
PHYSICAL REVIEW E 100, 032904 (2019)

Influence of the first-order contributions to the partial temperatures on transport properties
in polydisperse dense granular mixtures
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The Chapman-Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to
determine the first-order contributions �i to the partial temperatures. As expected, these quantities (which were
neglected in previous attempts) are given in terms of the solution to a set of coupled integrodifferential equations
analogous to those for elastic collisions. The solubility condition for this set of equations is confirmed and the
coefficients �i are calculated by using the leading terms in a Sonine polynomial expansion. These coefficients
are given as explicit functions of the sizes, masses, composition, density, and coefficients of restitution of the
mixture. Within the context of small gradients, the results apply for arbitrary degrees of inelasticity and are not
restricted to specific values of the parameters of the mixture. In the case of elastic collisions, previous expressions
of �i for ordinary binary mixtures are recovered. Finally, the impact of the first-order coefficients �i on the bulk
viscosity ηb and on the first-order contribution ζ (1) to the cooling rate is assessed. It is shown that the effect of
�i on ηb and ζ (1) is not negligible, specially for disparate mass ratios and strong inelasticity.
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I. INTRODUCTION

The understanding of transport processes occurring in
polydisperse granular mixtures (namely, a mixture of smooth
hard spheres with inelastic collisions) is still an exciting
unsolved problem [1–3]. The reason for this challenging target
is twofold: first, there is a large number of relevant param-
eters involved in the description of the granular mixtures;
and second, there is a wide array of intricacies arising in
the derivation of kinetic theory models. Thus, to gain some
insight into the problem, the two most common simplifica-
tions employed in many of the pioneering papers on granular
mixtures [4–8] were (i) to consider mixtures constituted by
nearly elastic particles and (ii) to assume the equipartition of
the total granular kinetic energy in the homogeneous cooling
state (namely, they assume that the zeroth-order contributions
T (0)

i to the partial temperatures Ti of each species are equal
to the granular temperature T ). On the other hand, the last
assumption can be only justified for quasielastic collisions
since the failure of energy equipartition in granular fluids
[9,10] has been confirmed by computer simulations [11–18]
and observed in real experiments of agitated granular mixtures
[19,20]. The above papers have also shown that the departure
of energy equipartition depends on the mechanical differences
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among the particles and the coefficients of restitution of the
granular mixture.

The inclusion of energy nonequipartition effects on trans-
port in granular mixtures has been considered in more recent
papers of dilute [21–26] and moderate [27–29] densities.
In particular, the results derived from the inelastic Enskog
equation [27–29] cover some of the aspects not accounted for
in previous studies. More specifically, (i) they are expected to
be applicable for a wide range of coefficients of restitution
(since they take into account the nonlinear dependence of
the transport coefficients on the coefficients of restitution);
(ii) they consider the impact of nonequipartition of granular
energy on the Navier-Stokes transport coefficients; and (iii)
they are valid for moderate densities. Thus, these works
[27–29] subsume all previous studies for dilute [21–26] and
dense quasielastic [4–8] granular mixtures, which are recov-
ered in the appropriate limits.

Nevertheless, the theory developed for dense gases [27–29]
is based on a simplifying assumption. Although not explicitly
stated, the results derived in Refs. [27–29] were obtained by
neglecting the first-order contributions T (1)

i to the partial tem-
peratures Ti. The existence of a nonzero first-order contribu-
tion T (1)

i induces a breakdown of the energy equipartition, ad-
ditional to the one appearing in the homogeneous cooling state
(which is only due to the inelastic character of collisions). In
fact, T (1)

i �= 0 in the case of ordinary dense mixtures (namely,
a dense hard-sphere mixture with elastic collisions). Although
the partial temperatures are not hydrodynamic quantities, their
determination is interesting in itself. In addition, a careful
analysis of the first-order contributions to the collisional part
Pc of the pressure tensor and the cooling rate ζ (which
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accounts for the rate of kinetic energy dissipation due to
inelastic collisions) shows that there are contributions to Pc

and ζ coming from the coefficients T (1)
i . Since the first-order

contributions to the partial temperatures are proportional to
the divergence of the flow velocity U, then the coefficients
T (1)

i are involved in the evaluation of both the bulk viscosity
ηb (proportionality coefficient between Pc and ∇ · U) and the
first-order contribution ζU to the cooling rate (proportionality
coefficient between ζ and ∇ · U). The coupling between T (1)

i
and ηb was in fact already recognized in the pioneering papers
[30–32] of the Enskog theory for multicomponent ordinary
mixtures.

