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The kinetic models proposed by Garz6 et al. [ Phys. Fluids A 1,380 ( 1989) ] and Gross and 
Krook [ Phys. Rev. 102,593 ( 1956) ] are used to study diffusion in uniform shear flow. The 
kinetic equations are solved by means of a generalized Chapman-Enskog expansion for 
Maxwell molecules. The main peculiarity of the method is that the successive approximations 
to the velocity distribution functions retain all orders in the shear rate. Two cases are 
considered, namely the self-diffusion and the tracer diffusion in a system under shear flow. The 
relevant transport properties and the distribution functions are explicitly obtained. A 
comparison with previous results derived from the Boltzmann equation and between both 
models is carried out. 

I. INTRODUCTION 

The theoretical description of transport processes in di- 
lute binary gas mixtures is well developed for states near 
equilibrium. For such states, the Boltzmann equations may 
be solved for a general interaction law by using the standard 
Chapman-Enskog method,’ except probably in the case of 
disparate masses, where a slight modification of the method 
is required.” The results obtained within the linear regime 
indicate, in agreement with linear irreversible thermody- 
namics,3 that a physical problem in which the mixture is 
simultaneously subjected to velocity and concentration gra- 
dients, the diffusive flux that obeys Fick’s law is not affected 
by the presence of the velocity gradient. However, much less 
is known concerning diffusion in far-from-equilibrium states 
and the question arises as to whether outside the realm of 
linear response diffusive motion may be disturbed, for in- 
stance, by shearing motion. 

Recently, it has been shown by different means that the 
above question may be answered affirmatively. On the one 
hand, in the case of mechanically identical Maxwell mole- 
cules and in the uniform shear flow state, Marchetti and 
Dufty” and Garz6 et al.,’ derived from the Boltzmann equa- 
tion an expression for the nonlinear shear-rate-dependent 
self-diffusion tensor. Subsequently, Garz6 and L6pez de 
Haro6 generalized such an expression for binary mixtures of 
Maxwell molecules with one component in tracer concentra- 
tion. Their expression was also shown to reduce to previous 
results derived with a Green-Kubo formalism’ in the 
Fokker-Planck limit.’ On the other hand, Cummings et al.’ 
have obtained a strain-rate-dependent diffusion tensor from 
molecular dynamics simulations in a Lennard-Jones fluid in 
shear iiow. 

In contrast with what occurs in the linear regime, for 
uniform shear flow it is a very difficult task to find explicit 
solutions to the Boltzmann equations even if one restricts 
oneself to the case of the Maxwell interaction law. Therefore, 

“‘On leave from Department0 de F&a, Universidad de Extremadura. 
06071-Badajoz, Spain. 

since the general description of transport processes in the 
mixture requires knowledge of the velocity distribution 
functions, a possible way to avoid the mathematical difficul- 
ties embodied in the Boltzmann description is to use kinetic 
models. While keeping the main physical properties of the 
Boltzmann equations, in addition these models should allow 
for the explicit derivation of the distribution function. This 
idea has been widely exploited in the past and the usefulness 
of such an approach has been demonstrated” in the case of a 
single component with the Bhatnagar-Gross- 
Krook( BGK) equation. 

The aim of this paper is twofold. On the one hand, we 
will assess the virtues of two kinetic models’1~‘2 for dilute gas 
mixtures of Maxwell molecules to describe self- and tracer 
diffusion in uniform shear flow. This will be achieved by 
comparing with the exact results derived previously from the 
Boltzmann equations. The motivation for considering these 
two models is that one is thought to be suitable for particles 
of similar masses while the other seems to be more adequate 
for disparate masses. On the other hand, in addition, we will 
find explicitly for both models the velocity distribution func- 
tions and compute the contribution of the tracer to the heat 
flux. 

The paper is organized as follows. In Sec. IIt we provide 
a brief account of the description of uniform shear flow at the 
level of the BGK equation. In Sec. III, we present the two 
kinetic models to be used in the rest of the paper. Section IV 
deals with the problem of self-diffusion under uniform shear 
Bow while Sec. V addresses the case of tracer diffusion. Fin- 
ally, we close the paper in Sec. VI with a discussion of the 
results and some concluding remarks. 

II. UNIFORM SHEAR FLOW 

Let us consider a single gas under uniform shear flow 
(USF). This state is characterized by a linear profile of the x 
component of the local velocity u along they axis, a constant 
density II, and a uniform temperature T: 

ui = uvrj, aii = aSiJjy , (1) 
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n = const , (2) 
VT= 0, (3) 

where a is the (constant) shear rate. The USF can be main- 
tained in the system, provided that the temperature increases 
in time (viscous heating) according to the equation 

%-‘s- 
aPxy = 0, (4) 

B 
where Px,, is the xy component of the pressure tensor 

P=m dv(v-u)(v-Ll)J: 
s 

(5) 

Here, m is the molecular mass andfis the velocity distribu- 
tion function (VDF) . The USF is simple enough to allow for 
a complete description when the BGK equationi is used. It 
is adequate for this state to introduce the velocity rest frame 
defined by 

V=v-a-r. (6) 
In this new frame, the BGK equation corresponding to this 
problem is given by 

( 
a -- 
at a& $-)f= -df-fLEL 

I 
where now the USF is described by a homogeneous distribu- 
tion function. It must be pointed out that this feature is par- 
ticular to the USF problem and, of course, serves to greatly 
simplify the analysis. In Eq. (7), fLE is the local equilibrium 
distribution function defined as 

fLE = n ( m/2?rk, T ) 3’2 exp ( - m V ‘/2k, T ) (8) 
and Y is an effective velocity-independent collision frequen- 
cy. In the particular case of Maxwell molecules, for which Y 
only depends on the density n, the USF has a clearer mean- 
ing as an arbitrary far from equilibrium state. Therefore, in 
the following, we shall restrict ourselves to the Maxwell in- 
teraction. Moreover, of the many solutions that, undoubted- 
ly, an equation as highly nonlinear as Eq. (7) has, we will 
only be concerned with the so-called normal ones in which 
there is no dependence on the initial conditions and the time 
dependence of the VDF is governed by the time dependence 
of the temperature T. The main transport coefficients in this 
problem are related with the nonzero components of the 
pressure tensor. Taking moments in Eq. (7)) one obtains in 
the long time limit (hydrodynamic regime) i4 

