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Kinetic theory of shear thickening for a moderately dense gas-solid suspension:
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The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered
as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid
particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved
by means of two independent but complementary routes: (i) Grad’s moment method and (ii) event-driven Langevin
simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends
significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition
from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser
systems. The comparison between theory and simulations indicates that while the theoretical predictions for the
kinetic temperature agree well with simulations for densities ϕ � 0.5, the agreement for the other rheological
quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities
(ϕ � 0.3) if the inelasticity during collisions between particles is not large.
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I. INTRODUCTION

Shear thickening is a rheological process in which the
viscosity increases as the shear rate increases. There are two
types of shear thickening: continuous shear thickening (CST)
and discontinuous shear thickening (DST). In particular, DST
is used for industrial applications such as a body armor and
traction control.

Discontinuous shear thickening has attracted the attention
of physicists [1–5] as a typical nonequilibrium discontinuous
phase transition between a liquidlike phase and a solidlike
phase. Apart from other important factors [6–8], it has been
recognized recently that the mutual friction between grains
plays an important role in DST for dense suspensions [9–15].
In addition, the normal stress difference becomes large when
shear thickening takes place [4,5]. The mechanism of DST can
also be understood by the introduction of an order parameter
that exhibits an S shape in a plane of stress-strain rate (flow
curve) [16–20].

Although most of previous studies on shear thickening
are oriented to dense suspensions, it would be convenient to
consider relatively-low-density systems where kinetic theory
tools [21–25] can provide a deeper understanding of the mi-
croscopic mechanisms involved in DST. Indeed, some papers
have reported that a DST-like process for kinetic temperature
can take place as a result of a saddle-node bifurcation [26–29].
Thus, Tsao and Koch [26] demonstrated the existence of a
nonequilibrium discontinuous phase transition for the kinetic
temperature between a quenched state (a low-temperature
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state) and an ignited state (a high-temperature state) in a simple
shear flow of a (granular) gas-solid suspension described by
the Boltzmann kinetic equation. Recently, other works [27–29]
have identified the discontinuous quenched-ignited transition
with DST if the system is agitated by thermal fluctuations.
The validity of these studies has been verified from the event-
driven Langevin simulation for hard spheres (EDLSHS) [30]
and the direct simulation Monte Carlo method [31]. Such
gas-solid suspensions are usually discussed in the context of
fluidized beds [32,33], which might be categorized as a typical
inertial suspension [34]. In particular, the homogeneous phase
achieved by the balance between the injected gas flow from
the bottom of a container and the gravity in fluidized beds
is the target of our study. It is remarkable that the previous
studies on dilute gas-solid suspensions suggested that DST (or
the discontinuous quenched-ignited transition) tends towards
CST (or the continuous quenched-ignited transition) as the
density increases [27,29]. Notice that the Newtonian branch
for low shear rates disappears if the thermal agitation is absent.
As a result, one can only observe CST in the rheology for such
systems [26,35], though the discontinuous ignited-quench
transition can still be observed for the kinetic temperature.
These results are consistent with the analysis made by Santos
et al. [36], which found the existence of CST in moderately
dense hard-core gases by using the revised Enskog theory.

It is worth noting that most of the previous theoretical
studies of the above solid-gas suspensions [26–28,35] are
based on the application of Grad’s moment method [37]
to the Boltzmann [38,39] and Enskog [25] kinetic equa-
tions. A slightly different method was recently adopted in
Refs. [29,40–42], which consider an anisotropic Maxwellian
distribution that reduces to the Maxwellian in the isotropic
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limit. Although the latter solution can be more appropriate for
highly dissipative sheared suspensions, it is quite intricate and
requires some additional approximations to get explicit results.
In this context, the conventional Grad moment method (which
is based on the assumption that the distribution function is
a local Maxwellian times a sum over Hermite polynomials)
is simple enough to reproduce, for instance, the normal stress
differences [40–42]. Therefore, the conventional Grad moment
method can be still considered as a powerful method to
describe the rheology of gas-solid suspensions.

Although the previous achievements of Refs. [26,28,29]
are remarkable, they are limited to the low-density regime
and hence their predictions are far from typical experimental
situations. One of the few works devoted to dense gases
was carried out by Sangani et al. [43] two decades ago. In
their paper, the authors extended the analysis of Ref. [26]
to moderate densities by considering the Enskog equation.
Their analysis showed that the discontinuous transition of the
kinetic temperature for dilute suspensions becomes continuous
at relatively low density [43]. This conclusion agrees with the
previous theories [27,29] for dilute suspensions. However, the
treatment of Sangani et al. [43] is not completely systematic
since they ignore the effects of thermal fluctuations.

The purpose of this paper is to extend the previous
dilute results to moderately dense systems by solving the
Enskog kinetic equation [23–25,44] by two complementary
and independent routes: (i) Grad’s moment method and (ii)
event-driven simulations (EDLSHS). The influence of the
background fluid on particles is modeled via an external
force constituted by two terms: (i) a viscous drag force that
mimics the friction of solid particles with the interstitial
fluid and (ii) a stochastic Langevin-like term accounting for
thermal fluctuations. To assess the finite density effects on
rheology, a set of coupled equations of the stress tensor,
the kinetic temperature, and the anisotropic temperatures
corresponding to the normal stress differences is derived from
Grad’s approximation. The validity of our simple theory is also
examined through a comparison with computer simulations.
The motivation of the present work is twofold. First, since
there is some evidence [45] that the Enskog theory is
accurate for solid volume fractions smaller than 0.5, our
results will allow us to analyze the behavior of rheology
for moderately dense suspensions corresponding to typical
experiments. As a second point, our results will allow us to
clarify whether the scenario proposed by Sangani et al. [43] is
universal.

The organization of this paper is as follows. The outline
of the Enskog kinetic theory of moderately dense suspensions
under a simple shear flow is briefly summarized in Sec. II.
Section III discusses the rheology of the suspension model
where the details of the calculations appear in a series of
Appendixes. Theoretical results are compared against com-
puter simulations in Sec. IV for two values of the restitution
coefficient e (e = 1 and 0.9) and several values of the solid
volume fraction ϕ. As a complement, to assess the influence
of inelasticity on rheology, theory, and simulation results are
also displayed in Appendix G for the density ϕ = 0.3 and
several values of the restitution coefficient (e = 1, 0.9, 0.7,
0.5, and 0.3). Section V deals with the transition from DST to
CST. The results are summarized and discussed in Sec. VI.

II. ENSKOG KINETIC EQUATION FOR SUSPENSIONS
UNDER SIMPLE SHEAR FLOW

A. Enskog kinetic equation for sheared granular suspensions

Let us consider a collection of monodisperse smooth
spherical grains of diameter σ , mass m, and restitution
coefficient e satisfying 0 < e � 1. Because we are interested
in the homogeneous state of fluidized beds, the solid particles
are distributed in a d-dimensional space only influenced by
the background fluid under a uniform shear flow. This state is
macroscopically characterized by a constant number density
n, a uniform kinetic temperature T , and macroscopic velocity
field u = (ux,u⊥), where the constant shear rate γ̇ is given by

ux = γ̇ y, u⊥ = 0. (1)

Let us introduce the peculiar momentum of the ith particle
as pi ≡ m(vi − γ̇ yex), where vi is the instantaneous velocity
of the ith particle and ex is the unit vector parallel to the x

direction. For low Reynolds numbers, a reliable model for
describing solid particles immersed in a fluid (suspensions) is
the Langevin equation

d pi

dt
= −ζ pi + F(imp)

i + mξ i , (2)

where we have assumed that the solid particles are suspended
by the gas flow and the gravity does not play any role. We have
also introduced the impulsive force F(imp)

i to express collisions
between grains and the noise ξ i(t) = ξi,α(t)eα has the average
properties

〈ξ i(t)〉 = 0, 〈ξi,α(t)ξj,β(t ′)〉 = 2ζTexδij δαβδ(t − t ′). (3)

Here the parameters ζ and Tex characterize the drag from
the background fluid and the environmental temperature,
respectively. Actually, the drag coefficient ζ should be a
resistance matrix as a result of the hydrodynamic interactions
between grains, which strongly depend on the configuration
of grains. For simplicity, however, we regard ζ as a scalar
function of the average volume fraction ϕ defined as

ϕ = πd/2

2d−1d�
(

d
2

)nσd, (4)

where �(x) = ∫ ∞
0 dt e−t t x−1 is the Gamma function. This is

a mean field approximation where the drag coefficient ζ is
independent of the configuration of grains. This simple model
might be applicable to the description of inertial suspensions
in which the mean diameter of suspended particles ranges
approximately from 1 to 70 μm [34]. In this paper we assume
that ζ ∝ η0 ∝ √

Tex, where η0 is the viscosity of the solvent
or fluid phase. If we ignore the density dependence of ζ and
the grains are bidisperse soft spheres, the Langevin model (2)
is equivalent to that used by Kawasaki et al. [15].

So far, we have not specified the explicit dependence of ζ

on ϕ and Tex. Let us rewrite ζ as

ζ = ζ0R(ϕ), (5)

where ζ0 = 3πη0σ ∝ √
mTex/σ and the solvent viscosity

η0 ∝ √
mTex/σ

2 for d = 3. We adopt the following empirical
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expressions for the dimensionless resistance R(ϕ):

R(ϕ) = 1 + 3

√
ϕ

2
(6)

for ϕ � 0.1 [26,46] and

R(ϕ) = k1(ϕ) − ϕg0(ϕ) ln εm (7)

for ϕ > 0.1 [43]. Here g0(|r| = σ,ϕ) is the radial distribution
at contact, which is believed to be uniform in the simple shear
flow problem. For hard spheres (d = 3) and ϕ < 0.49, a good
approximation for the radial distribution is [47]

g0(|r| = σ,ϕ) = 1 − ϕ/2

(1 − ϕ)3
. (8)

Hereafter, we will use g0 ≡ g0(|r| = σ,ϕ) as the abbreviation.
In addition, in Eq. (7), εm is the gap parameter characterizing
the lubrication force between rough spheres and k1(ϕ) for
d = 3 is the empirical function given by

k1(ϕ) = 1 + 3√
2
ϕ1/2 + 135

64
ϕ ln ϕ

+ 11.26ϕ(1 − 5.1ϕ + 16.57ϕ2 − 21.77ϕ3). (9)

Because εm is related to the limitation of continuum description
of suspensions, it is difficult to present its microscopic
expression. Nevertheless, it is known that typical values of εm

are in the range 0.01–0.05. In this paper we will take εm = 0.01
for the later explicit calculation following Ref. [48].

