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Abstract.  The Boltzmann kinetic equation for low-density granular 
suspensions under simple shear flow is considered to determine the velocity 
moments through the fourth degree. The influence of the interstitial gas on solid 
particles is modeled by a viscous drag force term plus a stochastic Langevin-
like term. Two independent but complementary approaches are followed to 
achieve exact results. First, to keep the structure of the Boltzmann collision 
operator, the so-called inelastic Maxwell models (IMM) are considered. In this 
model, since the collision rate is independent of the relative velocity of the 
two colliding particles, the forms of the collisional moments can be obtained 
without the knowledge of the velocity distribution function. As a complement 
of the previous eort, a Bhatnagar–Gross–Krook (BGK)-type kinetic model 
adapted to granular gases is solved to get the velocity moments of the velocity 
distribution function. The analytical predictions of the rheological properties 
(which are exactly obtained in terms of the coecient of restitution α and the 
reduced shear rate a∗) show in general an excellent agreement with event-
driven simulations performed for inelastic hard spheres. In particular, both 
theoretical approaches show clearly that the temperature and non-Newtonian 
viscosity exhibit an S shape in a plane of stress–strain rate (discontinuous 
shear thickening eect). With respect to the fourth-degree velocity moments, 
we find that while those moments have unphysical values for IMM in a certain 
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region of the parameter space of the system, they are well defined functions of 
both α and a∗ in the case of the BGK kinetic model. The explicit shear-rate 
dependence of the fourth-degree moments beyond this critical region is also 
obtained and compared against available computer simulations.

Keywords: Boltzmann equation, kinetic theory of gases and liquids
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1. Introduction

One of the most challenging problems in non-Newtonian gas–solid suspensions is the 
so-called discontinuous shear thickening, namely, when the non-Newtonian shear vis-
cosity of the suspension drastically increases with increasing the shear rate. This prob-
lem (which mainly occurs in concentrated suspensions of particles such as mixtures of 
cornstarch in water [1]) has attracted the attention of physicists [1–10] in the last few 
years as a typical nonequilibrium discontinuous transition between a liquid-like phase 
and a solid-like phase. As pointed out by Brown and Jaeger [4], there are essentially 
three dierent possible mechanisms to explain this dramatic version of shear thicken-
ing. One mechanism is hydroclustering where the particles tend to move together into 
clusters under shear and hence, lubrication drag forces between particles are increased 
due to this type of rearrangement [11, 12]. A second mechanism [13, 14] is related to a 
transition in the microstructure from ordered layers at small shear rates to disordered 
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layers at higher shear rates (order–disorder transition). Finally, a third mechanism is 
dilatancy in which the packing volume of particles dilates (expands) with increasing 
the shear rate [15, 16].

Although most of the studies on shear thickening have been focused on very dense 
systems, it would be convenient to analyze relatively low-density systems where kinetic 
theory tools conveniently adapted to account for the dissipative character of collisions 
can be employed to unveil in a clean way the microscopic mechanisms involved in 
the discontinuous shear thickening. In particular, some previous papers [17–19] dem-
onstrated the existence of a nonequilibrium discontinuous transition for the granular 
temperature between a quenched state (a low-temperature state) and an ignited state 
(a high-temperature state) in a granular suspension under simple shear flow described 
by the Boltzmann equation.

A more recent work has been performed by Hayakawa et al [20] in the context of the 
Enskog kinetic equation for a moderately dense gas–solid suspension under simple shear 
flow. In contrast to the previous attempts [17–19], the eect of the interstitial gas on solid 
particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The 
Enskog equation is solved by means of two complementary routes: (i) Grad’s moment 
method and (ii) event-driven Langevin simulations for inelastic hard spheres (IHS). Both 
approaches clearly show a transition from the discontinuous shear thickening (observed for 
very dilute gases) to the continuous shear thickening as the density of the system increases.

On the other hand, as in the case of elastic collisions [21–23], a limitation of the 
theoretical results obtained in [20] is that they were approximately obtained by means 
of Grad’s moment method (namely, by considering the leading terms in a Sonine poly-
nomial expansion of the velocity distribution function). The source of this limitation 
comes mainly from the form of the collision rate for hard spheres (which is proportional 
to the magnitude of the normal component of the relative velocity of the two colliding 
spheres) appearing inside the Boltzmann collision operator. As for elastic collisions, the 
lack of exact analytical results of the Boltzmann equation has stimulated the use of 
the so-called inelastic Maxwell models (IMM), where the collision rate is independent 
of the relative velocity. IMM have received a lot of attention in the last few years since 
they allow to assess the influence of inelasticity on the dynamic properties of the system 
without introducing additional approximations.

Another possible way of overcoming the mathematical diculties of the Boltzmann 
collision operator is to consider a kinetic model. The kinetic models retain the relevant 
physical properties of the Boltzmann kinetic equation and are more tractable than the 
true kinetic equation. This kind of approach has been widely employed in the case of 
dilute gases with elastic collisions [24], where several exact solutions in far from equi-
librium states have been obtained in the past and shown to be in good agreement with 
numerical solutions of the Boltzmann equation. Here, we will consider a Bhatnagar–
Gross–Krook (BGK) model kinetic equation [25] for granular suspensions to comple-
ment the theoretical results derived from the Boltzmann equation for IMM.

The objective of this paper is to determine the dynamic properties of a granular sus-
pension under simple or uniform shear flow (USF). This state is characterized by a con-
stant density, a uniform granular temperature, and a linear velocity profile Ux = ay, where 
a is the constant shear rate. We are interested here in the steady state where the system 
admits a non-Newtonian hydrodynamic description characterized by shear-rate dependent 
viscosity and normal stress dierences. The evaluation of the rheological properties is one 
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of the most important goals of the present contribution. However, although these trans-
port properties (which are related with the second-degree velocity moments) are physically 
important, higher degree velocity moments oer also an important piece of information 
about the velocity distribution function, especially in the high velocity region. By sym-
metry reasons, the third-degree moments vanish in the steady state in the USF problem. 
Thus, beyond the rheological properties, the first nontrivial moments are the fourth-
degree moments. Their knowledge allows us to gauge partially the joint eect of shearing, 
interstitial gas, and inelasticity on the velocity distribution function.

The eorts of computing the second- and fourth-degree moments for IMM in the 
USF problem may be justified at least for three dierent reasons. First, the determina-
tion of the rheological properties can allow us to assess the degree of reliability of IMM 
to capture the main trends observed previously in sheared granular suspensions of IHS. 
As a second reason, it is interesting to explore whether or not the divergence of the 
fourth-degree moments for elastic [26, 27] and inelastic [28] Maxwell gases beyond a cer-
tain critical shear rate is also present in granular suspensions and, if so, to what extent. 
Finally, the knowledge of the fourth-degree moments is needed to evaluate the relevant 
transport coecients characterizing states close to the USF state [29]. This knowledge 
will allow us to analyze the stability of the (steady) USF state in granular suspensions.

The plan of the paper is as follows. In section 2, the Boltzmann equation for granu-
lar suspensions under USF is introduced and the corresponding balance equations for 
the densities of mass, momentum, and energy are deduced. Section 3 deals with the 
calculations carried out for IMM for the second- and fourth-degree moments. Since the 
(scaled) granular temperature θ is a multi-evaluated function of the (reduced) shear rate 
a∗, it is more convenient to analyze the divergence of the fourth-degree moments taking 
θ as input parameter instead of a∗. Therefore, in a way similar to the case of elastic 
Maxwell molecules [26, 27] and dry granular gases (namely, when the eect of gas phase 
on solid particles is neglected) [28], we find that, for a given value of α, those moments 

tend to infinity for certain critical values θ
(1)
c  and θ

(2)
c  of the granular temperature. 

More specifically, those moments have unphysical values in the region θ
(1)
c < θ < θ

(2)
c . 

The results derived from the BGK kinetic model are displayed in section 4 where it is 
shown first that the BGK predictions of the rheological properties coincide with those 
obtained by solving the Boltzmann equation by means of Grad’s moment method [20]. 
In addition and in contrast with IMM, the BGK moments are well defined functions in 
the complete parameter space of the system. Comparison between theory and computer 
simulations at the level of the rheological properties is performed in section 5. The 
excellent agreement found here among the dierent tools confirms again the reliabil-
ity of both theoretical approaches (Boltzmann equation for IMM and BGK model for 
IHS) for studying non-Newtonian transport properties in sheared granular suspensions. 
Finally, the paper is closed in section 6 with some concluding remarks.