The question arises then as to whether, and if so to what
extent, the conclusions drawn from Refs. [27–29] for ηb and
ζ may be altered when the above new ingredient (first-order
contributions to the partial temperatures) is accounted for in
the theory. In this paper we calculate T (1)

i and assess the
impact of these coefficients on ηb and ζ for granular mixtures.

The plan of the paper is as follows. The Enskog kinetic
equation for polydisperse granular mixtures is introduced in
Sec. II and the corresponding balance equations for the densi-
ties of mass, momentum, and energy are recalled. Section III
deals with the evaluation of the first-order contributions to
the partial temperatures. As expected, the coefficients T (1)

i
are given in terms of the solution to a set of linear integral
equations. The leading term in a Sonine polynomial expansion
is retained in Sec. IV to solve the above set and obtain the
partial temperatures in terms of the parameter space of the

problem. For the sake of illustration, a binary mixture is
considered in Sec. V. The results show that the impact of the
coefficients T (1)

i on both the bulk viscosity and the cooling
rate is not in general negligible and must be accounted for,
specially for disparate mass ratios and strong dissipation. The
paper closes in Sec. VI with some concluding remarks.

II. ENSKOG KINETIC EQUATION FOR POLYDISPERSE
DENSE GRANULAR MIXTURES

We consider an s-component granular mixture of inelastic
hard disks (d = 2) or spheres (d = 3) of masses mi and
diameters σi. The subscript i labels one of the s mechanically
different components and d is the dimension of the system.
Spheres are assumed to be completely smooth so that the
inelasticity of collisions is only characterized by the constant
(positive) coefficients of restitution αi j � 1. The mixture is
also assumed to be in the presence of the gravitational field
and hence, each particle feels the action of the force Fi = mig,
where g is the gravity acceleration. For moderate densities,
the one-particle velocity distribution function fi(r, v, t ) of
component i verifies the set of s-coupled nonlinear integrodif-
ferential Enskog equations:

∂ fi

∂t
+ v · ∇ fi + g · ∂ fi

∂v
=

s∑
j=1

Ji j[r, v| fi, f j], (1)

where the Enskog collision operator is [3]

Ji j[r1, v1| fi, f j] = σ d−1
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)

[
α−2

i j χi j (r1, r1 − σ i j ) fi(r1, v′′
1, t ) f j (r1 − σ i j, v′′

2, t )

−χi j (r1, r1 + σ i j ) fi(r1, v1, t ) f j (r1 + σ i j, v2, t )
]
. (2)

In Eq. (1), σ i j = σi j σ̂, σi j = (σi + σ j )/2, σ̂ is a unit vector
directed along the line of centers from the sphere of compo-
nent i to that of component j at contact, � is the Heaviside
step function, and g12 = v1 − v2 is the relative velocity of the
colliding pair. Moreover, χi j (r1, r1 + σ i j ) is the equilibrium
pair correlation function of two hard spheres, one of com-
ponent i and the other of component j at contact, i.e., when
the distance between their centers is σi j . The precollisional
velocities (v′′

1, v′′
2 ) are given by

v′′
1 = v1 − μ ji

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (3)

v′′
2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12 )̂σ, (4)

where μi j = mi/(mi + mj ).
The first few velocity moments of the distributions fi

define the hydrodynamic fields of the mixture. Thus, the local
number density of component i is

ni =
∫

dv fi(v), (5)

while the local mean flow velocity of grains is defined as

U = ρ−1
s∑

i=1

∫
dv miv fi(v), (6)

where ρ = ∑
i mini is the total mass density. Apart from the

partial densities ni and the flow velocity U, the other important
hydrodynamic field is the granular temperature T . It is defined
as

T = 1

n

s∑
i=1

∫
dv

mi

d
V 2 fi(v), (7)

where n = ∑
i ni is the total number density and V = v − U

is the peculiar velocity. At a kinetic level, it is also convenient
to introduce the partial kinetic temperatures Ti for each com-
ponent. These quantities measure the mean kinetic energy of
each component. They are defined as

Ti = mi

dni

∫
dv V 2 fi(v). (8)

According to Eq. (7), the granular temperature T of the
mixture can be also written as

T =
s∑

i=1

xiTi, (9)

where xi = ni/n is the mole fraction of component i.