Let us assume now that the suspension is under simple
shear flow. At a microscopic level, the simple shear flow
state is generated by Lees-Edwards boundary conditions [49],
which are simply periodic boundary conditions in the local
Lagrangian frame V = (vx − γ̇ y)ex + v⊥. In this frame, the
velocity distribution function f (r,v,t) is uniform

f (r,v,t) = f (V ,t) (10)

and the Enskog equation for the granular suspension be-
comes [35,50](

∂

∂t
− γ̇ Vy

∂

∂Vx

)
f (V ,t)

= ζ
∂

∂V
·
({

V + Tex

m

∂

∂V

}
f (V ,t)

)
+ JE(V |f,f ). (11)

The Enskog collision operator JE[V |f,f ] is given by (see
Appendix A)

JE[V 1|f,f ] = σd−1g0

∫
dV 2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)

×
[
f (V ′′

1,t)f (V ′′
2 + γ̇ σ σ̂yex,t)

e2

− f (V 1,t)f (V 2 − γ̇ σ σ̂yex,t)

]
. (12)

In Eq. (12), the Heaviside step function is defined as �(x) = 1
for x � 0 and �(x) = 0 otherwise, v12 = V 1 − V 2 = v1 − v2

is the relative velocity at contact, and σ = r12, with r12 ≡
r1 − r2. In addition, the double primes in Eq. (12) denote
the precollisional velocities {V ′′

1,V
′′
2} that lead to {V 1,V 2}

following a binary collision

V ′′
1 = V 1 − 1 + e

2e
(v12 · σ̂ )σ̂ , V ′′

2 = V 2 + 1 + e

2e
(v12 · σ̂ )σ̂ .

(13)

In this paper we do not consider the effects of tangential friction
and rotation induced by each binary collision.

The most important quantity in a shear flow problem is
the pressure tensor P. It has kinetic and collisional transfer
contributions, i.e., P = Pk + Pc. The kinetic contribution is

P k
αβ = m

∫
dV VαVβf (V ), (14)

while its collisional contribution is given by (see Appendix B
for the derivation)

P c
αβ = 1 + e

4
mσdg0

∫
dV 1

∫
dV 2

∫
dσ̂ �(v12 · σ̂ )

× (v12 · σ̂ )2σ̂ασ̂βf

(
V 1 + 1

2
γ̇ σ σ̂yex

)

× f

(
V 2 − 1

2
γ̇ σ σ̂yex

)
. (15)

As usual, the hydrostatic pressure P is defined as P ≡ Pαα/d,
where we adopt Einstein’s rule for the summation, i.e., Pαα =∑d

α=1 Pαα . The kinetic part of the pressure tensor satisfies the
equation of the state of ideal gases, namely, P k ≡ P k

αα/d =
nT , where

n =
∫

dVf (V ) (16)

is the number density and

T = 1

dn

∫
dV V 2f (V ) (17)

is the kinetic granular temperature.

B. Grad’s moment method

The kinetic contribution P k
αβ to the pressure tensor can be

obtained by multiplying both sides of Eq. (11) by mVαVβ and
integrating over V . The result is

∂

∂t
P k

αβ + γ̇
(
δαxP

k
yβ + δβxP

k
yα

)
= −2ζ

(
P k

αβ − nTexδαβ

) − �E
αβ, (18)

where

�E
αβ ≡ −m

∫
dV VαVβJE(V |f,f ). (19)

The collisional moment (19) can be rewritten as (see
Appendix B for technical details)

�E
αβ = �

E

αβ + γ̇
(
δαxP

c
yβ + δβxP

c
yα

)
, (20)

where �
E

αβ is defined by Eq. (B25) and we have omitted
the last term on the right-hand side of Eq. (B31) because
we have accounted for the heat flux vanishing in the simple
shear flow problem for symmetry reasons [this can easily be
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deduced by considering Grad’s distribution (29) as shown in
Appendix C 2]. Taking into account Eq. (20), Eq. (18) reads

∂

∂t
P k

αβ + γ̇ (δαxPyβ + δβxPyα)

= −2ζ
(
P k

αβ − nTexδαβ

) − �
E

αβ. (21)

The simple shear flow state is in general non-Newtonian.
This can be characterized, for instance, by the anisotropic
temperatures �T and δT , which are defined, respectively, as

�T ≡ P k
xx − P k

yy

n
, (22)

δT ≡ P k
xx − P k

zz

n
. (23)

Apart from the normal stresses, one can define a non-
Newtonian shear viscosity coefficient η(γ̇ ,e) as

η(γ̇ ,e) ≡ −Pxy

γ̇
. (24)

The time-dependent equations for T , �T , δT , and P k
xy can

be easily derived from Eq. (21). They are given by

∂

∂t
T = −2γ̇

dn
Pxy + 2ζ (Tex − T ) − �

E

αα

dn
, (25)

∂

∂t
�T = −2

n
γ̇ Pxy − 2ζ�T − �

E

xx − �
E

yy

n
, (26)

∂

∂t
δT = −2

n
γ̇ Pxy − 2ζ δT − �

E

xx − �
E

zz

n
, (27)

∂

∂t
P k

xy = −γ̇ Pyy − 2ζP k
xy − �

E

xy. (28)

The moment equations (25)–(28) are still exact and have
been obtained without explicit knowledge of the velocity
distribution function f .

On the other hand, the exact expression of the collision

integral �
E

αβ is not known, even in the elastic case. A good
estimate of this collisional moment can be expected by using
Grad’s approximation [25,27,35,37–39]

f (V ) = fM(V )

(
1 + m

2T
�k

αβVαVβ

)
, (29)

where

fM(V ) = n
( m

2πT

)d/2
exp

(
−mV 2

2T

)
(30)

is the Maxwellian distribution and

�k
αβ ≡ P k

αβ

nT
− δαβ (31)

is the traceless part of the (dimensionless) kinetic pressure

tensor P k
αβ . The collisional moment �

E

αβ can be determined
when the trial distribution (29) is inserted into Eq. (B25).
After lengthy algebra (see Appendixes B and C for details),

one obtains the expression

�
E

αβ = g0nT

{
ν�k

αβ + λδαβ − 2d−2

(d + 2)(d + 4)
ϕ(1 + e)γ̇

× [
(d + 4)(1 − 3e)(δαxδβy + δαyδβx) + 2(d + 1 − 3e)

× (
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

)
− 6(1 + e)δαβ�k

xy

]}
. (32)

Here the quantities ν and λ are given, respectively,
by [28,38,39]

ν =
√

2π (d−1)/2

d(d + 2)�(d/2)
(1 + e)(2d + 3 − 3e)nσd−1vT , (33)

λ =
√

2π (d−1)/2

d�(d/2)
(1 − e2)nσd−1vT , (34)

where vT = √
2T/m is the thermal velocity. Notice that in

deriving the expression (32) for �
E

αβ nonlinear terms in �k
αβ

have been neglected. As will show below, for dilute gases
(ϕ → 0), this approximation yields P k

xx �= P k
yy but P k

yy =
P k

zz. The latter equality disagrees with computer simulation

results [26,35]. The evaluation of �
E

αβ for dilute gases by
retaining all the quadratic terms in the pressure tensor has
been carried out in Ref. [35]. The inclusion of these nonlinear
corrections allows us to determine the normal stress differences
in the plane orthogonal to the shear flow (e.g., Pyy − Pzz).
Nevertheless, since this difference is small, the expression (32)
can be considered as accurate, even in the limit of dilute gases,
as demonstrated in Ref. [28].

The set of coupled differential equations (25)–(28) can
be written more explicitly when one takes into account the
result (32):

∂

∂t
T = −2γ̇

dn
CdP

k
xy − 2γ̇

dn
P c

xy + 2ζ (Tex − T ) − g0λT , (35)

∂

∂t
�T = −2

n
γ̇
(
P k

xy + P c
xy

) − (νg0 + 2ζ )�T, (36)

∂

∂t
δT = −2

n
γ̇
(
EdP

k
xy + P c

xy

) − (νg0 + 2ζ )δT , (37)

∂

∂t
P k

xy = γ̇ n

(
d − 1

d
Dd�T − d − 2

d
EdδT − CdT

)

− γ̇ P c
yy − (νg0 + 2ζ )P k

xy. (38)

Here we have introduced the (dimensionless) quantities

Cd (e,ϕ) = 1 − 2d−2

d + 2
(1 + e)(1 − 3e)ϕg0, (39)

Ed (e,ϕ) = 1 − 2d

(d + 2)(d + 4)
(1 + e)(d + 1 − 3e)ϕg0, (40)

Dd (e,ϕ) = 1 − 2d−1(d − 2)

(d − 1)(d + 2)(d + 4)

× (1 + e)(d + 1 − 3e)ϕg0. (41)
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In addition, upon deriving Eqs. (35)–(38) we have used the
relations

�k
xx = �T

dT
+ d − 2

d

δT

T
, �k

yy = 1 − d

d

�T

T
+ d − 2

d

δT

T
,

�k
zz = �T

dT
− 2

d

δT

T
. (42)

To close the problem, one still needs to compute the
collisional transfer contributions P c

αβ to the pressure tensor.
This can be achieved by inserting Grad’s distribution (29) into
Eq. (15). On the other hand, this computation yields an intricate
expression for P c

αβ that must be numerically evaluated. Thus,
in order to get simple and accurate results, only terms up to
the first order in the shear rate are considered in the above
calculation. The final result is (see Appendix D)

P c
αβ ≈ 2d−2(1 + e)ϕg0nT

[
δαβ + 2

d + 2
�k

αβ − γ̇ ∗τT

× 2
√

2√
π (d + 2)

(δαxδβy + δαyδβx)

]
, (43)

where

γ̇ ∗ ≡ γ̇

ζ0
, τT = ζ0σ

vT

. (44)

The quantity ζ0 is defined in Eq. (5). Since ζ0 ∝ √
Tex and

vT ∝ √
T , the parameter τT measures the competing effect

between the environmental temperature Tex and the kinetic
temperature T . In the case that the environmental temperature
Tex is much lower than the kinetic temperature, then τT can
be considered as a small parameter and could be neglected
in the expression (43) of the collision contribution to the
pressure tensor. In fact, as we will show below, the theoretical
predictions compare better with simulations when we neglect
this term (τT = 0) in Eq. (43). In this context, one could argue
that the results derived here could be relevant in situations
where the stresses applied by the background fluid on solid
particles have a weak influence on the dynamics of grains.

It is important to remark that the use of the expression (43)
is mainly motivated by the desire of analytic expressions for
the rheological properties that allow one to unveil in a clear
way the impact of both the restitution coefficient e and the
(scaled) shear rate γ̇ ∗ on momentum transport. Of course,

since the collisional transfer contribution P c
αβ is expected to

strongly depend on γ̇ ∗ in the steady state [39], the truncation
made in Eq. (43) can be likely only justified for nearly elastic
systems. On the other hand, as we will show in Sec. IV, the
good agreement found between theory and simulations for
moderately strong dissipation (i.e., e = 0.9) justifies the use
of the expression (43) beyond the elastic limit (e → 1).

After a transient period one expects that the system achieves
a steady state. In this steady state, the viscous heating term
(−γ̇ Pxy > 0) is exactly balanced by the cooling terms arising
from the collisional dissipation and the friction between the
background fluid and the solid particles. One of the main goals
of this paper is to determine the rheological properties of the
gas-solid suspension in the steady state. This will be carried
out analytically in the next section by solving the set of coupled
equations (25)–(28) when ∂t → 0.