2. Boltzmann kinetic equation for sheared granular suspensions

2.1. Boltzmann kinetic equation for granular suspensions

Let us consider a set of solid particles of diameter σ and mass m immersed in a viscous 
gas. Since the grains which make up a granular material are of a macroscopic size, their 

https://doi.org/10.1088/1742-5468/aaf719


Simple shear flow in granular suspensions: inelastic Maxwell models and BGK-type kinetic model

5https://doi.org/10.1088/1742-5468/aaf719

J. S
tat. M

ech. (2019) 013206

collisions are inelastic. In the simplest model, the inelasticity of collisions is character-
ized by a (positive) constant coecient of normal restitution α � 1, where α = 1 corre-
sponds to elastic collisions (ordinary gases). In the low-density regime, the one-particle 
velocity distribution function of solid particles f(r,v; t) obeys the Boltzmann kinetic 
equation

∂f

∂t
+ v · ∇f + Ff = J [v|f , f ], (1)

where J [ f , f ] is the Boltzmann collision operator [30] and F  is an operator represent-
ing the fluid–solid interaction force that models the eect of the viscous gas on solid 
particles. In order to fully account for the influence of the interstitial molecular fluid on 
the dynamics of grains, a instantaneous fluid force model is employed [20, 31, 32]. For 
low Reynolds numbers, it is assumed that the external force F acting on solid particles 
is composed by two independent terms. One term corresponds to a viscous drag force 
Fdrag proportional to the (instantaneous) velocity of particle v. This term takes into 
account the friction of grains on the viscous gas. Since the model attempts to mimic 
gas–solid flows, the drag force is defined in terms of the relative velocity v −Ug where 
Ug is the (known) mean flow velocity of the surrounding molecular gas. Thus, the drag 
force is defined as

Fdrag = −mγ (v −Ug) , (2)

where γ is the drag or friction coecient. The second term in the total force corresponds 
to a stochastic force that tries to simulate the kinetic energy gain due to eventual col-
lisions with the (more rapid) molecules of the background fluid. It does this by adding 
a random velocity to each particle between successive collisions [33]. This stochastic 
force Fst has the form of a Gaussian white noise with the properties [34]

〈Fst
i (t)〉 = 0, 〈Fst

i (t)F
st
j (t

′)〉 = 2m2γTexIδijδ(t− t′), (3)

where I is the unit tensor and i and j refer to two dierent particles. Here, Tex can be 
interpreted as the temperature of the background (or bath) fluid. In the context of the 
Boltzmann equation, the stochastic external force is represented by a Fokker–Planck 
operator of the form F stf → −(γTex/m)∂2f/∂v2 [34, 35]. Note that the strength of cor-
relation in equation (3) has been chosen to be consistent with the fluctuation–dissipa-
tion theorem for elastic collisions [34]. In addition, although the drift coecient γ is 
in general a tensor, in the case of very dilute suspensions it may be assumed to be an 
scalar proportional to the square root of Tex because the drag coecient is proportional 
to the viscosity of the solvent [36].

Therefore, according to equations (2) and (3), the forcing term Ff can be written as

Ff = −γ∆U
∂f

∂v
− γ

∂

∂v
·Vf − γ

Tex

m

∂2f

∂v2
, (4)

and the Boltzmann equation (1) reads

∂f

∂t
+ v · ∇f − γ∆U

∂f

∂v
− γ

∂

∂v
·Vf − γ

Tex

m

∂2f

∂v2
= J [V|f , f ]. (5)

Here, ∆U = U−Ug, V = v −U is the peculiar velocity,

https://doi.org/10.1088/1742-5468/aaf719
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U(r, t) =
1

n(r, t)

∫
dv vf(r,v, t) (6)

is the mean particle velocity, and

n(r, t) =

∫
dv f(r,v, t) (7)

is the number density. Another relevant hydrodynamic field is the granular temper-
ature T (r, t) defined as

T (r, t) =
m

dn(r, t)

∫
dv V 2f(r,v, t). (8)

The suspension model (5) is a simplified version of the model proposed in [31] for mono-
disperse gas–solid flows at moderate density. In this latter model, the friction coecient 
of the drag force and the strength of the correlation are considered to be dierent. 
Here, both coecients are assumed to be the same for the sake of simplicity. Another 
relevant point of the model (3) is that the form of the Boltzmann collision operator 
J [ f , f ] is assumed to be the same as for a dry granular gas (i.e. when the influence of 
the interstitial gas is neglected) and hence, the collision dynamics does not contain any 
parameter of the environmental gas. This means that while the inertia of particles is 
assumed to be relevant, the inertia of the gas phase is considered to be negligible. As 
has been previously discussed in several papers [17, 18, 36–38], the above assumption 
requires that the mean-free time between collisions is assumed to be much less than the 
time needed by the fluid forces to significantly aect the dynamics of solid particles. 
Thus, the suspension model (3) is expected to be reliable in situations where the gas 
phase has a weak impact on the motion of grains. This assumption fails for instance 
in the case of liquid flows (high density) where the stresses exerted by the background 
fluid on grains are expected to be important and hence, the presence of fluid should be 
accounted for in the collision process.

The Boltzmann collision operator conserves the mass and momentum but the energy 
is not conserved:∫

dvJ [v|f , f ] = 0,

∫
dv mvJ [v|f , f ] = 0, (9)

∫
dv

m

2
V 2J [v|f , f ] = −d

2
nTζ, (10)

where ζ is the cooling rate due to inelastic collisions between the particles. From equa-
tions (5), (9) and (10), the macroscopic balance equations for the granular suspension 
can be obtained. They are given by

Dtn+ n∇ ·U = 0, (11)

ρDtU+∇ · P = −ργ∆U, (12)

DtT +
2

dn
(∇ · q+ P : ∇U) = 2γ (Tex − T )− ζ T . (13)

https://doi.org/10.1088/1742-5468/aaf719
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Here, Dt ≡ ∂t +U · ∇, ρ = mn is the mass density,

P =

∫
dv m VVf(v) (14)

is the pressure tensor, and

q =

∫
dv

m

2
V 2Vf(v) (15)

is the heat flux.
To completely define the suspension model (5), it still remains to explicitly write the 

form of the Boltzmann collision operator J [ f , f ]. The prototypical model of granular 
gases consists of a gas of IHS and hence, the collision rate appearing in the Boltzmann 
operator is proportional to the relative velocity of colliding spheres. Although this is 
an interaction model widely used in granular literature, it is generally not possible to 
get exact analytical results from the Boltzmann equation for IHS, especially in far from 
equilibrium states such as the USF. As a consequence, most of the analytical results 
reported in the literature in the context of the Boltzmann equation for IHS have been 
obtained by introducing additional, and sometimes uncontrolled, approximations. In 
particular, the rheological properties of granular suspensions under USF have been 
recently determined [20] by means of Grad’s moment method. Therefore, from a theor-
etically oriented point of view, if one desires to overcome the mathematical intricacies 
associated with the Boltzmann operator for IHS and derive exact results, one has at 
least two fruitful routes. One of them is to retain the mathematical structure of the 
Boltzmann equation but consider IMM. For this interaction model the collision rate is 
independent of the relative velocity of the colliding pair. This allows for a number of 
nice mathematical properties of the Boltzmann collision operator. The second possibil-
ity is to consider a kinetic model of the Boltzmann equation, namely, one replaces the 
operator J [ f , f ] by a simpler collision model that otherwise retains the most relevant 
physical properties of the true Boltzmann collision operator. IMM will be considered in 
section 3 while the kinetic model will be employed in section 4.

2.2. Steady uniform shear flow

Let us assume that the granular suspension is under USF. As said in the Introduction, 
this state is macroscopically defined by a constant density n, a spatially uniform 
temper ature T (t), and a flow velocity Ui = aijrj, where aij = aδixδjy, a being the con-
stant shear rate. In addition, as usual in uniform sheared suspensions [17–19, 39], the 
average velocity of particles follows the velocity of the fluid phase and so, U = Ug. 
One of the main advantages of the USF at a microscopic level is that in this state all 
the space dependence of the one-particle velocity distribution function f(r,v, t) occurs 
through its dependence on the peculiar velocity V = v −U(r) [40]. Thus, at a more 
fundamental level, the USF is defined as that which is spatially homogeneous when the 
velocities of particles are referred to a Lagrangian frame moving with the linear velocity 
field Ui. In this frame, the distribution function adopts the form

f(r,v; t) = f(V; t), (16)

https://doi.org/10.1088/1742-5468/aaf719
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and hence, in the steady state, the Boltzmann equation (5) reduces to

−aVy
∂f

∂Vx

− γ
∂

∂V
·Vf − γ

Tex

m

∂2f

∂V 2
= J [V|f , f ]. (17)

Equation (17) is invariant under the transformations (Vx,Vy) → (−Vx,−Vy) and 
Vj → −Vj for j �= x, y.

In the USF problem, the heat flux vanishes (q = 0) and the (uniform) pressure 
tensor P is the relevant flux. Moreover, the conservation equations (11) and (12) hold 
trivially and in the steady state the balance equation (13) for the granular temperature 
becomes

− 2

dn
aPxy − ζT + 2γ (Tex − T ) = 0. (18)

Equation (18) implies that in the steady state the viscous heating term (−aPxy > 0) 
plus the energy gained by grains due to collisions with the interstitial fluid (γTex) is 
exactly compensated by the cooling terms arising from collisional dissipation (ζT ) and 
viscous friction (γT ). Thus, for a given value of the environmental temperature Tex, 
the (steady) scaled temperature θ ≡ T/Tex is a function of the coecient of restitution 
α and the (scaled) shear rate a∗ ≡ a/γ. Of course, in the absence of shear flow (a = 0), 
the solution to equation (18) is T = Tex for elastic collisions (α = 1 and so, ζ = 0) as 
expected. Note that in contrast to dry granular gases (γ = 0), a steady state is still pos-
sible for sheared suspensions when the collisions between the solid particles are elastic.