032904-2



INFLUENCE OF THE FIRST-ORDER CONTRIBUTIONS … PHYSICAL REVIEW E 100, 032904 (2019)

An important property of the integrals involving the Enskog collision operator Ji j[r, v| fi, f j] is [3,27]

Iψi ≡
s∑

i, j=1

∫
dv1 ψi(v1)Ji j[r1, v1| fi, f j]

= 1

2

s∑
i, j=1

σ d−1
i j

∫
dv1

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

{[
ψi(v′

1) + ψ j (v′
2) − ψi(v1) − ψ j (v2)

]
fi j (r1, v1, r2, v2; t )

+ ∂

∂r1
· σ i j

[
ψi(v′

1) − ψi(v1)
] ∫ 1

0
dx fi j (r1 − xσ i j, v1, r1 + (1 − x)σ i j, v2; t )

}
, (10)

where

fi j (r1, v1, r2, v2; t ) ≡ χi j (r1, r2) fi(r1, v1, t ) f j (r2, v2, t ), (11)

ψi(v1) is an arbitrary function of v1, and

v′
1 = v1 − μ ji(1 + αi j )(σ̂ · g12 )̂σ. (12)

The first term on the right-hand side of Eq. (10) represents a collisional effect due to scattering with a change in velocities. The
second term provides a pure collisional effect due to the spatial difference of the colliding pair. For elastic collisions, the first
term vanishes. The balance equations for the densities of mass, momentum, and energy can be derived by using the property
(10). They are given by [3]

Dt ni + ni∇ · U + ∇ · ji

mi
= 0, (13)

Dt U + ρ−1∇ · P = g, (14)

Dt T − T

n

s∑
i=1

∇ · ji

mi
+ 2

dn
(∇ · q + P : ∇U) = −ζT . (15)

In the above equations, Dt = ∂t + U · ∇ is the material derivative, ρi = mini is the mass density of component i, and

ji = mi

∫
dv V fi(v) (16)

is the mass flux for component i relative to the local flow U. A consequence of the definition (16) of the fluxes ji is that

s∑
i=1

ji = 0, (17)

and hence, only s − 1 mass fluxes are independent. The pressure tensor P(r, t ) and the heat flux q(r, t ) have both kinetic and
collisional transfer contributions, i.e.,

P = Pk + Pc, q = qk + qc. (18)

The kinetic contributions Pk and qk are given by

Pk =
s∑

i=1

∫
dv miVV fi(v), (19)

qk =
s∑

i=1

∫
dv

mi

2
V 2V fi(v). (20)

The collisional transfer contributions are [3,27]

Pc =
s∑

i, j=1

σ d
i jmi j

1 + αi j

2

∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)2σ̂σ̂

∫ 1

0
dx fi j (r − xσ i j, r + (1 − x)σ i j, v1, v2, t ), (21)

qc =
s∑

i, j=1

σ d
i jmi j

1 + αi j

8

∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)2σ̂

[
4(̂σ · Gi j )

+ (μ ji − μi j )(1 − αi j )(σ̂ · g12)
] ∫ 1

0
dx fi j (r − xσ i j, r + (1 − x)σ i j, v1, v2; t ). (22)
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Here, mi j = mimj/(mi + mj ) is the reduced mass and Gi j = μi jV1 + μ jiV2 is the velocity of the center of mass. Finally, the
(total) cooling rate ζ due to inelastic collisions among all components is given by

ζ = 1

2dnT

s∑
i, j=1

σ d−1
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12)3 fi j (r, r + σ i j, v1, v2; t ). (23)

As expected, the balance equations (13)–(15) are not a
closed set of equations for the fields ni, U, and T . To trans-
form these equations into a set of closed equations, one has
to express the fluxes and the cooling rate in terms of the
hydrodynamic fields and their gradients. The corresponding
constitutive equations can be obtained by solving the set
of Enskog kinetic equations (1) with the Chapman-Enskog
method [33] adapted to dissipative dynamics.

