, q, P, and ζ
must be given in terms of these fields. Such expressions are

called “constitutive equations”. These equations have been

obtained up to the Navier–Stokes order from the Enskog

equation in Ref. [38]. They are given by

j1 = −m2
1n1

ρ
D11∇ ln n1 − m1m2n2

ρ
D12∇ ln n2 − ρDT∇ ln T,

(7)

q = −T 2Dq,1∇ ln n1 − T 2Dq,2∇ ln n2 − λ∇T, (8)

Pk� = pδk� − η
(
∇�Uk + ∇kU� − 2

d
δk�∇ · U

)
− κδk�∇ · U,

(9)
ζ = ζ (0) + ζu∇ · U. (10)

Here, Dij are the mutual diffusion coefficients, DT is the ther-

mal diffusion coefficient, Dq, ij are the Dufour coefficients, λ
is the thermal conductivity coefficient, p is the hydrostatic

pressure, η is the shear viscosity coefficient, κ is the bulk

viscosity coefficient, and ζ (0) and ζ u are the zeroth- and

first-order contributions to the cooling rate, respectively. The

eight transport coefficients {Dij, DT, Dq, ij, λ, η, κ , } as well

as the first-order contribution ζ u to the cooling rate verify a

set of coupled linear integral equations which can be solved

approximately by using the leading terms in a Sonine poly-

nomial expansion. This type of solution provides explicit ex-

pressions for the complete set of Navier–Stokes transport co-

efficients and the cooling rate in terms of the volume fraction

φ, the coefficients of restitution αij and the parameters of the

mixture (masses, sizes, and composition) [39,40]. The solid

volume fraction φ is defined as φ = φ1 + φ2 where

φi = π d/2

2d−1d�
(

d
2

)niσ
d
i , i = 1, 2. (11)

On the other hand, the expressions (7) and (8) for mass

and heat fluxes can be defined in a variety of equivalent ways

depending on the choice of the driving forces used. Here, to

recover previous results [19] derived in the stability analy-

sis for a monodisperse dense gas, the hydrodynamic fields x1

and n are considered instead of the partial densities n1 and

n2. Here, x1 = n1/(n1 + n2) is the composition (or mole frac-

tion) of species 1. With this simple change of variables, Eq. (4)

for n1 and n2 become

Dt x1 + ρ

n2m1m2

∇ · j1 = 0, (12)

Dt n + n∇ · U + m2 − m1

m1m2

∇ · j1 = 0. (13)

In terms of ∇x1 and ∇n, the mass and heat fluxes read

j1 = −m1m2n

ρ
D∇x1 − m1m2

ρ
Dn∇n − ρ

T
DT ∇T, (14)

q = −T 2D′′∇x1 − T 2

n
Dqn∇n − λ∇T, (15)

where the transport coefficients D, Dn, D′′, and Dqn are de-

fined as

D = μD11 − D12, Dn = x1μD11 + x2D12, (16)

D′′ = Dq,1

x1

− Dq,2

x2

, Dqn = Dq,1 + Dq,2, (17)

where x2 = 1 − x1 and μ ≡ m1/m2 is the mass ratio.

The explicit expressions of the Navier–Stokes transport

coefficients of a d-dimensional dense granular binary mix-

ture can be found in Ref. [40]. In the case of mechanically

equivalent particles (m1 = m2, σ1 = σ2, and αij ≡ α), then

Dn = DT = D′′ = 0 and Eqs. (9), (14) and (15) agree with the

results derived for a monodisperse dense gas [52,53]. More-

over, in the low-density limit (φ = 0), κ = ζu = 0 and the re-

sults derived for a granular binary mixture at low-density

are recovered [37,54]. Beyond the above two particular sit-

uations, the dependence of the transport coefficients on the

parameter space of the system is quite intricate. To illus-

trate this dependence, Figs. 1, 2, 3, and 4 show the dimen-

sionless quantities D(α)/D(1), Dn(α)/Dn(1), DT(α)/DT(1) and



500 V. Garzó / Chaos, Solitons and Fractals 81 (2015) 497–509

Fig. 1. Plot of the (reduced) diffusion coefficient D(α)/D(1) as a function of

the (common) coefficient of restitution α for a binary mixture of inelastic

hard spheres (d = 3) with σ1 = σ2, x1 = 0.5, φ = 0.1 and two different val-

ues of the mass ratio m1/m2.

Fig. 2. Plot of the (reduced) density diffusion coefficient Dn(α)/Dn(1) as a

function of the (common) coefficient of restitution α for a binary mixture

of inelastic hard spheres (d = 3) with σ1 = σ2, x1 = 0.5, φ = 0.1 and two

different values of the mass ratio m1/m2.

Fig. 3. Plot of the (reduced) thermal diffusion coefficient DT(α)/DT(1) as a

function of the (common) coefficient of restitution α for a binary mixture

of inelastic hard spheres (d = 3) with σ1 = σ2, x1 = 0.5, φ = 0.1 and two

different values of the mass ratio m1/m2.

Fig. 4. Plot of the (reduced) shear viscosity coefficient η(α)/η(1) as a func-

tion of the (common) coefficient of restitution α for a binary mixture of in-

elastic hard spheres (d = 3) with σ1 = σ2, x1 = 0.5, φ = 0.1 and two differ-

ent values of the mass ratio m1/m2.
η(α)/η(1), respectively, as functions of the (common) coeffi-

cient of restitution α11 = α22 = α12 ≡ α for φ = 0.1, σ1/σ2 =
1, x1 = 0.5 and two different values of the mass ratio m1/m2.