P,, =p(l + 3;1)/(1 +A), (9) 
P,,-= P, =p/(l + 11, (10) 

pxy = 9vx = ~ @(A /a*), (11) 
where p = nk, T is the pressure, a* = a/y is the reduced 
shear rate, and 

/l(a*) =4sinh”[;cosh-I(1 +9a**)]. (12) 
These results are identical to those given by the Boltzmann 
equation.” In addition, the BGK equation allows us to ex- 
plicitly obtain the VDF representing the normal solution. 
Thus one expects that, after a transient period, the VDF 
reaches a form independent of the initial conditions. In the 
long time limit, the solution to Eq. (7) can be written in the 
form 

f WJ) = (l/n) [2k,T(t)/m]3’2f*(Q, 
(13) 

where a natural velocity scale is introduced by the tempera- 
ture 

6 = (2k, T/m) - “=V, (14) 
and the reduced VDF f * is constant in time and represents 
the normal solution to the BGK equation for Maxwell mole- 
cules under USF. It is given by 

f *(&a*) = c312 La d-rexp[ - (1 - +L.)r] 

X exp( - e+$,*g) , (15) 
where I?, is the matrix of components 

ri/ = 8, + a2?SiySjy + a7( S,S, + SiySjx ) . (16) 
According to Eq. ( 15), one may conclude that, in the USF 
case, the normal state can be seen as equivalent to a steady 
state. The results derived in this section will be used later 
when diffusion takes place. 

111. KINETIC MODELS 

We consider now a binary mixture. In the low-density 
limit, the time evolution of the system is usually described by 
the set of two coupled nonlinear Boltzmann equations:’ 

where & (r,v,t) is the one-particle distribution of species i 
and I$ [Fiji ] (ij = 1,2) is the nonlinear Boltzmann colh- 
sion operator. The terms that appear on the right-hand side 
of Eq. ( 17) represent the self- and cross-collisions, respec- 
tively. They conserve the number of particles of each species, 
the total momentum, and the total energy. In terms of the 
distribution functions, the densities of these quantities are 
defined by 

ni = 
s 

dvf, (i= 1,2), 

PU = i$l J dv mid = $, pini, 

(18) 

(19) 

L L  in 1 J L 

where mi is the mass of a particle of species i. Here, 
pi = mini is the mass density of species i, p = p, + p2 is the 
total mass density, and n = n, + n2 is the total number den- 
sity. Further, Eqs. (19) and (20) define the local velocity u 
and the local temperature T of the mixture, respectively. 
From Eq. (20), one may define also a local “temperature” 
Ti for each species in the form 

3 
-T 

n,k, Ti = 
s 

dv-$(v-ui)‘& (i= 1,2). (21) 

It must be noticed that the bilinear character of the Boltz- 
mann collision operator allows that the total distribution 
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function f = Zif obeys itself the familiar Boltzmann equa- 
tion when a system of mechanically identical particles (e.g., 
in the case of self-diffusion) is considered. 

However, due to the complex structure of Eqs. ( 17), for 
a general interaction law between the particles it is a very 
hard task to solve explicitly for the A. This question has 
motivated the search of several model kinetic equations that 
preserve the main physical properties of the full Boltzmann 
equations and whose solution can be obtained. As we said 
previously, for a single-component gas, the BGK equation 
has been shown to be very useful. In the same way, for a 
binary mixture the general idea is to replace the correct colli- 
sion integrals Kg by a simple relaxation term of the form 

- r;/(f, -fi> 7  (22) 
where vii is an effective collision frequency of a particle of 
species i with a particle of speciesj. It has the general proper- 
ty n,vg = nly,il On the other hand, f i is a reference distribu- 
tion function to be determined by requiring that Eq. (22 j 
keeps the relevant physical properties of the Boltzmann op- 
erator. One of the most widely used kinetic equations is the 
model proposed by Gross and Krook ( GK model j , ” where 

f f is defined by 

f i = n, (m,/2s-k, T,) ‘j2 

x eXp[ - (m,/=&) (V - Uu)=], (23) 
where uQ and T, are given by 

Ui/ = (mfui + mjuj)/(mi + q), (24) 

Tg~Ti+2[mimj/(mi+m~)“][(IT;:-~) 

+ (mj/6k,) (ui - ui)‘]. (25) 
It is worth remarking that the above terms are explicitly 
obtained when one requires that the collisional transfer of 
momentum and energy given by Eq. (22) are the same as 
those of the Boltzmann equation for Maxwell moleculesi 
This suggests that one may identify the effective collision 
frequency vi/ by 

vu = Anj [K,i (mi + mj)/mimj] */=, 

where A is a pure number and Kii is a proportionality con- 
stant in the force law. Here, we will assume for simplicity 
that K,, is the same for all possible interactions. Models” 
based on Eq. (23) have been usually used to study linear 
transport properties in the case of disparate-mass binary 
mixtures. The form (23) satisfies the conservation laws, but 
it, however, does not reduce to a closed equation (BGK 
model) for the total distribution function f in the case of 
mechanically identical particles (m, = m2 j . This deficiency 
is due basically to the highly nonlinear character off g in Eq. 
(23). 

