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We have realized that the first-order contributions T (1)
i to the partial temperatures Ti are also involved in the Chapman-Enskog

solution to the first-order distributions f (1)
i . The inclusion of the term T (1)

i changes some expressions displayed in Appendix B
of our first paper. In a similar way to the expansion of the fluxes, the partial temperatures Ti must be expanded as

Ti = T (0)
i + εT (1)

i + · · · . (1)

The existence of a nonzero first-order contribution T (1)
i induces a breakdown of the energy equipartition, additional to the one

already present in the homogeneous steady state. Since T (1)
i is a scalar, it is coupled to ∇ · U and has the form

T (1)
i = �∇ · U, (2)

where � depends on the hydrostatic pressure p and the total temperature T as well as the parameters of the thermostat and
the mixture. The fact that the total temperature is not affected by the gradients implies necessarily T (1)

2 = −n1T (1)
1 /n2 =

−(n1/n2)�∇ · U and, hence, the hydrostatic pressure p = nT = n1T (0)
1 + n2T (0)

2 . This means that the pressure tensor P(1)
αβ

is still given by Eq. (74) of our first paper. However, as mentioned before, some of the expressions of the first-order approximation
change due to the presence of T (1)

i . In particular, Eqs. (B3) and (B4) of the first paper should read
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d
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− pζ (1), (3)
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i

mβ
i

− T ζ (1), (4)

where the constant β is defined in Eq. (5) of our first paper. According to Eqs. (3) and (4), the expression (B14) of the first paper
for the coefficient E1(V) should be changed to
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Note that Eq. (5) agrees with Eq. (B14) of the first paper when β = 0.
On the other hand, all the above changes do not affect the expressions of the transport coefficients associated with the fluxes

of mass, momentum, and energy. In particular, the diffusion coefficients and the shear viscosity coefficient were determined
in our first paper whereas the heat flux transport coefficients were computed in the second paper where a stability analysis of
the homogeneous steady state was also carried out. Consequently, the relevant results obtained in the first and second papers
remain unchanged when Ti is replaced by its zeroth-order approximation T (0)

i . The inclusion of T (1)
i only affects the calculation

of the first-order contribution ζU to the cooling rate. However, given that the coefficient ζU was neglected (since its magnitude
is expected to be very small) in the stability analysis performed in the second paper, then the conclusions of this paper remain
valid.
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