Here, D(1), Dn(1), DT(1) and η(1) correspond to the values of

these coefficients in the elastic limit. We observe that in gen-

eral the influence of inelasticity on the transport coefficients

is quite significant and so their functional form differs appre-

ciably from their elastic form. This means that the previous

predictions made for nearly elastic spheres [24–27] might

quantitatively differ from those obtained here as the rate of

dissipation increases. This will be confirmed later.

When the expressions (9), (10), (14), and (15) for the pres-

sure tensor, the cooling rate, the mass flux and the heat flux,

respectively, are substituted into the exact balance equations

(5), (6), (12), and (13) one gets the corresponding Navier–

Stokes hydrodynamic equations for the hydrodynamic fields

x1, n, U, and T. They are given by

Dt x1 = ρ

n2m1m2

∇ ·
(

m1m2n

ρ
D∇x1 + m1m2

ρ
Dn∇n

+ρ

T
DT∇T

)
, (18)

Dt n + n∇ · U = m2 − m1

m1m2

∇ ·
(

m1m2n

ρ
D∇x1

+m1m2

ρ
Dn∇n + ρ

T
DT∇T

)
,

(19)

ρDtU� + ∇� p = ∇k

[
η
(
∇�Uk + ∇kU� − 2

d
δk�∇ · U

)

+κδk�∇ · U

]
, (20)

n
(
Dt + ζ (0)

)
T + 2

d
p∇ · U = −T(m2 − m1)

m1m2

∇

·
(

m1m2n

ρ
D∇x1 + m1m2

ρ
Dn∇n + ρ

T
DT∇T

)

+ 2

d
∇ ·

(
T 2D′′∇x1 + T 2

n
Dqn∇n + λ∇T

)
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+ 2

d

[
η
(
∇�Uk + ∇kU� − 2

d
δk�∇ · U

)
+ δk�κ∇ · U

]
∇�Uk − nTζu∇ · U. (21)

Note that consistency would require to consider up to second

order in the spatial gradients in the expression (10) for the

cooling rate, since this is the order of the terms appearing in

the energy balance equation (21) coming from the mass flux,

the pressure tensor and the heat flux. Thus, since the cooling

rate ζ is a scalar, its most general form at this order for a

granular binary dense mixture is

ζ = ζ (0) + ζu∇ · U + ζn1
∇2n1 + ζn2

∇2n2 + ζT∇2T

+ ζTT (∇T)2 + ζn1n1
(∇n1)

2 + ζn2n2
(∇n2)

2

+ ζTn1
(∇T) · (∇n1) + ζTn2

(∇T) · (∇n2)

+ ζn1n2
(∇n1) · (∇n2) + ζ1,uu(∇iUj)(∇iUj)

+ ζ2,uu(∇iUj)(∇ jUi). (22)

The first (linear) second-order terms (ζni
and ζ T) have been

determined for a one-component dilute gas in Ref. [15] while

all the set of coefficients (linear and nonlinear terms) have

been computed for granular monodisperse gases of vis-

coelastic particles in Ref. [55]. The evaluation of the above set

of coefficients for granular mixtures is a quite intricate prob-

lem. To the best of my knowledge, no explicit results for these

coefficients have been reported for granular binary mixtures,

even in the simplest case of a low-density mixture (φ = 0).

On the other hand, it has been shown for dilute gases that

the contributions of the second-order terms to the cooling

rate ζ are negligible [15], as compared with the correspond-

ing zeroth-order contribution ζ (0) (the first-order contribu-

tion ζ u vanishes for dilute gases). It is assumed here that

the same holds in the dense case and so, for practical ap-

plications these second-order contributions can be in princi-

ple neglected in the Navier–Stokes hydrodynamic equations.

In fact, the good agreement found in Ref. [49] between the

present theoretical results (where the nonlinear contribu-

tions to ζ are not accounted for) and MD simulations for the

onset of velocity vortices for strong inelasticity, finite density,

and particle dissimilarity (see Figs. 2 and 3 of [49]) supports

the above expectation.

The form of the Navier–Stokes hydrodynamic equations

(18)–(21) is the same as for an ordinary binary mixture (αi j =
1), except for the presence of the contributions to the cooling

rate ζ 0 and ζ u and the dependence of the transport coeffi-

cients on the coefficients of restitution. This dependence is

clearly illustrated in Figs. 1, 2,3,4.

3. Stability of the linearized hydrodynamic equations

In contrast to ordinary fluids, the hydrodynamic

equations (18)–(21) admit nontrivial solutions even for

spatially homogeneous states. This state is usually called

homogeneous cooling state (HCS). In this case (no spatial

gradients), Eqs. (18)–(21) read

∂t x1H = ∂t nH = ∂t uH� = 0, (23)[
∂t + ζ (0)(x1H, nH, TH)

]
TH = 0, (24)

where the subscript H denotes the homogeneous state. The

dependence of the zeroth-order cooling rate ζ (0) = ζ (0)
1

=

ζ (0)
2

on x1H, nH, and TH can be estimated by taking Maxellian

distributions for the distributions fi in the HCS. Here, ζ (0)
i

is

the partial cooling rate associated with the partial tempera-

ture Ti, which is a measure of the mean kinetic energy of par-

ticles of species i. The expression of ζ (0)
i

in the Maxwellian

approximation is [52]

ζ (0)
i

= d + 2

d
ν

2∑
j=1

x jχi j

( σi j

σ12

)d−1
(

θi + θ j

θiθ j

)1/2

×
(
1 + αi j

)[
1 − μ ji

2

(
1 + αi j

)θi + θ j

θ j

]
, (25)

where χ ij is the pair distribution function at contact, μi j =
mi/(mi + m j), θi = miT/mTi, σi j = (σi + σ j)/2, m ≡ (m1 +
m2)/2, and

ν = π(d−1)/2

�
(

d
2

) 8

d + 2
nσ d−1

12

√
T

m
(26)

is an effective collision frequency chosen to recover previous

results found for a dense one-component granular gas [19].