In order to avoid the above problem, recently Garzo et 
al. (GSB model) I2 have suggested a model in which a new 

f i is proposed, namely 

f 5  = n, (m,/2rk, T ) 3’2 

xexp( -m,V’/2k,T)(1+Aii+BgV+CgV2), 
(27) 

where V = v - u is.the peculiar velocity. The parameters 
A,, B,, and C, are determined by requiring the same condi- 
tions as those of the GK model. However, now the conserva- 
tion conditions are sufficient to assure that the GSB model 
yields to the BGK equation in the mechanically identical 
particles case. To this end, it is only necessary that the colli- 
sion frequency vi/ verities the identity 

v= i vu, (28) 
j=l 

for i = 1,2. Relation (28), which defines the total collision 
frequency of the system introduced in Eq. (7), is satisfied in 
the case of Maxwell molecules. Further, from the Boltz- 
mann collisional transfer of momentum and energy for Max- 
well molecules, one obtains 

A, = - 3(k,T/mi)Cg, (29) 

(30) 

(31) 

where uij and Tu are defined by Eqs. (24) and (25). The 
GSB model resembles some kind of linearization around a 
local equilibrium defined by the hydrodynamic fields of the 
mixture seen as a whole. Thus the global effect of the colli- 
sions on particles of species i is to drive the system toward the 
local equilibrium state of the mixture. The details of the 
collisions with speciesj are considered through the param- 
eters defined in Eqs. (29)-(31). In this way, although the 
model is not apriorirestricted to any rangeof mass ratio, one 
expects that it is suitable for systems of like particles. 

The combination of the GK and GSB models may be 
useful to study general transport problems when no restric- 
tion on the mass ratio must be taken into account. Here, both 
models will be used as a starting point to compare our results 
with those previously derived from the Boltzmann equation. 

IV. SELF-DIFFUSION IN USF 

We assume now that we have a system of mechanically 
equivalent particles, some of which are tagged. This situa- 
tion is appropriate for studying a self-diffusion problem. We 
further consider that our system, as a whole, is in USF, i.e., it 
is in a state arbitrarily far from equilibrium. This implies that 
the VDF f corresponding to this system obeys Eq. (7). Let 

f, (r,v;t) be the VDF of tagged particles. Since, as mentioned 
in Sec. II, for the particular situation we want to deal with 
the GK model presents some problems, we will only treat the 
GSB model here. According to Eqs. (27)-( 3 1 ), in the rest 
frame of reference and for identical masses, after some alge- 
bra, we find that fi satisfies the equation 

&f,+(v,+a,rj)~fi-a,v,afl 

I av, 
= -+J(f, -(p>, (32) 

where Y is defined by Eq. (28) and r$ is a reference function 
given by 
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X(p~--n~k,T) LEe If 
Here, 

j, = 
s 

dv Vfl (34) 

is the flux of tagged particles and 

p,=+ dvmV’f, 
s 

is a partial pressure of tagged particles. 

(35) 

It is worth remarking that the kinetic equation (32) 
holds for any relative number of tagged particles. On the 
other hand, the collision term (right-hand side) in Eq. (32) 
mimics well the Boltzmann operator for the same problem 
since it only depends on the variables of tagged particles and 
of the mixture as a whole. Thus, since the function f given by 
Eq. ( 13) is known, Eq. (32) becomes a linear equation in fi. 
Our aim here is to determine the self-diffusion coefficient. 

In order to solve Eq. (32)) we will use a perturbative 
scheme similar to the Chapman-Enskog method, but taking 
the USF state given by Eqs. ( 13) and (15) as the zeroth- 
order reference state.5 In this way, the successive approxi- 
mations will be highly nonlinear functions of the shear rate. 
Assuming that the system has reached the hydrodynamic 
state, we look for solutions of the form 

*A =f;“’ + Ef I” + E’f :=’ + . . . . (36) 
where his an auxiliary parameter related with the gradient of 
the concentration of tagged particles. It is worth emphasiz- 
ing again that the different approximations f I”’ are of order 
k in E, but retain all hydrodynamic orders in the shear rate. 
Similarly, the time derivatives on the left-hand side of Eq. 
(32) can be computed from the hydrodynamic balance 
equations. They are given by 

a znl+a,rj-&n,=O, I 
&T-ih~= 0 

in the zeroth-order approximation, and 

a 

(37b) 

- n1 = - Veji”- 11, 
at k>l, (38a) 

&T=O, k>l (38b) 

in the k th approximation. Moreover, the function (p is ex- 
panded in a similar way as 

q$(O) = [ : + gV.jkO) 

(39a) 

fk)= [ ~V”j~k’+~(~-~~ik)~~B, k>l. 
B 

WJb) 

Here, j!“’ and pik’ are the k th approximations to j, and p1 
computed from f I”‘. Notice that, upon writing Eqs. (37) 
and (38)) we have again considered that the system seen as a 
whole is in USF. Following the well-known procedure of the 
Chapman-Enskog method, one obtains in the lowest order 
the solutio? 

f I”‘(r,V;t) = [n,(r,t)/nlfW,t), (40) 
where f is given by Eq. ( 13). From Eq. (40)) it follows that 
ji”) = 0, and pi”) = n,k, T. To lirst order, one obtains the 
equation 

&f I” + agq -$f:“‘-auv/-$fY)+vfI’) 

= VfLE 
[ 

Ei-jil) + -..L(g- +)il)] 

-fqg. 

Taking moments in Eq. (41), one obtains pi” = 0 and the 
flux of tagged particles obeys the differential equation 

%$: + AvT--$--$~’ + ai&:’ zz 
k 

- $j;j’, (42) 

where we have used Eqs. (37a) and (37b) and Pik is given by 
Eqs. (9)-( 11). The hydrodynamic solution (long time lim- 
it) to Eq. (42) can be written in the form 

a jj;) = - D, - y1 
ark ” (43) 

where a self-diffusion tensor, rather than a scalar, appears. It 
is given by 

2&T I 
D, z-p 

mv 1+2;1 
6, -2ag 

1 + 21 
pg, (44) 

where P$ = P&/p. Expression (44) iS a generalization of 
the usual Fick’s law (valid in the absence of shear), since it 
has been derived keeping the first order in the gradient of the 
concentration of tagged particles while retaining all the or- 
ders in the shear rate. The effect of the shear flow is to induce 
anisotropy in the self-diffusion of particles. For a = 0, 
D, = DS,, with D = 2k, T/mv, i.e., we recover the usual 
self-diffusion coefficient given by the GSB equation.” 