III. RHEOLOGY FOR STEADY SIMPLE SHEAR FLOW

As mentioned before, the rheology of gas-solid suspensions
is determined in this section by solving the constitutive
equations (35)–(38) in the steady state. First, in order to solve
this set of equations, it is convenient to write it in dimensionless
form. To do that, since ζ ∝ √

TexR(ϕ), we introduce here the
reduced quantities

ν∗ = ν√
θζ0R(ϕ)

, λ∗ = λ√
θζ0R(ϕ)

, (45)

where θ ≡ T/Tex. In terms of the above quantities, in the
steady state, Eqs. (35)–(38) read

− 2γ̇ ∗

dR

(
Cd�

k
xy + P c∗

xy

) = g0

√
θλ∗ + 2(1 − θ−1), (46)

− 2γ̇ ∗

R

(
�k

xy + P c∗
xy

) = (2 + g0

√
θν∗)

�θ

θ
, (47)

− 2γ̇ ∗

R

(
Ed�

k
xy + P c∗

xy

) = (2 + g0

√
θν∗)

δθ

θ
, (48)

γ̇ ∗

R
P c∗

yy + (2 + ν∗g0

√
θ )�k

xy

= − γ̇ ∗

R

(
d − 1

d
Dd

�θ

θ
− d − 2

d
Ed

δθ

θ
− Cd

)
, (49)

where P c∗
ij ≡ P c

ij /nT , �θ ≡ �T/Tex, and δθ ≡ �T/Tex. The
solution to Eqs. (46)–(48) can be written as

�k
xy =

dR[2(1 − θ ) − g0θ
3/2λ∗] + 2

√
2
π
FdτT θ γ̇ ∗2

2(Cd + Fd )θγ̇ ∗ , (50)

�θ

θ
=

2
√

2
π
Fd (Cd − 1)τT θγ̇ ∗2 + d(1 + Fd )R[2(θ − 1) + g0θ

3/2λ∗]

R(Cd + Fd )(2 + g0

√
θγ̇ ∗)

, (51)

δθ

θ
=

2
√

2
π
Fd (Cd − Ed )τT θγ̇ ∗2 + d(Ed + Fd )R[2(θ − 1) + g0θ

3/2λ∗]

R(Cd + Fd )(2 + g0

√
θγ̇ ∗)

, (52)

where

Fd = 2d−1(1 + e)

d + 2
g0ϕ. (53)
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Upon deriving Eqs. (50)–(52), use has been made of Eq. (43)
for the collision transfer contribution to the pressure tensor.
Finally, when Eqs. (50)–(52) are substituted into Eq. (49), one
achieves the following quartic equation in γ̇ ∗:

R4C4(e,ϕ,θ )γ̇ ∗4 + R2C2(e,ϕ,θ )γ̇ ∗2 + C0(e,ϕ,θ ) = 0. (54)

The coefficients C4, C2, and C0 are nonlinear functions of
the restitution coefficient e, the volume fraction ϕ, and the
(scaled) kinetic temperature θ . Their explicit forms are given
in Appendix E.

Although an explicit expression of θ in terms of e, ϕ, and
γ̇ ∗ is not known, the dependence of θ on the latter parameters
can be implicitly obtained from the physical solution to
Eq. (54) as γ̇ ∗2(θ,e,ϕ). Once θ is known, the remaining
rheological functions can be determined from Eqs. (50)–(52)
in terms of e, ϕ, and γ̇ ∗. In the low-density limit (ϕ → 0),
previous results [28] obtained for dilute granular suspensions
are recovered.

On the other hand, given that the collisional stress has been
obtained by retaining terms up to the first order in the shear
rate, for practical purposes it is more convenient to consider
the limit τT → 0 but finite e and ϕ in the quartic equation (54).
In this case, we can write

γ̇ ∗ = γ̇0 + γ̇1τT + · · · , (55)

where the coefficients γ̇0 and γ̇1 can be easily obtained from
the quartic equation (54) as

γ̇0 = 1

R

√
− C0

C (0)
2

, (56)

γ̇1 = −C (1)
2 γ̇0 + C (0)

4 R2γ̇ 3
0

2C (0)
2

. (57)

The quantities C (0)
4 , C (0)

2 , and C (1)
2 are defined in Appendix E.

As mentioned before, an accurate and simple estimate of γ̇ ∗
is provided by its zeroth-order form γ0.

In summary, for given values of the restitution coefficient
and density, Eq. (55) gives the shear-rate dependence of
the (scaled) kinetic temperature θ . The stress tensor P ∗

xy ≡
Pxy/nT and the first �T and second δT stress normal
differences are obtained by substituting θ (γ̇ ∗) into Eqs. (46)–
(48), respectively. The reliability of these theoretical results
will be assessed in Sec. IV via a comparison against computer
simulations.

IV. COMPARISON BETWEEN THEORY
AND SIMULATION

The goal of this section is to validate our theoretical
results by using the EDLSHS. We consider Lees-Edwards
boundary conditions in a three-dimensional (d = 3) periodic
box [30,49]. Under these conditions, the Langevin equation (2)
is equivalent to Eqs. (11) and (A1), when a molecular chaos
ansatz is assumed. Therefore, if we can approximate Eq. (A1)
by the Enskog collision operator (12), our theory gives a good
approximation of Eq. (2).

Notice that it is difficult to adopt both the conventional
event-driven simulation and the soft-core simulation for our
problem. The existence of both the inertia term d p/dt and

the drag term proportional to ζ in Eq. (2) makes difficult the
use of the conventional event-driven simulation. In addition,
a sudden increment of the viscosity in the vicinity of a DST
gives rise to numerical difficulties of soft-core simulations.
Thus, to avoid the above difficulties, we adopt in this paper
the EDLSHS. This is in fact a powerful simulator for hard
spheres under the influence of the drag and the inertia terms
with the aid of Trotter decomposition [30] (some details of the
EDLSHS method are provided in Appendix F).

In our simulations, we fix the number of grains N = 1000 as
well as the background fluid temperature T ∗

ex ≡ Tex/mσ 2ζ 2
0 =

0.01. Several volume fractions ϕ are considered: ϕ = 0.01,
0.05, 0.10, 0.20, 0.30, 0.40, and 0.50. The first density
corresponds to a dilute suspension, while the latter can be
considered as a relatively-high-density suspension. Notice that
previous works [51–55] have shown that the results derived
from the Enskog equation are quite accurate for moderately
dense systems (for instance, ϕ � 0.2 for d = 3). Two different
values of the restitution coefficient e are considered in
this section: e = 1 (elastic grains) and e = 0.9 (granular
grains with moderate inelasticity). More inelastic systems are
considered in Appendix G for the density ϕ = 0.3. All the
rheological variables presented in this paper are measured after
the system reaches a steady state (for t > 400/ζ0). In addition,
all the variables are averaged by ten ensemble averages
that have different initial conditions and ten time averages
during the time intervals 10/ζ0 for each initial condition. We
have confirmed that the fluctuations of the observables are
sufficiently small.

Before considering the rheological properties of the gas-
solid suspension, Fig. 1 displays a snapshot of the configura-
tions and displacements of particles in a cross section for each
given set of parameters. In particular, Figs. 1(a)–1(c) represent
the quenched, intermediate, and ignited states, respectively,

0.5

0

-0.5

(b)(a)

(c)

FIG. 1. Plots of the configuration of particles and the displace-
ment vectors (black arrows) during the interval 1.0/ζ0, in cross
sections for the shear rates (a) γ̇ ∗ = 1.0, (b) γ̇ ∗ = 3.0, and (c)
γ̇ ∗ = 10.0. The restitution coefficient is e = 0.90, while the density
is ϕ = 0.3. Notice that the uniform shear term is subtracted in the
displacement vector. We also show the temperature for the ith particle
Ti ≡ (1/N )

∑N

i=1 m(vi − u)2/d . The color indicates the magnitude
of Ti/T − 1.
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FIG. 2. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.01 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.

for e = 0.9 and ϕ = 0.3. Here the intermediate state means
intermediate between the quenched and ignited states. Only a
configuration of particles in a cross section in each panel of
Fig. 1 is displayed. Because the motion and configuration of
the moderately dense gas seem to be uniform, the use of the
(homogeneous) Enskog kinetic equation (11) to describe the
simple shear flow is justified.

Figures 2–8 show the shear-rate dependence of the (scaled)
kinetic temperature θ and the (dimensionless) nonlinear shear
viscosity η∗ for ϕ = 0.01 (Fig. 2), ϕ = 0.05 (Fig. 3), ϕ =
0.10 (Fig. 4), ϕ = 0.20 (Fig. 5), ϕ = 0.30 (Fig. 6), ϕ = 0.40
(Fig. 7), and ϕ = 0.50 (Fig. 8). According to Eq. (24), the
(scaled) viscosity η∗ is defined as

η∗ ≡ ζ0η

nTex
= −θP ∗

xy

γ̇ ∗ , (58)

where P ∗
ij ≡ Pij /nT . The dashed lines in those plots cor-

respond to the (perturbative) theoretical results obtained by
retaining the first-order terms in τT [namely, when the (scaled)
shear rate is approximated by γ̇ ∗ = γ̇0 + γ̇1τT ]. These results
will be referred to here as the first-order theory. Analogously,
the solid lines refer to the theoretical results by assuming τT =
0 (zeroth-order theory). We recall that the term proportional
to γ̇ ∗τT is the last term appearing in the expression (43) for

P c
αβ . Moreover, the symbols in Figs. 2–8 correspond to the

simulation results. Surprisingly, we observe that in general the
zeroth-order results compare better with simulations than the
first-order results. On the other hand, as expected, both theories
(zeroth- and first-order theories) are practically indistinguish-
able for dilute suspensions (see Figs. 2 and 3). Regarding
the comparison with simulations, it is quite apparent that the
zeroth-order theoretical results for the kinetic temperature θ

agree well with simulations in the complete range of densities
studied. This shows the accuracy of Grad’s approximation to
capture the shear-rate dependence of θ , even for high densities.
On the other hand, although the agreement between theory and
simulation for η∗ is still good for ϕ � 0.4, some quantitative
discrepancies are observed for the highest density ϕ = 0.5. It
is interesting to note that the simulation data for viscosity in
the low-shear (Newtonian) regime of the high-density regions
(ϕ = 0.50 and 0.40) seem to deviate from the theoretical
predictions. We believe that this deviation originates from the
crystallization that takes place at ϕc = 0.49.

As advanced in Sec. II, the evaluation of P c
αβ by including

the complete nonlinear dependence on the shear rate yields a
quite intricate expression that must be numerically integrated
[see Eq. (3.14) of Ref. [56]]. For this reason, a more simplified
expression of P c

αβ is obtained in Eq. (43) by considering
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0.9 (theory, 1st)

0.9 (sim.)

1.0 (theory, 0th)

1.0 (theory, 1st)

1.0 (sim.)

100

102

104

10-2 10-1 100 101 102

0.9 (theory, 0th)
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0.9 (sim.)

1.0 (theory, 0th)

1.0 (theory, 1st)

1.0 (sim.)