III. FIRST-ORDER CONTRIBUTIONS TO THE PARTIAL
TEMPERATURES

The inelastic Enskog equation (1) was solved in
Refs. [27,28] by means of the Chapman-Enskog method. In
particular, the first-order velocity distribution functions f (1)

i
are given by [27]

f (1)
i = Ai · ∇ ln T +

s∑
j=1

Bi j · ∇ ln n j

+ Ci,λβ

1

2

(
∂λUβ + ∂βUλ − 2

d
δλβ∇ · U

)
+Di∇ · U, (24)

where ∂λ ≡ ∂/∂rλ. The unknowns Ai(V), Bi j (V), Ci,λβ (V),
and Di(V) are functions of the peculiar velocity V and they are
the solutions of a set of coupled linear integral equations [27].
Approximate solutions to this set of integral equations were
obtained in Refs. [28,29] by considering the leading terms
in a Sonine polynomial expansion. This procedure allows
us to obtain explicit forms of the Navier-Stokes transport
coefficients in terms of the mechanical parameters of the
mixture (masses and sizes and the coefficients of restitution),
the composition, and the density. Within the context of small
gradients, the results apply in principle for arbitrary values of
the coefficients of restitution and a wide range of densities.

However, as said in Sec. I, the influence of the first-
order contribution T (1)

i to Ti on the transport coefficients was
neglected in the above papers [27,28]. This was essentially
assumed because T (1)

i comes from the second-Sonine approx-
imation and hence it is expected that its impact on transport
properties is small. Here, we want to determine T (1)

i to assess
its influence on the bulk viscosity and the cooling rate.

According to Eq. (8), the first-order contribution to the
partial temperature Ti is defined as

T (1)
i = mi

dni

∫
dv V 2 f (1)

i (V). (25)

Since T (1)
i is a scalar, it can be only coupled to the divergence

of the flow velocity ∇ · U since ∇n and ∇T are vectors and
∂λUβ + ∂βUλ − (2/d )δλβ∇ · U is a traceless tensor. Thus, T (1)

i

can be written as T (1)
i = �i∇ · U, where

�i = mi

dni

∫
dv V 2Di(V). (26)

The fact that the total temperature T is not affected by the
gradients implies necessarily the constraint

∑s
i=1 niT

(1)
i = 0.

Thus, only s − 1 partial temperatures are independent. The
above constraint comes directly from the solubility condition

s∑
i=1

∫
dvmiV

2 f (1)
i = 0. (27)

As said before, apart from obtaining T (1)
i , we are also in-

terested here in revisiting previous calculations [27,28] made
for the bulk viscosity ηb and the cooling rate ζ . The first
coefficient has only collisional contributions and its form can
be identified by expanding the collisional transfer contribution
Pc to the pressure tensor to first order in spatial gradients. A
careful first-order expansion of the expression (21) to Pc gives
the following form for ηb:

ηb = η′
b + η′′

b, (28)

where

η′
b = π (d−1)/2

�
(

d+3
2

) d + 1

2d2

s∑
i=1

s∑
j=1

mi j (1 + αi j )χ
(0)
i j σ d+1

i j

×
∫

dv1

∫
dv2 f (0)

i (V1) f (0)
j (V2)g12, (29)

and

η′′
b = − πd/2

d�
(

d
2

) s∑
i=1

s∑
j=1

μ ji(1 + αi j )χ
(0)
i j nin jσ

d
i j�i. (30)

In Eq. (29), f (0)
i is the zeroth-order distribution. In addition,

it is understood henceforth that the functional dependence
of χ

(0)
i j (r, r′|{ni}) on the compositions to zeroth order in the

gradients has the same functional dependence on the densities
replaced by {ni} → {ni(r, t )} at the point of interest.

The second contribution η′′
b to ηb in Eq. (28) was neglected

in previous works [3,27,28]. On the other hand, as said in
Sec. I, the contribution η′′

b was already accounted for in the
studies on ordinary (elastic collisions) hard-sphere mixtures
[30–32] carried out many years ago. In fact, for elastic colli-
sions, Eq. (30) is consistent with Eq. (18a) of Ref. [31].

In the case of the cooling rate, ζ → ζ (0) + ζU ∇ · U where

ζ (0) = 1

2dnT

s∑
i, j=1

σ d−1
i j mi j

(
1 − α2

i j

)
χ

(0)
i j

∫
dv1

∫
dv2

×
∫

d σ̂�(̂σ · g12)(̂σ · g12)3 f (0)
i (r, v1, t ) f (0)

j (r, v2, t ),

(31)
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and ζU = ζ (1,0) + ζ (1,1). Here,