In an attempt to carry out a comparison with the Boltz- 
mann equation results, in Fig. 1 we have plotted D zk/3 vs 
a*. Here, to parallel Ref. 5, D $ = D,/D. Figure 1 shows a 
qualitative agreement between both results, in particular it is 
worth noticing that the value of this coefficient decreases as 
the shear rate increases. This assertion contrasts with recent 
results obtained from molecular dynamics simulations in a 
Lennard-Jones fluid, where the opposite behavior is ob- 
served.’ The latter may be due to the fact that the Lennard- 
Jones interaction includes an attractive part or that the simu- 
lations were carried out far from the dilute gas limit, where 
the applicability of the Boltzmann and GSB equations is not 
valid, or to the combination of both aspects. 

It still remains to obtain the first Chapman-Enskog ap- 
proximation f . I*) Here, we are interested in the long time 
limit solution to Eq. (41). For simplicity, we take the gradi- 
ent of concentration orthogonal to the shear rate 
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FIG. 1. Shear rate dependence ofthe trace D h/3 of the dimensionless self- 
diffusion tensor. The solid line corresponds to the GSB model and the 
dashed line refers to the Boltzmann equation. 

(&,/ax = 0), and so, according to the balance equation 
(37a), n, is a t ime-independent variable. In the following, 
we will restrict ourselves to this geometry. Neglecting the 
term involving the initial conditions, the solution is 

fl”(r,W  = - 
s 

‘&exp[ - ~(t - r) 1  
0 

X exp 
( 

a (t--r&q - av, > 

X [fL ,dv;~)V~ -tfW ,~)~] -$. 
(45) 

Equation (45) provides the general solution and not just the 
normal solution. To obtain the latter, we must take the limit 
t-+ CO accounting for the temporal behavior of the tempera- 
ture. For that purpose, it is convenient to introduce the di- 
mensionless velocity 6 defined by Eq. ( 14) and the reduced 
function h * (r,V;t) given by 

h *(r,V;t) = (l/n,) [2k,T(t)/m]3’z~11)(r,V;t). 

(46) 
Inserting now the expression (45) in Eq. (46), and after 
some algebra, one obtains 

lim h *(r,V;t) = cp(g;a*>*~*, 
l-m (47) 

where we have introduced the dimensionless gradient 

and the vectorial function cp given by 

(48) 

X (& + a,$ck~)D; exp( - &&I’,$). 
(49) 

Here, we have made use of the identity 

evkVy &)s(V,,V,,V,) =kc( V, f a~v,,v,,K). 

(50) - 
Equation (49) can be seen as the normal [stationary) repre- 
sentation of the Chapman-Enskog first approximation. Fur- 
thermore, it may be considered as a generalization of the 
Navier-Stokes distribution function in the self-diffusion 
problem. As a matter of fact, when a = 0, one recovers the 
usual results given by the linear BGK transport theory. 

V. TRACER DFFUSION IN USF 

We will now consider a binary mixture in USF in which 
the masses of both species are arbitrary. Our aim is to genera- 
lize the results derived in Sec. IV to this kind of system. 
However, due to the mathematical difficulties embodied in 
this problem, it does not seem possible to obtain a general 
description of diffusion in far-from-equilibrium situations. 
Thus we have chosen a case that shares the simplicity of the 
self-diffusion problem and yet introduces a new ingredient 
into the dynamics (the mass ratio). This case corresponds to 
the limit in which one of the components, say 1, is present in 
tracerconcentration, i.e., n, <rr2=n orn,/nzg 1. Our choice 
is mainly motivated by the recent results obtained in this 
limit from the Boltzmann equation.“‘8 

In the tracer limit, one expects that the excess compo- 
nent 2 is not appreciably perturbed by the collisions with 
particles of component 1, and so one may assume that it is 
always in USF. On the other hand, the particles of species 1 
are so few that their mutual interactions can be neglected. 
W ith these assumptions, the kinetic equations governing the 
nonequilibrium dynamics6*s reduce to 

&f,+(v,+a~rj)~f;-a~~~fi 

i I 

= -*‘12(fi -42) 
for component 1, and 

(51) 

&L + ( vi + a,rj) $f2 - aij V, a,fi 
1 av, 

= -*32(frJ%)= -%*(f2-f:E) (52) 
for component 2. In Eq. (52), we have introduced 

f iE = n, (m,/2z-k, T  ) ‘j2 exp ( - m2 V2/2kB T  ), (53) 
and the last identity comes from the fact that, in the tracer 
limit, u2 and T, coincide with the velocity and the tempera- 
ture of the mixture seen as a whole. Therefore, from the 
mathematical point of view, the problem is analogous to the 
one involving tagged particles since f2 verifies the BGK 
equation corresponding to USF and its explicit expression is 
known. The task now is to solve Eq. (5 1) using the GSB and 
GK models. 
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A. Results from the GSB model 

As pointed out above, the GSB model is introduced into 
Eq. (5 1) by taking as the reference function the one given by 
Eq. (27). In the same way as in the case of the self-diffusion 
calculations, to solve Eq. (51) we shall carry out a Chap- 
man-Enskog-like expansion around a time nonequilibrium 
state with arbitrary a. However, now the reference state does 
not correspond to the usual USF. This is due to the fact that 
the collision frequency Y,~ depends on the mass ratio 
p = m ,/m , and consistently one must take different tem- 
peratures for both species in the lowest order. By expanding 
the VDF and collecting terms of the same order in the gradi- 
ent concentration, one obtains up to first order the equations 