The USF state is in general non-Newtonian. This can be characterized by general-
ized transport coecients measuring their departure from their corresponding Navier–
Stokes forms. Thus, a non-Newtonian shear viscosity coecient η(α, a) is defined as

η = −Pxy

a
. (19)

Moreover, while in the Navier–Stokes domain Pxx = Pyy = Pzz, normal stress dierences 
are expected in the USF state (Pxx �= Pyy �= Pzz). All the above properties may be eas-
ily identified from the knowledge of the (reduced) shear stress P ∗

xy and the (reduced) 
diagonal elements P ∗

xx, P
∗
yy, and P ∗

zz, where

P ∗
ij ≡

Pij

nTex

. (20)

It is quite apparent that the determination of the rheological properties requires to 
solve the Boltzmann equation (17). As said before, Grad’s moment method [41] has 
been used to solve equation (17) for IHS [20]. Grad’s moment method is based on the 
expansion of the velocity distribution function in a complete set of orthogonal polyno-
mials (generalized Hermite polynomials), the coecients being the corresponding veloc-
ity moments. However, given that the (infinite) hierarchy of moment equations is not a 
closed set of equations, one has to truncate the above expansion after a certain order. 
After this truncation, the above hierarchy of moment equations becomes a closed set of 
coupled equations which can be recursively solved. Thus, given that the results derived 
in [20] are approximated, it is interesting to revisit the problem and get exact expres-
sions of the rheological properties by considering both the Boltzmann equation for 

https://doi.org/10.1088/1742-5468/aaf719
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IMM and a BGK-type kinetic model for IHS. This will be carried out in the next two 
sections.

3. Inelastic Maxwell models

We consider in this section the Boltzmann equation (17) for IMM. In this case, the 
Boltzmann collision operator JIMM[ f , f ] is given by [42]

JIMM [v1|f , f ] =
νM
nΩd

∫
dv2

∫
dσ̂

[
α−1f(v′′

1) f(v
′′
2)− f(v1) f(v2)

]
, (21)

where Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions and νM is a collision 
frequency. In addition, the double primes on the velocities denote initial values {v′′

1 ,v
′′
2} 

that lead to {v1,v2} following a binary collision:

v′′
1 = v1 −

1

2

(
1 + α−1

)
(σ̂ · g)σ̂, v′′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g)σ̂, (22)

where g = v1 − v2 is the relative velocity of the colliding pair and σ̂ is a unit vector 
directed along the centers of the two colliding particles. The collision frequency νM(r, t) 
is independent of velocity but depends on space and time through its dependence on 
density and temperature. It can be seen as a free parameter of the model that can be 
chosen to optimize agreement with the properties of interest of the original Boltzmann 
equation for IHS. For instance, in order to correctly describe the velocity dependence 
of the original IHS collision rate, we can assume that the IMM collision rate is propor-
tional to T 1/2.

As noted in previous works on IMM [28, 43], the main advantage of the Boltzmann 
equation for Maxwell models (both elastic and inelastic) is that the moments of the 
operator J [ f , f ] can be exactly expressed in terms of the velocity moments of the 
velocity distribution f, without the knowledge of the latter. This property has been 
exploited to determine for arbitrary dimensions the explicit forms for all the second, 
third, and fourth-degree collisional moments as functions of the coecient of restitu-
tion α [43]. In the steady USF problem, the relevant velocity moments are the second- 
and fourth-degree moments since the third-degree moments vanish by symmetry. In 
particular, the second-degree collisonal moment (which is needed to get the rheological 
properties) is given by [43]∫

dVmViVjJIMM[V|f , f ] = −ν0|2Πij − pζδij, (23)

where Πij = Pij − pδij is the traceless part of the pressure tensor, 
p = (Pxx + Pyy + · · · )/d = nT  is the hydrostatic pressure, and

ζ =
1− α2

2d
νM, (24)

ν0|2 = ζ +
(1 + α)2

2(d+ 2)
νM =

(d+ 1− α)(1 + α)

d(d+ 2)
νM. (25)

https://doi.org/10.1088/1742-5468/aaf719
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The expressions of the fourth-degree collisional moments are displayed in appendix A 
for the sake of completeness. Equation (24) provides the exact form of the cooling rate 
for IMM. This form can be used to fix the value of the free parameter νM. This is chosen 
under the criterion that ζ of IMM is the same as that of IHS of diameter σ. Given that 
the cooling rate cannot be exactly evaluated for IHS, we take here for ζIHS its expres-
sion when f is replaced by the Maxwellian distribution. In this approx imation, ζIHS is 
given by [35]

ζIHS → d+ 2

4d
(1− α2)ν0, (26)

where

ν0 =
8

d+ 2

π(d−1)/2

Γ
(
d
2

) nσd−1

√
T

m
 (27)

is the collision frequency of the shear viscosity coecient of a dilute ordinary gas. 
Comparing equations (24) and (26), one gets the relationship

νM =
d+ 2

2
ν0. (28)

3.1. Rheological properties

The hierarchy of equations defining the elements of the pressure tensor Pk� can be eas-
ily obtained by multiplying both sides of equation (17) (replacing J  by JIMM) by mVkV� 
and integrating over V. The result is

a (δkxP�j + δ�xPky) + 2γ (Pk� − nTexδk�) = −ν0|2Pk� − p
(
ζ − ν0|2

)
δk�, (29)

where use has been made of equation (23). From equation (29) is easy to prove that the 
diagonal elements of the pressure tensor orthogonal to the shear plane xy are equal to 
Pyy (i.e. Pyy = Pzz = . . . = Pdd). As a consequence, Pxx = dp− (d− 1)Pyy and the ele-
ments Pyy and Pxy obey the equations(

ν0|2 + 2γ
)
Pyy = nTex

[
2γ −

(
ζ − ν0|2

)
θ
]
, (30)

(
ν0|2 + 2γ

)
Pxy = −aPyy, (31)

where we recall that θ ≡ T/Tex. The solution to equations (30) and (31) is

Pyy =
2γ −

(
ζ − ν0|2

)
θ

ν0|2 + 2γ
nTex, (32)

Pxy = − a

ν0|2 + 2γ
Pyy = −

2γ −
(
ζ − ν0|2

)
θ(

ν0|2 + 2γ
)2 anTex. (33)

The element Pxx can be easily obtained from equation (32) as

Pxx =
d
(
ν0|2 + 2γ

)
θ − (d− 1)

[
2γ −

(
ζ − ν0|2

)
θ
]

ν0|2 + 2γ
nTex. (34)
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The (reduced) temperature θ can be finally determined by substituting equation (33) 
into the steady-state condition (18). In order to compare our theoretical results with 
those obtained in [20] by computer simulations, it is convenient to scale the shear rate 
with the friction coecient γ (i.e. a∗ ≡ a/γ) and introduce the (reduced) background 
gas temperature T ∗

ex ≡ Tex/mσ2γ2. In terms of these quantities, the solution to equa-
tion (18) can be written as

a∗ =

√√√√d

2

√
θζ∗ + 2(1− θ−1)√
θ(ν∗

0|2 − ζ∗) + 2θ−1
(2 +

√
θν∗

0|2), (35)

where we have introduced the dimensionless quantities

ζ∗ ≡ ζ√
θγ

=
2π(d−1)/2

dΓ
(
d
2

) (1− α2)n∗
√
T ∗
ex, (36)

ν∗
0|2 ≡

ν0|2√
θγ

=
4π(d−1)/2

d(d+ 2)Γ
(
d
2

)(d+ 1− α)(1 + α)n∗
√
T ∗
ex. (37)

Since γ ∝
√
Tex, then ζ∗ and ν∗

0|2 are independent of both the granular temperature 
T  and the background temperature Tex. In equations (36) and (37), n∗ = nσd is the 
reduced density. Note that this explicit dependence on density comes from the scaling 
of the shear rate a and the bath temperature Tex. If we had reduced the shear rate for 
instance with the collision frequency ν0(T ), then the above density dependence had 
been removed. On the other hand, since we want to make a close comparison with the 
simulation data reported in [20], our theory must employ the same input parameters 
as in the simulation results.

As happens for IHS [20], it is quite apparent that we cannot express the (reduced) 
temperature θ in equation (35) as an explicit function of both the coecient of resti-
tution α and the (reduced) shear rate a∗. However, the dependence of θ on the latter 
parameters can implicitly be obtained from the physical solution to equation (35) as 
a∗2(θ,α). Once θ is known, the remaining rheological functions can be determined from 
equations (32) and (33) in terms of α and a∗. In particular, the (dimensionless) non-
Newtonian shear viscosity

η∗ ≡ −
P ∗
xy

a∗
 (38)

can be easily identified from equation (33) with the result

η∗ =
2 +

(
ν∗
0|2 − ζ∗

)√
θθ

(√
θν∗

0|2 + 2
)2 . (39)

Since Pyy = Pzz, the only nonzero (reduced) viscometric function is given by

Ψ∗ =
Pxx − Pyy

nTex

= dθ
2 (1− θ−1) +

√
θζ∗

2 +
√
θν∗

0|2
, (40)
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where use has been made of equations (32) and (34). It must be remarked that although 
the theoretical prediction Pyy = Pzz disagrees with computer simulations [20], the mag-
nitude of the dierence Pyy − Pzz is in general very small; therefore the expressions 
(32)–(34) can be still considered as reliable. A careful comparison with the theoretical 
results obtained for dense granular suspensions of IHS [20] by means of Grad’s moment 
method shows that these expressions dier from those derived here for IMM in the 
dilute limit. On the other hand, this discrepancy is only due to the dierent α depend-
ence of the eigenvalue ν0|2 with respect to the one found for IHS.