ζ (1,0) = − 3πd/2

d2�
(

d
2

) s∑
i=1

s∑
j=1

xin jμ jiσ
d
i jχ

(0)
i j γi

(
1 − α2

i j

)
, (32)

and the coefficient ζ (1,1) is given in terms of the unknowns Di as

ζ (1,1) = 1

nT

π (d−1)/2

d�
(

d+3
2

) s∑
i=1

s∑
j=1

σ d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

) ∫
dv1

∫
dv2 g3

12 f (0)
i (V1)D j (V2). (33)

In Eq. (32), γi ≡ T (0)
i /T is the temperature ratio of component i. The temperature ratios γi verify the relation

∑
i xiγi = 1 and

they are determined from the conditions ζ (0) = ζ
(0)
1 = ζ

(0)
2 = · · · = ζ (0)

s , where

ζ
(0)
i = − mi

dniT
(0)

i

s∑
j=1

∫
dvV 2J (0)

i j

[
f (0)
i , f (0)

j

]
. (34)

According to the results obtained in Ref. [27], the coefficients �i are the solutions of the set of coupled linear integral
equations

1

2
ζ (0) ∂

∂V
· (VDi ) + 1

2
ζ (0)Di + 1

2
ζ (1,1) ∂

∂V
· (

V f (0)
i

) −
s∑

j=1

(
J (0)

i j

[
Di, f (0)

j

] + J (0)
i j

[
f (0)
i ,D j

]) = Di, (35)

where

J (0)
i j

[
f (0)
i , f (0)

j

] = χ
(0)
i j σ d−1

i j

∫
dv2

∫
d σ̂ �(̂σ · g12)(̂σ · g12)

[
α−2

i j f (0)
i (v′′

1 ) f (0)
j (v′′

2 ) − f (0)
i (v1) f (0)

j (v2)
]

(36)

is the Boltzmann collision operator multiplied by the (constant) pair distribution function χ
(0)
i j , and Di is given by

Di(V) = 1

2

[
2

d
(1 − p∗) − ζ (1,0)

]
∂

∂V
· (

V f (0)
i

) − f (0)
i +

s∑
j=1

(
n j

∂ f (0)
i

∂n j
+ 1

d
Ki j,β

[
∂ f (0)

i

∂Vβ

])
. (37)

In addition, Ki j[Xj] is the collision operator

Ki j[Xj] = σ d
i jχ

(0)
i j

∫
dv2

∫
d σ̂�(̂σ · g12)(̂σ · g12 )̂σ

[
α−2

i j f (0)
i (v′′

1 )Xj (v′′
2 ) + f (0)

i (v1)Xj (v2)
]
, (38)

and the (reduced) hydrostatic pressure p∗ ≡ p/(nT ) is

p∗ = 1 + πd/2

d�
(

d
2

) s∑
i=1

s∑
j=1

μ jixix jnσ d
i jχ

(0)
i j γi(1 + αi j ). (39)

Since Di(V) ∝ Di(V), the solubility condition (27) requires
necessarily that

s∑
i=1

∫
dvmiV

2Di(V) = 0. (40)

This condition can easily be verified by direct integration of
Eq. (37) and using Eqs. (32)–(39), the relation

∑
i xiγi = 1,

and the result

Ai ≡
s∑

j=1

∫
dvmiV

2Ki j,λ

[
∂ f (0)

j

∂Vλ

]

= − πd/2

�
(

d
2

)T
s∑

j=1

χ
(0)
i j nin jσ

d
i j (1 + αi j )

[
3μ ji(1 + αi j )

×
(

γi

mi
+ γ j

m j

)
− 4

γi

mi

]
. (41)

In the low-density regime (niσ
d
i j → 0), p∗ = 1, ζ (1,0) =

0, the combination
∑

j n j∂ f (0)
i /∂n j − f (0)

i and the operator
Ki j[Xj] vanish, and so Di = 0 in the integral equation (35).
This means Di = 0 and hence, the first-order contributions �i

to the partial temperatures vanish for dilute granular mixtures.
This agrees with the previous results obtained in the low-
density regime [21,22,24,25].

IV. LEADING SONINE APPROXIMATION

It is quite apparent that the calculation of �i requires
one to solve the integral equation (35) as well as to know
the zeroth-order distributions f (0)

i . With respect to the latter,
previous results [9,11] derived for homogeneous states have
clearly shown that in the region of thermal velocities, f (0)

i
is well represented by the Maxwellian velocity distribution
defined at the lowest-order partial temperature T (0)

i , namely,

f (0)
i (V) → fi,M(V) = ni

(
mi

2πT (0)
i

)d/2

exp

(
−miV 2

2T (0)
i

)
.