&f I” + ( V;: + agrj) $f:‘) - avv/ af il) 
L av, 

+Y12f~t)=Y,2fLEin,V.j11), (55) k=3(~)lll[[l-jM(1_MlL/1 
1+/J P 

where M= m ,m,/(m, + m2>’ =p/(l +,u)‘. It must be 
pointed out that the form of the right-hand sides of Eqs. (54) 
and (55) has been suggested by the parallel recent results 
derived using the Boltzmann equation.6 Clearly, these as- 
sumptions must be verified later. Further, in the tracer limit 
one has T2 (t) N r(t) exp (/2v,,t) with il given by an expres- 
sion similar to Eq. ( 12) in which now a* = a/vzP 

For long times, the formal solution to Eq. (54) is given 
by f 
f I”’ (r,V;t) = n,v, 

3/2 
drexp[ - vi(t--7)] 

X( F)(l-2&f)] 

Xexp - -!!L- V.IY-.*V 
2k, T 

, (56) 

I  where, for simplicity, from now on we will set vi =~i? (and 
also v22 = v2), and the temperatures are evaluated in the in- 
stant t  = 7. It is easy to check that f I”’ is a self-consistent 
solution, i.e., 

(57) 

and it leads to the following linear integral equation for the 
temperature r,: 

T,(t) =+v, 
I 

f 
dTexp[ -v,(t-r)] 

0 

x[3+a2(t-r)“][T, +2M(T- T,)]. 
(58) 

Three successive derivatives transform Eq. (58) into an in- 
homogeneous differential equation: 

$+a-$+P-$+y T,=BT, > 
(59) 

where 

a=@(1 +p)“2(1 +M)Y,, (60) 
B= [(l-tp)/21(1+4M)ti, (61) 

y= (1 +p13” 4 a*2 &f-Z a*2 
Jz 

l+-- 
3 l+p 

y3 
3G ?’ I 

(62) 

ti 2’ (63) 

In the long time limit, the dominant contribution to the gen- 
eral solution to Eq. (59) can be written in the form 

T,(t) = (Ce-‘L-kk’v2’+,y)T(t), (64) 
where we have neglected the contributions that exponential- 
ly decay in time for all values of p and a*. Here, we have 
introduced the quantities 

-(l+M) 1 , 

X(w*) = f9/[(Av2)3 + dAv2)2 +P(Av,) + yl, 
(66) 

C is a constant to be determined from the initial conditions 
and $ is given by 

(67) 

A hydrodynamic expression for the temperature T, is ex- 
pected to hold after a transient period. For that, it is neces- 
sary that the first term on the right-hand side of Eq. (64) be 
neglected. Therefore the system reaches a hydrodynamic re- 
gime when il > k for all values ofp,a*. The opposite situation 
happens whenil<k, for which a hydrodynamic solution can- 
not be obtained. In Fig. 2, we have determined the region of 
validity of the hydrodynamic solution (below the solid line). 
Below a* -7.0, Eq. (64) always admits a hydrodynamic so- 
lution for any p, while for ,u<l, this region extends up to 
arbitrary shear rates. In general, the number of states al- 
lowed by the GSB model is smaller than the one given by the 
Boltzmann equation (dashed line) .6 Anyway, in view of Fig. 
2, for practical purposes, one may conclude that the system 
described by the GSB model reaches the normal stage for 
reasonable values of the shear rate and all mass ratios. When 
this stage is attained, the temperature of the tracer species is 
given by 

T,(t) =,yQ-v*)T(th (68) 
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u 20 40 60 80 100 

/* 

FIG. 2. Plane az,,-p showing the region of validity of the hydrodynamic 
solution to Eq. (64). In the case of the GSB model, this region corresponds 
to the one delimited by the solid curve while for the Boltzmann equation it is 
the one below the dashed line. 

whereX is a highly nonlinear function of the mass ratio and 
the shear rate. The shape of this function is plotted in Fig. 3 
for several values of ,u. For ,u = 1, ,x = 1 for any value of a* 
and so one recovers the self-diffusion results. In the region 
where ,X =+ 1, for small values of a* one may take the same 
temperature for both species and the conventional Chap- 
man-Enskog theory holds.’ However when the species 
masses are very different from each other, even for small a*, 
one needs a description that includes different temperatures 
for the components of the mixture. Such a description is not 

1.4 

X 

1.2 

1.0 

.8 

.6 
0 I 2 3 4 

a* 5 

FIG. 3. Shear rate dependence of the function ,&&a*) for several values of 
the mass ratio CL. 
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allowed by the standard Chapman-Enskog theory, and one 
uses the so-called two-fluid theory. These conclusions are 
identical to those given in the linear transport theory when 
the applicability of the standard Chapman-Enskog theory is 
discussed.’ Here, it is clear that, for arbitrary shear rates, it is 
necessary to take separate species temperatures. However, it 
must be pointed out that there exist particular combinations 
ofp and a* for which x = 1. In fact, from Eq. (66) it is easy 
to show that this will happen when 

&++)ln[l+(~)‘“] (69) 

and so, for these particular situations, the usual Chapman- 
Enskog theory (with only one temperature) can be adequate 
to describe the transport even for the disparate-mass binary 
mixture case. In this way, one expects that the GSB model is 
suitable in the range where a two-fluid theory” is not neces- 
sary, namely for x- 1. 

By using Eq. ( 68 ) , the pressure tensor of the tracer spe- 
cies can be computed. In the hydrodynamic regime, its non- 
zero components are given by 

P(O) = 1 
s 

dv mlWf I”’ 

= 1 +p 
( 1 

1’2 
2 *y,k,T[(l--)X+2Ml 

s 

f 
XlifIl drF;Lexp -‘v~(~--Q-) f-cc 0 I 

x[( +)“2+A]) 
=n,k,T[(l-2M),~+2M]A, (70) 

where the components of the tensor A are given by 

hur:I ( s,+ 2 a? a? 
l-t& (1 f/Z,)” lk Ik 

-&- ($+n/T$ (71) 
0 

with il, = (2/l +~))“~;1, a; = (2/l +,~)*‘~a*6,3;i, 
= a*SiXSi,. 