Note that for mechanically equivalent particles (m1 = m2,

σ1 = σ2), the collision frequency ν is associated with the

elastic shear viscosity of a dilute gas. Due to inelasticity in

collisions, energy equipartition is broken and so, in general

T1 �= T2. The temperature ratio γ ≡ T1/T2 is determined from

the condition ζ (0)
1

= ζ (0)
2

[52].

In order to solve Eq. (24) it is convenient to change to a

new time variable defined as

τ = 1

2

∫ t

0

ν(T(t ′))dt ′. (27)

In this new time variable, the integration of Eq. (24) yields

T(t) = T(0)e−2ζ ∗
0 τ (28)

where ζ ∗
0

= ζ (0)/ν . To find the relation between the “inter-

nal” time (related to the average number of collisions suf-

fered per particle) and the “external” time t, one integrates

the relation for dτ using ν ∼
√

T and gets the usual Haff’s

law [56]

T(t) = T(0)(
1 + 1

2
ζ (0)(0)t

)2
, (29)

where ζ (0)(0) is the cooling rate at the initial time. The par-

tial temperatures Ti also have the same time dependence (29)

but each with a different value [52].

On the other hand, computer simulations [13,14] have

clearly shown that the HCS is unstable with respect to long

enough wavelength perturbations. To analyze this problem

it is convenient to carry on a (linear) stability analysis of the

nonlinear hydrodynamic equations (18)–(21) with respect to

the homogeneous state for small initial excitations. For ordi-

nary fluid mixtures such perturbations decay in time accord-

ing to the hydrodynamic modes of diffusion (shear, thermal,

mass) and damped sound propagation. The perturbation

analysis made here is for fixed coefficients of restitution dif-

ferent from unity in the long wavelength limit. It will be seen

that the corresponding hydrodynamic modes for a granular

mixture [47] differs from those obtained for normal mix-

tures. In addition, as has been widely explained in some pre-

vious papers [15,19,47,48], the linearization of Eqs. (18)–(21)
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− 2
d

p

− x2(1
4μ

− x1(1
4μ

1−μ)
μ12

D

about the homogeneous base state leads to a set of coupled

partial differential equations with coefficients that depend

on time since the HCS is cooling. This time dependence can

be eliminated through convenient changes in the time and

space variables and a scaling of the hydrodynamic fields.

Let δyβ(r, t) = yβ(r, t) − yHβ(t) denote the deviation of

{x1, n, U, T} from their values in the HCS. If the initial spatial

perturbation is sufficiently small, then for some initial time

interval these deviations will remain small and the hydrody-

namic Eqs. (18)–(21) can be linearized with respect to δyβ (r,

t). As said before, to eliminate the time dependence we intro-

duce the time variable τ (defined in Eq. (27)) and the space

variable

� = 1

2

νH(t)

vH(t)
r, (30)

where vH(t) =
√

TH(t)/m. According to Eq. (27), the dimen-

sionless time scale τ is therefore an average number of col-

lisions per particle in the time interval between 0 and t. The

unit length νH(t)/vH(t) introduced in Eq. (30) is proportional

to the effective time-independent mean free path 1/nHσ d−1
12

.

A set of Fourier transformed dimensionless variables are

then defined by

ρ1,k(τ ) = δx1k(τ )

x1H

, ρk(τ ) = δnk(τ )

nH

, (31)

wk(τ ) = δUk(τ )

vH(τ )
, θk(τ ) = δTk(τ )

TH(τ )
, (32)

where δykβ (τ ) ≡ {ρ1, k(τ ), ρk(τ ), wk(τ ), θk(τ )} is defined as

δykβ(τ ) =
∫

d� e−ik·�δyβ(�, τ ). (33)

Note that in Eq. (33) the wave vector k is dimensionless. In

terms of these variables, the d − 1 transverse velocity com-

ponents wk⊥ = wk − (wk · k̂)k̂ (orthogonal to the wave vec-

tor k) decouple from the other four modes and hence can be

obtained more easily. Their evolution equation is(
∂

∂τ
− ζ ∗

0 + 1

2
η∗k2

)
wk⊥ = 0, (34)

where

η∗ ≡ νHηH

ρHv2
. (35)

M(1) =

⎛
⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

− (1+μ)δ
2(1+μδ)

∂ p∗

∂x1
− (1+μ)δ

2x2(1+μδ)
∂(n∗ p∗)

∂n∗ − (1+μ)δ
2x2(1+μδ)

p∗

M(2) =

⎛
⎜⎜⎜⎝

− x2(1+μδ)
4μ12

D∗ − x2(1+μδ)
4μ12

D∗
n

− x1(1−μ)
4μ12

D∗ − x1(1−μ)
4μ12

D∗
n

x1(1−μ)
4μ12

D∗ − d+2
4

x1D
′′∗ x1(1−μ)

4μ12
D∗

n − d+2
4

D∗
qn

x1(
4

0 0
H

In Eq. (34) it is understood that ζ ∗
0 is also evaluated in the

HCS. The solution to Eq. (34) is

wk⊥(k, τ ) = wk⊥(0) exp[s⊥(k)τ ], (36)

where

s⊥(k) = ζ ∗
0 − 1

2
η∗k2. (37)

This identifies d − 1 shear (transversal) modes analogous to

the elastic ones [57]. According to Eq. (37), there exists a crit-

ical wave number kc
⊥ given by

kc
⊥ =

(
2ζ ∗

0

η∗

)1/2

. (38)

This critical value separates two regimes: shear modes

with k > kc
⊥ always decay while those with k < kc

⊥ grow

exponentially.