For illustrative purposes, it is interesting to consider the limits of small and large 
shear rates. For small shear rates (a∗ → 0), η∗ → η∗NS, where the Navier–Stokes shear 
viscosity of the granular suspension is

η∗NS =
θNS

2 +
√
θNSν∗

0|2
. (41)

Here, θNS is a real solution of the equation

θNS =
1

1 + 1
2

√
θNSζ∗

. (42)

For large shear rates (a∗ → ∞), the asymptotic forms for α < 1 are

θ∞ → 2

d

ν∗
0|2 − ζ∗

ν∗2
0|2ζ

∗ a∗2, η∗∞ →
√

d

2

(
ν∗
0|2 − ζ∗

)3/2

ν∗3
0|2
√
ζ∗

a∗, (43)

while for elastic collisions (α = 1), one gets

θ∞ → a∗4

d2ν∗2
0|2

, η∗∞ → a∗2

dν∗2
0|2

. (44)

It is interesting at this point to compare the behaviors of the non-Newtonian shear 
viscosity obtained here for granular suspensions in the limit of small and high shear 
rates with those derived before for dilute ordinary [24] and dry inelastic [28] Maxwell 
gases. In both cases, while η∗ ≡ finite when a∗ → 0, η∗ ∝ a∗−4/3 when a∗ → ∞. This 
means that η∗ is a monotonically decreasing function of the shear rate and so, the 
shearing produces an inhibition of the momentum transport (shear thinning eect) 
in the sense that the actual value of the shear stress |Pxy| is smaller than the one 
predicted by Newton’s law. On the other hand, a completely dierent behavior is 
found here for granular suspensions, since while η∗ ≡ finite when a∗ → 0, this coecient 
diverges in the limit a∗ → ∞ (see equations (43) and (44)). Thus, the fact that the ratio 
η∗(a∗ → ∞)/η∗(a∗ → 0) becomes very large could explain the existence of discontinu-
ous shear thickening in a structurally simple system due to the connection between the 
Newtonian and Bagnoldian branches. This behavior changes as the density of the sys-
tem increases since kinetic theory results predict continuous shear thickening for both 
ordinary gases [44] and granular suspensions [20].

Before considering the shear-rate dependence of the rheological functions, it is 
worthwhile to compare the α-dependence of the Navier–Stokes shear viscosity (41) with 
the one obtained in the dry granular case. In dimensionless form, the expression of the 
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Navier–Stokes shear viscosity of a granular gas can be written as ηNS,dry = ( p/νM)η
∗
NS,dry, 

where [45]

η∗NS,dry =
4d(d+ 2)

(1 + α) [3d+ 2− (d− 2)α]
. (45)

Figure 1 shows the ratios η∗NS(α)/η
∗
NS(1) and η∗NS,dry(α)/η

∗
NS,dry(1) as functions of the 

coecient of restitution α for d = 3. Here, η∗NS(1) and η∗NS,dry(1) refer to the values of 
the shear viscosity coecients for elastic collisions for the suspension and dry granular 
cases, respectively. It is quite apparent that the α dependence of both viscosities is 
qualitatively dierent since while the shear viscosity of a granular suspension decreases 
(with respect to its value for elastic collisions) with increasing inelasticity, the opposite 
happens for granular gases. Moreover, the impact of inelasticity on both shear viscosity 
coecients is quite significant.

3.2. Fourth-degree moments

As mentioned in section 1, although the rheological properties are the most important 
transport properties of the granular suspension, the determination of higher degree 
velocity moments is also an appealing problem. Since the third-degree moments van-
ish in the steady USF by symmetry reasons, the fourth-degree moments are the first 
nonzero moments beyond the second-degree moments. Here, we will focus on a three-
dimensional system (d = 3). As for ordinary gases [24, 27], for d = 3, there are 15 inde-
pendent fourth-degree moments; 6 are asymmetric (in the sense that they vanish in the 
steady state) and 9 are symmetric (they are dierent from zero in the steady state). The 
symmetric and asymmetric moments are uncoupled. Since we are not interested in this 
paper in analyzing the time evolution of the fourth-degree moments, we will address 
here only the study of the (steady) symmetric moments.

In parallel to the elastic case [24, 27], we choose the following set of 9 symmetric 
moments: {

M4|0,M2|xx,M2|yy,M2|xy,M0|xxxx,M0|yyyy,M0|zzzz,M0|xxxy,M0|xyyy

}
. (46)

Here, we have introduced the velocity moments
(
M4|0,M2|ij,M0|ijk�

)
=

∫
dV

(
Y4|0,Y2|ij,Y0|ijk�

)
f(V), (47)

where the fourth-degree Ikenberry polynomials are defined as [46]

Y4|0(V) = V 4, Y2|ij(V) = V 2

(
ViVj −

1

3
V 2δij

)
, (48)

Y0|ijk�(V) = ViVjVkV� −
V 2

7

(
ViVjδk� + ViVkδj� + ViV�δjk + VjVjkδi� + VjV�δik

+ VkV�δij

)
+

V 4

35

(
δijδk� + δikδj� + δi�δjk

)
.

 

(49)

As for ordinary gases [24, 27], it is easy to prove that the combination
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3M0|xxxx − 4
(
M0|yyyy +M0|zzzz

)
= 0 (50)

in the steady USF state. This means that we really have eight independent fourth-degree 

symmetric moments since for instance M0|xxxx = 4
3

(
M0|yyyy +M0|zzzz

)
. As expected, the 

eight independent moments are coupled. The corresponding equations obeying those 
eight moments can be determined by multiplying both sides of equation (17) by the set 
of velocity polynomials{

Y4|0,Y2|xx,Y2|yy,Y2|xy,Y0|yyyy,Y0|zzzz,Y0|xxxy,Y0|xyyy

}
 (51)

and integrating over velocity. In addition, to explicitly obtain the hierarchy of moment 
equations, one needs the collisional moments (A.3)–(A.7) associated with the above 
fourth-degree polynomials. In dimensionless form, the set of coupled equations for the 
fourth-degree moments can be written in matrix form as

LµνMν = Nµ, µ = 1, 2, . . . , 8. (52)
Here, M is the column matrix defined by the set{

M∗
4|0,M

∗
2|xx,M

∗
2|yy,M

∗
0|yyyy,M

∗
0|zzzz,M

∗
2|xy,M

∗
0|xxxy,M

∗
0|xyyy

}
, (53)

and L is the square matrix

L = 4I +L′, (54)
where I  is the 8× 8 unit matrix and

Figure 1. Plot of the ratios η∗NS(α)/η
∗
NS(1) (a) and η∗NS,dry(α)/η

∗
NS,dry(1) (b) as 

functions of the coecient of restitution α for a three-dimensional system.
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L′ =




√
θν∗

4|0 0 0 0 0 4a∗ 0 0

0
√
θν∗

2|2 0 0 0 32
21
a∗ 2a∗ 0

0 0
√
θν∗

2|2 0 0 −10
21
a∗ 0 2a∗

0 0 0
√
θν∗

0|4 0 − 96
245

a∗ 0 −12
7
a∗

0 0 0 0
√
θν∗

0|4
24
245

a∗ 12
7
a∗ 12

7
a∗

7
15
a∗ 2

7
a∗ 9

7
a∗ −7

3
a∗ −1

3
a∗

√
θν∗

2|2 0 0

0 15
49
a∗ − 6

49
a∗ −5

2
a∗ − 5

14
a∗ 0

√
θν∗

0|4 0

0 − 6
49
a∗ 15

49
a∗ 2a∗ 1

7
a∗ 0 0

√
θν∗

0|4




.

 (55)
The scaled moments M∗

4|0, M
∗
2|ij, and M∗

0|ijk� are defined as

{
M∗

4|0,M
∗
2|ij,M

∗
0|ijk�

}
= n−1

(
m

Tex

)2 {
M4|0,M2|ij,M0|ijk�

}
, (56)

and in equation (55), ν∗
4|0 ≡ ν4|0/(

√
θγ), ν∗

2|2 ≡ ν2|2/(
√
θγ), and ν∗

0|4 ≡ ν0|4/(
√
θγ). The 

expressions of ν4|0, ν2|2, and ν0|4 are given by equations (A.8) and (A.9), respectively. In 
addition, the elements of the column matrix N  are made of second-degree moments:

N1 = 9θ2
√
θλ∗

1 − 2
√
θλ∗

2

(
3Π∗2

yy +Π∗2
xy

)
+ 60θ, (57)

N2 = −6θ
√
θλ∗

3Π
∗
yy −

√
θ

3
λ∗
4

(
2Π∗2

yy − Π∗2
xy

)
− 28Π∗

yy, (58)

N3 = 3θ
√
θλ∗

3Π
∗
yy +

√
θ

3
λ∗
4

(
3Π∗2

yy +Π∗2
xy

)
+ 14Π∗

yy, (59)

N4 =
3

35

√
θλ∗

5

(
27Π∗2

yy − 16Π∗2
xy

)
, (60)

N5 =
3

35

√
θλ∗

5

(
27Π∗2

yy + 4Π∗2
xy

)
, (61)

N6 = 3θ
√
θλ∗

3Π
∗
xy +

√
θλ∗

4Π
∗
yyΠ

∗
xy + 14Π∗

xy, (62)

N7 = −36

7

√
θλ∗

5Π
∗
yyΠ

∗
xy, (63)

N8 =
27

7

√
θλ∗

5Π
∗
yyΠ

∗
xy, (64)

where λ∗
i ≡ λi/(

√
θγ) and Π∗

ij ≡ Πij/nTex. The quantities λi(i = 1, · · · , 5) are defined by 
equations (A.10) and (A.11).