(b)(a)

FIG. 3. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.05 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.
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FIG. 4. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.10 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.

only the linear contributions in the (scaled) shear rate γ̇ ∗.
On the other hand, as Fig. 9(a) shows, the term γ̇ ∗τT ∝ γ̇ /

√
T

becomes small in the limit of large shear rates for perfectly
elastic collisions (e = 1). This means that the contribution to
the collisional contribution to the shear stress coming from
the term proportional to γ̇ ∗τT in Eq. (43) can be neglected
in the case of dense gas-solid elastic suspensions. Note that
the parameter γ̇ ∗τT increases first with increasing shear rate,
reaches a maximum value, and then decreases as γ̇ ∗ increases.
In fact, γ̇ ∗τT tends asymptotically towards a constant value in
the limit of large shear rates (γ̇ ∗ → ∞) for inelastic collisions
[see Fig. 9(a) for ϕ = 0.3]. The maximum value of γ̇ ∗τT

[which occurs at the (scaled) shear rate γ̇ ∗ = γ̇τ ] is obtained
from the condition(

∂(γ̇ ∗τT )

∂γ̇ ∗

)
γ̇ ∗=γ̇τ

= 0. (59)

The dependence of max(γ̇ ∗τT ) on the solid volume fraction ϕ

is plotted in Fig. 9(b) for e = 1 and 0.9. It is quite apparent
that max(γ̇ ∗τT ) decreases as ϕ increases. Since the collisional
contribution Pc to the shear stress decreases with increasing
density, one can conclude that Pc displays a weak dependence
on the parameter γ̇ ∗τT in the complete range of ϕ, at least for

not quite high inelasticity. This is likely the main reason why
the approximation τT = 0 in the collisional stress gives good
results for θ and η∗.

Figures 2–8 clearly highlight that both theory and
simulation predict that both θ and η∗ monotonically increase
with γ̇ ∗ from the Newtonian branch in the low-shear
regime to the Bagnolian branch for e < 1 or the branch in
which the viscosity is proportional to γ̇ 2 for e = 1 in the
high-shear regime for densities ϕ � 0.05. Similar CST for
dense suspensions of e = 1 has been observed in Ref. [15].
On the other hand, these monotonic tendencies disagree
with the shear thinning effect observed in dense disordered
suspensions in the low-shear regime. This might suggest that
the shear thinning could be suppressed if one would use a
monodisperse suspension. On the other hand, the flow curves
have S shapes for the dilute suspension ϕ = 0.01. More
precisely, the shear thickening is continuous above the critical
volume fraction ϕc ≈ 0.0176, while it is discontinuous for
ϕ < ϕc. This is an interesting finding that contrasts with typical
experimental observations for dense suspensions. Notice that a
similar change from a discontinuous transition to a continuous
transition for the kinetic temperature has already been reported
in Refs. [27,29,43]. The detailed theoretical explanation of this
discontinuous-continuous transition will be presented in the
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FIG. 5. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.20 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.
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FIG. 6. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.30 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.

next section. As occurs in driven granular fluids [57], we
also observe the weak influence of inelasticity on θ and η∗
for small shear rates. This is because the influence of the
interstitial fluid (accounted for by the thermostat and the
viscous damping term) on the dynamics of grains is more
important than the effect of collisions in the low-shear regime.
On the other hand, the impact of inelasticity on rheology
increases with increasing shear rate.

Now the results of the shear-rate dependence of the stress
ratio μ ≡ −Pxy/P are presented in Fig. 10. Figure 10(a) shows
the theoretical results of the dilute case (ϕ = 0.01), where the
theory gives almost perfect agreement with simulations. The
asymptotic expression of μ for large γ̇ ∗ strongly depends on
whether collisions are elastic or inelastic. In particular, while
the stress ratio reaches a plateau when e < 1, μ tends to zero in
the limit γ̇ ∗ → ∞ when e = 1, as explained in Ref. [28]. The
results of μ for denser situations are interesting [see Fig. 10(b)
for ϕ = 0.30] because the first-order theory compares better
with simulations than the simple results with τT = 0. This
result contrasts with the findings of Fig. 6, where the zeroth-
order theory provides the best performance. This change of
behavior can be understood because, although the zeroth-order
theory for both P and Pxy deviates from the simulation data

less than the first-order one, the opposite happens for the ratio
μ = −Pxy/P due to a cancellation of errors. See Appendix H
for details on this point.

We consider now the normal stress differences N1 and N2.
They are defined as

N1 ≡ Pxx − Pyy

P
, N2 ≡ Pyy − Pzz

P
. (60)

In terms of �θ and δθ , the expressions of N1 and N2 are

N1 = 1 + 2d−1

d+2 (1 + e)ϕg0

1 + 2d−2(1 + e)ϕg0

�θ

θ
, (61)

N2 = 1 + 2d−1

d+2 (1 + e)ϕg0

1 + 2d−2(1 + e)ϕg0

δθ − �θ

θ
. (62)

Figure 11 shows N1 and N2 versus γ̇ ∗ for e = 0.9 and
two different solid volume fractions ϕ: ϕ = 0.01 (dilute
suspensions) and 0.1 (moderately dense suspension). Only
the theoretical results of the zeroth-order approximation are
plotted. It can be seen that the theory agrees well with
simulations for this range of densities. On the other hand, the
deviations between theory and simulations becomes larger for
higher densities. Moreover, it must be stressed that the normal
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FIG. 7. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.40 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.

042903-9



HISAO HAYAKAWA, SATOSHI TAKADA, AND VICENTE GARZÓ PHYSICAL REVIEW E 96, 042903 (2017)

100

102

104

106

10-3 10-2 10-1 100

0.9 (theory, 0th)

0.9 (theory, 1st)

0.9 (sim.)

1.0 (theory, 0th)

1.0 (theory, 1st)

1.0 (sim.)

102

104

106

10-3 10-2 10-1 100

0.9 (theory, 0th)

0.9 (theory, 1st)

0.9 (sim.)

1.0 (theory, 0th)

1.0 (theory, 1st)

1.0 (sim.)

(b)(a)

FIG. 8. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.50 and two different values of the restitution coefficient e:
e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the
legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results.

stress differences become large when the shear thickening
takes place. In particular, such a tendency is clearly observed
if we focus on N1 in the vicinity of the critical shear rate of
the DST for dilute suspensions.

V. TRANSITION FROM DISCONTINUOUS SHEAR
THICKENING TO CONTINUOUS SHEAR THICKENING

The results discussed in Sec. IV have clearly provided
evidence that the DST observed for dilute suspensions tends
towards CST as density increases. This transition can be
analyzed as follows. For simplicity, we focus in this section
on the discontinuous-continuous transition for the kinetic
temperature between an ignited state and a quenched state.
This transition is almost equivalent to the one found between
DST and CST.

Because we are interested in a constant volume system, the
condition for obtaining the critical point is given by(

∂γ̇ ∗

∂θ

)
e,ϕ

= 0,

(
∂2γ̇ ∗

∂θ2

)
e,ϕ

= 0. (63)

This condition is analogous to that of the critical point of the
second-order phase transition at equilibrium.

Let us determine the critical point. In order to get it, we
consider the zeroth-order theory and so

γ̇ ∗2 = − 1

R(ϕ)2

C0(e,ϕ,θ )

C (0)
2 (e,ϕ,θ )

. (64)

From Eq. (64), the conditions (63) can be rewritten as

(
∂C0

∂θ

)
ϕ

C (0)
2 − C0

(
∂C (0)

2

∂θ

)
e,ϕ

= 0, (65)

(
∂2C0

∂θ2

)
ϕ

C (0)
2 − C0

(
∂2C (0)

2

∂θ2

)
e,ϕ

= 0. (66)

For a given value of the restitution coefficient e, the numerical
solution to Eqs. (65) and (66) provides the critical point. In
particular, for elastic collisions (e = 1), the critical point is
given by ϕc � 0.0176, θc � 38.4, and γ̇c � 4.39.

As Fig. 12(a) shows, Eqs. (65) and (66) can be seen as
analogous to the phase coexistence and spinodal lines at
equilibrium phase transitions, respectively, in the phase space
of (θ,ϕ,γ̇ ∗). Because of this analogy, we will employ the above
terminology for later discussion.
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FIG. 9. (a) Plot of γ̇ ∗τT versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.30 and two different values of the restitution coefficient e: e = 1 and
0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth order (denoted by 0th in the legend)
and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation results. (b) Plot of the maximum value
of γ̇ ∗τT against the solid volume fraction for e = 1 and e = 0.9 with the condition ϕ � 0.02.
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FIG. 10. Plots of the stress ratio μ ≡ −Pxy/P versus the (scaled) shear rate γ̇ ∗ for (a) ϕ = 0.01 and (b) ϕ = 0.30 and two different values of
the restitution coefficient e: e = 1 and 0.9. The solid and dashed lines correspond to the (perturbative) theoretical results obtained in the zeroth
order (denoted by 0th in the legend) and first order (denoted by 1st in the legend) in τT , respectively. Symbols refer to computer simulation
results.

To confirm the validity of our analysis, we have also
performed the EDLSHS in the vicinity of the critical point for
the case e = 1. We have gradually changed the shear rate from
γ̇ ∗

0 = 0.400 (0.826) to sequentially increasing (decreasing)
values as γ̇ ∗ = γ̇ ∗

0 ,aγ̇ ∗
0 ,a2γ̇ ∗

0 , . . . ,a63γ̇ ∗
0 = 0.826 (0.400) with

the rate a = 100.005 � 1.0116. We have verified that the
coexistence of an ignited state and a quenched state in our
simulation exists on the phase coexistence line as shown in
Fig. 12(a). The intersection of the two lines correspond to the
critical point. Notice that the spinodal line is located outside
the phase coexistence line in our case, which is different from
equilibrium situations. This difference might be a universal
feature of nonequilibrium bifurcations because models of
traffic flows have similar structures [58,59].

Near the critical point, the equation of the coexistence curve
between θ − θc and ϕc − ϕ for ϕ < ϕc is determined as

θ − θc = ±C
√

ϕc − ϕ, (67)

0
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(0.01)
(0.10)
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(0.10)

FIG. 11. Plot of the scaled normal stress differences N1 and N2

versus the (scaled) shear rate γ̇ ∗ from the kinetic theory and from
the simulation against γ̇ ∗ for e = 0.9 and two different values of the
solid volume fraction: ϕ = 0.01 and 0.10. The solid, dashed, dotted
and dash-dotted lines are the theoretical results obtained by assuming
τT = 0 for N1 with ϕ = 0.01, N1 with ϕ = 0.1, N2 with ϕ = 0.01
and N2 with ϕ = 0.1, respectively, while the symbols correspond to
the simulation results.

where C = {6(∂2γ̇ ∗/∂θ∂ϕ)/(∂3γ̇ ∗/∂θ3)}1/2
ϕc,θc

� 750 for
e = 1. The theoretical curve in Eq. (67) is drawn as the solid
(red) line in Fig. 12(b). This analytical prediction captures
qualitatively well the numerical result obtained from Eqs. (65)
and (66) (the dotted line in Fig. 12).

