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Abstract.  The Enskog kinetic theory for moderately dense granular suspensions 
is considered as a model to determine the Navier–Stokes transport coecients. 
The influence of the interstitial gas on solid particles is modeled by a viscous 
drag force term plus a stochastic Langevin-like term. The suspension model 
is solved by means of the Chapman–Enskog method conveniently adapted to 
dissipative dynamics. The momentum and heat fluxes as well as the cooling rate 
are obtained to first order in the deviations of the hydrodynamic field gradients 
from their values in the homogeneous steady state. Since the cooling terms 
(arising from collisional dissipation and viscous friction) cannot be compensated 
for by the energy gained by grains due to collisions with the interstitial gas, 
the reference distribution (zeroth-order approximation of the Chapman–Enskog 
solution) depends on time through its dependence on temperature. On the other 
hand, to simplify the analysis and given that we are interested in computing 
transport properties in the first order of deviations from the reference state, 
the steady-state conditions are considered. This simplification allows us to get 
explicit expressions for the Navier–Stokes transport coecients. The present 
work extends previous results (Garzó et al 2013 Phys Rev. E 87 032201) since 
it incorporates two extra ingredients (an additional density dependence of 
the zeroth-order solution and the density dependence of the reduced friction 
coecient) not accounted for by the previous theoretical attempt. While these 
two new ingredients do not aect the shear viscosity coecient, the transport 
coecients associated with the heat flux as well as the first-order contribution 
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to the cooling rate are dierent from those obtained in the previous study. In 
addition, as expected, the results show that the dependence of the transport 
coecients on both inelasticity and density is clearly dierent from that found 
in its granular counterpart (no gas phase). Finally, a linear stability analysis of 
the hydrodynamic equations with respect to the homogeneous steady state is 
performed. In contrast to the granular case (no gas-phase), no instabilities are 
found and hence, the homogeneous steady state is (linearly) stable.

Keywords: kinetic theory of gases and liquids, transport properties
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1.  Introduction

Although in nature granular matter is surrounded by an interstitial fluid (like the air, 
for instance), most of theoretical and computational studies have neglected the impact 
of the gas phase on the dynamics of solid particles. On the other hand, it is known 
that in many practical applications (like for instance species segregation in granular 
mixtures [1–6]) the eect of the surrounding fluid on grains cannot be ignored. Needless 
to say, at a kinetic theory level, the description of granular suspensions (namely, a 
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suspension of solid particles in a viscous gas) is a quite complex problem since a com-
plete microscopic description of the gas–solid system involves the solution of a set of 
two coupled kinetic equations for each one of the velocity distribution functions of the 
dierent phases. Thus, due to the mathematical diculties embodied in this approach 
and in order to gain some insight into this problem, an usual model for describing gas–
solid flows [7] is to consider a kinetic equation for the solid particles where the influence 
of the surrounding fluid on them is modeled by means of an eective external force. As 
usual [8, 9], the external force modeling the eect of the gas phase is constituted by 
two terms: (i) a viscous drag force (via a term involving a drift or friction coecient γ)  
accounting for the friction of grains on the interstitial fluid and (ii) a stochastic Langevin-
like term (via a term involving the background or bath temperature Tex) accounting for 
the energy gained by the grains due to their collisions with particles of the background 
fluid.

Recently the above suspension model has been employed to study the so-called dis-
continuous shear thickening in non-Newtonian gas–solid suspensions [9, 10]. The results 
show the transition from the discontinuous shear thickening (observed for very dilute 
gases) to the continuous shear thickening as the density of the system increases. These 
analytical results (approximately obtained by means of Grad’s moment method [9] and 
from an exact solution of the Boltzmann equation for inelastic Maxwell models [10]) 
compare quite well with molecular dynamics simulations [9] for conditions of practical 
interest. This good agreement highlights again the good performance of kinetic theory 
tools in reproducing the transport properties of gas–solid flows.

On the other hand, to the best of our knowledge, most of the eorts in kinetic 
theory of granular suspensions has been mainly focused on non-Newtonian transport 
properties (which are directly related with the pressure tensor). In particular, much less 
is known about the energy transport in gas–solid flows. The knowledge of the transport 
coecients associated with the heat flux is interesting by itself and also for possible 
practical applications in suspensions where temperature and density gradients are pres-
ent in the system. In this context, it would be desirable to provide simulators with 
the appropriate expressions of the Navier–Stokes transport coecients to work when 
studying gas–solid flows where collisions among particles are inelastic.

The aim of this paper is to determine the Navier–Stokes transport coecients of 
granular suspensions in the framework of the Enskog kinetic equation. Since this equa-
tion applies for moderate densities (let us say for instance, solid volume fraction φ � 0.25 
for hard spheres), the comparison between kinetic theory and molecular dynamics 
simulations becomes practical. Attempts on the evaluation of the Navier–Stokes trans-
port coecients for granular suspensions modeled by the Enskog equation have been 
previously published. Thus, in [8] the authors determined the transport coecients 
of gas–solid flows starting from the suspension model constituted by the viscous drag 
force plus the stochastic Langevin term. Their results show that the eect of the 
gas phase on both the shear viscosity and the diusive heat conductivity coecients 
is non-negligible for industrially relevant portions of the parameter space. However, 
for the sake simplicity, the temperature dependence of the scaled friction coecient 
γ∗ = γ/ν(T ) (where ν ∝ T 1/2 is an eective collision frequency for hard spheres and T 
is the granular temperature) was implicitly neglected in the above calculations [8] to 
get analytic (explicit) expressions for the transport coecients. The above temperature 
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dependence of γ∗ was accounted for in a subsequent paper [11] but for a simplified 
model where only the drag force term was considered in the Enskog equation.

A more careful study was carried out later in [12] where the transport coecients 
were explicitly computed by considering both the temperature dependence of the 
reduced friction coecient as well as the complete form of the suspension model. On 
the other hand, although computer simulations [13] have clearly shown that the fric-
tion coecient depends on the volume fraction, the calculations performed in [12] were 
carried out by assuming that the driven parameters of the model are constant. Needless 
to say, the impact of the density dependence of γ on transport properties is expected 
to be more relevant as the gas phase becomes denser. Apart from this simplification, 
although not explicitly stated, another limitation of the above theory [12] is that it was 
obtained by neglecting contributions to the transport coecients coming from an addi-
tional density dependence of the zeroth-order distribution f    (0) (in fact, although this 
simplification was noted in a subsequent erratum [14], it has not been implemented so 
far in the calculations). This extra density dependence of f    (0) is expected to be involved 
in the evaluation of the heat flux transport coecients.

The question arises then as to whether, and if so to what extent, the conclusions 
drawn from [12] may be altered when the above two new ingredients (density depend
ence of both the distribution f   (0) and the friction coecient γ) are accounted for in 
the theory. In this paper we address this question by extending the results derived in 
[12] to situations not covered by previous studies on granular suspensions. The present 
theory subsumes all previous analyses [8, 11, 12], which are recovered in the appro-
priate limits. In particular, a comparison between the results obtained here for the 
transport coecients with those derived in [12] shows that while the expression of the 
shear viscosity coecient is formally equivalent to the one obtained before, the heat 
flux transport coecients and the first-order contribution to the cooling rate dier from 
those reported in [12].

As in previous works [8, 15, 16], the transport coecients are obtained by solving 
the Enskog equation by means of the application of the Chapman–Enskog method [17]. 
Since a reference equilibrium state is missing in granular gases, an important point in 
the Chapman–Enskog expansion is the choice of the zeroth-order solution f   (0) (reference 
base state of the perturbation scheme). While in the dry granular case (no gas phase) 
the distribution f   (0) is chosen to be the local version of the homogeneous cooling state, 
there is more flexibility in the choice of f   (0) in driven granular gases (or, equivalently in 
gas–solid flows). In the case of gas–solid flows [12], for simplicity one possibility is to 
take a steady distribution f   (0) at any point of the system [18, 19]. However, the pres-
ence of the interstitial fluid introduces the possibility of a local energy unbalance and 
hence, the zeroth-order distribution is not in general a stationary distribution. This fact 
introduces new contributions to the transport coecients, which were not considered 
when a local steady state was assumed at zeroth-order [18, 19]. Thus, for general small 
deviations from the homogeneous steady state the energy gained by grains due to col
lisions with the background fluid cannot be compensated locally with the cooling terms 
(viscous friction plus inelastic collisions). Thus, although we are interested in determin-
ing the transport coecients under steady state conditions, we have to start from an 
unsteady zeroth-order solution in order to achieve the integral equation verifying the 
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first-order solution f (1). The solution to this equation under steady state conditions pro-
vides the explicit forms of the transport coecients.

The plan of the paper is as follows. In section 2, the Enskog kinetic equation for 
granular suspensions is introduced and the corresponding balance equations  for the 
densities of mass, momentum, and energy are derived. Then, section  3 studies the 
homogeneous steady state where some theoretical predictions are compared against 
available computer simulation results. The comparison shows an excellent agreement 
for conditions of practical interest. Section 4 addresses the Chapman–Enskog expan-
sion around the unsteady reference distribution f (0)(r,v, t) up to first-order in spatial 
gradients. The explicit expressions of the Navier–Stokes transport coecients and the 
cooling rate are displayed in section 5 for steady state conditions. In dimensionless 
form, these coecients are given in terms of the coecient of restitution α, the vol-
ume fraction φ, and the (reduced) background temperature T ∗

ex. The dependence of 
the transport coecients and the cooling rate on the parameter space is illustrated for 
several systems showing that the influence of the gas phase on them is in general quite 
significant. As an application of the results found here, a linear stability analysis of the 
Navier–Stokes hydrodynamic equations around the homogeneous steady state is car-
ried out in section 6; the analysis shows that the homogeneous state is linearly stable. 
This finding agrees with the previous stability analysis performed in [12]. We close the 
paper in section 7 with a brief discussion of the results reported here.