The solution to equation (52) is

M = L−1 ·N . (65)
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Equation (65) provides the dependence of the (symmetric) fourth-degree moments on 
both the (reduced) shear rate a∗ and the coecient of restitution α. This dependence 
will be analyzed in section 5.

4. BGK-type kinetic model of the Boltzmann equation

We consider now the results derived for the USF from a BGK-type kinetic model of 
the Boltzmann equation [25]. In the USF problem, the steady kinetic model for the 
granular suspension described by the Boltzmann equation (17) reads

−aVy
∂f

∂Vx

− γ
∂

∂V
·Vf − γTex

m

∂2f

∂V 2
= −χ(α)ν0 ( f − fL) +

ζ

2

∂

∂V
·Vf , (66)

where ν0 is the eective collision frequency defined by equation (27), ζ is defined by 
equation (24) (or equivalently, by equation (26)) and

fL(V) = n
( m

2πT

)d/2

e−mV 2/2T (67)

is the local equilibrium distribution function. In addition, χ(α) is a free parameter of 
the model chosen to optimize the agreement with the Boltzmann results.

One of the main advantages of using a kinetic model instead of the Boltzmann equa-
tion is that it lends itself to determine all the velocity moments of the velocity distribu-
tion function. For the sake of convenience, let us define the general velocity moments

Mk1,k2,k3 =

∫
dV V k1

x V k2
y V k3

z f(V). (68)

As for IMM, although we are mainly interested in the three-dimensional case, we will 
perform our results for d = 3 and d = 2. Of course, for hard disks (d = 2), k3 = 0 since 
the z-axis is meaningless. To get Mk1,k2,k3, we multiply both sides of equation (66) by 

V k1
x V k2

y V k3
z  and integrate over velocity to achieve the result

ak1Mk1−1,k2+1,k3 + (χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (69)
where λ = γ + ζ/2, k = k1 + k2 + k3, and

Nk1,k2,k3 =
γTex

m
Rk1,k2,k3 + χν0M

L
k1,k2,k3

. (70)

In equation (70), we have introduced the quantities

Rk1,k2,k3 =

∫
dV f(V)

∂2

∂V 2

(
V k1
x V k2

y V k3
z

)

= k1(k1 − 1)Mk1−2,k2,k3 + k2(k2 − 1)Mk1,k2−2,k3 + k3(k3 − 1)Mk1,k2,k3−2,

 (71)
and

ML
k1,k2,k3

= n

(
2T

m

)k/2

π−d/2Γ

(
k1 + 1

2

)
Γ

(
k2 + 1

2

)
Γ

(
k3 + 1

2

)
 (72)
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if k1, k2, and k3 are even, being zero otherwise. The solution to equation (69) can be 
cast into the form (see appendix B)

Mk1,k2,k3 =

k1∑
q=0

k1!

(k1 − q)!

(−a)q

(χν0 + kλ)1+qNk1−q,k2+q,k3 . (73)

The first nontrivial moments are related with the pressure tensor Pij. The expres-
sions of its nonzero elements are

Pyy = Pzz = nTex
θχν0 + 2γ

χν0 + 2λ
, Pxy = −nTex

θχν0 + 2γ

(χν0 + 2λ)2
a, (74)

Pxx = dnT − (d− 1)Pyy = nTex
θχν0 + 2γ

χν0 + 2λ

[
1 +

2a2

(χν0 + 2λ)2

]
. (75)

The non-Newtonian shear viscosity η∗ and the viscometric function Ψ∗ defined by equa-
tions (38) and (39), respectively, can be easily identified from equations (74) and (75). 
Their expressions in the BGK model are

η∗ =
2 + χν∗

0

√
θθ[√

θ (χν∗
0 + ζ∗) + 2

]2 , (76)

Ψ∗ = dθ
2 (1− θ−1) +

√
θζ∗

2 +
√
θ (χν∗

0 + ζ∗)
, (77)

where ζ∗ is given by equation (36) and

ν∗
0 ≡ ν0√

θγ
=

8

d+ 2

π(d−1)/2

Γ
(
d
2

) n∗
√
T ∗
ex. (78)

Finally, the steady granular temperature θ ≡ T/Tex can be obtained from the steady-
state condition (18). After some algebra, one gets the implicit equation

a∗ =

√
d

2

√
θζ∗ + 2(1− θ−1)√
θχν∗

0 + 2θ−1

[
2 +

√
θ (χν∗

0 + ζ∗)
]
. (79)

Comparison of equations (76), (77) and (79) with those obtained by solving the 
Boltzmann equation via Grad’s moment method [20] shows that the BGK results for 
the rheological properties agree with the Boltzmann ones when the parameter χ(α) is 
given by

χ(α) =
1 + α

2

[
1− d− 1

2d
(1− α)

]
. (80)

Furthermore, for elastic collisions, equations (76), (77) and (79) agree with previous 
results [47] obtained by solving the BGK model for ordinary dilute gases by means of 
Grad’s moment method.
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The expressions of the fourth-degree moments can be easily obtained from equa-
tion (73) with the choice (80). The shear-rate dependence of these moments will be 
compared with the ones derived before for IMM for d = 3 in section 5.

4.1. Transport properties at Tex = 0

Apart from getting the velocity moments, the use of the BGK equation allow us in 
some cases to obtain explicitly the velocity distribution function f. On the other hand, 
we have not been able to derive an expression for f for the suspension model (66). An 
exception corresponds to the simple limit case Tex = 0 but keeping γ ≡ const. It corre-
sponds to a situation where the background temperature Tex is much smaller than the 
granular temperature T  and hence, the model ignores the eects of thermal fluctuations 
on solid particles and the impact of the gas phase is only accounted for by the drag 
force term. Of course, it is also understood that γ does not depend on the background 
temperature. This simple model has been employed in several previous works to study 
simple shear flows in gas–solid flows [17–19, 39], particle clustering due to hydrody-
namic interactions [48], steady states of particle systems driven by a vibrating bound-
ary [49] and more recently [8, 9, 50, 51] to analyze the rheology of frictional sheared 
hard-sphere suspensions.

Note that, in spite of the absence of the Langevin-like term Tex∂
2f/∂v2 in this 

suspension model, the Boltzmann equation (5) still admits a simple solution in the 
homogeneous state (zero shear rate) for elastic collisions (α = 1). Thus, if one chooses 
a convenient selection of frame then U = Ug = 0, and equation (5) admits the time-
dependent solution

fL(v, t) = n

(
m

2πT (t)

)d/2

e−mv2/2T (t), (81)

where T (t) verifies the equation

∂ lnT

∂t
= −2γ. (82)

An H-theorem has been also proved [52] for this time-dependent Maxwellian distribu-
tion in the sense that, starting from any initial condition and in the presence of the 
viscous drag force γv, the velocity distribution function f(r,v, t) reaches in the long 
time limit the Maxwellian form with a time-dependent temperature.

In this limit case (Tex = 0), according to equations (74) and (75), the elements of the 
pressure tensor can be written in a more compact form as [53]

Pyy = Pzz =
nT

1 + 2ξ
, Pxx = dnT − (d− 1)Pyy, Pxy = − nT

(1 + 2ξ)2
ã, (83)

where ã = a/(ν0χ), and ξ is the real root of the cubic equation

dξ(1 + 2ξ)2 = ã2, (84)

namely,

ξ(ã) =
2

3
sinh2

[
1

6
cosh−1

(
1 +

27

d
ã2
)]

. (85)
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The friction coecient γ obeys the steady-state condition (18):

γ = χν0ξ −
1

2
ζ. (86)

Since γ � 0, at a given value of α, there is a critical value ãc(α) of the (reduced) shear 
rate such that physical solutions to equation (80) only exist for ã � ãc(α). The critical 
value ãc is obtained from the condition 2χν0ξ = ζ . Thus, if α �= 1, then ãc > 0 and the 
expression for the Newtonian shear viscosity cannot be recovered when ã → 0. This is a 
drawback of this suspension model (Tex = 0). It must be remarked that Tsao and Koch 
[17] solved time ago this simple model and showed the existence of a discontinuous 
transition for the temperature between a ‘quenched’ state (a low temperature state) 
and an ‘ignited’ state (a high temperature state).

Finally, the velocity distribution function f(V) can be also determined explicitly in 
this limit case. When Tex = 0, the BGK equation (66) becomes

−aVy
∂f

∂Vx

− λ
∂

∂V
·Vf + χν0f = χν0fL. (87)

This equation can be rewritten as
(
1− dλ̃− ãVy

∂

∂Vx

− λ̃V · ∂

∂V

)
f = fL, (88)

where λ̃ = λ/(χν0). The hydrodynamic solution to equation (88) is

f =

(
1− dλ̃− ãVy

∂

∂Vx

− λ̃V · ∂

∂V

)−1

fL

=

∫ ∞

0

ds e−(1−dλ̃)s eãsVy
∂

∂Vx eλ̃sV· ∂
∂V fL(V).