(42)
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This means that we neglect here non-Gaussian corrections to
the distributions f (0)

i and hence, one expects to get simple but
accurate expressions for the transport coefficients. With this
approximation, ζ

(0)
i is

ζ
(0)
i = 4π (d−1)/2

d�
(

d
2

) v0

s∑
j=1

n jχ
(0)
i j μ jiσ

d−1
i j (1 + αi j )

×
(

βi + β j

βiβ j

)1/2[
1 − μ ji

2
(1 + αi j )

βi + β j

β j

]
, (43)

where v0(T ) = √
2T/m is a thermal speed of the mixture,

m = ∑
i mi/s, and βi = miT/mT (0)

i . Furthermore, according
to Eq. (29) the contribution η′

b to the bulk viscosity can also be
computed by using the Maxwellian approximation (42) with
the result

η′
b = π (d−1)/2

d2�
(

d
2

) v0

2∑
i=1

2∑
j=1

mi j (1 + αi j )χ
(0)
i j nin jσ

d+1
i j

×
(

βi + β j

βiβ j

)1/2

. (44)

To solve the integral equation (35), one takes the leading
Sonine approximation to Di(V)

Di(V) → fiM(V)Wi(V)
�i

T (0)
i

, (45)

where

Wi(V) = miV 2

2T (0)
i

− d

2
. (46)

The relation between ζ (1,1) and �i can be easily obtained by
substitution of Eq. (45) into Eq. (33). The result is

ζ (1,1) =
s∑

i=1

ξi�i, (47)

where

ξi = 3π (d−1)/2

2d�
(

d
2

) v3
0

nT T (0)
i

s∑
j=1

nin jσ
d−1
i j χ

(0)
i j mi j

(
1 − α2

i j

)
× (βi + β j )

1/2β
−3/2
i β

−1/2
j . (48)

The coefficients �i can be finally obtained by substituting
Eq. (45) into Eq. (35), multiplying it with miV 2, and integrat-
ing over the velocity. After some algebra, the corresponding
set of coupled linear algebraic equations for the coefficients
�i are given by

s∑
j=1

(
ωi j + 1

2
ζ (0)δi j + T (0)

i ξ j

)
� j = Bi, (49)

where

Bi = 2

d
T (0)

i (1 − p∗) − T (0)
i ζ (1,0) − T φ

∂γi

∂φ
− Ai

d2ni
, (50)

and

φ = πd/2

2d−1d�
(

d
2

) s∑
i=1

niσ
d
i (51)

is the solid volume fraction. Upon obtaining Eq. (50) we have
taken into account that the dependence of the temperature
ratios γi on the densities ni is through their dependence on
the mole fractions xi and the volume fraction φ. Furthermore,
the collision frequencies ωi j are defined as

ωii = 1

dniT
(0)

i

⎛⎝ s∑
j=1

∫
dvmiV

2J (0)
i j

[
fi,MWi, f (0)

j

]

+
∫

dvmiV
2J (0)

ii

[
f (0)
i , fi,MWi

]⎞⎠, (52)

ωi j = 1

dniT
(0)
j

∫
dvmiV

2J (0)
i j

[
f (0)
i , f j,MWj

]
, (i �= j).

(53)

In the Maxwellian approximation (42), ωii and ωi j are

ωii = − π (d−1)/2

2dT (0)
i �

(
d
2

)v3
0

⎧⎨⎩ 3√
2

niσ
d−1
i miχ

(0)
ii β

−3/2
i

(
1 − α2

ii

)
−

s∑
j �=i

n jmi jσ
d−1
i j χ

(0)
i j (1 + αi j )(βi + β j )

−1/2β
−3/2
i

×β
−1/2
j

[
3μ ji(1 + αi j )(βi + β j ) − 2(2βi + 3β j )

]⎫⎬⎭,

(54)

ωi j = π (d−1)/2

2dT (0)
j �

(
d
2

)v3
0n jmi jσ

d−1
i j χ

(0)
i j (1 + αi j )

× (βi + β j )
−1/2β

−1/2
i β

−3/2
j

[
3μ ji(1 + αi j )

× (βi + β j ) − 2β j
]
. (55)

In Eqs. (54) and (55), it is understood that i �= j. The set
of algebraic equations (52) can be now easily solved. In
particular, for a binary mixture (s = 2) the solution of Eq. (49)
for �1 can be written as