2. Enskog kinetic equation for granular suspensions

We consider a set of solid particles of diameter σ and mass m immersed in a viscous 
gas. Collisions between grains are inelastic and are characterized by a (positive) con-
stant coecient of normal restitution α � 1, where α = 1 corresponds to elastic col
lisions (ordinary gases). At moderate densities, the one-particle velocity distribution 
function of solid particles f(r,v; t) obeys the Enskog kinetic equation

∂f

∂t
+ v · ∇f + Ff = JE[r,v|f , f ],� (1)

where

JE [r,v1|f , f ] =

σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2f2(r, r− σ,v′′

1 ,v
′′
2 , t)− f2(r, r+ σ,v1,v2, t)

]

� (2)
is the Enskog collision operator. Here,

f2(r1, r2,v1,v2, t) = χ(r1, r2) f(r1,v1, t) f(r2,v2, t),� (3)
d is the dimensionality of the system (d  =  2 for disks and d  =  3 for spheres), σ = σσ̂, 
σ̂ being a unit vector, Θ is the Heaviside step function, and g12 = v1 − v2. The double 
primes on the velocities in equation (2) denote the initial values {v′′

1 ,v
′′
2} that lead to 

{v1,v2} following a binary collision:

v′′
1 = v1 −

1

2

(
1 + α−1

)
(σ̂ · g12)σ̂, v′′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g12)σ̂.� (4)
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In addition, χ[r, ...|{n(t)}] is the equilibrium pair correlation function at contact as a 
functional of the nonequilibrium density field n(r, t) defined by

n(r, t) =

∫
dvf(r,v, t).� (5)

In equation  (1), the operator F  represents the fluid-solid interaction force that 
models the eect of the viscous gas on solid particles. In order to fully account for the 
influence of the interstitial molecular fluid on the dynamics of grains, a instantaneous 
fluid force model is employed [8, 9, 11]. For low Reynolds numbers, it is assumed that 
the external force F acting on solid particles is composed by two independent terms. 
One term corresponds to a viscous drag force Fdrag proportional to the (instantaneous) 
velocity of particle v. This term takes into account the friction of grains on the viscous 
gas. Since the model attempts to mimic gas–solid flows, the drag force is defined in 
terms of the relative velocity v −Ug where Ug is the (known) mean flow velocity of the 

surrounding molecular gas. Thus, the drag force Fdrag = −mγ (v −Ug) is represented 
in the Enskog equation (1) by the term

Fdragf → −γ
∂

∂v
· (v −Ug) f ,� (6)

where γ is the drag or friction coecient. The second term in the total force corresponds 
to a stochastic force that tries to simulate the kinetic energy gain due to eventual col
lisions with the (more rapid) molecules of the background fluid. It does this by adding 
a random velocity to each particle between successive collisions [20]. This stochastic 
force Fst has the form of a Gaussian white noise with the properties [21]

〈Fst
i (t)〉 = 0, 〈Fst

i (t)F
st
j (t

′)〉 = 2mγTexIδijδ(t− t′),� (7)

where I is the unit tensor and i and j  refer to two dierent particles. Here, Tex can be 
interpreted as the temperature of the background (or bath) fluid. In the context of 
the Enskog kinetic equation, the stochastic external force is represented by a Fokker–
Planck operator of the form [21, 22]

F stf → −γTex

m

∂2f

∂v2
.� (8)

Note that the strength of correlation in equation (8) has been chosen to be consistent 
with the fluctuation–dissipation theorem for elastic collisions [21].

Although the drift coecient γ is in general a tensor, here for simplicity we assume 
that this coecient is a scalar proportional to the square root of Tex because the drag 
coecient is proportional to the viscosity of the solvent [7]. In addition, as usual in 
granular suspension models [13, 23], γ is a function of the solid volume fraction

φ =
πd/2

2d−1dΓ
(
d
2

)nσd.� (9)

Thus, the drift coecient γ can be written as

γ = γ0R(φ),� (10)

https://doi.org/10.1088/1742-5468/ab3786
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where γ0 ∝ ηg ∝
√
Tex , ηg being the viscosity of the solvent or gas phase. In the case of 

hard spheres (d  =  3), for Stokes flow we can use the existing analytical closure derived 
by Koch [23] for the function R(φ) in the case of very dilute suspensions (φ � 0.1):

R(φ) = 1 + 3

√
φ

2
.� (11)

For φ > 0.1, Koch and Sangani [13] used simulations based on multipole expansions to 
propose the φ-dependence of R. It is given by

R(φ) = 1 +
3√
2
φ1/2 +

135

64
φ lnφ+ 11.26φ(1− 5.1φ+ 16.57φ2 − 21.77φ3)− φχ(φ) ln εm.� (12)

Here, εmσ can be regarded as a length scale characterizing the impact of non-contin-
uum eects on the lubrication forces between two smooth particles at contact. Typical 
values of εm are in the range 0.01–0.05. Since this term contributes to R(φ) through a 
weak logarithmic factor, the influence of its explicit value is not important in the final 
results. Here, we take εm = 0.01 as a typical value.

The suspension model defined by equations  (1), (6) and (8) is a simplified ver-
sion of the model employed in [12] to get the Navier–Stokes transport coecients. 
In this latter model [8], the friction coecient of the drag force (γb in the notation 
of [12]) and the strength of the correlation (ξ2b in the notation of [12]) are considered 
to be in general dierent. Here, as mentioned before, both coecients are related as 
ξ2b = 2γbTex/m

2 to be consistent with the fluctuation–dissipation theorem. Thus, some 
of the results derived in this paper (mainly those regarding homogeneous states) can 
be directly obtained from those reported in [12] by making the changes γb → mγ and 
ξ2b → 2γTex/m with R(φ) = 1. We have preferred in this paper to adopt the notation 
introduced in equations (6) and (8) because this is the notation used in previous studies 
of sheared granular suspensions [9, 10].

According to equations (6) and (8), the Enskog equation (1) reads

∂f

∂t
+ v · ∇f − γ∆U · ∂f

∂v
− γ

∂

∂v
·Vf − γ

Tex

m

∂2f

∂v2
= JE[r,V|f , f ].� (13)

Here, ∆U = U−Ug, V = v −U is the peculiar velocity, and

U(r, t) =
1

n(r, t)

∫
dv vf(r,v, t)� (14)

is the mean particle velocity. Another relevant hydrodynamic field is the granular 
temperature T (r, t) defined as

T (r, t) =
m

dn(r, t)

∫
dv V 2f(r,v, t).� (15)

Note that in the model defined in [12]) the mean flow velocity of the interstitial gas is 
assumed to be equal to the mean flow velocity of solid particles (Ug = U) for the sake 
of simplicity.

The macroscopic balance equations for the granular suspension are obtained when 
one multiplies the Enskog equation (13) by {1,mv,mv2} and integrates over velocity. 
After some algebra, one gets the balance equations [8, 12, 15]

https://doi.org/10.1088/1742-5468/ab3786
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Dtn+ n∇ ·U = 0,� (16)

DtU = −ρ−1∇ · P− γ∆U,� (17)

DtT +
2

dn
(∇ · q+ P : ∇U) = 2γ (Tex − T )− ζ T .� (18)

In the above equations, Dt = ∂t +U · ∇ is the material derivative and ρ = mn is 
the mass density. The cooling rate ζ is proportional to 1− α2 and is due to dissipa-
tive collisions. The pressure tensor P(r, t) and the heat flux q(r, t) have both kinetic 
and collisional transfer contributions, i.e. P = Pk + Pc and q = qk + qc. Their kinetic 
contributions are defined by

Pk =

∫
dvmVVf(r,v, t), qk =

∫
dv

m

2
V 2Vf(r,v, t),� (19)

and the collisional transfer contributions are [15]

Pc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2σ̂σ̂

×
∫ 1

0

dx f2 [r− xσ, r+ (1− x)σ,v1,v2, t] ,

qc =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2(G12 · σ̂)σ̂

×
∫ 1

0

dx f2 [r− xσ, r+ (1− x)σ,v1,v2, t] ,

�

(20)

where G12 =
1
2
(V1 +V2) is the velocity of center of mass. Finally, the cooling rate ζ is 

given by

ζ =
(1− α2)

4dnT
mσd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

3f2(r, r+ σ,v1,v2, t).

� (21)
Before closing this section, it is important to recall the range of validity of the sus-

pension model (13). As already discussed before [8], the assumptions made in the model 
are relevant to the range of dimensionless physical parameters encountered in a circulat-
ing fluidized bed (low Reynolds numbers and moderate densities). A crucial aspect of the 
model is that the form of the Enskog collision operator JE[r,v|f , f ] is assumed to be the 
same as for a dry granular gas (i.e. when the influence of the interstitial gas is neglected). 
This means that the collision dynamics does not contain any parameter of the environ
mental gas. As it has been noted in several papers [7, 23–26], the above assumption 
requires that the mean-free time between collisions is assumed to be much less than the 
time needed by the fluid forces to significantly aect the dynamics of solid particles. 
Thus, we expect that the suspension model (3) may be reliable in situations where the 
gas phase has a weak influence on the motion of grains (solid particles immersed in air, 
for instance). Of course, this assumption fails for instance in the case of liquid flows (high 
density) where the presence of fluid must be taken into account in the collision process.

https://doi.org/10.1088/1742-5468/ab3786
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3. Homogeneous steady state

Before computing the transport coecients, it is instructive to analyze the homogeneous 
steady state. This state was widely analyzed in [12, 27]. For homogeneous situations, 
the density n and the temperature T are spatially uniform, and with an appropri-
ate selection of the frame of reference, the mean flow velocities vanish (U = Ug = 0). 
Consequently, equation (13) becomes

∂f

∂t
− γ

∂

∂v
· vf − γ

Tex

m

∂2f

∂v2
= JE[v|f , f ],� (22)

where

JE [ f , f ] = χσd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2f(v′′1) f(v

′′
2)− f(v1) f(v2)

]
.

� (23)
Here, χ is the pair correlation function evaluated at the (homogeneous) density n. The 
collision operator (23) can be recognized as the Boltzmann operator for inelastic col
lisions multiplied by the factor χ. For homogeneous states, the only nontrivial balance 
equation is that of the temperature (18):

∂tT = 2γ (Tex − T )− ζT .� (24)
As usual, for times longer than the mean free time, one expects that the system achieves 
a hydrodynamic regime where the distribution f  qualifies as a normal distribution [17] 
in the sense that f  depends on time only through its dependence on the temperature T. 
In this regime, ∂tf = (∂Tf)(∂tT ) and equation (22) reads

[
2γ

(
θ−1 − 1

)
− ζ

]
T
∂f

∂T
− γ

∂

∂v
· vf − γTex

m

∂2f

∂v2
= JE[ f , f ],� (25)

where θ ≡ T/Tex and use has been made of equation (24). In addition, for homogeneous 
states, equation (21) gives the following form for the cooling rate ζ:

ζ(t) =
π(d−1)/2

4dΓ
(
d+3
2

)(1− α2)
mσd−1

nT
χ

∫
dv1

∫
dv2 g

3
12 f(v1, t) f(v2, t).� (26)

For elastic collisions (α = 1 and so, ζ = 0), as expected equation  (25) admits the 
solution

f0(v, t) = n

(
m

2πT (t)

)d/2

exp

(
− mv2

2T (t)

)
� (27)

where the temperature obeys the time-dependent equation

∂tT = 2γ (Tex − T ) .� (28)
The system therefore is in a time-dependent ‘equilibrium state’ before reaching the 
asymptotic steady state where T = Tex. For inelastic collisions, ζ �= 0 and to date the 
solution to equation (25) has not been found.
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On the other hand, after a transient stage, the system achieves a steady state char-
acterized by the steady temperature Ts. According to equation (28), Ts is given by the 
condition

2γ
(
θ−1
s − 1

)
− ζs = 0,� (29)

where the subscript s means that the quantities are evaluated at T = Ts. At a given 
value of the environmental temperature Tex (which acts as a bath temperature in the 
sense that it is considered as a thermal energy reservoir), equation (29) implies that in 
the steady state the energy gained by grains due to their collisions with the interstitial 
fluid (γTex) is exactly compensated by the cooling terms arising from collisional dis-
sipation (ζT ) and viscous friction (γT ). Moreover, as usual in the granular literature, 
the eects of the energy balance on the internal degrees of freedom of grains are not 
considered in the description.