The remaining (longitudinal) modes correspond to the

composition field ρ1, k, the density field ρk, the longitudinal

component of the velocity field wk|| = wk · k̂ (parallel to k),

and the temperature field θk. These modes are coupled and

obey the time-dependent equation

∂δzkβ(τ )

∂τ
=

(
M(0)

βγ
+ ikM(1)

βγ
+ k2M(2)

βγ

)
δzkγ (τ ), (39)

where now δzkβ (τ ) denotes the four variables (ρ1, k, ρk, θk,

wk||). The matrices in Eq. (39) are

M(0) =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 0

−2x1
∂ζ ∗

0

∂x1
−2

∂(n∗ζ ∗
0 )

∂n∗ −ζ ∗
0 0

0 0 0 ζ ∗
0

⎞
⎟⎟⎠, (40)

0

−1

∗ − ζu

0

⎞
⎟⎟⎟⎠, (41)

+μδ)

12
DT∗ 0

−μ)

12
DT∗ 0

T∗ − d+2
4

λ∗ 0

0 − d−1
d

η∗ − 1
2
κ∗

⎞
⎟⎟⎟⎠, (42)

where the subscript H has been omitted in Eqs. (40)–(42)

for the sake of brevity. In these equations, n∗ ≡ nσ d
12

, δ ≡
x1/x2, and I have introduced the dimensionless transport co-

efficients

D∗ ≡ m1m2νH

ρHTH

DH, D∗
n ≡ m1m2νH

ρHTH

Dn,H, (43)

DT∗ ≡ ρHνH

nHTH

DT
H, D

′′∗ ≡ 4

d(d + 2)

mνH

nH

D′′
H, (44)

D∗
qn ≡ 4

d(d + 2)

mνH

nH

Dqn,H, λ∗ ≡ 4

d(d + 2)

mνH

nHTH

λH, (45)

κ∗ = νH

ρHv2
κH. (46)
H
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In addition, the (reduced) hydrostatic pressure p∗ ≡ p/(nT) is

given by [38]

p∗ = 1 + π d/2

d�
(

d
2

)n∗ ∑
i, j

xix j

( σ j

σ12

)d

μ ji

(
1 + αi j

)
χi jγi, (47)

where the temperature ratios γ i ≡ Ti/T are defined as

γ1 = γ

1 + x1(γ − 1)
, γ2 = 1

1 + x1(γ − 1)
. (48)

Note that p∗ depends explicitly on n∗ and x1 and also through

its dependence on χ ij and γ i.

The longitudinal four modes have the form exp [sn(k)τ ]

for n = 1, 2, 3, 4, where sn(k) are the eigenvalues of the

matrix

M ≡ M(0) + ikM(1) + k2M(2). (49)

In other words, they are the solutions of the quartic equation

A(k, s) = 0 where

A(k, s) ≡ det (M − s1). (50)

Here, 1 denotes the identity matrix. Although the explicit

form of A(k, s) can be easily obtained from Eqs. (40)–(42), its

expression will be omitted here for the sake of brevity.

It is instructive to consider first the solutions to Eqs. (37)

and (50) in the extreme long wavelength limit, k = 0. In this

case, the eigenvalues of the hydrodynamic modes are given

by

s⊥ = 1

2
ζ ∗

0 , sn = (0, 0, −ζ ∗
0 , ζ ∗

0 ). (51)

Two of the eigenvalues are positive, corresponding to growth

of the initial perturbation in time. Thus, some of the solutions

are unstable. The two zero eigenvalues represent marginal

stability solutions, while the negative eigenvalue gives stable

solutions. For general initial perturbations all modes are ex-

cited. These modes correspond to evolution of the fluid due

to uniform perturbations of the HCS, i.e. a global change in

the HCS parameters. The unstable modes are seen to arise

from the initial perturbations wk⊥(0) or wk||(0). The unsta-

ble modes may appear trivial since they are due entirely to

the normalization of the fluid velocity by the time depen-

dent thermal velocity vH(t). However, this normalization is

required by the scaling of the entire set of equations to ob-

tain time independent coefficients.

For k �= 0, the dependence of the longitudinal modes on

the wave vector k is quite intricate. On the other hand, the

critical longitudinal mode kc|| can be obtained from the equa-

tion A(k, s) = 0 when s = 0. This leads to the quartic equation

A0 + A2k2 + A4k4 = 0, (52)

where the coefficients Ai are known functions of the solid

volume fraction, the coefficients of restitution, and the pa-

rameters of the mixture. The critical value kc|| is the largest

real root of Eq. (52). As before, given that its explicit expres-

sion is very long and not relevant for the purposes of this pa-

per, I shall omit the form of kc|| for the sake of simplicity.