 
(89)

The action of the velocity operators eãsVy
∂

∂Vx and eλ̃tV· ∂
∂V on an arbitrary function g(V) 

is

eãsVy
∂

∂Vx g(Vx,Vy,Vz) = g(Vx + ãsVy,Vy,Vz), (90)

eλ̃sV· ∂
∂V g(Vx,Vy,Vz) = g

(
eλ̃sVx, e

λ̃sVy, e
λ̃sVz

)
. (91)

Taking into account these operators, the velocity distribution function f can be finally 
written as

f(V) = n
( m

2T

)d/2

ϕ(c), (92)

where c = (m/2T )1/2V is the reduced peculiar velocity and the reduced velocity distri-
bution function ϕ(c) is

ϕ(c) = π−d/2

∫ ∞

0

ds e−(1−dλ̃)s exp
[
−e2λ̃s (c+ s ã · c)2

]

= π−d/2

∫ ∞

0

ds e−(1−dλ̃)s exp
{
− e2λ̃s

[
(cx + ãscy)

2 + c2y + c2z
]}

.

 
(93)

Here, we have introduced the tensor ãij = ãδixδjy.

https://doi.org/10.1088/1742-5468/aaf719


Simple shear flow in granular suspensions: inelastic Maxwell models and BGK-type kinetic model

20https://doi.org/10.1088/1742-5468/aaf719

J. S
tat. M

ech. (2019) 013206

5. Rheological properties and fourth-degree moments. Comparison with computer 
simulations

In sections 4 and 5 we have solved the Boltzmann and BGK kinetic equations to obtain 
the shear-rate dependence of the second- and fourth-degree moments of a sheared 
granular suspension. In dimensionless form, those moments are given in terms of the 
coecient of restitution α, the reduced density n∗ ≡ nσd, the (reduced) background 
temperature T ∗

ex ≡ Tex/(mσ2γ2), and the (reduced) shear rate a∗ ≡ a/γ. The theor etical 
results obtained for the steady (scaled) granular temperature θ and the rheological 
functions η∗ and Ψ∗ are compared here against recent event-driven simulations [20] 
performed for a three-dimensional system (d = 3). In the simulations, n∗ = 0.01 and 
T ∗
ex = 0.9. Henceforth, we will consider these values for n∗ and T ∗

ex for the remaining 
plots displayed in this section.

The shear-rate dependence of θ, η∗, and Ψ∗ is plotted in figure 2 for two dierent 
values of the coecient of restitution α: α = 1 (elastic collisions) and α = 0.9 (inelas-
tic collisions). The analytical expressions of the above quantities obtained from the 
Boltzmann equation for IMM are given by equations (35), (39) and (40) while equa-
tions (76), (77) and (79) correspond to the results derived from the BGK equation for 
IHS. Recall that the latter results coincide with those derived by solving the Boltzmann 
equation for IHS [20] via Grad’s moment method [41]. First, it is quite apparent that 
the agreement of both theoretical results with simulations is excellent in the complete 
range of (scaled) shear rates analyzed. As in previous works on sheared granular flows 
[54], the good agreement found here between IMM and simulations of IHS confirms 
again the reliability of IMM to reproduce the main trends observed for IHS. Moreover, 
as remarked in previous studies [20, 47], figure 2 highlights the existence of a discontin-
uous shear thickening eect, namely, the non-Newtonian shear viscosity η∗ discontinu-
ously increases/decreases (at a certain value of a∗) as the (scaled) shear rate gradually 
increases/decreases. The origin of this saddle-node bifurcation is a consequence of 
the connection between the behaviors of the non-Newtonian shear viscosity for small 
(Newtonian branch, equation (41)) and large (Bagnoldian branch, equations (43) and 
(44)) shear rates. At a more quantitative level, in the case of the viscosity η∗, we also 
observe that simulation data suggest a sharper transition than the one obtained from 
the analytical results. These discrepancies (which are qualitatively small) could be 
in part due to the limitations of the molecular chaos ansatz of the Boltzmann equa-
tion which are of course avoided in the molecular dynamics method.

It must be remarked that the results (both theory and simulations) reported in [20] 
have shown that there is a transition from discontinuous shear thickening in dilute 
suspensions to continuous shear thickening at relatively low density. This finding 
is consistent with previous works [17, 18] where only the transition between the 
quenched and the ignited states for the steady temperature θ was analyzed but it 
contrasts with typical experimental observations in dense suspensions. With respect 
to the impact of the coecient of restitution α on rheology, we see that the eect of 
α on the viscometric function Ψ∗ is smaller than the one found for the temperature θ 
and the shear viscosity η∗.
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We consider now the (symmetric) fourth-degree moments. They are given by equa-
tion (65) for the Boltzmann equation for IMM and equation (73) for the BGK kinetic 
model for IHS. As figure 2 shows, the function θ(a∗) becomes a multi-valued function 
in a certain interval (in the vicinity of the saddle point) of values of the shear rate, 
namely, in this region there are two or three dierent values of θ leading to the same 
value of a∗. Thus, in order to detect the possible singularities of the fourth-degree 
moments, it is more convenient to use θ as input parameter instead of the (scaled) shear 
rate a∗. Once θ is known, a∗(θ) can be easily determined from equations (35) and (79) 
for IMM and the BGK model, respectively. An inspection of the (simple) BGK-forms 
of these moments shows that they are well defined functions of both α and θ for any 
value of the coecient of restitution α. However, as occurs in dry granular gases [28], 
for any given value of α, the matrix L becomes singular (detL = 0) for two certain 

‘critical’ values θ
(1)
c (α) and θ

(2)
c (α), where θ

(2)
c (α) > θ

(1)
c (α). This means that the (sym-

metric) fourth-degree moments tend to infinity when θ → θ
(i)
c  (i = 1, 2). Moreover, for 

θ
(1)
c (α) < θ < θ

(2)
c (α), the solutions to equation (65) are unphysical (e.g. M∗

4|0 < 0) and 
hence, the stationary USF is limited to the regions 0 < θ < θ

(1)
c (α) and θ > θ

(2)
c (α). The 

phase diagram associated with the singular behavior of the fourth-degree moments is 

plotted in figure 3 for n∗ = 0.01 and T ∗
ex = 0.9. The curves θ

(1)
c (α) (bottom curve) and 

θ
(2)
c (α) (top curve) split the parameter space in three regions: the regions I and III 

correspond to states (θ,α) with finite values of the fourth-degree moments while the 
region II defines the states where those moments have no physical values. Figure 3 
highlights the fact that the boundaries of the region II are nontrivial since at a given 
value of α there is a reentrance feature: we first find a transition from the region I 
(where the moments are well defined) to region II (unphysical values) by increasing the 
temperature θ, followed by a subsequent transition to a well defined region (the region 

III). Moreover, while θ
(2)
c (α) > θ

(1)
c (α), a

(1)∗
c (α) > a

(2)∗
c (α) where a

(i)∗
c  denotes the critical 

shear rate associated with θ
(i)
c . As said before, a

(i)∗
c  is determined from equation (35) by 

the replacement θ → θ
(i)
c . As an example, at α = 0.7, θ

(1)
c = 43.573 and θ

(2)
c = 238.639 

while a
(1)∗
c = 7.437 and a

(2)∗
c = 6.441. Similar behaviors are found for other values of α.

It is important to recall that the divergence of the fourth-degree moments of the 
USF is also present for both elastic [24, 26, 27] and inelastic [28] Maxwell models. In 
both cases, an analysis of the time evolution of the fourth-degree moments shows that 
the eigenvalue �min of the matrix L with the smallest real part governing the long time 
behavior of those moments becomes negative for shear rates larger than a critical value. 
Consequently, those moments exponentially grow in time (and so, they diverge in 
time) for a∗ > a∗c. To check if actually the origin of the singular behavior of the fourth-
degree moments found here for granular suspensions is linked to the change of sign of 
the eigenvalue �min, figure 4 shows the dependence of �min on the (scaled) temperature 
θ for three dierent values of α. At a given value of α, we observe that �min exhibits 
a non-monotonic dependence on θ since it first decreases with increasing θ, then it 

becomes negative in the region θ
(1)
c (α) < θ < θ

(2)
c (α), and eventually becomes positive 

for θ > θ
(2)
c  where it increases with increasing θ. The corresponding critical values θ

(1)
c  

https://doi.org/10.1088/1742-5468/aaf719


Simple shear flow in granular suspensions: inelastic Maxwell models and BGK-type kinetic model

22https://doi.org/10.1088/1742-5468/aaf719

J. S
tat. M

ech. (2019) 013206

and θ
(2)
c  are the same as those obtained from the condition detL = 0, confirming the 

above expectation.
On the other hand, for states with θ < θ

(1)
c (α) and θ > θ

(2)
c (α) the (symmetric) 

fourth-degree moments have well-defined values and hence, one can study their shear-
rate dependence. Here, for the sake of illustration, we consider the region 0 < a∗ < 1 
where all the moments are well defined functions of the shear rate and in addition, 
nonlinear eects are still significant. Figure 5 shows the ratio M∗

4|0(a
∗)/M∗

4|0(0) versus a∗ 
for α = 1 and 0.7. The results obtained for IMM from the Boltzmann equation are com-
pared against the results derived for IHS from the BGK equation. This figure highlights 
that both theories agree perfectly well each other, even for quite relatively high values 

Figure 2. Plots of the steady granular temperature θ, the non-Newtonian shear 
viscosity η∗, and the viscometric function Ψ∗ versus the (reduced) shear rate a∗ for 
n∗ = 0.01 and T ∗

ex = 0.9. Two dierent values of the coecient of restitution α have 
been considered: α = 1 (a), and α = 0.9 (b). The solid and dotted lines correspond 
to the results obtained from the Boltzmann equation for IMM. The dashed and 
dash-dotted lines correspond to the results obtained from the BGK equation for 
IHS. Symbols refer to computer simulation results: empty circles for α = 1 and 
filled circles for α = 0.9.
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of the shear rate. Regarding the influence of collisional dissipation, we observe that 

the eect of α on the the moment M∗
4|0 is very tiny since all the results collapse in a 

common curve. It is appealing to remark the good performance of the BGK theoretical 
predictions for granular suspensions since previous comparisons [55] made for ordinary 
gases at the level of the fourth-degree moments have shown significant discrepancies 
between the Boltzmann (obtained for Maxwell molecules) and BGK results for large 
shear rates (say, a∗ � 0.2). This disagreement is especially important for moments 
in which the component Vx is the most relevant one. As a complement of figure 5, 6 

shows the shear-rate dependence of the magnitude of the (reduced) moment M∗
2|xy. This 

moment vanishes in the absence of shear rate (a∗ = 0). Similar conclusions to those 
made for the moment M∗

4|0 can be done for the moment M∗
2|xy.