As shown in previous works [12, 27–29], dimensionless analysis requires that fs has 
the scaled form

fs(v, γ,Tex) = nv−d
0 ϕs(c, γ

∗
s ) ≡ nv−d

0 ϕs(c,λ, θs),� (30)

where v0 =
√

2Ts/m is the thermal speed and the unknown scaled distribution ϕs is a 
function of the dimensionless parameters c ≡ v/v0 and γ∗

s  where

γ∗
s (λ, θs) = λθ−1/2

s , λ(φ) =
γ0R(φ)�√
2Tex/m

=

√
2πd/2

2ddΓ
(
d
2

) R(φ)

φ
√
T ∗
ex

.� (31)

Here, T ∗
ex ≡ Tex/(mσ2γ2

0) is the (reduced) background gas temperature. In the second 
relation of equation (31), � = 1/(nσd−1) is proportional to the mean free path of hard 
spheres. The scaling given by equation (30) is equivalent to the one proposed in [12, 

27] when one makes the mapping ξ∗s → 2λθ
−3/2
s  with R(φ) = 1. Here, ξ∗s  is defined 

by equation (24) of [12]. This means that the results for homogeneous states can be 
directly obtained from those derived in [12, 27] by making the above change. On the 
other hand, we have preferred here to revisit the homogeneous state in order to check 
the previous results.

In terms of ϕs, in the steady state, equation (22) for fs can be rewritten as

−γ∗
s

∂

∂c
· cϕs −

γ∗
s

2θs

∂2ϕs

∂c2
= J∗

E[ϕs,ϕs],� (32)

where we have introduced the dimensionless collision operator J∗
E = �vd−1

0 JE/n. Although 
the exact form of ϕs is not known, an indirect information on it can be obtained from 
the kurtosis or fourth cumulant

a2,s =
4

d(d+ 2)

∫
dc c4ϕs(c)− 1.� (33)

The cumulant a2,s measures the deviation of ϕs from its Maxwellian form π−d/2e−c2. 
This coecient can be obtained by multiplying equation (32) by c4 and integrating over 
velocity. The result is

d(d+ 2)

(
γ∗
s a2,s −

1

2
ζ∗s

)
= β4,� (34)

https://doi.org/10.1088/1742-5468/ab3786


Transport coecients for granular suspensions at moderate densities

11https://doi.org/10.1088/1742-5468/ab3786

J. S
tat. M

ech. (2019) 093204

where ζ∗s ≡ �ζs/v0 and

β4 =

∫
dc c4 J∗

E[ϕs,ϕs].� (35)

Upon deriving equation (34) use has been made again of the steady state condition (29).
As expected, equation  (34) cannot be solved unless one knows the collisional 

moments ζ∗s  and β4. As in previous works [12, 22, 27], a good estimate of ζ∗s  and β4 can 
be obtained by replacing ϕs by its leading Sonine approximation [22]:

ϕs �
e−c2

πd/2

{
1 + a2,s

[
c4

2
− (d+ 2)c2

2
+

d(d+ 2)

8

]}
.� (36)

In this case, retaining only linear terms in a2,s, one has

ζ∗s → ζ
(0)
0 + ζ

(1)
0 a2,s, β4 → β

(0)
4 + β

(1)
4 a2,s,� (37)

where [22]

ζ
(0)
0 =

2K

d
χ(1− α2), ζ

(1)
0 =

3

16
ζ
(0)
0 ,� (38)

β
(0)
4 = −Kχ

(
1− α2

)(
d+

3

2
+ α2

)
, β

(1)
4 = −Kχ

(
1− α2

) [ 3

32

(
10d+ 39 + 10α2

)
+

d− 1

1− α

]
,

� (39)
and

K =
π(d−1)/2

√
2Γ(d/2)

.� (40)

With these results, equation (34) can be easily solved with the result

a2,s =
16(1− α)(1− 2α2)

73 + 56d− 3α(35 + 8d) + 30(1− α)α2 + 32d(d+ 2)γ∗
s /Kχ(1 + α)

.

� (41)
Notice that in equation (41), γ∗

s  is consistently obtained from the steady state condition 

(29) by replacing ζ∗s → ζ
(0)
0 . The expression (41) agrees with the one obtained in [12] 

when one takes into account the steady state condition ξ∗s = 2γ∗
s + ζ

(0)
0  in equation (31) 

of [12].
Once a2,s is known, the dependence of the cooling rate on both the coecient of 

restitution α and the (reduced) external temperature T ∗
ex can be obtained from the first 

relation of equation (37). Finally, the (reduced) steady temperature θs is determined by 
solving the cubic equation

2λ
(
θ−1
s − 1

)
=

√
2

d

π(d−1)/2

Γ
(
d
2

) (1− α2)χ(φ)

(
1 +

3

16
a2,s

)√
θs.� (42)

As expected, equation  (42) is consistent with equation  (33) of [12] for the steady 

temperature when one takes R(φ) = 1 and makes the replacement ξ∗s → 2λθ
−3/2
s .

Figure 1 shows the α-dependence of the fourth cumulant a2,s for hard disks (d  =  2) 
with the solid volume fraction φ = 0.25. In the case of hard disks, we have chosen the 
following form for χ(φ) [30]:
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χ(φ) =
1− 7

16
φ

(1− φ)2
.� (43)

The theoretical results given by equation (41) are compared against the results obtained 
in [12] by numerically solving the Enskog equation from the direct simulation Monte 
Carlo (DSMC) method [31]. The parameters of the simulation are m  =  1, σ = 0.01, 
γ0 = 1, and Tex = 1. In addition, the function R(φ) = 1 in the simulations. Although 
this figure was already presented in [12], we plot it again here to remark the excellent 
agreement between theory and simulations observed in the complete range of values of 
α. Since the values of a2,s are very small (in fact their magnitude is smaller than the 
one found in the dry granular case [22, 32]) then, the Sonine approximation (36) can be 
considered as a good representation of the scaled distribution ϕs(c). As a complement 
of figure 1, figure 2 shows a2,s versus φ for two values of α. It is quite apparent that 
the qualitative dependence of the fourth cumulant on the density depends strongly on 
the inelasticity since while a2,s decreases monotonically with φ at α = 0.8, the opposite 
happens at α = 0.6. We do not actually have an intuitive explanation for the change 
of behaviour of a2,s when the coecient of restitution varies from 0.8 to 0.6. Next, the 
(reduced) temperature θs is considered. Figure 3 shows θs versus α for d  =  2, φ = 0.25, 
and the same parameters as the one considered in figures 1 and 2. First, as expected, 
θs = 1 for elastic collisions. Moreover, the steady granular temperature decreases with 
inelasticity. It is illustrated in figure 4 (which was also plotted in [12]) where θs is plot-
ted against the density φ for two dierent values of α. Figures 3 and 4 highlight again 
the excellent agreement between theory and simulations, even for extreme values of 
both inelasticity and/or density.

4. Transport around the homogeneous steady state. Chapman–Enskog expansion

As in previous studies [12, 15, 33], we assume that we perturb the homogeneous steady 
state by small spatial gradients. These perturbations give rise to nonzero contrib
utions to the pressure tensor and the heat flux, which are characterized by transport 
coecients. The evaluation of the transport coecients is the main objective of the 
present contribution. In order to get them, we will solve the Enskog equation (13) by 
means of the Chapman–Enskog method [17] conveniently adapted to granular fluids. 
As usual, the Chapman–Enskog method assumes the existence of a normal solution 
such that all space and time dependence of the velocity distribution function occurs 
through the hydrodynamic fields, namely,

f(r,v, t) = f [v|n(t),T (t),U(t)] .� (44)
The notation on the right hand side indicates a functional dependence on the density, 
temperature and flow velocity. For small spatial variations (i.e. low Knudsen numbers), 
this functional dependence can be made local in space through an expansion in the 
gradients of the hydrodynamic fields. To generate it, f  is written as a series expansion 
in a formal parameter ε measuring the non-uniformity of the system,
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f = f (0) + ε f (1) + ε2 f (2) + · · · ,� (45)
where each factor of ε means an implicit gradient of a hydrodynamic field. In contrast 
to the case of dry granular gases [15], in ordering the dierent level of approximations 
in the kinetic equation, one has to characterize the magnitude of the drift term γ rela-
tive to the gradients as well as the term ∆U. With respect to the first term, since γ does 
not induce any flux in the system, it is considered to be of zeroth-order in gradients. 
Regarding the term ∆U, since in the absence of gradients U tends to Ug after a tran-
sient period, then ∆U is expected to be at least to first order in the spatial gradients.

According to the expansion (45), the Enskog operator JE and the time derivative ∂t 
are also given in the representations

JE = J
(0)
E + εJ

(1)
E + · · · , ∂t = ∂

(0)
t + ε∂

(1)
t + · · · .� (46)

The coecients in the time derivative expansion are identified by a representation 
of the fluxes and the cooling rate in the macroscopic balance equations as a similar 
series through their definitions as functionals of f . This is the usual Chapman–Enskog 
method [17, 34] for solving kinetic equations. The expansions (46) yield similar expan-
sions for the heat and momentum fluxes and the cooling rate when substituted into 
equations (19)–(21):

Pij = P
(0)
ij + εP

(1)
ij + · · · , q = q(0) + εq(1) + · · · , ζ = ζ(0) + εζ(1) + · · · .

� (47)
Here, we shall restrict our calculations to the first order in the uniformity parameter ε.

4.1. Zeroth-order approximation

To zeroth order in the expansion, the distribution f   (0) obeys the kinetic equation

Figure 1.  Plot of the fourth cumulant a2,s as a function of the coecient of 
restitution α for a two-dimensional (d  =  2) granular suspension with φ = 0.25. 
The line is the theoretical result given by equation (41) (with R(φ) = 1) and the 
symbols are the Monte Carlo simulation results obtained in [12]. The parameters 
of the simulation are m  =  1, σ = 0.01, γ0 = 1, and Tex = 1.
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∂
(0)
t f (0) − γ

∂

∂v
·Vf (0) − γ

Tex

m

∂2f (0)

∂v2
= J

(0)
E [ f (0), f (0)],� (48)

where J
(0)
E [ f (0), f (0)] is given by equation (23) with the replacement fs → f (0)(r,v, t). 