For mechanically equivalent particles (m1 = m2 ≡ m,

σ1 = σ2 ≡ σ, and αij ≡ α), the results derived in this sec-

tion agree with those obtained before for monodisperse dense

gases [19]. Moreover, in the low-density limit (n∗ → 0), one
recovers the dispersion relations obtained in a previous work

[47] for a dilute granular binary mixture. These limits show

the consistency of the linear stability analysis carried out in

this paper for dense granular binary mixtures.

4. Critical size for the onset of instabilities

In a system with periodic boundary conditions, the small-

est allowed wave number is 2π /L, where L is the largest sys-

tem length. Hence, for given values of density, coefficients of

restitution and parameters of the mixture, we can identify a

critical size Lc so that the system becomes unstable when L >

Lc. The value of Lc is determined by equating

2π

L∗
c

= max{kc
⊥, kc

||}, L∗
c = νH

2vH

Lc. (53)

On the other hand, the present results show that in general

kc
⊥ > kc|| and hence, the origin of instability is associated with

the transversal components of the velocity field. This result

has been verified for a low-density monodisperse granular

gas [17] and for a dilute granular binary mixture [48] by nu-

merically solving the Boltzmann equation by means of the

Direct Simulation Monte Carlo (DSMC) method [18]. Recent

MD simulations [20,21,49] for granular fluids at moderate

densities have also found that kc
⊥ > kc||. In this latter case,

the theoretical predictions for the critical size compare well

with MD simulations even for strong dissipation [49]. Thus,

according to Eqs. (38) and (53), the critical length scale for

velocity vortex instability is given by

Lc

σ12

= d + 2

2
√

2

�
(

d
2

)
π

d−3
2

√
η∗

ζ ∗
0

(
nHσ d

12

)−1
. (54)

Eq. (54) gives the dependence of the critical length on the

parameter space of the system. Specifically, the parameter

space is the mass ratio m1/m2, the composition n1/(n1 + n2),
the ratio of diameters σ 1/σ 2, the coefficients of restitution

αij, and the solid volume fraction φ. According to Eq. (54),

the dependence of Lc on the parameters of the mixture is es-

sentially accounted for by the term
√

η∗/ζ ∗
0

. The expression

of the cooling rate ζ ∗
0

is given by Eq. (25) while the explicit

form of the (reduced) shear viscosity η∗ is provided in the

Appendix A for the sake of completeness.

Given that the parameter space of the problem is large,

in order to reduce the number of independent parameters

the simplest case of a common coefficient of restitution (α ≡
α11 = α22 = α12) is considered. Thus, once the dimensional-

ity of the system is fixed, the parameter space is reduced to

five dimensionless quantities: {m1/m2, σ 1/σ 2, x1, φ, α}.

Three different values of the overall volume fractions have

been considered: φ = 0.1, φ = 0.2, and φ = 0.4. The first

two values of φ represent a granular fluid with moderate

density while the latter one corresponds to a system with

high density. Three different values of the common coeffi-

cient of restitution have been analyzed: α = 0.9 (weak dissi-

pation), α = 0.8 (moderate dissipation), and α = 0.5 (strong

dissipation).

Before considering a binary mixture, the case of mechani-

cally equivalent particles (monodisperse dense gas) is illus-

trated for inelastic hard disks (d = 2) and spheres (d = 3).

Fig. 5 shows Lc/σ versus the coefficient of restitution α for
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Fig. 5. The critical length scale Lc for velocity vortices in units of the diameter σ as a function of the coefficient of restitution α for a system of mechanically

equivalent particles. Three different values of the volume fraction φ are considered: (a) φ = 0.1, (b) φ = 0.2, and (c) φ = 0.4. The left panel corresponds to disks

(d = 2) while the right panel refers to spheres (d = 3). In each case, the system is linearly stable for points below the corresponding curve.
different values of the volume fraction φ. First, we observe

that although the dependence of the critical length on dissi-

pation is quite similar in d = 2 and d = 3, the magnitude of Lc

(measured in units of the diameter σ ) is larger in disks than

spheres. Thus, for a given value of α, the critical length for ve-

locity vortices increases as the dimensionality of the system

decreases. With respect to the dependence on the density φ,

at a given value of dissipation, it is quite apparent that Lc de-

creases with density and hence, smaller systems are required

to observe the shearing instability as the granular mixture

becomes denser.

Now we consider granular binary mixtures. Fig. 6 shows

Lc/σ 12 as a function of the mass ratio m1/m2 with x1 = 0.5,

σ1/σ2 = 1, φ = 0.1 and different values of α. Regarding the

influence of dimensionality on the critical length, for given

values of the coefficient of restitution and the parameters

of the mixture, the critical length is (significantly) larger for

d = 2 than for d = 3. As will show later, this trend is also

observed in the remaining plots presented in this paper.

Moreover, at a given value of m1/m2, as expected Lc de-

creases with collisional dissipation. In fact, Lc → ∞ for elastic

collisions (α = 1). The theoretical results also show that the

Lc/σ 12 predictions for α = 0.8 and α = 0.5 seem to converge

for large mass ratios and eventually crossover. This tendency

is consistent with MD simulations (see for instance, fig. 2 of

Ref. [49]). Fig. 7 shows the critical size as a function of the

ratio of diameters with x1 = 0.5, m1/m2 = 5 and φ = 0.2.

It is quite apparent that Lc/σ 12 increases with the ratio

σ 1/σ 2, except in a small region of σ 1/σ 2 close to one. In

addition, the influence of the size ratio on the critical length

is stronger for weak dissipation (α = 0.9) than for strong

dissipation (α = 0.5), this behavior being independent of

the dimensionality of system. Finally, the dependence of

the critical length on species composition x1 is illustrated in

Fig. 8 for a binary mixture with σ1/σ2 = 1, m1/m2 = 5 and

φ = 0.2. We see that Lc is not a monotonic function of x1.