We consider now the special limit case Tex = 0 where computer simulations for the 
moment M4|0 are available in the literature [39]. In this limit case, the (reduced) shear 
rate a∗ is a function of the coecient of restitution α. Moreover, the (reduced) param-
eter γ̃ ≡ γ/ν0 is employed as input parameter in the DSMC results reported in [39] 
instead of the background temperature T ∗

ex. Figure 7 shows the ratio M4|0/M
L
4|0 versus 

α for three dierent values of γ̃. Here,

ML
4|0 =

∫
dVV 4fL(V), (94)

where fL is defined in equation (67). The solid and dashed lines refer to the results 
obtained from the Boltzmann equation for IMM and from the BGK equation for IHS, 
respectively. Symbols correspond to the computer simulation results obtained by 
numerically solving the Boltzmann equation for IHS by means of the DSMC method 

Figure 3. Phase diagram for the behavior of the (symmetric) fourth-degree 

moments for IMM. The hatched regions below the curve θ
(1)
c (α) (region I) and 

above the curve θ
(2)
c (α) (region III) correspond to states with well-defined values of 

the scaled fourth-degree moments. The region II [θ(1)c (α) < θ < θ
(2)
c (α)] defines the 

states where the fourth-degree moments have unphysical values. Here, n∗ = 0.01 

and T ∗
ex = 0.9.
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[56]. In the case of low values of the (reduced) friction coecient γ̃, we see that while 
the BGK results agree well with simulations in the full range of values of α represented 
here, more significant discrepancies between theory and simulations appear for IMM. 
On the other hand, the agreement between the BGK results and simulations is only 

Figure 4. Plot of the smallest eigenvalue, �min, associated with the time evolution 
of the (symmetric) fourth-degree moments for IMM as a function of the (scaled) 
temperature θ for α = 0.5 (solid line), α = 0.7 (dashed line), and α = 1 (dash-dotted 

line). The circles indicate the location of the corresponding values of the critical 

temperatures θ
(1)
c (α) and θ

(2)
c (α). Here, n∗ = 0.01 and T ∗

ex = 0.9.

Figure 5. Plot of the scaled moment M∗
4|0(a

∗)/M∗
4|0(0) as a function of a∗ for α = 0.7 

(solid and dotted lines) and 1 (dashed and dash-dotted lines). The solid and dashed 
lines correspond to the results obtained from the Boltzmann equation for IMM 
while the (indistinguishable) dotted and dash-dotted lines refer to the results 
obtained from the BGK equation for IHS. Here, n∗ = 0.01 and T ∗

ex = 0.9.

https://doi.org/10.1088/1742-5468/aaf719


Simple shear flow in granular suspensions: inelastic Maxwell models and BGK-type kinetic model

25https://doi.org/10.1088/1742-5468/aaf719

J. S
tat. M

ech. (2019) 013206

qualitative for higher values of γ̃ since the BGK predictions clearly underestimate 

the simulation results. Finally, figure 8 plots the ratio Rx(cx) = ϕx(cx)/(π
−1/2e−c2x) for 

γ̃ = 0.1 and three dierent values of the coecient of restitution α. Here, the marginal 
distribution function ϕx(cx) is defined as

Figure 6. Plot of the scaled moment −M∗
2|xy(a

∗) as a function of a∗ for α = 0.7 (solid 
and dotted lines) and 1 (dashed and dash-dotted lines). The solid and dashed lines 
correspond to the results obtained from the Boltzmann equation for IMM while 
the (indistinguishable) dotted and dash-dotted lines refer to the results obtained 
from the BGK equation for IHS. Here, n∗ = 0.01 and T ∗

ex = 0.9.

Figure 7. Plot of the reduced moment M4|0/M
L
4|0 as a function of the coecient of 

restitution α for three dierent values of the (reduced) friction coecient γ̃ = γ/ν0: 

γ̃ = 0 (black lines and circles), γ̃ = 0.1 (blue lines and squares), and γ̃ = 0.5 (red 
lines and triangles). The solid lines correspond to the results obtained from the 
Boltzmann equation for IMM while the dashed lines refer to the results derived 
from the BGK equation for IHS. Symbols refer to computer simulation results 
obtained in [39].
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ϕx(cx) =

∫ ∞

−∞
dcy

∫ ∞

−∞
dcz ϕ(c)

=
1√
π

∫ ∞

0

ds
e−(1−λ̃)s

√
1 + ã2s2

exp

(
−e2λ̃s

c2x
1 + ã2s2

)
,

 (95)

Figure 8. Plot of the ratio Rx(cx) = ϕx(cx)/(π
−1/2e−c2x) versus the (scaled) velocity 

cx for γ̃ = 0.1 and three dierent values of the coecient of restitution α: α = 1 
(solid line), α = 0.7 (dotted line), and α = 0.5 (dashed line).

Figure 9. Shear-rate dependence of the scaled moment M∗
4|0(a

∗)/M∗
4|0(0) for α = 1 

(solid line, (a)) and 0.9 (dashed line, (b)). The results are obtained from the BGK 
equation for IHS. Here, n∗ = 0.01 and T ∗

ex = 0.9.
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where the scaled distribution ϕ(c) is given by equation (93). It is quite apparent that 
the distortion from equilibrium (Rx �= 1) is more significant as the inelasticity increases. 
Although not shown here, comparison between theory and simulations (see figures 7 
and 8 of [39]) shows that while the BGK solution agrees very well with simulation data 
in the region of thermal velocities (|cx| ∼ 1), it exhibits quantitative discrepancies with 
simulations for larger velocities and strong collisional dissipation.

6. Concluding remarks

In spite of the simplicity of the USF, this state has been widely studied to shed 
light on the non-linear response of the system to strong shear rates. This response 
is accounted for by non-Newtonian transport properties such as the (scaled) temper-
ature θ, the (reduced) nonlinear shear viscosity η∗, and the (reduced) viscometric func-
tion Ψ∗. These properties are related to the second-degree velocity moments (pressure 
tensor). An interesting feature in sheared granular suspensions (not shared by dry 
granular gases) is the so-called discontinuous shear thickening eect, namely, the flow 
curve η∗(a∗) has an S-shape, a∗ being the (reduced) shear rate. This means that, at a 
certain value of the shear rate, η∗ discontinuously increases/decreases if a∗ is gradu-
ally increased/decreased. This phenomena has been usually observed in dense systems 
and (apart from other factors) it has been recognized that the mutual friction between 
grains (rough inelastic hard spheres) plays an important role [6–9]. On the other hand, 
a more recent study [20] based on the Enskog kinetic equation has shown that the dis-
continuous shear thickening can be also found for smooth IHS in the dilute regime. The 
theoretical predictions for the rheological properties (which were obtained from Grad’s 
moment method) were shown to compare very well with computer simulations, even for 
moderate densities. On the other hand, although the momentum transport is the most 
relevant phenomenon in a sheared suspension, higher degree moments are also impor-
tant since they provide an indirect information of the velocity distribution function.

Given the intricacies embodied in the hard sphere kernel of the Boltzmann collision 
operator, to study the above issue one has to consider simplified collision models where 
velocity moments can be obtained without having to use approximate methods. In the 
context of the Boltzmann equation, the inelastic Maxwell model (IMM) allows us to 
determine higher-degree moments in the USF problem. In particular, the fourth-degree 
moments have been exactly determined for dry IMM [28, 43]. An appealing problem 
is to extend the previous eorts to the case of granular suspensions, namely, when the 
eect of the interstitial gas phase on solid particles is accounted for. This has likely 
been one of the main goals of the present contribution. In addition, to complement the 
results derived from the Boltzmann equation for IMM, a BGK-type kinetic model for 
granular suspensions [25] has been also solved to get all the velocity moments of the 
velocity distribution function.