The conservation laws at this order are given by ∂
(0)
t n = 0, ∂

(0)
t U = 0, and

Figure 2.  Plot of the fourth cumulant a2,s as a function of the volume fraction 
φ for a two-dimensional (d  =  2) granular suspension. Two dierent values of 
the coecient of restitution are considered: α = 0.8 (solid line and squares) and 
α = 0.6 (dashed line and triangles). The lines are the theoretical results given by 
equation  (41) (with R(φ) = 1) and the symbols are the Monte Carlo simulation 
results. The parameters of the simulation are m  =  1, σ = 0.01, γ0 = 1, and Tex = 1.

Figure 3.  Plot of the (reduced) temperature θs ≡ Ts/Tex as a function of the 
coecient of restitution α for a two-dimensional (d  =  2) granular suspension with 
φ = 0.25. The line is the theoretical result given by equation (42) (with R(φ) = 1) 
and the symbols are the Monte Carlo simulation results obtained in [12]. The 
parameters of the simulation are m  =  1, σ = 0.01, γ0 = 1, and Tex = 1.

https://doi.org/10.1088/1742-5468/ab3786


Transport coecients for granular suspensions at moderate densities

15https://doi.org/10.1088/1742-5468/ab3786

J. S
tat. M

ech. (2019) 093204

∂
(0)
t T = 2γ (Tex − T )− ζ(0)T ,� (49)

where ζ(0) is determined from equation (21) to zeroth order. In particular, as said in sec-
tion 3, a good approximation to ζ(0) is given by the first relation of equation (37), namely,

ζ(0) =
2

d

π(d−1)/2

Γ
(
d
2

) (1− α2)χ

(
1 +

3

16
a2

)
nσd−1

√
T

m
.� (50)

The kinetic equation (48) can be rewritten in terms of the derivative ∂Tf
(0) when 

one takes into account the zeroth-order balance equations:

[
2γ

(
θ−1 − 1

)
− ζ(0)

]
T
∂f (0)

∂T
− γ

∂

∂v
·Vf (0) − γTex

m

∂2f (0)

∂v2
= J

(0)
E [ f (0), f (0)].

� (51)
Equation (51) has the same form as the corresponding Enskog equation  (25) for a 
strictly homogeneous state. However, in equation (51) f (0)(r,v, t) is a local distribution. 
Therefore, as in the homogeneous state, the solution to equation (51) can be written 
in the form (30) (with the replacement Ts → T ) where the scaled distribution ϕ(c,λ, θ) 
obeys the unsteady equation

[
2γ∗ (θ−1 − 1

)
− ζ∗0

]
θ
∂ϕ

∂θ
+

(
ζ∗0
2

− γ∗θ−1

)
∂

∂c
· cϕ− γ∗

2θ

∂2ϕ

∂c2
= J∗

E[ϕ,ϕ],� (52)

where ζ∗0 ≡ �ζ(0)/v0(T ) and γ∗ = λθ−1/2. Upon deriving equation (52) use has been made 
of the property

T
∂f (0)

∂T
= −1

2

∂

∂V
·Vf (0) + nv−d

0 θ
∂ϕ

∂θ
,� (53)

where the derivative ∂ϕ/∂θ is taken at constant c.

Figure 4.  Plot of the (reduced) temperature θs ≡ Ts/Tex as a function of the volume 
fraction φ for a two-dimensional (d  =  2) granular suspension. Two dierent values 
of the coecient of restitution are considered: α = 0.8 (solid line and squares) and 
α = 0.6 (dashed line and triangles). The lines are the theoretical results given by 
equation  (42) (with R(φ) = 1) and the symbols are the Monte Carlo simulation 
results. The parameters of the simulation are m  =  1, σ = 0.01, γ0 = 1, and Tex = 1.
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The velocity distribution function f   (0) is isotropic in V so that, according to equa-
tions (19)–(20), the heat flux to zeroth-order vanishes as expected (q(0) = 0) and the 

pressure tensor P
(0)
ij = pδij, where the hydrostatic pressure is

p = nT
[
1 + 2d−2(1 + α)φχ

]
.� (54)

As discussed in section 3, although the explicit form of ϕ is not known, a good 
approximation is given by the Sonine approximation (36). In particular, the equa-
tion for the unsteady fourth cumulant a2 can be easily obtained from equation (52) as

d(d+ 2)

4
Λ(0)θ

∂a2
∂θ

+ d (d+ 2)

(
γ∗θ−1 − ζ∗0

2

)
(1 + a2)− d (d+ 2) γ∗θ−1 = β4,

�

(55)

where Λ(0) ≡ 2γ∗ (θ−1 − 1)− ζ∗0 and β4 is defined in equation (35). In the steady state, 
Λ(0) = 0 and the solution to equation (55) is given by equation (41) once one expands 
ζ∗0 and β4 in powers of a2. Beyond the steady state, equation (55) must be numerically 
solved to get the dependence of a2 on the (reduced) temperature. On the other hand, as 
we will show in section 5, in order to get the transport coecients in the steady state 
we need to know the derivatives ∆θ ≡ (∂a2/∂θ)s, ∆λ ≡ (∂a2/∂λ)s, and ∆χ ≡ (∂a2/∂χ)s. 
These derivatives provide an indirect information (through the fourth cumulant) on the 
departure of the time-dependent solution f   (0) from its stationary form fs. According to 
equation (55), the former derivative is given by

∂a2
∂θ

=

4
d(d+2)

β
(0)
4 + 2ζ

(0)
0 + 2

(
2

d(d+2)
β
(1)
4 − 2γ∗θ−1 + 19

16
ζ
(0)
0

)
a2

θ
[
2γ∗(θ−1 − 1)−

(
ζ
(0)
0 + ζ

(1)
0 a2

)] ,� (56)

where here the expansions (37) have been considered and as usual nonlinear terms in 
a2 have been neglected. In the steady state, the numerator and denominator of equa-
tion (56) vanish, hence the quantity ∆θ becomes indeterminate. As in [12], this problem 
can be solved by applying l’Hôpital’s rule. The final result yields a quadratic equa-
tion for ∆θ. However, given that the magnitude of ∆θ is quite small, one can neglect 
the term proportional to ∆2

θ in the above quadratic equation and obtain the simple 
expression

∆θ =
6γ∗

s θ
−2
s a2,s

2γ∗
s − 15

8
ζ
(0)
0 − 4

d(d+2)
β
(1)
4

.� (57)

Equation (57) is consistent with equation  (A6) of [12] when one neglects nonlinear 

terms in (∂a2/∂ξ
∗)s and takes β = 1

2
. The derivatives ∆λ and ∆χ can be easily derived 

from equation (55) with the results

∆λ =
4θ

−3/2
s a2,s + 2θ

1/2
s (θ−1

s − 1)
4

d(d+2)
β
(1)
4 − 4γ∗

s +
3
8
ζ
(0)
0

,� (58)

∆χ =

4
d(d+2)

β
(0)
4 + 2ζ

(0)
0 + 4

d(d+2)
β
(1)
4 + 19

8
ζ
(0)
0 + ζ

(0)
0 θs∆θ

2χ
(
2γ∗

s − 2
d(d+2)

β
(1)
4 − 3

16
ζ
(0)
0

) .� (59)
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Note that in equations (57)–(59), θs is obtained from equation (42) by neglecting a2,s. 
The dependence of the derivatives ∆θ, ∆λ, and ∆χ on the coecient of restitution α 
is plotted in figure 5 for d  =  3 and φ = 0.25. Here, T ∗

ex = 0.9; this is a typical value for 
the (reduced) background temperature used in previous simulations [9]. It is seen that 
while the magnitude of ∆λ, and ∆χ is much smaller than that of the kurtosis a2,s, ∆θ 
is of the same order of magnitude as a2,s.

4.2. First-order approximation

The mathematical steps involved in the derivation of the first-order distribution func-
tion f  (1) are quite similar to those carried out in [12]. On the other hand, given that 
the calculations performed in this paper take into account some additional density 
dependencies not accounted for in the previous derivation [12], we have preferred here 
to perform an independent calculation where most of the technical details are provided 
in the appendix A for the sake of completeness. To first-order in spatial gradients, f  (1) 
is given by

f (1)(V) = A(V) · ∇ lnT +B(V) · ∇ lnn+ Cij(V)
1

2

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ ·U

)
+D(V)∇ ·U,

� (60)

where, in the steady state (Λ(0) = 0), the quantities A, B, Cij, and D verify the follow-
ing set of coupled linear integral equations:

−
(
2γθ−1 +

1

2
ζ(0) + ζ(0)θ

∂ ln ζ∗0
∂θ

)
A− γ

∂

∂v
·VA− γTex

m

∂2

∂v2
A+ LA = A,

� (61)

−γ
∂

∂v
·VB − γTex

m

∂2

∂v2
B + LB = B+

[
ζ(0)

(
1 + φ

∂ lnχ

∂φ

)
+ χφ

∂χ

∂φ

∂

∂χ

(
ζ(0)

χ

)

−λ

(
1− φ

∂ lnR

∂φ

)
∂ζ(0)

∂λ
− 2γ

(
θ−1 − 1

)
φ
∂ lnR

∂φ

]
A,

�
(62)

−γ
∂

∂v
·VCij −

γTex

m

∂2

∂v2
Cij + LCij = Cij,� (63)

−γ
∂

∂v
·VD − γTex

m

∂2

∂v2
D − ζ

(1)
1 T

∂f (0)

∂T
+ LD = D.� (64)

In equation (64), ζ(1)1  is a functional of D defined by equation (B.16). Moreover, in equa-
tions (61)–(64), L is the linearized collision operator

Lf (1) = −
(
J
(0)
E [ f (0), f (1)] + J

(0)
E [ f (1), f (0)]

)
,� (65)

R is defined by equations (10)–(12) and the coecients A, B, Cij, and D are functions 
of the peculiar velocity V and the hydrodynamic gradients. They are defined by equa-
tions  (A.9)–(A.12). Note that all the quantities appearing in equations  (61)–(64) are 
evaluated in the steady state (the subscript s has been omitted here for the sake of sim-
plicity). Thus, the transport coecients obtained by solving equations (10)–(12) will be 
provided in terms of the steady temperature Ts. It is worthwhile to remark that since 
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we are here interested in obtaining the momentum and heat fluxes in the first order of 
the deviations from the steady state, we only need to know the transport coecients 
to zeroth order in the deviations. This means that the solution to the integral equa-
tions (61)–(64) will provide us the forms of the transport coecients and the cooling 
rate in steady state conditions.