When the temporal dependence of the temperature r, is 
introduced in the VDFfl”, by scaling the velocities one may 
obtain a stationary or normal representation of the corre- 
sponding distribution. Performing similar algebra to that 
outlined in Sec. III, the reduced distribution g* defined by 

g*(&u,a*) = (l/n,)(2k,T/m,)3’2fIo) (72) 
can be cast in the form 

g*(&,a*) = 7r-33/2 Irn dTexp[ -T(l -$&)I 

e%q2,(, fP)]‘/Q l 5--+) 
X(x- I)(1 -a4) 1 x exp ( - +Wr2,c 1 + p) l ~+*g> ) (73) 
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2.0, where g is defined as in Eq. ( 14), replacing m by m, and the 
product 

@52/l + Cl)‘%  l g = 6’ + 2cX6Ya*r + {:a*‘?. 

For ,u = 1, Eq. (73) reduces to the VDF corresponding to 
the USF state, Eq. ( 15). Equation (73) gives the reference 
state for the tracer particles when the concentration gradient 
has not been introduced and the only nonuniformity is due to 
the shear rate. 

In order to obtain the first-order distribution f I’), one 
has to know the flux of tracer particles. Thus, from Eq. (55), 
one obtains 

nr&j;p + q/j;;) + AC y,jp = p% 1 a 
1+/J 

-----q, 
ml n1 ark 

(74) 
where once again we have taken into account Eqs. (37a) and 
(37b). The hydrodynamic solution to Eq. (74) can be writ- 
ten in the form 

jif’= -Dik-$,, 
k 

where now the diffusion tensor is a highly nonlinear function 
of both the mass ratio and the shear rate. It is given by 

xf(l --44)x+2M]&,. (76) 
Ifp = 1, Eq. (76) reduces to the self-diffusion tensor. For 
a* = 0, D, = DoSik, with 

Do= (kBT/mlv2)8[(1 -~-p)~‘~/,ul, (77) 
where Do is the diffusion coefficient for the tracer compo- 
nent when the excess component is in total equilibrium. In 
Fig. 4, we have plotted D ;Fk/3 vs a* for different values of the 
mass ratio. Here, D $ = Dik/Do. For smallp, the agreement 
between the Boltzmann and GSB results increases as a* de- 

I creases. For large ,CL, the opposite situation happens. 

DE,/3 

0 I 2 3 4 5 

a* 

FIG. 4. Shear rate dependence of the trace D &/3 of the dimensionless trac- 
er diffusion tensor for several values ofp. Solid lines indicate GSB results 
and dashed lines Boltzmann results. 

From Eq. (55), the f&t-order approximation to the 
normal solution can be derived. The procedure is analogous 
to the one described in the self-diffusion section. Therefore, 
by introducing the corresponding dimensionless concentra- 
tion gradient E*, 

17 (78) 

and after tedious manipulations the reduced function 
Iz * = n, ‘(2k, T/m,)3’2 fi” can be written in the long 
time limit as 

lim h *(r,V$) = cp(&u,a*)-E*, 
t-m (79) 

where the normal solution cp is given by 

I 

p1(5;p,a*) = - T- 3’2(y--$--)1’2~md~e~~[ -(l-~~o)r][~(t+g~kr)Dg+gir 

$“%rf2,(, + p)l”%  (80) 

Equation (80) shows a very complicated dependence of rp on 
p and a* that yields a generalization of the “NavierStokes” 
approximation for tracer diffusion in USF. 

By using Eqs. (79) and (80)) all velocity moments may 
be computed. The next nontrivial moment is the heat flux, 
defined by 

(1) _ 41 - 
s 

dv F V”Vf I”. (81) 

The evaluation. of q$ ’ ) is not straightforward and it is per- 
formed in the Appendix. It is given by 

I 

qi” = - (2k2,T2/m,vz~)I;*Vn,, (821 
where the tensor B is a highly nonlinear function of,u and a* 
and its explicit form is also given in the Appendix. Equation 
(82) can be seen as the cross contribution to the “heat flux” 
of the tracer particles due to the gradient ofconcentration. It 
may be identified as a kind of Dufour effect3 in the tracer 
limit when the contribution to the total heat flux due to the 
excess component is neglected. We will return to this point in 
the discussion where a comparison with the GK results is 
carried out. 
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B. Results from the GK model 

The GK model is defined from Eq. (5 1) inserting the 
f$’ = ml[fl?/(l -I-p) J [ (Wl’))h,k,T12J . (86) 

reference function given by Eq. (23). According to the colli- 
sion term proposed, one expects that this model is useful 
when the mass ratio is not of the order of one. Our aim here is 
to solve it following the same kind of techniques that we have 
used in the previous section. In this way, up to first order in 
the concentration of the tracer particles, one obtains the 
equations 

For the zeroth-order approximation we obtain 

-$:O) + VJ;“’ = q-p, 
f 

-$fY + (vi -i- aUrI) -i&f:“’ 

(83) X exp --~VT-.*V 
%  TI, > 

. (87) 

1 

-f-f:” + Yjy = Q-g), 
From Eq. (87), it is straightforward to show that its first 

-auv, (84) moments are identical to those given by the GSB model. 
I These moments refer to the temperature T,, Eq. (64)) and 

where the pressure tensor, Eq. (70). However, the VDF is differ- 
fit’ = n, (m,/2rk, T,,)3’2 exp( - m,V2/2k, T,,) , ent. After some algebra, the stationary representation of the 

(85) function f I”) can be written as 
I 

g* ( &,a* ) = r -- 3'2 l-dTexp[ -(1-~Lo)r][(1-2M)~+2M]-3n 

X exp 
( 

&or 
- 

(1-22M)x+2M t-r 1*/c 1 + P) 1 ‘f% l t) 2 (881 

where all of the parameters and notation are as previously defined. 
In the first-order approximation, it is easy to show that Eq. (84) leads to the same expression for the diffusion tensor as 

that given by the GSB model, Eqs. (75) and (76). Therefore, in the long time limit, the vectorial normal solution can be 
identified as 

plG;p,a*) = - 77 -3’2(&)“2~mdTexp[ -(1-fno)~][(l-2M)X+MII-3/2 

X ( 
‘1 

L 65 + ~+%&A~~ + i? exp - > ( Coy 
c1-2mx+2M p (1-2M)x+2M 

&rL2,(, +,,,,nr4g) . 