Moreover, the impact of composition on the critical size is

much less important than the one observed with respect to

the mass ratio (see Fig. 6) and/or the size ratio (see Fig. 7). In
fact, for α = 0.8, Lc displays a very weak dependence on x1.

It is important to recall that the theoretical predictions for

Lc derived from the (inelastic) Enskog kinetic equation have

been recently assessed against MD simulations of inelastic

hard spheres [49]. The comparison carried out in this work

has shown in general an excellent agreement between theory

and simulation when physical properties of particles are not

quite disparate. This agreement becomes only good (at worst

20% error) for the most extreme conditions studied [see for

instance, Fig. 2(b) for m1/m2 = 10, x1 = 0.1, φ = 0.2 and

α = 0.7]. On the other hand, based on the results obtained

for the tracer diffusion coefficient [45,46], one would expect

that the accuracy of the Enskog result for the shear viscosity

(which is the transport coefficient involved in the evaluation

of the critical length scale) by considering only the leading

term in a Sonine polynomial expansion [39] would decease

as the mass ratio becomes more disparate. Thus, it is rea-

sonable to expect that the second Sonine correction to η
mitigates part of the discrepancies observed in Ref. [49] for

high dissipation and/or extreme mass or size ratios.

Before closing this Section, it is interesting to compare the

predictions offered here with those obtained before [24–27]

by neglecting the nonlinear dependence of the transport co-

efficients on dissipation. As mentioned in the Introduction,

these works [24–27] are devoted to nearly elastic systems

and hence, they assume the validity of energy equipartition.

In fact, according to this level of approximation, the inelas-

ticity in collisions is only accounted for in the cooling rate

ζ 0 and the expressions of the Navier–Stokes transport coef-

ficients are the same as those obtained for elastic collisions

[36]. In order to gauge the impact of the non-equipartition of

granular energy and the α-dependence of the transport coef-

ficients, Fig. 9 compares the dependence of Lc on m1/m2 given

by the present calculations (solid line) with those derived be-

fore (dashed line) [24–27]. In this plot, x1 = 0.1, σ1/σ2 = 1,

φ = 0.1 and α = 0.7. The comparison indicates good agree-

ment between both approaches in the monodisperse gas case

(m1 = m2). On the other hand, quantitative significant differ-

ences appear as the mass ratio increases.
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Fig. 6. The critical length scale Lc for velocity vortices in units of σ 12 as a function of the mass ratio m1/m2. We have considered a granular binary mixture with

x1 = 0.5, σ1/σ2 = 1 and φ = 0.1. Three different values of the (common) coefficient of restitution are studied: (a) α = 0.9, (b) α = 0.8, and (c) α = 0.5. The left

panel corresponds to disks (d = 2) while the right panel refers to spheres (d = 3). In each case, the system is linearly stable for points below the corresponding

curve.

Fig. 7. The critical length scale Lc for velocity vortices in units of σ 12 as a function of the ratio of diameters σ 1/σ 2. We have considered a granular binary mixture

with x1 = 0.5, m1/m2 = 5 and φ = 0.2. Three different values of the (common) coefficient of restitution are studied: (a) α = 0.9, (b) α = 0.8, and (c) α = 0.5. The

left panel corresponds to disks (d = 2) while the right panel refers to spheres (d = 3). In each case, the system is linearly stable for points below the corresponding

curve.
5. Summary and discussion

Particulate or granular flows play a critical role in chem-

ical process industries (e.g., fluidized catalytic cracking), en-

ergy (e.g., gasification of coal and biomass), pharmaceuticals

(e.g., powder processing, granulation), geological phenom-

ena (e.g., planetary formation), and agriculture (e.g., grain

conveying). In spite of this pervasiveness, granular systems

are not completely understood yet. Apart from its practical

interest, the study of granular matter under fluidization con-

ditions poses open challenges from a fundamental point of

view. In fact, granular matter can be considered as a good ex-

ample of a complex system since it is composed of many de-

grees of freedom (many particles) that are imbedded in a net-

work of strong nonlinear interactions. This aspect explains in

part because the use of non-equilibrium statistical physics or

kinetic theory to describe granular fluids (i.e., when the ma-
terial is externally excited) has been an active area of research

in the past several decades. On the other hand, although un-

der many conditions the motion of grains exhibits a great

similarity to the random motion of atoms or molecules of an

ordinary gas, the fact that collisions between grains are in-

elastic gives rise to subtle modifications of the conventional

hydrodynamic equations.

In this paper a granular fluid mixture has been modeled

as a mixture composed by smooth, inelastic hard spheres.

The simplest situation for this system corresponds to the so-

called homogeneous cooling state (HCS). It describes a uni-

form state with vanishing flow field and a granular tem-

perature decreasing monotonically in time. However, it is

well-known that the HCS can be unstable against long wave-

length spatial perturbations, leading to cluster and vortex

formation. The existence of the instability can be predicted

via a linear stability analysis of the nonlinear Navier–Stokes
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Fig. 8. The critical length scale Lc for velocity vortices in units of σ 12 as a function of the concentration x1. We have considered a granular binary mixture with

m1/m2 = 5, σ1/σ2 = 1 and φ = 0.2. Three different values of the (common) coefficient of restitution are studied: (a) α = 0.9, (b) α = 0.8, and (c) α = 0.5. The left

panel corresponds to disks (d = 2) while the right panel refers to spheres (d = 3). In each case, the system is linearly stable for points below the corresponding

curve.