According to the Chapman–Enskog scheme [17], acceptable solutions to equa-
tions (61)–(64) must obey∫

dv
(
1,V,V 2

)
f (1) = (0, 0, 0) .� (66)

These are necessary conditions for the solution to the integral equations to exist (the so-
called Fredholm alternative [35]). Since A(V) ∝ A(V), B(V) ∝ B(V), Cij(V) ∝ Cij(V), 
and D(V) ∝ D(V), then the solubility conditions (66) can be proved when one takes 
into account the explicit forms of A, B, Cij, and D.

5. Navier–Stokes transport coecients

To first order in the spatial gradients, the constitutive equations for the pressure tensor 

P
(1)
ij  and the heat flux q(1) are

P
(1)
ij = −η

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ ·U

)
− ηbδij∇ ·U,� (67)

q(1) = −κ∇T − µ∇n.� (68)
Here, η is the shear viscosity, ηb is the bulk viscosity, κ is the thermal conductivity, and 
µ is the diusive heat conductivity. This latter coecient vanishes for ordinary gases 
(α = 1). While the coecients η, κ, and µ have kinetic and collisional contributions, 
the bulk viscosity ηb has only collisional contributions and hence, it vanishes for dilute 

Figure 5.  Plot of the derivatives ∆θ (a), ∆λ (b), and ∆χ (c) for d  =  3, φ = 0.25, 
and T ∗

ex = 0.9.
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gases. In addition, as already mentioned in [8], the forms of the collisional contributions 
to the transport coecients are exactly the same as those obtained in the dry granular 
case (namely, in the absence of the gas phase) [15, 16], except that a2,s depends on γ∗. 
Thus, we will focus here our attention on the kinetic contributions to the transport 
coecients and the cooling rate. Some technical details on this calculation are provided 
in the appendix B.

5.1. Shear and bulk viscosities

The bulk viscosity ηb is given by

ηb =
22d+1

π(d+ 2)
φ2χ(1 + α)

(
1− a2,s

16

)
η0,� (69)

where

η0 =
d+ 2

8

Γ
(
d
2

)
π(d−1)/2

σ1−d
√
mTs� (70)

is the low density value of the shear viscosity for an ordinary gas of hard spheres 
(α = 1). The shear viscosity η can be written as

η =
η0

ν∗
η + 2K ′γ∗

s

[
1− 2d−2

d+ 2
χφ(1 + α)(1− 3α)

] [
1 +

2d−1

d+ 2
(1 + α)φχ

]
+

d

d+ 2
ηb,

�

(71)

where K ′ = (d+ 2)/8K , K is defined by equation (40) and the (reduced) collision fre-
quency ν∗

η is [36]

ν∗
η =

3

4d
χ

(
1− α +

2

3
d

)
(1 + α)

(
1 +

7

16
a2,s

)
,� (72)

where a2,s is defined by equation (41). The expression (71) for the shear viscosity agrees 
with the one obtained in [12] when R(φ) = 1. This is because the new contributions to 
the fluxes coming from the extra density dependencies not accounted for in [12] do not 
aect the form of the pressure tensor.

5.2. Thermal conductivity and diusive heat conductivity

The thermal conductivity is given by

κ = κk

[
1 + 3

22−d

d+ 2
φχ (1 + α)

]
+

22d+1 (d− 1)

(d+ 2)2 π
φ2χ (1 + α)

(
1 +

7

16
a2,s

)
κ0,

� (73)
where

κ0 =
d(d+ 2)

2(d− 1)

η0
m� (74)

is the low density value of the thermal conductivity for an ordinary gas of hard spheres 
(α = 1) and κk denotes the kinetic contribution to the thermal conductivity. Its explicit 
expression is
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κk = κ0
d− 1

d

1 + 2a2,s + θs∆θ + 32d−3

d+2
χφ (1 + α)2

[
2α− 1 + a2,s (1 + α) + 1

2
(1 + α) θs∆θ

]

ν∗
κ +K ′

(
γ∗
s − 3

2
ζ∗0 − θsζ

(1)
0 ∆θ

) ,

� (75)
where ζ

(1)
0  is defined by equation (38) and the derivative ∆θ is given by equation (57). 

In addition, the (reduced) collision frequency ν∗
κ is [36]

ν∗
κ =

1 + α

d
χ

[
d− 1

2
+

3

16
(d+ 8) (1− α) +

296 + 217d− 3 (160 + 11d)α

256
a2,s

]
.

� (76)
To compare the expression (75) with the one derived in [12] (see equation  (65) of 
this reference), one has to make the mapping ξ∗s (∂a2/∂ξ

∗)s → −(2/3)θs∆θ and takes 
R(φ) = 1. In this case, we find that the form (75) of the thermal conductivity coecient 
is consistent with the one obtained in [12] except for the last term of the numerator (i.e. 
the term proportional to 1

2
(1 + α) θs∆θ). This term comes from the collision integral 

(B.13). We have checked that equation (75) gives the correct result and hence it fixes 
the slight mistake of equation (65) of [12].

The diusive heat conductivity µ is

µ = µk

[
1 + 3

2d−2

d+ 2
φχ (1 + α)

]
,� (77)

where the kinetic contribution µk is given by

µk =
κ0Ts

n
(ν∗

κ − 3K ′γ∗
s )

−1

{
κk

κ0

[
K ′ζ∗0

(
1 + φ

∂ lnχ

∂φ

)
+K ′ζ

(1)
0

(
φ
∂χ

∂φ
∆χ − λ

(
1− φ

∂ lnR

∂φ

)
∆λ

)

− 2
(
θ−1
s − 1

)
γ∗
sφ

∂ lnR

∂φ

]
+

d− 1

d

[
a2,s − λ

(
1− φ

∂ lnR

∂φ

)
∆λ + φ

∂χ

∂φ
∆χ

]

+ 3
2d−4 (d− 1)

d (d+ 2)
χφ (1 + α)3

[
φ
∂χ

∂φ
∆χ − λ

(
1− φ

∂ lnR

∂φ

)
∆λ

]

+ 3
2d−2 (d− 1)

d (d+ 2)
χφ (1 + α)

(
1 +

1

2
φ
∂ lnχ

∂φ

)[
α (α− 1) +

a2,s
6

(
10 + 2d− 3α + 3α2

) ]}
.

�

(78)

Here, the derivatives ∆λ and ∆χ are defined by equations (58) and (59), respectively. 
The expression (78) agrees with equation (69) of [12] when one neglects (i) the density 
dependence of the function R (i.e. ∂φR = 0) and (ii) all the derivatives of a2 with respect 
to θ, λ, and χ in the steady state (i.e. ∆θ = ∆λ = ∆χ = 0). In addition, as in the case 
of a dry granular gas [15, 16, 42], the coecient µ vanishes for elastic collisions.

5.3. Cooling rate

The cooling rate is

ζ = ζ(0)s + ζU∇ ·U,� (79)
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where ζ
(0)
s  is given by equation (50) with the replacement T → Ts. The coecient ζU 

can be written as

ζU = ζ
(0)
1 + ζ

(1)
1 ,� (80)

where

ζ
(0)
1 = −3

2d−2

d
χφ(1− α2),� (81)

ζ
(1)
1 =

9(d+ 2)2d−8

d2
χ
(
1− α2

) (
ν∗
γ + 4K ′γ∗

s

)−1
{

ω∗φχ

2(d+ 2)
− 22−dd

3

[
λ

(
1− φ

∂ lnR

∂φ

)
∆λ

− φ
∂χ

∂φ
∆χ −

2

d
θs∆θ

]
− (1 + α)

(
1

3
− α

)
(2a2,s + θs∆θ)φχ

}
.

�

(82)

Here, we have introduced the quantities

ω∗ = (1 + α)
{(

1− α2
)
(5α− 1)− a2,s

6

[
15α3 − 3α2 + 3 (4d+ 15)α− (20d+ 1)

]}
,� (83)

ν∗
γ = −1 + α

192
χ
[
30α3 − 30α2 + (105 + 24d)α− 56d− 73

]
.� (84)

It is quite apparent that ζU = 0 for elastic collisions (α = 1). As in the case of the 

diusive heat conductivity, to compare equation (82) with the expression (73) for ζ
(1)
1  

obtained in [12] one has to make the replacement θ∆θ → −(3/2)ξ∗s (∂a2/∂ξ
∗)s, take 

R(φ) = 1, and neglect the derivatives of a2 with respect to λ and χ (∆λ = ∆χ = 0). 
After these changes, we see that both results agree except for a misprint we have found 
in equation (73) of [12]. Note also that ζU �= 0 for dilute granular suspensions [29].

5.4. Some illustrative examples

In summary, the Navier–Stokes transport coecients ηb, η, κ, and µ are given by 
equations (69), (71), (73) and (77), respectively, while the first-order contribution ζU 
to the cooling rate is given by equations (80)–(82). As expected, all these coecients 
present an intricate dependence on the coecient of restitution α, the density φ, and 
the (reduced) background temperature T ∗

ex. In addition, their dimensionless forms are 
defined in terms of the steady temperature θs and the derivatives ∆θ, ∆λ, and ∆χ. While 
these derivatives are explicitly given by equations (57)–(59), the granular temperature 
is given in terms of the physical solution of the cubic equation (42).

As in previous works [8, 12], it is quite apparent that one of the principal new 
features of the present paper lies on the dependence of the Navier–Stokes transport 
coecients of granular suspensions on the coecient of restitution α. Therefore, to 
illustrate the dierences between granular (α �= 1) and ordinary (α = 1) suspensions, 
the transport coecients are scaled with respect to their values for elastic collisions. 
In addition, we consider a three-dimensional system (d  =  3) with T ∗

ex = 0.9 and three 
dierent values of the volume fraction φ: φ = 0.01 (very dilute system), φ = 0.1, and 
φ = 0.2 (moderately dense system).
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In figures 6–8, the above Navier–Stokes transport coecients are plotted as func-
tions of α. While in the case of the shear viscosity and thermal conductivity coecients 
we observe that their deviation from their forms for elastic collisions is in general 
significant, no happens the same in the case of the diusive heat conductivity since 
the magnitude of the scaled coecient nµ(α)/Tκ(1) is much smaller than that of the 
(scaled) coecient κ(α)/κ(1). Since both κ and µ characterize the heat flux, one could 
neglect the term proportional to the density gradient in the heat flux. Thus, for practi-
cal purposes and analogously to ordinary (elastic) suspensions, one could assume that 
the heat flux verifies Fourier’s law q(1) = −κ∇T . With respect to the α-dependence of η 
and κ, figures 6 and 7 highlight that both transport coecients are decreasing functions 
of the inelasticity regardless of the density of the system. In addition, the influence of 
collisional dissipation on momentum and heat transport increases with density, being 
very tiny in the limit of dilute suspensions. A comparison with the results obtained 
for dry granular fluids (see for instance, figure 1 of [37]) shows significant dierences 
between dry (no gas phase) and granular suspensions. In particular, both theory [15, 16, 
38] and simulations [39] show that for relatively dilute dry granular gases (φ � 0.1) η 
increases with inelasticity, while the opposite occurs for suciently dense dry granular 
fluids (φ � 0.1). The same qualitative behavior is observed for the thermal conductiv-
ity coecient [15, 16, 38]. This non-monotonic behavior contrasts with the predictions 
found here for granular suspensions where η and κ always decreases with decreasing 
α. Regarding the coecient µ, we see that the impact of density on it is significant 
since while µ is always positive for dilute suspensions, it can be negative for moderately 
dense suspensions. It is worthwhile to note that the behavior of the shear viscosity and 
thermal conductivity on both density and coecient of restitution found here is quali-
tatively similar to that of a confined quasi-two-dimensional granular fluid [40].