By using Eq. (89), one obtains the heat flux whose 
expression is similar to Eq. (82) but now the tensor C is 
different. Its form is also given in the Appendix. The heat 
flux is the first interesting moment that is different in both 
models. Before closing this section it is adequate to remark 
that the results given by the GSB and GK models are exactly 
identical for .y = 1. This means that, in the tracer limit, be- 
cause of the simple mathematical form of the GK collision 
term, this model can also be adequate to study transport 
properties where a two-fluid theory is not necessary. For 
more general situations, one expects that both models may 
yield different results in the range of p close to unity. 

VI. DISCUSSION 

In this paper, we have addressed the problem of diffu- 
sion in shear flow by using two different kinetic models 
(GSB and GK) for dilute binary mixtures of Maxwell mole- 
cules and considering the case of mechanically similar parti- 
cles and the tracer limit. The results presented in previous 
sections provide grounds for further elaboration. 
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(89) 

r--I- 
We begin with self-diffusion. For this problem, our 

starting point was the GSB model alone since the GK model 
is not adequate in the sense that it does not yield to a closed 
kinetic equation for the VDF of the system seen as a whole. 
The main advantage of using a kinetic model (which reduces 
to the BGK equation) rather than the Boltzmann equation 
resides on the fact that one is able not only to explicitly write 
the VDF corresponding to the USF for the full system but 
also the VDF of the tagged particles. Using this latter distri- 
bution, one may compute all the velocity moments. And 
since for this particular problem the shear-dependent self- 
diffusion tensor has been obtained from the Boltzmann 
equation5 a comparison between both calculations is feasi- 
ble. This we have done and the agreement is rather satisfac- 
tory. Two points are worth emphasizing. First, our results 
hold for any number density ratio of tagged particles. Sec- 
ond, in contrast to what has been found in molecular dynam- 
ics simulations of Lermard-Jones fluids,’ but in agreement 
with what has been found for Maxwell molecules using the 
Boltzmann equation5 the self-diffusion tensor decreases 
with increasing shear rate. 
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Concerning the tracer limit, we have computed, using 
both the GSB and GK models, the main transport properties 
as well as the VDF of the tracer particles for arbitrary mass 
ratio. This is the simplest extension of the tagged particles 
problem (to which the present results reduce for the GSB 
model when p = 1) since we may still assume that the VDF 
of the excess component is that of USF. We find that the first 
few moments of the VDF of the tracer particles turn out to be 
identical for both models although these distribution func- 
tions are, in general, different for each model. In terms of the 
aforementioned moments, in the tracer limit two tempera- 
tures corresponding to each individual species arise natural- 
ly in our formulation, which are related through a highly 
nonlinear function X(p,a*). Thus a two-fluid description, 
similar to the ones employed in the linear regime2 for dispa- 
rate-mass mixtures, seems to be, in principle, required. Nev- 
ertheless, it must be stressed that, if ,r = 1 [which occurs 
when either ,u = 1 or J* = 0 or when Eq. (69) holds], 
T, = T, = T and the standard Chapman-Enskog descrip- 
tion is valid. This conclusion might not have been anticipat- 
ed on the basis of the results derived in the linear regime. 

On the other hand, the expression for the shear-depen- 
dent diffusion tensor for any value of the mass ratio is also 
identical in the GSB and GK models. A comparison with 
related results derived from the Boltzmann equation6 again 
indicates a reasonably good agreement. The first moment 
that is different in both models is the heat flux [cf. Eqs. (82), 
(A4), and (A6) 1, which arises from the cross effect of the 
gradient of concentration of the tracer particles. In an at- 
tempt to make contact with the phenomenological approach 
of linear irreversible thermodynamics,3 we may define a 
“generalized” Dufour tensor L,, such that 

j, = q:" --$k,Tj:L’ 

5 n,k,T’ = ---- 
2 v2 

where 

2k, T 
logn, -+tog- 

ml 

is the chemical potential of the tracer species per mass unit. 
It must be pointed out that L,, (,u,O) = 0, in agreement with 
the results derived for Maxwell molecules in the linear re- 
gime both from the Boltzmarm’ and the kinetic models.5*11 
In order to gain some insight of the behavior of the “general- 
ized” Dufour tensor, for simplicity we consider a geometry 
in which the gradient of concentration of tracer particles is 
parallel to the z axis. Hence, the zz component of the Dufour 
tensor, which we shall denote by Lql, is the only relevant 
component in Eq. (90). In Figs. 5 and 6, we show the shear 
rate dependence of L,, for illustrative values of p and for 
both kinetic models. Forp = 1, the value of L,, is the same 
in the GSB and GK models. In the case where ,X = 10, al- 
though the two models may yield slightly different numeri- 
cal values, the overall trends are similar. On the other hand, 
ifp = 0.1 the numerical differences are much greater up to 

.2 

Lq 1 

-.6 

-.0 

-1.0 

0 I 2 3 4 *5 
a 

FIG. 5. Shear rate dependence of the generalized Dufour coefficient for 
/.L = 0.1. The solid line is the result of the GSB model and the dashed line 
refers to the GK model. 

a* c 2 in both models, while for a* > 2, the results are almost 
identical. 