Fig. 9. The (dimensionless) critical length scale Lc/σ 12 as a function of the

mass ratio m1/m2 for a binary mixture of inelastic hard spheres (d = 3) with

x1 = 0.1, σ1/σ2 = 1, φ = 0.1 and a (common) coefficient of restitution α =
0.7. The solid line is the result derived here while the dashed line is the

result derived from Eq. (54) by assuming energy equipartition (γ = 1) and

by neglecting the α-dependence of η∗ .
hydrodynamic equations. This analysis allows us to identify

a critical length size Lc beyond which the system becomes

unstable. On the other hand, given that the expression of Lc

involves the Navier–Stokes transport coefficients of the sys-

tem, one has to explicitly determine first these coefficients

to get the impact of the parameter space (masses and sizes

of grains, coefficients of restitution, composition, density, …)

on the critical size.

In order to gain some insight into the general problem,

a kinetic theory description has been adopted where all the

relevant information on the state of the system is given

through the knowledge of the one-body distribution function

for each species. For moderate densities, the Enskog equa-

tion [50,51] for smooth inelastic hard spheres can be consid-

ered as a reliable kinetic equation. As in the case of elastic

collisions, the Enskog equation neglects velocity correlations
between the particles which are about to collide (molecu-

lar chaos) but takes into account spatial correlations. To first

order in the spatial gradients, the set of Enskog equations

of the mixture have been solved [38–40] by means of the

Chapman–Enskog method [58] conveniently adapted to dis-

sipative dynamics. As for ordinary fluid mixtures [36], the

Navier–Stokes transport coefficients are given in terms of

a set of linear integral equations [38] that can be approxi-

mately solved by considering the leading terms [39,40] in a

Sonine polynomial expansion. The knowledge of the trans-

port coefficients allows one to obtain the critical size for the

onset of instability in terms of the parameters of the mix-

ture. The present paper has addressed this problem for a d-

dimensional granular binary mixture described by the En-

skog equation. The results derived here cover some of the as-

pects not accounted for in previous studies. Specifically, (i)

it takes into account the nonlinear dependence of transport

on collisional dissipation (and thus, the theory is expected to

hold for a wide range of coefficients of restitution); (ii) it con-

siders the influence of energy non-equipartition on the crit-

ical size; and (iii) it is applicable to moderate densities (say

for instance, volume fraction typically smaller than or equal

to 0.25 for hard spheres). Thus, the theory subsumes all pre-

vious studies for single fluids [15,19,22,23], dilute mixtures

[47,48] and nearly elastic dense mixtures [24–27], which are

recovered in the appropriate limits.

Our findings agree qualitatively well with previous results

[23,24] carried out by using the elastic expressions of the

Navier–Stokes transport coefficients since the effect of dis-

sipation on transport coefficients do not significantly change

the form of the dispersion relations. Thus, stability analysis

of the linearized hydrodynamic equations for the mixture

shows d − 1 transversal (shear) modes and one longitudi-

nal heat mode. An analysis of the dependence of the above

modes on the parameter space shows that in general the in-

stability is driven by the transversal shear mode and hence,

the critical size is given by Eq. (54) where the (reduced)

cooling rate ζ ∗
0 is defined by Eq. (25) while the expressions

defining the (reduced) shear viscosity η∗ are provided in the
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)

Appendix. It is quite apparent that Lc/σ 12 presents a com-

plex dependence on the parameter space of the system so

that, it is intricate to disentangle the impact of the differ-

ent parameters on the critical size for instability. Thus, to

reduce the number of independent parameters, a common

coefficient of restitution (αi j = α) has been assumed to il-

lustrate the influence of the mass and size ratios as well

as the composition on Lc. The results have been carried out

in Section 4 for hard disks (d = 2) and spheres (d = 3) in

Figs. 5,6,7, and 8. We observe that the role played by the mass

and size ratios on the critical size is more relevant than that

of the composition. In addition, although the dependence of

Lc on the parameter space is qualitatively similar for disks

and spheres, the magnitude of the critical size is larger in the

case of two dimensions than three dimensions for the same

system.

With respect to the effect of collisional dissipation on Lc,

as expected quantitative discrepancies between the present

results and those obtained by assuming energy equipartition

and elastic forms for transport coefficients [24–27] appear

as the coefficient of restitution decreases. This is clearly

illustrated in Fig. 9. Therefore, although the results derived

in the quasielastic limit could predict reasonably well the

dispersion relations, one expects that the results reported

here improve these findings for conditions of practical

interest where the transport coefficients are clearly affected

by dissipation.