�1 = B1

ω11 − x1
x2

ω12 + 1
2ζ (0) + T (0)

1

(
ξ1 − x1

x2
ξ2

) , (56)

where the relation �2 = −(x1/x2)�1 has been accounted
for. The expression for �2 can be easily obtained from
Eq. (56) by making the changes 1 ↔ 2. The solution (56)
is indeed consistent with the requirement x1�1 + x2�2 =
0. This is because x1γ1 + x2γ2 = 1, B2 = −(x1/x2)B1, and
ω11 − (x1/x2)ω12 + ξ1/x1 = ω22 − (x2/x1)ω21 + ξ2/x2.

The expression (56) provides �1 in terms of the parameters
of the mixture. Its explicit form is relatively long and is omit-
ted here for the sake of brevity. A simple but interesting case
corresponds to ordinary mixtures (elastic collisions) where
ζ (0) = 0, ξi = 0, γi = 1, β1 = 2μ12, β2 = 2μ21, and �1 is

�1 = 4πd/2

d2�
(

d
2

)T

(
ω11 − x1

x2
ω12

)−1[
n2σ

d
12χ

(0)
12 (x2μ21

− x1μ12) + 1

2
x2

(
n1σ

d
1 χ

(0)
11 − n2σ

d
2 χ

(0)
22

)]
. (57)
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Equation (57) differs from the one obtained by Jenkins and
Mancini [4] for nearly elastic hard spheres (d = 3). This
discrepancy is essentially due to the fact that the distribution
functions of each species in Ref. [4] are assumed to be
Maxwellian distributions even in inhomogeneous situations.
This was already noted by the authors of this paper since they
conclude that their expression for �1 could be improved by
determining the perturbations to the Maxwellians using the
Chapman-Enskog procedure [33]. Expression (57) accounts
for not only the different centers r and r ± σ i j of the colliding
pair in the Enskog collision operator (2) but also for the form
of the first-order distribution f (1) given by Eq. (24).

On the other hand, for a three-dimensional system (d = 3),
the expression (57) for �1 agrees with the one derived in
Ref. [31] [see Eq. (22d) of [31]] for a hard-sphere binary
mixture. This confirms the relevant known limiting cases for
the granular mixture results derived here for the temperature
ratios.

Once the first-order contributions to the partial tempera-
tures are known, the first-order contribution ζU to the cooling
rate can be explicitly obtained by employing Eqs. (32), (33),
(47), and (48). In addition, the second contribution η′′

b to
the bulk viscosity ηb can be obtained from Eq. (30). Thus,
ηb = η′

b + η′′
b is completely determined from Eqs. (30) and

(44). For elastic collisions (αi j = 1), as expected, the corre-
sponding expression for ηb is consistent with previous works
on ordinary mixtures [30–32].

V. BINARY GRANULAR MIXTURES

To illustrate the dependence of the coefficients �i, ζU , and
ηb on the parameter space of the system, a binary mixture
(s = 2 and so, �2 = −x1�1/x2) of inelastic hard spheres
(d = 3) is considered. The above coefficients depend on many
parameters: {x1, T, m1/m2, σ1/σ2, φ, α11, α22, α12}. A similar
complexity also exists in the elastic limit [32], so the relevant
new feature is the dependence of �1, ζU , and ηb on the
coefficients of restitution. Moreover, for the sake of simplicity,
the case of a common coefficient of restitution (α11 = α22 =
α12 ≡ α) of an equimolar mixture (x1 = 1

2 ) with σ1 = σ2

and solid volume fraction φ = 0.2 (moderately dense gas) is
considered. This reduces the parameter space to three quan-
tities: {T, m1/m2, α}. The dependence on temperature can
be scaled out by introducing the (dimensionless) quantities
� ∗

1 = (nσ 2
12v0/T )�1 and η∗

b ≡ ηb(α)/ηb(1), where ηb(1) is
the bulk viscosity for elastic collisions. The coefficient ζU is
dimensionless.