VI. DISCUSSION AND CONCLUSION

The Enskog kinetic equation for inelastic hard spheres has
been considered in this paper as the starting point to study the
rheology of gas-solid suspensions under simple shear flow. The
effect of the interstitial fluid on the dynamics of solid particles
has been modeled through an external force composed of
a viscous drag force plus a stochastic Langevin-like term.
While the first term models the friction of grains on the
gas phase, the latter accounts for thermal fluctuations. Two
independent but complementary routes have been employed
to determine the non-Newtonian transport properties. First,
the Enskog equation was approximately solved by means of
Grad’s moment method. Given that the heat flux vanishes
in the simple shear flow state, only the kinetic pressure
tensor has been retained in the trial distribution function.
Then the analytical results for the kinetic temperature, the
viscosity, the stress ratio, and the normal stress differences
were compared against computer simulations based on the
event-driven Langevin simulation method. The main goal
of the paper has been to determine how the flow curve
(stress-strain rate relation) depends on the density (or volume
fraction) of the confined gases.

One of the limitations of the theory is that the collisional

moment �
E

αβ [defined by Eq. (B25)] has been evaluated by
neglecting nonlinear terms in the kinetic pressure tensor �k

αβ .
For dilute gases (ϕ → 0), this simplification leads to the
absence of normal stress differences in the shear flow plane
(P k

xx = P k
yy). However, although this equality differs from the

results found in computer simulations [26,35], the difference
P k

xx − P k
yy observed in simulations is in general very small. As

a consequence, the importance of this approximation seems
to be irrelevant for the calculations carried out in the present
paper. Another simplification of our theory is that one of the
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FIG. 12. (a) Plot of the phase coexistence line ∂γ̇ /∂θ = 0 (solid lines) and the spinodal line ∂2γ̇ /∂θ2 = 0 (dashed line). We also plot the
results of our simulation (open circles), where the temperature discontinuously increases (decreases) when we gradually increase (decrease)
the shear rate. Notice that the phase coexistence curve does not exist for ϕ > ϕc. (b) Plot of the projection of the phase coexistence line and the
spinodal line onto the (ϕ,θ ) plane.

contributions to the collisional stress P c
xy has been determined

by neglecting nonlinear terms in the shear rate [see the third
term on the right-hand side of Eq. (43)]. On the other hand,
the comparison with simulations has shown that the reliability
of the theory is clearly improved when this term is neglected
(zeroth-order theory).

The theoretical results derived in this paper from Grad’s
method indicate that in general the Enskog theory describes
well the rheology of sheared suspensions. In particular, the
agreement found between theory and simulations for the shear
viscosity clearly shows that the shear thickening effect is well
captured by the Enskog kinetic equation. Moreover, in contrast
to typical experimental observations for dense suspensions,
both theory and simulations have confirmed that there is a
transition from DST in dilute suspensions to CST for dense
suspensions at relatively low density. This finding is consistent
with the results reported in previous works [26–29,39,43]
where only the transition between the quenched state and the
ignited state for the kinetic temperature was analyzed.

As advanced before, in spite of the fact that our theoretical
results are based on some approximations, it must be stressed
that the theoretical predictions for the shear-rate dependence
of the shear viscosity compare well with simulations for mod-
erately dense suspensions (for instance, densities ϕ smaller
than or equal to 0.3). This is the expected result since several
previous works [51–55] have confirmed the reliability of the
Enskog equation in this range of densities. The disagreement
between theory and simulation for denser cases could be in
part originate from the incomplete treatment of the collisional
stress Pc where our expression is the same as the one obtained
by Garzó and Dufty [23] from the first-order Chapman-Enskog
solution. Given that the latter theory is not applicable in the
high-shear-rate regime, it is obvious that the present results
could be refined by considering higher-order terms in the shear
rate in the expression of the collisional stress. This point is one
of the important tasks for the near future.

Typical DSTs observed in experiments and simulations for
dense suspensions (ϕ > 0.5) should be the result of mutual
friction between grains. Although the Enskog kinetic equation
is not applicable to such dense suspensions, an extension of
Grad’s moment method to dense systems might be applicable

for the explanation of the DST of frictional grains [60], which
might be better than the previous theory of dense granular
liquids [61]. This study will be reported elsewhere [62] (see
also Ref. [63]).

The Langevin equation (2) employed in our study assumes
that the gravity force is perfectly balanced with the drag force
immersed by the air flow. This assumption is only true if the
homogeneous state is stable. On the other hand, the simple
shear flow state becomes unstable above the critical shear
rate. If the homogeneous state is unstable, one would need
to consider the time evolution of local structure as well as the
inhomogeneous drag.

The fact that the restitution coefficient e is assumed to be
constant has allowed us to get quite explicit results. However,
the above hypothesis disagrees with experimental observa-
tions [64] and with the mechanics of particle collisions [65,66]
and hence the coefficient e depends on the impact velocity. The
simplest model that takes into account dissipative material
deformation is the model of viscoelastic particles [67–69].
On the other hand, in spite of the mathematical difficulties
involved in this viscoelastic model, some progress has been
made in the past few years [67–69] in the limit of small
inelasticity for dilute granular gases. The extension of the
present results for a velocity-dependent restitution coefficient
is beyond the scope of this paper. In addition, since the
transition between DST and CST for elastic suspensions is
qualitatively similar to that of inelastic suspensions (except in
the high-shear asymptotic region), we think that the impact of
the velocity dependence of e on the above transition will be
irrelevant for such a problem.

As shown in Appendix G, since the theoretical predictions
deviate from simulation results for strong inelasticity, the
reliability of our theory is essentially limited to moderate
inelasticities. Thus, a future task would be to improve our
theoretical treatment for highly inelastic cases. Finally, it is
important to note that the monodisperse system analyzed
here is crystallized, at least in the region of low shear
rates for densities ϕ > 0.49. Therefore, one should study a
sheared polydisperse system to prevent it from crystallization.
This is also an interesting problem to be carried out in the
future.
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APPENDIX A: BRIEF NOTE ON ENSKOG’S APPROXIMATION

The basis of Enskog’s approximation is briefly summarized in this Appendix. Notice that the main part of this Appendix has
been presented in Ref. [56]. The collisional integral JE(r,v|f ) accounting for the effect of collisions on the rate of change of the
one-particle distribution function f is assumed to be the inelastic hard-core collision operator. It is given by

JE(r,v1|f (2)) = σd−1
∫

dv2

∫
dσ̂ �(v12 · σ̂ )(v12 · σ̂ )

[
f (2)(r,r − σ ,v′′

1,v
′′
2; t)

e2
− f (2)(r,r + σ ,v1,v2; t)

]
, (A1)

where f (2) ≡ f (2)(r1,r2,v1,v2; t) is the two-body distribution function at (r i ,vi) with i = 1,2. The relationship between the pre-
and postcollisional velocities in Eq. (A1) is given Eq. (13).

The most important flux in the simple shear flow problem is the pressure tensor P(r,t). Its kinetic Pk and collisional Pc

contributions are, respectively, given by (see Appendix B for the derivation)

P k
αβ (r,t) = m

∫
dv VαVβf (V ,t), (A2)

P c
αβ (r,t) = 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂ασ̂β

∫ 1

0
dx f (2)[r − xσ ,r + (1 − x)σ ,v1,v2; t]. (A3)

In order to achieve a closed kinetic equation for the distribution function f , one assumes the molecular chaos hypothesis and
hence the two-body distribution function f (2) factorizes in the product of the one-particle distribution functions f as

f (2)(r1,r2,v1,v2; t) = χ (r1,r2|n(t))f (r1,v1,t)f (r2,v2,t), (A4)

where the front factor χ (r1,r2|n(t)) is reduced to the radial distribution function g(|r1 − r2|,n) for the simple shear flow state.
Because we are only interested in systems consisting of hard spheres, χ (r1,r2|n(t)) is further simplified to χ (r1,r2|n(t)) ≈
g0(|r| = σ,ϕ), where the radial distribution at contact g0(|r| = σ,ϕ) can be expressed as in Eq. (8) for d = 3 and ϕ < 0.49 [47].
Once the Enskog approximation is adopted, the Enskog collision operator JE(r,V |f (2)) can be rewritten as in Eq. (12) when one
considers the Lagrangian frame defined by V = v − γ̇ yex .

Moreover, to get Eq. (15) for Pc, one takes first the Enskog approximation (A4) for f (2) and then expands f (r + yσ ) in spatial
gradients as∫ 1

0
dxf (2)(r − xσ ,r + (1 − x)σ ,v1,v2; t) ≈ g0

[
f (r,v1)f (r,v2) − 1

2
f (r,v2)σ · ∇f (r,v1) + 1

2
f (r,v1)σ · ∇f (r,v2)

]

≈ g0

[
f

(
r − σ

2
,v1; t

)
f

(
r + σ

2
,v2; t

)]
. (A5)

The expression (15) for Pc can be easily obtained by substituting Eq. (A5) into Eq. (A3) and referring the velocities of the
particles to the local Lagrangian frame where f is spatially uniform. This means that

f

(
r − σ

2
,v1; t

)
= f

(
V 1 + 1

2
γ̇ σ σ̂yex ; t

)
, f

(
r + σ

2
,v1; t

)
= f

(
V 1 − 1

2
γ̇ σ σ̂yex ; t

)
. (A6)

APPENDIX B: DETAILS OF THE COLLISIONAL TRANSFER CONTRIBUTIONS TO THE FLUXES

Some technical details of the derivation of the collisional transfer contributions to the fluxes are provided in this Appendix.
Notice that the description in this Appendix is applicable for all the systems of hard-core collisions. In other words, we do not
use any specific property of either the Enskog approximation (A4) or Grad’s distribution (29).