As mentioned in the Introduction section, the motivation of our work is twofold. 
First, the comparison between the theoretical predictions for θ, η∗, and Ψ∗ with comp-
uter simulations allow us to assess the accuracy of both approaches (IMM and BGK 
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results) in conditions of practical interest. Thus, the results displayed in figure 2 high-
light the excellent performance of both theories in reproducing the shear-rate depend-
ence of the rheological properties. In particular, the exact results derived from the 
Boltzmann equation for IMM shows the existence of the so-called discontinuous shear 
thickening behavior where several mechanisms [1] have been proposed in the literature 
to explain the origin of this behavior. What is interesting here is the existence of this 
shear thickening in a structurally simple system. In this case, these non-Newtonian 
properties are associated with both the behavior of the granular suspension in far from 
equilibrium situations as well as the impact of the interstitial fluid on the dynamics 
properties of the granular gas. As a second aspect, the determination of the fourth-
degree moments provides information on the combined eect of both the (reduced) 
shear rate and inelasticity on the high velocity population. In particular, an important 
result is that, for a given value of the coecient of restitution α, the (symmetric) fourth-
degree moments of IMM have unphysical values in a certain region of the parameter 
space of the system. This singular behavior contrasts with the BGK results where all 
velocity moments are regular functions of both a∗ and α. Since θ(a∗) is a multi-valued 
function (i.e. two or three values of θ correspond to the same value of a∗ for a certain 
range of values of a∗), it is more convenient to carry out the study on the divergence of 
the fourth-degree moments of IMM taking θ as independent parameter (input) instead 
of a∗. In this case, our results show that those moments are not well-defined in the 
region θ

(1)
c (α) < θ < θ

(2)
c (α) where the critical values θ

(i)
c (α) are obtained from the condi-

tion detL = 0, where the matrix L is defined by equations (54) and (55). Although this 
singularity of the fourth-degree moments for IMM is also present in elastic [26, 27] and 
inelastic [28] systems, the phase diagram showing the regions where those moments are 
finite in granular suspensions is completely dierent to the one previously found for the 
above systems.

On the other hand, for states θ < θ
(1)
c  and θ > θ

(2)
c , the fourth-degree moments of 

IMM are well-defined functions. In particular, a comparison between the BGK and 
IMM results for those moments in the region 0 � a∗ � 1 (where non-Newtonian eects 
are still important) surprisingly shows an excellent agreement between both theoretical 
results (see, for instance, figures 5 and 6). This good performance of the BGK model 
contrasts with a previous comparison made for elastic Maxwell molecules [55] where 
the BGK predictions dier appreciably from the Boltzmann results for not too large 
shear rates (say, for instance, a∗ � 0.2). In addition, the shear-rate dependence of the 
fourth-degree moments is practically independent of inelasticity. It would be interest-
ing to perform computer simulations to assess the accuracy of the above theoretical 
predictions for the fourth-degree moments.

Although most of the previous works have focused on the study of discontinuous 
shear thickening eect of the non-Newtonian shear viscosity, a natural question is to 
see if actually the above behavior is also present in the fourth-degree moments. Since 
the BGK moments are well defined functions of both the coecient of restitution and 
the shear rate, one may analyze the shear-rate dependence of those moments for high 
values of a∗. As an illustration, figure 9 shows the scaled moment M4|0(a

∗)/M4|0(0) ver-
sus a∗ for α = 1 and 0.9. It is quite apparent that M4|0(a

∗)/M4|0(0) exhibits an S-shape 

since, at a given value of the shear rate, a small change in the shear rate produces a 

drastic increase of the fourth-degree moment M∗
4|0. This behavior has been also observed 
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in the remaining (symmetric) fourth-degree moments. We expect that this theoretical 
prediction of the BGK model encourages the development of computer simulations to 
confirm this interesting result.

As in many previous studies on granular gases, in this paper we have assumed 
that the coecient of restitution α is a positive constant. It is well known that exper-
imental observations [57] have shown that α depends on the impact velocity. The sim-
plest model accounting for this velocity dependence of α is the model of viscoelastic 
particles [58–60]. A possible extension of the results presented here along this direc-
tion could be an interesting problem. However, given that the discontinuous shear 
thickening for elastic suspensions is qualitatively similar to that of inelastic suspen-
sions, we guess that the eect of the velocity dependence of α on the above phenom-
enon would be irrelevant. Another possible project would be to consider the model of 
inelastic rough spheres [61, 62] where apart from the coecient of normal restitution, 
a constant coecient of tangential restitution is introduced. This is a more realistic 
model than the model of smooth inelastic hard sphere since the inelasticity of collisions 
not only aects to the translational degrees of freedom but also to the rotational ones. 
The extension of the present results to this model would allow us to assess the impact 
of roughness on the discontinuous shear thickening problem. Finally, it would be also 
appealing to study the case of multicomponent granular suspensions where problems 
like segregation can be addressed. Work along these lines are underway.
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Appendix A. Fourth-degree collisional moments of IMM

In this appendix, the expressions of the relevant fourth-degree collisional moments in 
a three-dimensional system are displayed. The explicit forms of these moments were 
obtained in [43]. As mentioned in section 3, there are eight independent symmetric (or 
nonvanishing) moments in the geometry of the steady USF state. They are given by 
the set {

M4|0,M2|xx,M2|yy,M2|xy,M0|yyyy,M0|zzzz,M0|xxxy,M0|yyyx
}

 (A.1)

where the moments M4|0, M2|ij, and M0|ijk� are defined by equation (47). Their corre-
sponding collisional moments are given by

(
J4|0, J2|ij, J0|ijk�

)
=

∫
dV

(
Y4|0,Y2|ij,Y0|ijk�

)
JIMM[V|f , f ]. (A.2)

The explicit expressions for the collisional moments are [43]
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J4|0 = −ν4|0M4|0 + 9
p2

nm2
λ1 −

λ2

nm2
Πk�Πk�, (A.3)

J2|xx = −ν2|2M2|xx + 3λ3
p

nm2
Πxx −

λ4

nm2

(
ΠxkΠkx −

1

3
Πk�Π�k

)
, (A.4)

J2|xy = −ν2|2M2|xy + 3λ3
p2

nm2
Πxy −

λ4

nm2
ΠxkΠky, (A.5)

J0|yyyy = −ν0|4M0|yyyy + 3
λ5

nm2

(
Π2

yy −
4

7
ΠykΠky +

2

35
Πk�Π�k

)
, (A.6)

J0|xxxy = −ν0|4M0|xxxy + 3
λ5

nm2

(
ΠxxΠyy −

2

7
ΠxkΠky

)
. (A.7)

The collisional moments J2|yy, J0|zzzz, and J0|yyyx can be easily obtained from equa-
tions (A.4), (A.6) and (A.7), respectively. In equations (A.3)–(A.7), the usual Einstein 
summation convention over repeated indices is assumed. Moreover, we have introduced 
the eective collision frequencies

ν4|0 = 2ζ +
(1 + α)2(5 + 6α− 3α2)

120
νM, ν2|2 = 2ζ +

(1 + α)2(34 + 21α− 6α2)

420
νM, (A.8)

ν0|4 = 2ζ +
(1 + α)2(50 + 7α− α2)

315
νM, (A.9)

where ζ = (1− α2)νM/6. Finally, the cross coecients λi in equations (A.3)–(A.7) are 
given by

λ1 =
(1 + α)2(11− 6α + 3α2)

72
νM, λ2 =

(1 + α)2(1 + 6α− 3α2)

60
νM,

λ3 =
(1 + α)2(22− 21α + 6α2)

180
νM,

 (A.10)

λ4 =
(1 + α)2(21α− 3α2 − 1)

210
νM, λ5 =

(1 + α)2(39− 21α+ 3α2 − 1)

945
νM.

 (A.11)

Appendix B. Results from the BGK-type kinetic model

The results derived from the BGK kinetic model are displayed in this appendix. Let us 
consider first equation (69):

ak1Mk1−1,k2+1,k3 + (χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (B.1)
where Nk1,k2,k3 is defined by equation (70). Given that Rk1,k2,k3 is a linear combination of 
velocity moments of degree k − 2, the quantity Nk1,k2,k3 is assumed to be known in the 
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equation defining the moments Mk1,k2,k3 of degree k. To solve the hierarchy of moment 
equation (B.1), we introduce the operators L1 and L2 acting on functions ψ(k1, k2, k3) as

L1ψ(k1, k2, k3) = ψ(k1 − 1, k2, k3), L2ψ(k1, k2, k3) = ψ(k1, k2 + 1, k3). (B.2)
Thus, equation (B.1) can be written as

(ak1L1L2 + χν0 + kλ)Mk1,k2,k3 = Nk1,k2,k3 . (B.3)
Its formal solution is

Mk1,k2,k3 = (ak1L1L2 + χν0 + kλ)−1 Nk1,k2,k3 . (B.4)

Since
L1L2 [χν + (k1 + k2 + k3)λ] = χν0 + (k1 + k2 + k3)λ, (B.5)

then, the solution (B.4) can be written more explicitly as

Mk1,k2,k3 =
1

χν0 + kλ

(
1 +

ak1
χν0 + kλ

L1L2

)−1

Nk1,k2,k3

=
∞∑
q=0

(−a)q

(χν0 + kλ)1+q (k1L1L2)
q Nk1,k2,k3 .

 

(B.6)

On the other hand, it is straightforward to prove that

(k1L1L2)
q Nk1,k2,k3 =

k1!

(k1 − q)!
Nk1−q,k2+q,k3 , (B.7)

if q � k1, being zero otherwise. Thus, equation (B.6) can be finally written in the form

Mk1,k2,k3 =

k1∑
q=0

k1!

(k1 − q)!

(−a)q

(χν0 + kλ)1+qNk1−q,k2+q,k3 . (B.8)
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