Although the present theory applies in principle for ar-

bitrary values of the coefficients of restitution, it has some

important restrictions. First, given that some previous com-

puter simulation works [59–61] have clearly shown that the

molecular chaos hypothesis fails for inelastic collisions as the

density increases, it is possible that the limitations of the En-

skog equation are greater than for elastic collisions. However,

as mentioned in the Introduction, despite the above limita-

tion the theoretical predictions obtained here from the En-

skog equation compare well with recent MD simulations [49]

of hard spheres. This shows again the reliability of the Enskog

theory to accurately describe macroscopic properties (such

as transport coefficients and/or the onset of instability) for a

wide range of densities and/or coefficients of restitution. An-

other important limitation of the theory is that the critical

length obtained here has been estimated by considering only

the first Sonine approximation for the shear viscosity coeffi-

cient η. Recent results [45,46] for the tracer limit have shown

that the reliability of the first Sonine solution can be ques-

tionable for strong collisional dissipation and/or disparate

values of the mass and diameter ratios. Therefore, the sec-

ond Sonine correction to η could in part improve the agree-

ment between theory and MD simulations [49] for Lc when

the mass ratio is large. The evaluation of the second Sonine

approximation to the shear viscosity is an interesting open

problem to be studied in the near future. Another possible di-

rection of study is to consider the so-called modified Sonine

method [62,63] to determine η. This new approach consists

of replacing, where appropriate in the Chapman–Enskog pro-

cedure, the Maxwell–Boltzmann distribution weight func-

tion (used in the standard first Sonine approximation) by the

homogeneous cooling state distribution for each species. As

in the case of dilute binary mixtures [63], it is expected that

the modified Sonine approximation improves the estimates
of the standard one at strong dissipation. Work along these

lines will be carried out in the near future.
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Appendix A. Shear viscosity of a dense granular

binary mixture

The explicit dependence of the (reduced) shear viscosity

η∗ defined by Eq. (35) on the parameter space of the system

is provided in this Appendix. The expression for η∗ reads

η∗ = 4π(d−1)/2

√
2(d + 2)�

(
d
2

) ηk∗ + ηc∗

x1μ12 + x2μ21

. (A.1)

The collisional contribution η∗
c to the shear viscosity is

[39,40,43]

ηc∗ = 2π d/2

�
(

d
2

) n∗

d(d + 2)

2∑
i=1

2∑
j=1

x j

( σi j

σ12

)d

χi jμ ji

×(1 + αi j)η
k∗
i + d

d + 2
κ∗, (A.2)

where the (reduced) bulk viscosity coefficient is

κ∗ = 4π(d−1)/2

d2�
(

d
2

) n∗2

m1 + m2

2∑
i=1

2∑
j=1

xix j

( σi j

σ12

)d−1

×χi jmjμi j(1 + αi j)

(
θi + θ j

θiθ j

)1/2

. (A.3)

The partial kinetic contributions ηk∗
i

read [40]

ηk∗
1 = 2(2τ ∗

22 − cdζ
∗)η1 − 4τ ∗

12η2

c2
d
ζ ∗2 − 2cdζ ∗(τ ∗

11
+ τ ∗

22
) + 4(τ ∗

11
τ ∗

22
− τ ∗

12
τ ∗

21
)
,

(A.4)

ηk∗
2 = 2(2τ ∗

11 − cdζ
∗)η2 − 4τ ∗

21η1

c2
d
ζ ∗2 − 2cdζ ∗(τ ∗

11
+ τ ∗

22
) + 4(τ ∗

11
τ ∗

22
− τ ∗

12
τ ∗

21
)
,

(A.5)

where cd ≡ [8π(d−1)/2/(
√

2(d + 2)�(d/2))], and

ηi = xiγi + π d/2

d(d + 2)�
(

d
2

)n∗
2∑

j=1

xix j

( σi j

σ12

)d

χi jμ ji

×(1 + αi j)[(3αi j − 1)(μ jiγi + μi jγ j) − 4μi j(γi − γ j)]

(A.6

The (reduced) collision frequencies τ ∗
i j

are given by [39,43]

τ ∗
11 = 2π(d−1)/2

d(d + 2)�
(

d
2

)
{

x1

(
σ1

σ12

)d−1

(2θ1)
−1/2

× (3 + 2d − 3α11)(1 + α11) + 2x2μ21(1 + α12)

× θ3/2
1

θ−1/2
2

[
(d + 3)(μ12θ2 − μ21θ1)θ

−2
1 (θ1 + θ2)

−1/2
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+ 3 + 2d − 3α12

2
μ21θ

−2
1 (θ1 + θ2)

1/2

+ 2d(d + 1) − 4

2(d − 1)
θ−1

1 (θ1 + θ2)
−1/2

]}
, (A.7)

τ ∗
12 = 4π(d−1)/2

d(d + 2)�
(

d
2

)x1χ12μ12θ
−1/2
1

θ3/2
2

(1 + α12)

×
[
(d + 3)(μ12θ2 − μ21θ1)θ

−2
2 (θ1 + θ2)

−1/2

+ 3 + 2d − 3α12

2
μ21θ

−2
2 (θ1 + θ2)

1/2

− 2d(d + 1) − 4

2(d − 1)
θ−1

2 (θ1 + θ2)
−1/2

]
. (A.8)

The expressions for τ ∗
22 and τ ∗

21 can be obtained from Eqs.

(A.7) and (A.8), respectively, by just making the changes 1↔2.

In order to get the dependence of the shear viscosity on

the parameters of the system, one needs to know the explicit

forms of the pair correlations functions χ ij. For hard disks

(d = 2), a good approximation for the pair correlation func-

tion χ ij is [64]

χi j = 1

1 − φ
+ 9

16

φ

(1 − φ)2

σiσ jM1

σi jM2

, (A.9)

where

Mn =
2∑

s=1

xsσ
n
s . (A.10)

In the case of hard spheres (d = 3), we take for the pair cor-

relation function χ ij the following approximation [65]

χi j = 1

1 − φ
+ 3

2

φ

(1 − φ)2

σiσ jM2

σi jM3

+1

2

φ2

(1 − φ)3

(
σiσ jM2

σi jM3

)2

. (A.11)
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