Let us consider the collisional moment of the Enskog operator

Iψ =
∫

dv ψ(v)JE(r,v|f,f ), (B1)
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where ψ(v) is an arbitrary function of v. The moment Iψ can be written in the equivalent form [23]

Iψ = σd−1
∫

dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)[ψ(v′

1) − ψ(v1)]f (2)(r,v1,r + σ ,v2; t)

= σd−1
∫

dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)[ψ(v′

2) − ψ(v2)]f (2)(r,v2,r − σ ,v1; t), (B2)

where

v′
1 = v1 − 1

2 (1 + e)(σ̂ · v12)σ̂ , v′
2 = v2 + 1

2 (1 + e)(σ̂ · v12)σ̂ . (B3)

Moreover, the last expression in Eq. (B2) has been obtained by interchanging v1 and v2 and changing σ̂ → −σ̂ . Using the
identities of Eq. (B2), the collisional moment Iψ can be rewritten as

Iψ = σd−1

2

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12){[ψ(v′

1) − ψ(v1)]f (2)(r,v1,r + σ ,v2; t)

+ [ψ(v′
2) − ψ(v2)]f (2)(r,v2,r − σ ,v1; t)}

= σd−1

2

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12){[ψ(v′

1) + ψ(v′
2) − ψ(v1) − ψ(v2)]f (2)(r,v1,r + σ ,v2; t)

+ [ψ(v′
1) − ψ(v1)][f (2)(r,v1,r + σ ,v2; t) − f (2)(r − σ ,v1,r,v2; t)]}. (B4)

Upon deriving the last identity use has been made of the relation

f (2)(r,v2,r − σ ,v1; t) = f (2)(r − σ ,v1,r,v2; t). (B5)

The first term in the integrand of Eq. (B4) on the right-hand side represents a collisional effect due to a change in velocities. This
effect is also present in the dilute regime. The second term on the right-hand side in the integrand of Eq. (B4) expresses a pure
collisional contribution. Now we use the following identity for an arbitrary function F (r,r + σ ):

F (r,r + σ ) − F (r − σ ,r) = −
∫ 1

0
dx

∂

∂x
F (r − xσ ,r + (1 − x)σ ) = σ · ∂

∂ r

∫ 1

0
dx F (r − xσ ,r + (1 − x)σ ). (B6)

From the identity (B6), Eq. (B4) can be rewritten as

Iψ = σd−1

2

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12){[ψ(v′

1) + ψ(v′
2) − ψ(v1) − ψ(v2)]f (2)(r,v1,r + σ ,v2; t)

+∇ · [ψ(v′
1) − ψ(v1)]σ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t). (B7)

It is straightforward to show

I1 =
∫

dv JE(V |f,f ) = 0. (B8)

In the case ψ(v) = mv, the first term on the right-hand side of Eq. (B7) vanishes since v′
1 + v′

2 = v1 + v2. Therefore, the second
term on the right-hand side of Eq. (B7) yields

Imv = −1 + e

4
mσd∇ ·

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂ σ̂

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t). (B9)

This equation can be rewritten as

Imv = −∇ · Pc, (B10)

where Pc is given by Eq. (15).
Now we consider the kinetic energy ψ(v) = mv2/2. In this case, the first term on the right-hand side of Eq. (B7) is different

from zero since energy is not conserved in collisions. Thus, one obtains

Imv2/2 = mσd−1

8
(1 − e2)

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)3f (2)(r,v1,r + σ ,v2; t)

−∇ · mσd

4
(1 + e)

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂

[
1 − e

4
(σ̂ · v12) + (σ̂ · V G) + (σ̂ · u)

]

×
∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t), (B11)
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where V G ≡ (V 1 + V 2)/2 is the velocity of center of mass. In addition, we have employed the identities

v′2
1 − v2

1 = −(1 + e)(v12 · σ̂ )[(u + V G) · σ̂ ] − (1 − e2)(v12 · σ̂ )2, (B12)

v′2
1 + v′2

2 − v2
1 − v2

2 = −1 − e2

4
(v12 · σ̂ )2. (B13)

Equation (B11) can be rewritten as

Imv2/2 = −d

2
nT ξ − ∇ · (u : Pc + qc) − ∇ · S, (B14)

where

ξ = (1 − e2)
mσd−1

4dnT

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)3f (2)(r,v1,r + σ ,v2; t) (B15)

is the cooling rate,

qc = 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2(σ̂ · V G)

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t) (B16)

is the collisional contribution to the heat flux, and

S = (1 − e2)
mσd−1

16

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)3σ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)

= −(1 − e2)
mσd−1

16

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)3σ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t) = −S, (B17)

where in the last step we have exchanged 1 ↔ 2 and have made the change of variable σ → −σ . Since S = −S, then the vector
S = 0 if all the grains are identical. With this result, Eq. (B14) reduces to

Imv2/2 = −d

2
nT ξ − ∇ · (u : Pc + qc). (B18)

Then the trace of the collisional moment �E
αβ defined in Eq. (20) can be rewritten as

�E
αα = u · Imv − ImV 2/2 = d

2
nT ξ + Pc : ∇u + ∇ · qc, (B19)

where use has been made of Eqs. (B8) and (B10).
In the case of ψ(v) = mvαvβ , Eq. (B7) gives the relation

�E
αβ = −Imvαvβ

+ uαImvβ
+ uβImvα

, (B20)

where

Imvαvβ
= mσd−1

2

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12){[v′

1,αv′
1,β + v′

2,αv′
2,β − v1,αv1,β − v2,αv2,β]f (2)(r,v1,r + σ ,v2; t)

−∇ · σ [v′
1,αv′

1,β − v1,αv1,β ]
∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)}. (B21)

With the aid of

v′
1,αv′

1,β + v′
2,αv′

2,β − v1,αv1,β − v2,αv2,β = −1 + e

2
(v12 · σ̂ )(v12,ασ̂β + σ̂αv12,β ) + (1 + e)2

2
(v12 · σ̂ )2σ̂ασ̂β (B22)

and

v′
1,αv′

1,β − v1,αv1,β = −1 + e

2
(σ̂ · v12)(σ̂αv1,β + σ̂βv1,α) + (1 + e)2

4
(σ̂ · v12)2δαβ, (B23)

one achieves the result

Imvαvβ
= −�

E

αβ − ∇γ �αβγ , (B24)

where

�
E

αβ = 1 + e

4
mσd−1

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2{(v12,ασ̂β + σ̂αv12,β )f (2)(r,v1,r + σ ,v2; t)

−(1 + e)(σ̂ · v12)σ̂ασ̂βf (2)(r,v1,r + σ ,v2; t)} (B25)
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and

�αβγ = �
(1)
αβγ + δαβSγ = �

(1)
αβγ . (B26)

The expression of �
(1)
αβγ is

�
(1)
αβγ = 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂γ (σ̂αv1,β + σ̂βv1,α)

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)

= 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂γ {σ̂α(uβ + VG,β + v12,β ) + σ̂β(uα + VG,α + v12,α)}

×
∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)

= uαP c
βγ + uβP c

αγ + Qαβγ + ϒαβγ , (B27)

where we have introduced the quantities Qαβγ and ϒαβγ as

Qαβγ = 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2VG,ασ̂β σ̂γ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t), (B28)

ϒαβγ = 1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2v12,ασ̂β σ̂γ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)

= −1 + e

4
mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2v12,ασ̂β σ̂γ

∫ 1

0
dx f (2)(r − xσ ,v1,r + (1 − x)σ ,v2; t)

= −ϒαβγ = 0. (B29)

As before, we have exchanged 1 ↔ 2 and have made the change of variable σ → −σ in the expression of ϒαβγ . The quantity
Qαβγ satisfies the relation

qc
α = Qαββ. (B30)

From Eqs. (B10), (B20), (B24), and (B27) we can rewrite �E
αβ as

�E
αβ = �

E

αβ + ∇γ �αβγ + uαImvβ
+ uβImvα

= �
E

αβ + P c
βγ ∇γ uα + P c

αγ ∇γ uβ + ∇γ Qαβγ

= �
E

αβ + γ̇
(
δαxP

c
βy + δβxP

c
αy

) + ∇γ Qαβγ , (B31)

where use has been made of Eq. (1) for the last identity in Eq. (B31).

APPENDIX C: EVALUATION OF �E
αβ

In this Appendix we evaluate �E
αβ introduced in Eq. (19) with the aid of Eqs. (B31) and (29) under Enskog’s approximation (A4).

1. Evaluation of �
E
αβ

The collisional moment �
E

αβ defined in Eq. (B31) can be rewritten as

�
E

αβ = g0�
(0)
αβ + γ̇Ky

[
∂f

∂Vx

]
αβ

, (C1)

where

�
(0)
αβ = −mσd−1

∫
dv1

∫
dv2

∫
dσ̂ �(v12 · σ̂ )|v12 · σ̂ |V1,αV1,β

{
f (V ′′

1)f (V ′′
2)

e2
− f (V 1)f (V 2)

}

= −mσd−1

2

∫
dv1

∫
dv2

∫
dσ̂ �(v12 · σ̂ )(v12 · σ̂ )f (V 1)f (V 2)(V ′

1,αV ′
1,β + V ′

2,αV ′
2,β − V1,αV1,β − V2,αV2,β ) (C2)

and

Kμ[Xν]αβ = −g0mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)σ̂μV1,αV1,β

[
f (V ′′

1)Xν(V ′′
2)

e2
+ f (V 1)Xμ(V 2)

]
. (C3)
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When we adopt Eq. (29) in the expression of �
(0)
αβ and neglect quadratic contributions in the stress tensor, one gets the

result [35,38]

�
(0)
αβ = nT (ν�αβ + λδαβ), (C4)

where ν and λ are given by Eqs. (33) and (34), respectively. Similarly, the collisional moment Ky[∂Vx
f ]αβ is

Ky

[
∂f

∂Vx

]
αβ

= −mσdg0

∫
dV 1

∫
dV 2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)σ̂yV1,αV1,β

[
e−2f (V ′′

1)
∂f (V ′′

2)

∂V2,x

+ f (V 1)
∂f (V 2)

∂V2,x

]

= mσdg0

∫
dV 1

∫
dV 2

∫
dV 2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)σ̂yf (V 1)

∂f (V 2)

∂V2,x

(V ′
1,αV ′

2,β − V1,αV2,β ), (C5)

where we have used the postcollisional velocities V ′
i . Taking into account the relation

V ′
1,αV ′

1,β = V1,αV1,β − 1 + e

2
(σ̂ · v12)(σ̂αV1,β + σ̂βV1,α) + (1 + e)2

4
(σ̂ · v12)2σ̂ασ̂β, (C6)

Eq. (C5) can be rewritten as

Ky

[
∂f

∂Vx

]
αβ

= −g0mσd 1 + e

4

∫
dV 1

∫
dV 2f (V 1)

∂f (V 2)

∂V2,x

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂y

×[2(V1,β σ̂α + V1,ασ̂β) − (1 + e)(σ̂ · v12)σ̂ασ̂β]

= −g0mσd 1 + e

4

∫
dV 1

∫
dV 2f (V 1)f (V 2)

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)σ̂x σ̂y

×[4(V1,ασ̂β + V1,β σ̂α) − 3(1 + e)(σ̂ · v12)σ̂ασ̂β], (C7)

where we have used the integral by parts and ∂V2,x
(σ̂ · V 12)n = −n(σ̂ · V 12)n−1σ̂x . Equation (C7) can be expressed in a more

compact form as

Ky

[
∂f

∂Vx

]
αβ

= −g0mσd 1 + e

4

∫
dV 1

∫
dV 2f (V 1)f (V 2){4(V1,α�β + V1,β�α) − 3(1 + e)�αβ}, (C8)

where

�α =
∫

dσ̂ �(σ̂ · v12)(σ̂ · v12)σ̂x σ̂y σ̂α = B2

d + 2
(δαxV12,y + δαyV12,x), (C9)

�αβ =
∫

dσ̂ �(σ̂ · v12)(σ̂ · v12)2σ̂x σ̂y σ̂ασ̂β

= B2

(d + 2)(d + 4)

[
2(V12,αV12,xδβy + V12,αV12,yδβx + V12,βV12,xδαy + V12,βV12,yδαx + V12,xV12,yδαβ)

+V 2
12(δαxδβy + δαyδβx)

]
. (C10)