As already pointed out, the VDF in both models is dif- 
ferent, except when x = 1. The conditions where the latter 
happens have been stated above and there are, of course, 
infinite ways to combine a* and p so that Eq. (69) is satis- 
fied. Moreover, for the far-from-equilibrium states consid- 
ered in this paper, the parameter x seems to play a simiIar 
role to the one played byp in the linear theory. In this sense, 
one would expect that, forly - 1, a two-temperature theory is 

-1)2 Ip-..7.-. 

4 
a* 

5 

FIG. 6. The same as in Fig. 5 but for p = 1; 10. The GSB and GK results 
coincide for ,U = 1. 
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not required, while outside the region defined by this condi- 
tion the opposite happens. Notice that the VDF in the GSB 
model depends linearly on (x - 1 >, while in the GK model a 
highly nonlinear dependence on this parameter is obtained. 
If an expansion in (,u - 1) of the VDF in this latter model is 
performed, the resulting function up to first order in the 
expansion parameter is similar (but still different) to the one 
corresponding to the GSB model. Therefore one might rea- 
sonably conjecture that, in the tracer limit, either the GSB 
model or the GK model would be appropriate when .y= 1 
and only the GK model otherwise. However, because of the 
conceptual difficulties inherent to the GK model concerning 
the way the collisions are modeled, we favor the use of the 
GSB model for values of x in the neighborhood of 1. 

For the sake of illustration of the behavior of the VDF 
obtained from the kinetic models, we have considered it ade- 
quate to restrict ourselves to the zeroth-order approxima- 
tions (reference states) to the normal solutions given by Eqs. 
(73) and (88). We find it convenient to introduce the re- 
duced distributions 

‘e*G&w*> = j--+; d& J--+; d!k t?(kPu,a*) (91) 

in order to compare the results from both models. For a fixed 
value of a* = 2 (which, of course, implies a state far away 
from equilibrium), in Figs. 7 and 8 we display the behavior 
oftheg* with cy for two extreme values ofp. In the first case 
(,x = O.l), we are in a region where ~211 and the results of 
both models are clearly seen to coincide. On the other hand, 
forp = 10,x=0.7 and a slight discrepancy is observed. This 
is in agreement with the statements put forward above, but 
the small numerical differences suggest that the GSB model 
may also be useful when x is not of the order of 1. 

I .OEtO I 

ha F* 

l .OEtOO 

I .OE-0 I 

I.OE-02 

I.OE-03 

I .OE -04 

I.OE-05 

I .OE- 06 I 1  

.O .5 I .o I .5 2.0 2.5 

FIG. 7. Reduced distribution functioni* vs f;, forp = 0.1 and a* = 2. The 
solid line is the GSB result while the dashed line corresponds to the GK 
model. 

I .OE-06 I , I I 

.O .5 I .o I .5 2.0 ” 2.5 
5, 3.0 

FIG. 8. The same as in Fig. 7 but now for p = 10 and a* = 2. 

It should be apparent that the derivation of explicit ex- 
pressions for the fluxes and the VDF’s involved in a given 
nonequilibrium problem (such as the one carried out here) 
may prove to be useful for interpreting computer simula- 
tions of systems far from equilibrium. While this approach in 
the case of a single-component gas in USF has been success- 
fully exploited, for instance in Ref. 10, we are not aware of 
the availability of similar simulation results for binary rhix- 
tures, not even in the tracer limit. In this respect, we hope 
that our work may serve to encourage the performance of 
simulations of self- and tracer diffusion in USF. 

Finally, in view of the results derived in this paper, it 
seems worthwhile to investigate the usefulness of the kinetic 
models in the tracer limit for other nonequilibrium situa- 
tions and the possibility to eliminate the restrictions imposed 
by such a limit. Work along this line is already in progress. 
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APPENDIX:DERIVATION OF EXPRESSIONS FOR THE 
TENSOR Z 

In order to compute the heat flux vector in the GSB and 
the GK models, one needs the result 
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s d6 ~“~~S~ exp(b5, -&-)e-EE’ = $- c-7/2Av(b), &t(,%a*) =t( &)1nlwd7exp[ - (1 +W&-] 

(AlI 

where we have introduced the tensor A whose components 
are 

A,(b) = (5+ 10b2+ 3b4)6,Si, 

+ C5 + 3b ‘lsiysjy + C5 + b 'lsiz8jz 

-bC7 + 3b2)(SfxSjy +SjxSiy)* WI 

In this way, from the GSB model, one gets for the tensor Z 
the expression 

X 

+A,(a*7)7[1+2(X--1)(1--2M)l). 

(A3) 
Performing the integration over T, one finally arrives at 

2, @,a*) = J- 4 (&)‘“[ b(Bik -zy!g)D$ 

-f$ [1+2(x- l)(l-2M)]]. 
0 

(A4) 
Here, we have introduced the tensor 

s 
ca 4, @,,a* I= 

0 
dTexp[ - (1 + W,)r]A,(a*r) 

1 5 + 20 
a*2 

= (1+2&l,) Cl+ Ii%,)2 
+ 72 

a*4 
(I+ 2a,p > 4X 6, 

+ 5+6 
( a*2 (1 + 2ao)2 )‘fy% + (5 + 2 (1 J~oj2 )&sfl 

+ 18 
a*3 

(1 + 2a,)3 > <siXsjy + SiySjx) 
, (A5) 

and its derivatives with respect to il, can be easily obtained. 
In a similar way, in the GK model, one gets the expres- 

sion 
l/2 

[(1-2M)x+2M]2 

1 
B, a% aBi* - -- 

p (1--244)x+2M 2 aa, 

(Aa 

which is, in general, different from that given by the GSB 
model, except in the case x = 1. 
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