Finally, the dependence of the magnitude of the first-order contribution |ζU | to the 
cooling rate is plotted in figure 9 for the same parameters employed in figures 6–8. As 
the coecient µ, ζU = 0 for elastic collisions. On the other hand, in contrast to the 
diusive heat conductivity, we observe that the influence of inelasticity on ζU is impor-
tant, specially at large densities. This means that the contribution of ζU to the cooling 
rate must be considered as the inelasticity increases.

6. Stability of the homogeneous steady state

The knowledge of the Navier–Stokes transport coecients and the cooling rate opens 
up the possibility of solving the hydrodynamic equations for n, U, and T for situations 
close to the homogeneous steady state. The solution of the linearized hydrodynamic 
equations allows us to study the stability of the homogeneous steady state. This is 
likely one of the nicest applications of the Navier–Stokes equations. In order to obtain 
them, one has to substitute the equation of state (54), the Navier–Stokes constitutive 
equations (67) and (68) for the pressure tensor and heat flux, respectively, and equa-
tion (79) for the cooling rate into the exact balance equations (16)–(18). The Navier–
Stokes hydrodynamic equations read

Dtn+∇ ·U = 0,� (85)
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DtUi + ρ−1∂ip = ρ−1∂j

[
η

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+ ηbδij∇ ·U

]
− γ∆U,

� (86)(
Dt + 2γ

(
1− θ−1

)
+ ζ(0)

)
T =

2

dn
∇ · (κ∇T + µ∇n) +

2

dn

[
η

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)

+ ηbδij∇ ·U
]
∂iUj − TζU∇ ·U− 2

dn
p∇ ·U.

�

(87)

Figure 6.  Dependence of the (scaled) shear viscosity η(α)/η(1) on the coecient 
of restitution α for d  =  3, T ∗

ex = 0.9, and three dierent values of the solid volume 
fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, η(1) refers to the shear 
viscosity coecient of a suspension with elastic collisions.

Figure 7.  Dependence of the (scaled) thermal conductivity κ(α)/κ(1) on the 
coecient of restitution α for d  =  3, T ∗

ex = 0.9, and three dierent values of the 
solid volume fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, κ(1) refers to 
the thermal conductivity coecient of a suspension with elastic collisions.
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As mentioned in several previous papers [37, 41], the general form of the cooling rate 
ζ should include second-order gradient contributions of the form ζn∇2n and ζT∇2T  in 
equation (87). Nevertheless, as shown for a dilute (dry) granular gas [42], given that 
the ratios ζn/µ and ζT/κ were shown to be very small for not very inelastic particles, 
the terms ζn∇2n and ζT∇2T  were neglected in the Navier–Stokes transport equations. 
We assume that the same happens for dense gases and hence, these second-order 
contributions can be neglected for practical purposes. Apart from this approximation, 
equations  (85)–(87) are exact to second order in the spatial gradients for a granular 
suspension at moderate densities.

The stability analysis of the homogeneous steady state was also carried out in [12]. 
On the other hand and as mentioned in section 1, the present work generalizes the 
results derived before [12] since it takes into account both an extra density dependence 
of the zeroth-order distribution f   (0) and the dependence of the friction coecient γ on 
the volume fraction φ (R(φ) �= 1). Thus, it is worth to assess to what extent the previ-
ous theoretical results [12] are indicative of what happens in the stability analysis of the 
homogeneous state when the above density dependencies for the transport coecients 
and the cooling rate are considered. This is the main motivation of this section.

To analyze the stability of the homogeneous solution, equations  (85)–(87) must 
be linearized around the homogeneous steady state. In this state, the hydrodynamic 
fields take the homogeneous steady values n ≡ const., Ts ≡ const., and Ug = U ≡ 0. 
For small spatial gradients, we assume that the deviations δyβ(r, t) = yβ(r, t)− yβ,s 
are small, where δyβ(r, t) denotes the deviations of the hydrodynamic fields 
{yβ; β = 1, · · · , d+ 2} = {n,U,T} from their values in the homogeneous steady state. 
Moreover, as usual we also suppose that the interstitial fluid is not perturbed and 
hence, Ug = U = 0.

It must be recalled that here, in contrast to the linear stability analysis for dry 
granular gases [37, 43, 44], the reference state is stationary and so one does not have 
to eliminate the time dependence of the transport coecients. On the other hand, in 

Figure 8.  Dependence of the (scaled) diusive heat conductivity nµ(α)/Tκ(1) on 
the coecient of restitution α for d  =  3, T ∗

ex = 0.9, and three dierent values of the 
solid volume fraction: φ = 0.01 (a), φ = 0.1 (b), and φ = 0.2 (c). Here, κ(1) refers to 
the thermal conductivity coecient of a suspension with elastic collisions.
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order to compare our results with those obtained for granular fluids [37], the following 
space and time variables are introduced:

τ =
1

2
nσd−1

√
Ts

m
t, r′ =

1

2
nσd−1r.� (88)

The dimensionless time scale τ  measures the average number of collisions per particle 
in the time interval between 0 and t. The unit length r′ is proportional to the mean free 
path of solid particles. As usual, a set of Fourier transformed dimensionless variables 
are then introduced by

ρk(τ) =
δnk(τ)

n
, wk(τ) =

δUk(τ)√
Ts/m

, θk(τ) =
δTk(τ)

Ts

,� (89)

where δykβ ≡ {ρk(τ),wk(τ), θk(τ)} is defined as

δykβ(τ) =

∫
dr′e−ik·r′δyβ(r

′, τ),� (90)

where here the wave vector k is dimensionless.
In terms of the above dimensionless variables, as expected, the d  −  1 transverse 

velocity components wk⊥ = wk −
(
wk · k̂

)
k̂ (orthogonal to the wave vector k) decou-

ple from the other three modes. Their evolution equation is

∂wk⊥

∂τ
+

(
2
√
2γ∗

s +
1

2
η∗k2

)
wk⊥ = 0,� (91)

where η∗ = η/σ1−d
√
mTs. The solution to equation (91) is

wk⊥(k, τ) = wk⊥(0) exp

[
−
(
1

2
η∗k2 + 2

√
2γ∗

s

)
τ

]
.� (92)

Figure 9.  Dependence of the magnitude of the first-order contribution |ζU | to 
the cooling rate on the coecient of restitution α for d  =  3, T ∗

ex = 0.9, and three 
dierent values of the solid volume fraction: φ = 0.1 (a), φ = 0.3 (b), and φ = 0.5 
(c).

https://doi.org/10.1088/1742-5468/ab3786


Transport coecients for granular suspensions at moderate densities

26https://doi.org/10.1088/1742-5468/ab3786

J. S
tat. M

ech. (2019) 093204

Since both the (reduced) friction coecient γ∗
s  and the (reduced) shear viscosity 

coecient η∗ are positive, then the transversal shear modes of the granular suspension 
are linearly stable.

The remaining (longitudinal) modes correspond to ρk, θk, and the longitudinal 

velocity component of the velocity field, wk‖ = wk · k̂ (parallel to k). These modes are 

coupled and obey the equation

∂δykβ(τ)

∂τ
+Mβµδykµ(τ) = 0,� (93)

where δykβ(τ) denotes now the set 
{
ρk,wk‖, θk

}
 and M is the square matrix

M =




0 ik 0

ikp∗Cp 2
√
2γ∗

s + ν∗
� k

2 ikp∗

2
√
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)
+ µ∗k2 2

d
ik
(
p∗ + d

2
ζU

)
2
√
2
(
2γ∗

s θ
−1
s + 1

2
ζ∗0 + ζ

(1)
0 θs∆θ

)
+D∗

Tk
2


 .

� (94)
Here, the (reduced) transport coecient ν∗

� , µ
∗, and D∗

T are defined as

ν∗
� =

1

2σ1−d
√
mTs

(
2
d− 1

d
η + ηb

)
, D∗

T =
κ

dσ1−d
√

Ts/m
, µ∗ =

ρ

dσ1−dTs

√
mTs

µ,� (95)

while p∗ ≡ ps/nTs = 1 + 2d−2(1 + α)χφ, ρ = mn, and the quantities Cp , Cχ, Cn, and Cγ 
are given by

Cp = 1 + φ
∂ ln p∗

∂φ
, Cχ = 1 + φ

∂ lnχ

∂φ
,� (96)

Cn = φ
∂χ

∂φ
∆χ + φ

∂λ

∂φ
∆λ, Cγ = 2

(
1− θ−1

s

)
γ∗
sφ

∂ lnR

∂φ
.� (97)

In the above equations, it is understood that the transport coecients η∗, ν∗
� , D

∗
T , and 

µ∗ are evaluated in the homogeneous steady state.
The longitudinal three modes have the form exp [Λ�(k)τ ] for � = 1, 2, 3, where Λ�(k) 

are the eigenvalues of the matrix M, namely, they are the solutions of the cubic equation

Λ3 +X(k)Λ2 + Y (k)Λ + Z(k) = 0,� (98)

where

X(k) =
√
2
(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)
+ k2 (D∗

T + ν∗
� ) ,� (99)

Y (k) =
(
2
√
2γ∗

s + k2ν∗
�

) [
k2D∗

T +
√
2
(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)]
+ k2p∗

(
Cp + ζU +

2

d
p∗
)
,

� (100)

Z(k) =

p∗k2
[
k2 (CpD

∗
T − µ∗) +

√
2Cp

(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)
− 2

√
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)]
.