In order to evaluate Eq. (C8), Grad’s distribution function (29) is considered. This distribution can be decomposed in the form

f (V ) = fM(V ) + f (1)(V ), f (1)(V ) = m

2T
fM(V )�αβVαVβ. (C11)

When one replaces f by its Grad approximation (C11) in Eq. (C8), the integral on the right-hand side of Eq. (C8) consists of the
following two contributions. The first contribution is∫

dV 1

∫
dV 2fM(V 1)fM(V 2)(V1,α�β + V1,β�α) = 2n2T B2

(d + 2)m
Iαβ, (C12)

where

Iαβ = 1

πd

∫
dG

∫
d g e−2G2−g2/2

[(
Gα + gα

2

)
{δβxgy + δβygx} +

(
Gβ + gβ

2

)
{δαxgy + δαygx}

]
= δαxδβy + δαyδβx, (C13)

with G ≡ √
m/2T (V 1 + V 2)/2 and g ≡ √

m/2T (V 1 − V 2). Therefore, we obtain∫
dV 1

∫
dV 2fM(V 1)fM(V 2)(V1,α�β + V1,β�α) = 2n2T B2

(d + 2)m
(δαxδβy + δαyδβx). (C14)
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The second contribution is given by∫
dV 1

∫
dV 2fM(V 1)fM(V 2)�αβ = 2n2T B2

(d + 2)(d + 4)m

∫
dG

∫
d g

e−2G2−g2/2

πd
�̃αβ = 21−d/2n2T B2

(d + 2)(d + 4)m

∫
d g

e−g2/2

πd/2
�̃αβ,

(C15)

where �̃αβ = 2(gαgxδβy + gαgyδβx + gβgxδαy + gβgyδαx + gxgyδαβ) + g2(δαxδβy + δαyδβx). The integration over g in
Eq. (C15) gives the result∫

d g
e−g2/2

πd/2
�̃αβ = (δαxδβy + δαyδβx)

∫
d g

e−g2/2

πd/2

[
2
(
g2

x + g2
y

) + g2
] = 2d/2(d + 4)(δαxδβy + δαyδβx). (C16)

Therefore, we obtain ∫
dV 1

∫
dV 2fM(V 1)fM(V 2)�αβ = 2n2T B2

(d + 2)m
(δαxδβy + δαyδβx). (C17)

Substituting Eqs. (C14) and (C17) with f = fM into Eq. (C7) yields

Ky

[
∂fM

∂Vx

]
αβ

= −(δαxδβy + δαyδβx)
2n2T B2

4(d + 2)
g0σ

d (1 + e)(1 − 3e)

= − 2d−2

d + 2
nT ϕg0(1 + e)(1 − 3e)(δαxδβy + δαyδβx), (C18)

where use has been made of Eqs. (4), (I4), (I6), and (I7).
Similarly, the contribution coming from f (1) in Eq. (C8) can be evaluated as

Ky

[
∂f (1)

∂Vx

]
αβ

= −g0m
2σd 1 + e

8T
�μν

∫
dV 1

∫
dV 2fM(V 1)fM(V 2)(V1,μV1,ν + V2,μV2,ν){4(V1,α�β + V1,β�α) − 3(1 + e)�αβ}

= −g0m
2σd 1 + e

8T
[4Aαβ − 3(1 + e)Bαβ]. (C19)

The first contribution Aαβ is given by

Aαβ ≡ �μν

∫
dV 1

∫
dV 2fM(V 1)fM(V 2)(V1,μV1,ν + V2,μV2,ν)(V1,α�β + V1,β�α) = 2n2B2

d + 2

(
2T

m

)2

�μνJαβμν, (C20)

where we have introduced

Jαβμν = 1

πd

∫
dG

∫
d g e−2G2−g2/2

(
GμGν + gμgν

4

)[(
Gα + gα

2

)
{δβxgy + δβygx} +

(
Gβ + gβ

2

)
{δαxgy + δαygx}

]
= J

(1)
αβμν + J

(2)
αβμν (C21)

with

J
(1)
αβμν = 1

2πd

∫
dG

∫
d g e−2G2−g2/2GμGν(gαgyδβx + gαgxδβy + gβgyδαx + gxgβδαy), (C22)

J
(2)
αβμν = 1

8πd

∫
dG

∫
d g e−2G2−g2/2gμgν(gαgyδβx + gαgxδβy + gβgyδαx + gxgβδαy). (C23)

Here it is straightforward to show that

�k
μνJ

(1)
αβμν = 0, (C24)

because of �μν

∫
dG e−2G2

GμGν ∝ �k
μνδμν = �k

μμ = 0. On the other hand, we have the relation

�k
μνJ

(2)
αβμν = 1

4

[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

]
, (C25)

where we have taken into account the intermediate result∫
d g e−g2/2gμgνgαgβ = Sd

d(d + 2)

∫ ∞

0
dg gd+3e−g2/2(δμνδαβ + δαμδβν + δανδβμ) = 2d/2πd/2(δμνδαβ + δαμδβν + δανδβμ).

(C26)
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Here Sd = 2πd/2/�(d/2) is the total solid angle in d dimensions. Therefore, we obtain

Aαβ = n2B2

2(d + 2)

(
2T

m

)2[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

]
. (C27)

The second contribution Bαβ in Eq. (C19) is given by

Bαβ ≡ �μν

∫
dV 1

∫
dV 2fM(V 1)fM(V 2)(V1,μV1,ν + V2,μV2,ν)�αβ

= 4
2−1−d/2n2B2

d(d + 2)2(d + 4)

(
2T

m

)2 ∫
d g
πd/2

e−g2/2g4
[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx + �k

xyδαβ

]

= 2n2B2

(d + 2)(d + 4)

(
2T

m

)2[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx + �k

xyδαβ

]
. (C28)

From Eqs. (C27) and (C28) one achieves

4Aαβ − 3(1 + e)Bαβ = 2n2B2

(d + 2)(d + 4)

(
2T

m

)2{
(d + 1 − 3e)

[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

] − 3(1 + e)δαβ�k
xy

}
.

(C29)

The final expression for Ky[∂Vx
f (1)]αβ is obtained after substituting Eq. (C29) into Eq. (C19). The result is

Ky

[
∂f (1)

∂Vx

]
αβ

= −g0(1 + e)n2σdT B2

(d + 2)(d + 4)

{
(d + 1 − 3e)

[
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

] − 3(1 + e)δαβ�k
xy

}

= − 2d−1

(d + 2)(d + 4)
nT ϕg0(1 + e)

{
(d + 1 − 3e)

(
�k

αxδβy + �k
αyδβx + �k

βxδαy + �k
βyδαx

) − 3(1 + e)δαβ�k
xy

}
.

(C30)

Equation (32) is easily obtained by substituting Eqs. (C4), (C18), and (C30) into Eq. (C1).

2. Evaluation of Qαβγ

In this section the quantity Qαβγ introduced in Eq. (B28) is determined by using Grad’s approximation (29). According to the
symmetry of the simple shear flow, it is expected that Qαβγ = 0. Substitution of Eqs. (A5) and (I3) into Eq. (B28) leads to

Qαβγ ≈ 1 + e

4
g0mσd

∫
dv1

∫
dv2

∫
dσ̂ �(σ̂ · v12)(σ̂ · v12)2VG,ασ̂ασ̂γ f

(
V 1 + 1

2
γ̇ σ σ̂yex

)
f

(
V 2 − 1

2
γ̇ σ σ̂yex

)

= 1 + e

2
n2σdg0T

√
2T

m
Q̃αβγ , (C31)

where

Q̃αβγ = 1

πd

∫
dG

∫
d g

∫
dσ̂ �(σ̂ · g)(σ̂ · g)2Gασ̂βσ̂γ exp

[
−

{
2G2 + g2

2
+ γ̇ ′σ̂ygx + 1

2
γ̇ ′2σ̂ 2

y

}]

×
[
1 + m

2T
�k

αβ

(
2GαGβ + gαgβ

2

)]
= 0. (C32)

Here the parameter γ̇ ′ ≡ γ̇ ∗τT has been introduced. Thus, we immediately conclude that the collisional contribution to the heat
flux vanishes, namely,

qc = 0. (C33)

In summary, the contributions of Qαβγ and qc become zero if we adopt Eq. (29) for the velocity distribution function. This is
the expected result since Qαβγ is related to the collisional contribution to the heat flux, which must be decoupled with the stress
perturbation as in Eq. (29).
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APPENDIX D: EVALUATION OF THE COLLISIONAL STRESS

In this Appendix the collisional stress P c
αβ given by Eq. (43) is obtained within the framework of Enskog’s kinetic theory and

Grad’s approximation (29). The outline of this Appendix follows Ref. [25]. Let us decompose first P c
αβ in two parts

P c
αβ = P

c(0)
αβ + P

c(1)
αβ , (D1)

where P
c(0)
αβ and P

c(1)
αβ are given, respectively, by

P
c(0)
αβ = (1 + e)

4
mσdg0

∫
dV 1

∫
dV 2

∫
dσ̂ �(v12 · σ̂ )(v12 · σ̂ )2σ̂ασ̂βfM

(
V 1 + 1

2
γ̇ σ σ̂yex

)
fM

(
V 2 − 1

2
γ̇ σ σ̂yex

)
, (D2)

P
c(1)
αβ = (1 + e)

8T
m2σdg0�μν

∫
dV 1

∫
dV 2

∫
dσ̂ �(v12 · σ̂ )(v12 · σ̂ )2σ̂ασ̂βfM

(
V 1 + 1

2
γ̇ σ σ̂yex

)
fM

(
V 2 − 1

2
γ̇ σ σ̂yex

)

×
{(

V1,μ + 1

2
γ̇ σ σ̂yδxμ

)(
V1,ν − 1

2
γ̇ σ σ̂yδxν

)
+

(
V2,μ + 1

2
γ̇ σ σ̂yδxμ

)(
V2,ν − 1

2
γ̇ σ σ̂yδxν

)}
. (D3)

First, let us evaluate P
c(0)
αβ . This quantity can be rewritten in dimensionless form as

P
c(0)
αβ = 1 + e

2
n2σdχT P̃

c(0)
αβ , (D4)

where

P̃
c(0)
αβ ≡ 1

πd

∫
dG

∫
d g

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂β exp

[
−

{
2G2 + g2

2
+ γ̇ ′σ̂ygx + 1

2
γ̇ ′2σ̂ 2

y

}]

= 1

(2π )d/2

∫
d g

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂β exp

[
−g2 + 2γ̇ ′σ̂ygx + γ̇ ′2σ̂ 2

y

2

]
. (D5)

Because we cannot perform the angular integral of Eq. (D5) we expand it as a series of powers of γ̇ ′. As shown in Figs. 9 and 13,
the parameter γ ′ = γ̇ ∗τT is small in the high-shear regime for not quite strong inelasticity. Therefore, we only keep linear terms
in γ̇ ′ in the evaluation of P

c(0)
αβ . The result is

P
c(0)
αβ ≈ 1

(2π )d/2

∫
d g

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂βe−g2/2[1 − γ̇ ′σ̂ygx]. (D6)

Equation (D6) can be rewritten as

P̃
c(0)
αβ ≈ P̃

c(0,0)
αβ − γ̇ ′P̃ c(0,1)

αβ , (D7)

where

P̃
c(0,0)
αβ = 1

πd

∫
dG

∫
d g

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂βe−2G2−g2/2 = πd/2

d�(d/2)
δαβ (D8)

and

P̃
c(0,1)
αβ = 1

πd

∫
dG

∫
d g

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂β σ̂ygxe

−2G2−g2/2

= B3

2d/2πd/2(d + 3)

∫
d g e−g2/2[g−1gαgβgxgy + gxg(δαβgy + δβygα + δyαgβ)] = 2

√
2π (d−1)/2

d(d + 2)�(d/2)
{δαxδβy + δαyδβx}.

(D9)

Substitution of Eqs. (D8) and (D9) into Eq. (D7) yields

P̃
c(0)
αβ ≈ πd/2

d�(d/2)

[
δαβ − γ̇ ′ 2

√
2√

π (d + 2)
{δαxδβy + δαyδβx}

]
. (D10)

The contribution P
c(1)
αβ can be rewritten as

P
c(1)
αβ = 1 + e

2
g0n

2σdT P̃
c(1)
αβ , (D11)
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where

P̃
c(1)
αβ = �k

μν

∫
dG
πd/2

∫
d g
πd/2

∫
dσ̂ �(g · σ̂ )(g · σ̂ )2σ̂ασ̂β exp

[
−

{
2G2 + g2

2
+ γ̇ ′σ̂ygx + 1

2
γ̇ ′2σ̂ 2

y + γ̇ ′2σ̂ 2
y

}]

×
{(

Gμ + gμ

2
+ 1

2
γ̇ ′σ̂yδxμ

)(
Gν + gν

2
+ 1

2
γ̇ ′σ̂yδxν

)
+

(
Gμ − gμ

2
− 1

2
γ̇ ′σ̂yδxμ

)(
Gν − gν

2
− 1

2
γ̇ ′σ̂yδxν

)}

≈ �k
μν

∫
dG
πd/2

∫
d g
πd/2

�(g · σ̂ )(g · σ̂ )2σ̂ασ̂βe−2G2−g2/2

[
2GμGν + gμgν

2
+ 1

2
γ̇ ′σ̂y{gμδxν + gνδxμ − (4GμGν + gμgν)gx}

]

= 2πd/2

d(d + 2)�(d/2)
�k

αβ. (D12)

Notice that the term proportional to γ̇ ′ in P̃
c(1)
αβ disappears.

The final expression of the collisional pressure tensor can be obtained from Eqs. (D10) and (D12). It is given by

P c
αβ = 1 + e

2
n2σdg0T

πd/2

d�(d/2)

[
δαβ + 2

d + 2
�k

αβ − γ̇ ′ 2
√

2√
π (d + 2)

{δαxδβy + δαyδβx}
]
. (D13)

APPENDIX E: EXPLICIT EXPRESSIONS OF C4, C2, AND C0

In this Appendix we provide the explicit forms of the
quantities C4, C2, and C0. They are given by

C4 = C (0)
4 τT ,

C (0)
4 = d − 1

d
(Dd + Fd )A1τT

− d − 2

d
(Ed + Fd )B1τT , (E1)

C2 = C (0)
2 + C (1)

2 τT , (E2)

C0 = d(2 + ν∗g0

√
θ )

2(Cd + Fd )
[g0λ

∗√θ + 2(1 − θ−1)]. (E3)

Here we have introduced the auxiliary quantities

C (0)
2 = d − 1

d
(Dd + Fd )A0

− d − 2

d
(Ed + Fd )B0 − Cd − d + 2

2
Fd , (E4)

C (1)
2 = −

√
2

π

Fd (2 + ν∗g0

√
θ )

Cd + Fd

, (E5)

A0 = d(1 + Fd )[g0γ
∗√θ + 2(1 − θ−1)]

(2 + ν∗g0

√
θ )(Cd + Fd )

, (E6)

A1 = −
√

2

π

2Fd (1 − Cd )

(2 + ν∗g0

√
θ )(Cd + Fd )

, (E7)

B0 = Ed + Fd

1 + Fd

A0, B1 = − 1 − Cd

Cd − Ed

A1. (E8)

APPENDIX F: OUTLINE OF THE EDLSHS METHOD

In this Appendix, a short outline of the EDLSHS
method [30] under a plane shear [70,71] with the aid of the
Lees-Edwards boundary condition [49] is presented. The time
evolution of ith particle at the position r i and the peculiar
momentum of ith particle are given by Eqs. (2) and (3). The

velocity increment from the time t to t + �t in Eqs. (2) and (3)
can be expressed as

vi,α(t + �t) = e−ζ�tvi,α(t) +
√

Tex

m
(1 − e−2ζ�t )�, (F1)

where � represents a zero mean random number whose
variance is 1. In this paper we use �t = 0.1/ζ [30].

To consider the effect of particle collisions, we need
to determine the time interval �τ when the next collision
occurs. In addition, we also have to detect the events when
the particle crosses the Lees-Edwards boundaries at y =
±L/2. The time interval �τ between two sequential events
(colliding or crossing the Lees-Edwards boundary) is given
by the minimum of the time intervals between (i) the time
�τij > 0 passed for the binary collision of the particles
i and j and (ii) the time that the ith particle needs to
reach the Lees-Edwards boundary �τi,wall > 0. While �τij

satisfies the condition |r i(t + �τij ) − rj (t + �τij )| = σ in
the absence of the random forces, �τi,wall obeys the condition
yi(t + �τi,wall) = ±L/2 [71]. Thus, �τ is determined as
�τ = min(�τij ,�τi,wall). For t < n�t < t + �τ (n is an
integer number), in the absence of collisions, the positions of
the particles are updated according to Eq. (F1). At �τ = �τij ,
particles i and j collide and therefore their velocities change
according to Eq. (2), while only the position of the ith particle
is updated as r i ∓ γ̇ L�t → r i at �t = �τi,wall, where L is
the system size and the minus (plus) sign is selected if the
velocity is positive (negative).

APPENDIX G: RESULTS FOR STRONG INELASTIC
GAS-SOLID SUSPENSIONS

As said in Sec. I, in this Appendix we extend our study
to suspensions more inelastic than those analyzed in Sec. IV.
More specifically, we present theoretical and simulation results
for ϕ = 0.30 and several values of the restitution coefficient e

(e = 1, 0.9, 0.7, 0.5, and 0.3). The shear-rate dependence of
the kinetic temperature and the shear viscosity of the above
systems is plotted in Fig. 13. Only the results derived from
the zeroth-order theory are displayed because they compare
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FIG. 13. Plots of (a) θ and (b) η∗ versus the (scaled) shear rate γ̇ ∗ for ϕ = 0.30 and five different values of the restitution coefficient e:
e = 1, 0.9, 0.7, 0.5, and 0.3. The lines correspond to the theoretical results obtained from the zeroth-order theory (denoted by 0th in the legend).
Symbols refer to computer simulation results.

better with the simulations than those obtained from the
first-order theory as explained in the main text. We also note
that the viscosity obtained in the first-order theory becomes
negative for e � 0.7. This unphysical behavior is due to the
fact that perturbative parameter γ̇ ∗τT increases with increasing
inelasticity and hence its contribution in Eq. (43) can be
larger enough to lead to a negative value of η∗ (see Fig. 14).
It can be seen that the zeroth-order theoretical results for
the kinetic temperature θ and the shear viscosity η∗ agree
well with simulations when e � 0.5 and e � 0.7, respectively.
More significant discrepancies are observed for more inelastic
systems. Moreover, it is interesting to note that the zeroth-order
theory predicts the shear thinning regime near γ̇ ∗ � 0.1 only
for the extreme inelastic case e = 0.3. This feature is not
observed in the simulations.

APPENDIX H: CONSISTENCY BETWEEN KINETIC
THEORY AND SIMULATIONS

In this Appendix we check the consistency between the
kinetic theory and the simulation for the stress ratio μ =
−Pxy/P . Figure 15(a) represents the ratios of the predictions
of the kinetic theory [see Eqs. (43) and (50) as well as
P k = nT ] for Pxy and P to those from the simulation for

0
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10-1 100 101 102
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1.0 (sim.)
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0.5 (theory, 0th)
0.5 (sim.)

0.3 (theory, 0th)
0.3 (sim.)

FIG. 14. Plot of γ̇ ∗τT versus the (scaled) shear rate γ̇ ∗ for ϕ =
0.30 and five different values of the restitution coefficient e: e = 1,
0.9, 0.7, 0.5, and 0.3. The lines correspond to the theoretical results
obtained from the zeroth-order theory (denoted by 0th in the legend).
Symbols refer to computer simulation results.

ϕ = 0.3. The approximate results for τT = 0 from the kinetic
theory show better agreement with those from the simulations
than those for τT > 0, where the approximate results are almost
twice as large as the results of simulations. Nevertheless, the
stress ratio μ = −Pxy/P for τT > 0 becomes better that for
τT = 0 as shown in Fig. 15(b). This is because both Pxy and
P for finite τT become twice as large as the values of the
simulation, which gives nearly a stress ratio nearly identical to
that of the simulation.

APPENDIX I: ANGULAR INTEGRALS

Let us summarize the useful identities, which we have
already proven:

∫
dσ̂ �(c · σ̂ )(c · σ̂ )n = Bnc

n, (I1)∫
dσ̂ �(c · σ̂ )(c · σ̂ )nσ̂α = Bn+1c

n−1cα, (I2)∫
dσ̂ �(c · σ̂ )(c · σ̂ )nσ̂ασ̂β = Bn

n + d
cn−2(ncαcβ + c2δαβ),

(I3)

where

Bn = π (d−1)/2 �
(

n+1
2

)
�

(
n+d

2

) , Bd=3
n = 2π

n + 1
. (I4)

We often use the area of the hyperunit sphere in d dimensions

Sd = dπd/2

�(d/2 + 1)
= 2πd/2

�(d/2)
. (I5)

Using these identities, we can prove∫
dσ̂ �(σ̂ · c)(σ̂ · c)nσ̂ασ̂β σ̂γ

= Bn+1

n + d + 1
cn−3[(n − 1)cαcβcγ

+ c2(δαβcγ + δαγ cβ + δβγ cα)] (I6)
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FIG. 15. Plots of the ratios of (a) Pxy and P and (b) the stress ratio μ = −Pxy/P from the kinetic theory to that from the simulation against
γ̇ ∗ for ϕ = 0.30 with e = 0.9.

and ∫
dσ̂ �(σ̂ · c)(σ̂ · c)2σ̂ασ̂β σ̂γ σ̂δ

= B2

(d + 2)(d + 4)
[2(cαcβδγ δ + cαcγ δβδ + cαcδδβγ

+ cβcγ δαδ + cβcδδαγ + cγ cδδαβ)

+ c2(δαβδγ δ + δαγ δβδ + δαδδβγ )] (I7)

for a positive integer n [72].
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