� (101)
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In general, one of the longitudinal modes can be unstable for k < kh, where kh is 
obtained from equation (98) when Λ = 0, namely, Z(kh) = 0. The result is

k2
h =

√
2
2
(
ζ∗0Cχ + ζ

(1)
0 Cn + Cγ

)
− Cp

(
ζ∗0 + 2ζ

(1)
0 θs∆θ + 4γ∗

s θ
−1
s

)

CpD∗
T − µ∗ .� (102)

At a fixed value of the background temperature T ∗
ex, a careful analysis of the depend

ence of k2
h on both the coecient of restitution α and the volume fraction φ shows 

that k2
h is always negative. This means that there are no physical values of the wave 

numbers for which the longitudinal modes become unstable. Therefore, as in the case of 
the transversal shear modes, we can conclude that all the eigenvalues of the dynamical 
matrix M have a positive real part and no instabilities are found in the homogeneous 
steady state of a granular suspension.

In summary, the stability analysis performed here by including the extra density 
dependencies of the transport coecients shows no surprises relative to the earlier 
analysis [12]: the homogenous steady state of a moderately dense granular suspension 
is linearly stable. On the other hand, the dispersion relations derived here are dierent 
from those obtained in [12] since for instance the functional form of the heat flux trans-
port coecients diers in both approaches.

7. Conclusions

In this paper we have undertaken a rather complete study on the transport properties 
of granular suspensions in the Navier–Stokes domain (first-order in the spatial gradi-
ents). The starting point of our study has been the Enskog kinetic equation where the 
eect of the gas phase on the solid particles is via the introduction of two additional 
terms: (i) a viscous drag force term proportional to the velocity of particle and (ii) 
a stochastic Langevin-like term. While the first term attempts to model the friction 
of solid particles on the viscous surrounding gas, the second term mimics the kinetic 
energy gained by grains due to eventual collisions with the more rapid molecules of 
the interstitial gas. Both terms are characterized by the friction coecient γ (which is 
a function of the volume fraction φ) and the background temperature Tex (which is a 
known quantity of the model).

A previous attempt on the derivation of the Navier–Stokes transport coecients of 
dense granular suspensions was worked out by Garzó et al [12] by starting from a simi-
lar suspension model. However, the above work has two deficiencies: (i) it neglects an 
additional density dependence of the zeroth-order distribution f   (0) through the param
eter λ(φ) (defined in equation (31)), and (ii) it assumes that the friction coecient γ 
is constant. While the former simplification may be relevant in the evaluation of the 
diusive heat conductivity coecient (the transport coecient associated to the density 
gradient in the heat flux), the latter simplification may be not reliable as the suspen-
sion becomes denser. The present analysis incorporates both extra new ingredients (the 
density dependence of λ in f   (0) and γ = γ0R(φ), γ0 being constant) in the Chapman–
Enskog solution. The results show that while these two new density dependencies do 
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not formally aect the expression of the shear viscosity coecient obtained in [12], the 
forms of the heat flux transport coecients and the cooling rate obtained here dier 
from those derived before. These findings are likely the most significant contributions of 
the present work. In this context, this paper complements and extends previous papers 
on transport properties in granular suspensions [8, 11, 12].

Before considering inhomogeneous situations, the homogeneous steady state has 
been analyzed. As expected, after a transient period, the steady distribution function fs 
adopts the form (30) where the temperature dependence of the scaled distribution ϕs is 

encoded through the dimensionless velocity c = v/v0 (v0 =
√

2Ts/m being the thermal 

speed) and the (scaled) friction coecient γ∗
s = λ(φ)θ

−1/2
s  (θs = Ts/Tex being the reduced 

steady temperature). As in previous works on granular fluids driven by thermostats 
[12, 28], the above scaling diers from the one assumed for undriven granular fluids 
[22, 43, 44] where ϕs depends on T only through the scaled velocity c. Although the 
exact form of ϕs is not known, a good approximation of this distribution (at least in the 
thermal velocity region c ∼ 1) is provided by the leading Sonine approximation (36). 
By using this distribution, we have explicitly obtained the fourth cumulant a2,s; this 
coecient provides an indirect information on the deviation of ϕs from its Maxwellian 
form π−d/2e−c2. Once a2,s is known, the steady temperature θs is obtained by solving 
the cubic equation (42). In spite of the above approximations, the theoretical predic-
tions for θs and a2,s show an excellent agreement with Monte Carlo simulation results. 
As expected, the results obtained for homogeneous systems agree with those derived in 

[12] when one makes the mapping ξ∗s → 2λθ
−3/2
s  with R(φ) = 1.

Once the steady reference state is well characterized, we have considered the trans-
port processes occurring in granular suspensions with small spatial gradients of the 
hydrodynamic fields. In this situation, the Enskog kinetic equation has been solved by 
means of the Chapman–Enskog method [17] where only terms up to the first order in 
the spatial gradients have been retained (Navier–Stokes hydrodynamic order). As in 
previous papers on the application of the Chapman–Enskog method to granular sys-
tems [12, 15, 16, 42], the spatial gradients have been assumed to be independent of the 
coecient of restitution α. Thus, although the constitutive equations for the irrevers-
ible fluxes are limited to first order in spatial gradients, the corresponding transport 
coecients appearing in these equations apply a priori to arbitrary degree of collisional 
dissipation. This type of expansion diers from the ones considered by other authors 
[45–48] where the Chapman–Enskog solution is given in powers of both the Knudsen 
number (or spatial gradients as in the conventional scheme) and the degree of col
lisional dissipation δ ≡ 1− α2. The results reported here are consistent with the ones 
obtained in those papers [45–48] in the limit δ → 0.

As in the Chapman–Enskog solution obtained in [12], a subtle but important point 
is the choice of the zeroth-order approximation f   (0) in the perturbation expansion. 
Although we are interested in obtaining the transport coecients in steady state con-
ditions, for general small perturbations around the homogeneous steady state, the 
density and temperature are specified separately in the local reference state f   (0) and 
hence, it is not expected that the temperature is stationary at any point of the system. 

This means that ∂
(0)
t T �= 0 in the reference base state and consequently, the complete 

determination of the Navier–Stokes transport coecients requires to know for instance 
the temperature dependence of the fourth cumulant a2 of the unsteady reference state. 
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This of course involves the numerical integration of the dierential equation (56). This 
is quite an intricate problem that goes beyond the objective of this paper. Since we are 
essentially motivated by a desire for analytic expressions, the steady state conditions 

have been considered. On the other hand, given that ∂
(0)
t T �= 0 in the Chapman–Enskog 

scheme, the transport coecients are defined not only in terms of the hydrodynamic 
fields in the steady state but also there are contributions to the transport coecients 
[such as the derivatives ∆θ, ∆λ, and ∆χ defined by equations (57)–(59), respectively] 
accounting for the vicinity of the perturbed state to the steady state.

As usual, in order to obtain explicit expressions for the transport coecients, the 
leading terms in a Sonine polynomial expansion have been considered. These forms 
have been displayed along the section 5: the bulk ηb and shear η viscosities are given 
by equations (69) and (71), respectively, the thermal conductivity κ is given by equa-
tions (73) and (75), the heat diusive conductivity µ is given by equations (77) and (78) 
and the first-order contribution ζU to the cooling rate is given by equations (81) and 
(82). As said before, the expressions of ηb and η agree with those derived in [12] (once 
one takes R(φ) = 1) while the expressions of κ, µ, and ζU reduce to those obtained in 
[12] when the contributions coming from the derivatives ∆θ, ∆λ, and ∆χ are neglected.

In reduced forms, it is quite apparent that the Navier–Stokes coecients of the 
granular suspension exhibit a complex dependence on the (steady) temperature θs, the 
coecient of restitution α, the solid volume fraction φ, and the (reduced) background 
temperature T ∗

ex. In addition, figures 6–8 highlight the significant impact of the gas 
phase on the Navier–Stokes transport coecients η, κ, and µ since their α-dependence 
is clearly dierent from the one previously found for dry granular gases [15, 42].

As an application of the previous results, the stability of the special homogeneous 
steady state solution has been analyzed. This has been achieved by solving the lin-
earized Navier–Stokes hydrodynamic equations  for small perturbations around the 
homogeneous steady state. The linear stability analysis performed here shows no new 
surprises relative to the earlier work [12]: the homogeneous steady state is linearly 
stable with respect to long enough wavelength excitations (namely, long enough small 
spatial gradients). On the other hand, it is worthwhile to recall that the conclusion 
reached here for the reference homogeneous steady state diers from the one found for 
freely cooling granular fluids where it was shown [37, 42] that the resulting hydrody-
namic equations exhibit a long wavelength instability for three of the hydrodynamic 
modes. This shows again the influence of the interstitial fluid on the dynamics of solid 
particles.

It is quite apparent that the theoretical results obtained in this paper under certain 
approximations should be tested against computer simulations. This would allow us to 
gauge the degree of accuracy of the theoretical predictions. As happens for dry granu-
lar gases [39, 49–57], we expect that the present results stimulate the performance of 
appropriate simulations where the kinetic theory calculations reported here can be 
assessed. We also plan to undertake such kind of simulations for the case of the shear 
viscosity. More specifically, we want to perform simulations of granular suspensions 
under uniform shear flow where the Navier–Stokes shear viscosity might be measured 
in the Newtonian regime (very small shear rates). Another possible project for the next 
future is the extension of the present results to the relevant subject of multicomponent 
granular suspensions. Work along these lines will be worked out in the near future.
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Appendix A. Some technical details on the first-order solution

Up to the first order in the expansion, the velocity distribution function f   (1) verifies the 
Enskog kinetic equation

∂
(0)
t f (1) − γ

∂

∂v
·Vf (1) − γTex

m

∂2f (1)

∂v2
= −

(
D

(1)
t +V · ∇

)
f (0) + γ∆U · ∂f

(0)

∂v
+ J

(1)
E [ f , f ],

� (A.1)
where D

(1)
t ≡ ∂

(1)
t +U · ∇ and J

(1)
E [ f , f ] denotes the first-order contribution to the 

expansion of the Enskog collision operator in powers of the spatial gradients. In order 

to explicitly determine J
(1)
E [ f , f ] we need the results

χ (r, r± σ|n) → χ

(
1± 1

2
n
∂ lnχ

∂n
σ · ∇ lnn

)
,� (A.2)

f (0)(r± σ,v; t) →

f (0)(r,v; t)± f (0)(r,v; t)

[
n
∂f (0)

∂n
σ · ∇ lnn+ T

∂f (0)

∂T
σ · ∇ lnT − ∂f (0)

∂Vi

(σ · ∇)Ui

]
,

�

(A.3)

where χ is obtained from the functional χ(r, r± σ|n) by evaluating all density fields at 

n(r, t). Taking into account equations (A.2) and (A.3), J (1)
E  reads [12]

J
(1)
E [ f , f ] = −K

[
n
∂f (0)

∂n

]
· ∇ lnn− 1

2
φ

(
∂ lnχ

∂φ

)
K
[
f (0)

]
· ∇ lnn−K

[
T
∂f (0)

∂T

]
· ∇ lnT

+
1

2
Ki

[
∂f (0)

∂Vj

](
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ ·U

)
+

1

d
Ki

[
∂f (0)

∂Vi

]
∇ ·U− Lf (1),

� (A.4)

where L is defined by equation (65) and the operator K[X] is given by

K[X] = σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g12) (σ̂ · g12) σ̂

[
α−2f (0)(v′′

1)X(v′′
2) + f (0)(v1)X(v2)

]
.� (A.5)

As already noted in [12], upon obtaining equation (A.4) use has been made of the sym-

metry property Ki[∂Vj
f (0)] = Kj[∂Vi

f (0)] that follows from the isotropy of the zeroth-
order solution. Thus we are able to separate the contributions from the flow field 
gradients into independent traceless and diagonal components.

The macroscopic balance equations to first order in the gradients are
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D
(1)
t n = −n∇ ·U, D

(1)
t U = −ρ−1∇p− γ∆U, D

(1)
t T = − 2p

dn
∇ ·U− ζ(1)T ,

� (A.6)
where ζ(1) is the first order contribution to the cooling rate. Since the cooling rate is 
a scalar, corrections to first-order in the gradients can arise only from ∇ ·U since ∇n 

and ∇T  are vectors and the tensor ∂jUi + ∂iUj − 2
d
δij∇ ·U is a traceless tensor. Thus, 

ζ(1) can be written as

ζ(1) = ζU∇ ·U.� (A.7)
The unknown quantity ζU is a functional of the first-order distribution f (1). A more 
explicit form for ζU is obtained by expanding equation (21) to first-order in gradients. 

This yields equation (80) where ζ
(0)
1  and ζ

(1)
1  are defined by equations (81) and (B.16), 

respectively.
The use of the balance equation (A.6) allows us to evaluate the right-hand side of 

equation (A.1). The combination of these results with the forms (A.4) of the Enskog 

collision operator J
(1)
E  and (80) of ζU leads to the expression

(
∂
(0)
t + L

)
f (1) − γ

∂

∂v
·Vf (1) − γTex

m

∂2f (1)

∂v2
− ζ

(1)
1 T

∂f (0)

∂T
∇ ·U = A · ∇ lnT +B · ∇ lnn

+ Cij
1

2

(
∂Ui

∂rj
+

∂Uj

∂ri
− 2

d
δij∇ ·U

)
+D∇ ·U,

� (A.8)
where

A(V) = −VT
∂f (0)

∂T
− p

ρ

∂f (0)

∂V
−K

[
T
∂f (0)

∂T

]
,� (A.9)

B(V) = −Vn
∂f (0)

∂n
− p

ρ

(
1 + φ

∂ ln p∗

∂φ

)
∂f (0)

∂V
−K

[
n
∂f (0)

∂n

]
− 1

2
φ

(
∂ lnχ

∂φ

)
K
[
f (0)

]
,� (A.10)

Cij(V) = Vi
∂f (0)

∂Vj

+Ki

[∂f (0)

∂Vj

]
,� (A.11)

D(V) =
1

d

∂

∂V
·
(
Vf (0)

)
+

(
ζ
(0)
1 +

2

d
p∗
)
T
∂f (0)

∂T
− f (0) + n

∂f (0)

∂n
+

1

d
Ki

[∂f (0)

∂Vi

]
.

�

(A.12)

Here, p∗ ≡ p/(nT ). The structure of equations (A.8)–(A.12) is formally equivalent to 
the ones derived for driven granular gases [12]. The only dierence lies on the depend
ence of the zeroth-order solution f   (0) on density and temperature.

As for dry granular gases [15], the solution to the kinetic equation (A.8) is given by 
equation (60) where the unknown functions A, B, Cij, and D are determined by solv-
ing equation (A.8). Since the gradients of the hydrodynamic fields are all independent, 
substitution of (60) into equation (A.8) yields a set of linear, inhomogeneous integral 
equations. In order to obtain them, one needs the result
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∂
(0)
t ∇ lnT =∇∂

(0)
t lnT = ∇

(
2γ

(
θ−1 − 1

)
− ζ(0)

)
= −

[
ζ(0)

(
1 + φ

∂ lnχ

∂φ

)
+ χφ

∂χ

∂φ

∂

∂χ

(
ζ(0)

χ

)

− λ

(
1− φ

∂ lnR

∂φ

)
∂ζ(0)

∂λ
− 2

(
θ−1 − 1

)
γφ

∂ lnR

∂φ

]
∇ lnn

−
(
2γθ−1 +

1

2
ζ(0) + ζ(0)θ

∂ ln ζ∗0
∂θ

)
∇ lnT .

�

(A.13)

The integral equations  (61)–(64) can be easily obtained after taking into account  
equation (A.13) and the steady state condition Λ(0) = 0.

Appendix B. Kinetic contributions to the transport coecients

In this Appendix we give some details on the determination of the kinetic contributions 
to the transport coecients η, κ, and µ as well as the first-order contribution ζU to the 
cooling rate. Since all these quantities are obtained in the steady state, the subscript s 
appearing along the main text will be omitted here for the sake of brevity.

The kinetic part of the shear viscosity ηk is defined as

ηk = − 1

(d− 1)(d+ 2)

∫
dv Dij(V) Cij(V),� (B.1)

where

Dij = m

(
ViVj −

1

d
V 2δij

)
.� (B.2)

As usual, to get ηk one multiplies both sides of equation (61) by Dij and integrates over 
velocity. The result is

(2γ + νη) ηk = nT − 1

(d− 1)(d+ 2)

∫
dVDij(V)Ki

[
∂f (0)

∂Vj

]
,� (B.3)

where

νη =

∫
dvDij(V)LCij(V)∫
dvDij(V)Cij(V)

,

� (B.4)
and [15, 16, 38]

∫
dVDij(V)Ki

[
∂f (0)

∂Vj

]
= 2d−2(d− 1)nTχφ(1 + α)(1− 3α).

� (B.5)
The expression of ηk can be easily obtained when one takes into account equation (B.5) 
and the explicit form (72) of νη. This latter expression is obtained from equation (B.4) 
by considering the leading terms in a Sonine polynomial expansion of the unknown 
Cij(V).
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The kinetic parts κk and µk are defined, respectively, as

κk = − 1

dT

∫
dvS(V) ·A(V),� (B.6)

µk = − 1

dn

∫
dvS(V) ·B(V),� (B.7)

where

S(V) =

(
m

2
V 2 − d+ 2

2
T

)
V.� (B.8)

As in the case of ηk, κk is obtained by multiplying both sides of equation (61) by S(V) 
and integrating over v. The result is

(
νκ + γθ−1 − 2ζ(0) − ζ(0)θ

∂ ln ζ∗0
∂θ

)
κk = − 1

dT

∫
dVS(V) ·A,� (B.9)

where use has been made of the steady state condition (29) and

νκ =

∫
dvS(V) · LA(V)∫
dvS(V) ·A(V)

.� (B.10)

The right hand side of equation (B.9) can be computed when one takes into account 
equation (A.9) and the relationship (53). After some algebra, one gets

− 1

dT

∫
dVS ·A =

1

dT

{
d(d+ 2)

2m
nT 2 (1 + 2a2 + θ∆θ)−

1

2

∫
dvS(V) ·K

[
∂

∂V
·
(
Vf (0)

)]

+
θ

a2
∆θ

∫
dvS(V) ·K

[
f (0) − fM

]}
,

�
(B.11)

where fM(c) = nπ−d/2v−d
0 e−c2 and use has been made of the Sonine approximation (36) 

to f   (0) and the property (53). The first collision integral involving the operator K has 
been calculated in previous works [15, 16, 38] and the result is
∫

dVS(V) ·K
[

∂

∂V
·
(
Vf (0)

)]
= −3

8
2dd

nT 2

m
χφ (1 + α)2 [2α− 1 + a2(1 + α)] .

�

(B.12)

The second collision integral in (B.11) has not been evaluated before. After some alge-
bra, one gets

∫
dVS(V) ·K

[
f (0) − fM

]
=

3

32
2dd

nT 2

m
χφ (1 + α)3 a2.

� (B.13)
With the above results, κk can be finally written in the form (75). As in the case of νη, 
the (reduced) collision frequency νκ can be well estimated by considering the leading 
Sonine approximation to A.

The evaluation of µk follows similar mathematical steps to those made for κk since 
one has to multiply both sides of equation (62) by S(V) and integrate over v. In order 
to get its explicit form (78), one needs the partial results

https://doi.org/10.1088/1742-5468/ab3786


Transport coecients for granular suspensions at moderate densities

34https://doi.org/10.1088/1742-5468/ab3786

J. S
tat. M

ech. (2019) 093204

− 1

dn

∫
dVS ·B =

d+ 2
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T 2

m

[
a2 − λ

(
1− φ

∂ lnR

∂φ

)
∆λ + φ

∂χ

∂φ
∆χ

]

− a−1
2

dn

[
λ

(
1− φ

∂ lnR

∂φ

)
∆λ − φ

∂χ

∂φ
∆χ

] ∫
dVS(V) ·K

[
f (0) − fM

]

+
1

dn

(
1 +

1

2
φ
∂ lnχ

∂φ

)∫
dVS(V) ·K

[
f (0)

]
,

�

(B.14)

∫
dVS(V) ·K

[
f (0)

]
=

3

8
2dd

nT 2

m
χφ (1 + α)

[
α (α− 1) +

a2
6

(
10 + 2d− 3α + 3α2

)]
.� (B.15)

The expression (78) can be derived by using equations (B.14) and (B.15).
Finally, the contribution ζ

(1)
1  to the cooling rate ζU is defined as

ζ
(1)
1 =

1

2nT

π(d−1)/2

dΓ
(
d+3
2

)σd−1χm
(
1− α2

) ∫
dV1

∫
dV2g

3f (0)(V1)D(V2),� (B.16)

where the unknown function D(V) is the solution of the linear integral equation (64). 
As before, an approximate solution to (64) can be obtained by taking the Sonine 
approximation

D(V) → eD fM(V) F (V),� (B.17)
where

F (V) =
( m

2T

)2

V 4 − d+ 2

2

m

T
V 2 +

d (d+ 2)

4
.� (B.18)

The coecient eD is given by

eD =
2

d (d+ 2)

1

n

∫
dVD(V)F (V).� (B.19)

Substitution of equations (B.17) into (B.16) gives

ζ
(1)
1 =

3 (d+ 2)

32d
χ
(
1− α2

)(
1 +

3

32
a2

)
ν0eD,� (B.20)

where ν0 = nT/η0. The coecient eD is obtained by substituting the Sonine solution 
(B.17) into the integral equation (64), multiplying it by the polynomial F (V) and inte-

grating over velocity. After some algebra one gets the expression (82) for ζ
(1)
1 .
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