To display the dependence of the coefficients � ∗
1 , η∗

b,
and ζU on α, we have still to provide the form for the pair
distribution function χ

(0)
i j . In the case of spheres (d = 3), a

good approximation of χ
(0)
i j is [34–36]

χ
(0)
i j = 1

1 − φ
+ 3

2

φ

(1 − φ)2

σiσ jM2

σi jM3
+ 1

2

φ2

(1 − φ)3

(
σiσ jM2

σi jM3

)2

,

(58)
where M� = ∑

i xiσ
�
i . In Fig. 1, the (reduced) coefficient � ∗

1
is plotted as a function of the coefficient of restitution α for
several values of the mass ratio. It is quite apparent first that
the influence of the inelasticity on � ∗

1 is significant, specially
for high mass ratios. With respect to the dependence on the

FIG. 1. The (reduced) coefficient � ∗
1 as a function of the com-

mon coefficient of restitution α for a binary mixture of hard spheres
(d = 3) with x1 = 1

2 , σ1 = σ2, φ = 0.2, and three different values
of the mass ratio m1/m2: m1/m2 = 0.5 (a), m1/m2 = 4 (b), and
m1/m2 = 10 (c).

mass ratio, we see that while � ∗
1 increases with inelasticity

when m1/m2 < 1, the opposite happens when m1/m2 > 1.
Furthermore, Fig. 1 also highlights that the magnitude of
the first contribution to the partial temperature is in general
quite small in comparison with the values of the remain-
ing transport coefficients of the mixture [28,29]. To assess
the impact of � ∗

1 on the bulk viscosity and the first-order
contribution to the cooling rate, Figs. 2 and 3 show the α

dependence of the (reduced) coefficients ηb(α)/ηb(1) and ζU ,
respectively, for two values of the mass ratio. We also plot
the corresponding values of these coefficients when � ∗

1 is
neglected. Although both predictions (with and without � ∗

1 )
agree qualitatively, we observe that the effect of � ∗

1 on both
transport coefficients cannot be neglected specially for high
mass ratios and moderate inelasticity (for instance, α 
 0.6).
This means that previous results [27,28] derived for both

FIG. 2. The (reduced) bulk viscosity ηb(α)/ηb(1) as
a function of the common coefficient of restitution α for
a binary mixture of hard spheres (d = 3) with x1 = 1

2 ,
σ1 = σ2, φ = 0.2, and two different values of the mass
ratio m1/m2: m1/m2 = 0.5 (a) and m1/m2 = 10 (b).
The dashed lines are the results for the (reduced) bulk viscosity
when the contribution η′′

b to ηb is neglected.
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FIG. 3. Magnitude of the (reduced) coefficient ζU as a function of
the common coefficient of restitution α for a binary mixture of hard
spheres (d = 3) with x1 = 1

2 , σ1 = σ2, φ = 0.2, and two different
values of the mass ratio m1/m2: m1/m2 = 0.5 (a) and m1/m2 = 10
(b). The dashed lines are the results for the coefficient ζU when the
contribution ζ (1,1) to ζU is neglected.

the bulk viscosity and the cooling rate of granular mixtures
must be slightly changed when the masses of the constituents
of the mixture become very disparate and/or the collisional
dissipation becomes significant.

VI. CONCLUDING REMARKS

One of the most intriguing differences between ordinary
and granular mixtures is the absence of energy equipartition
in homogeneous states. This means that the zeroth-order
contributions T (0)

i to the partial temperatures Ti (measuring
the mean kinetic energy of each species) of granular mixtures
are different for mechanically different components, reflect-
ing a violation of the equipartition theorem valid for elastic
collisions [9]. The origin of this violation is the inelasticity
in collisions, and its impact on transport problems such as
thermal diffusion segregation [37–39] has been shown to
be quite significant, specially for strong dissipation and/or
disparate mass ratios.

In addition, as was already noted in some of the pioneering
papers of the Enskog theory for multicomponent ordinary
mixtures [30–32], a breakdown of energy equipartition is
also present in the Navier-Stokes domain (first-order in spa-
tial gradients) for moderately dense mixtures. The origin of
this violation is associated with the spatial gradients, and
more specifically with the divergence of flow velocity since
the first-order contributions T (1)

i to the partial temperatures
are proportional to ∇ · U. This additional source of energy
nonequipartition is independent of the one appearing in the
homogeneous cooling state for granular mixtures.

On the other hand, the coefficients T (1)
i are usually ne-

glected in many of the works devoted to granular mixtures
[5,27,28] because only the first terms in the Sonine poly-
nomial expansion are retained. Since T (1)

i ∝ ∇ · U, an in-
teresting question is to assess the impact of the first-order
coefficients T (1)

i on both the bulk viscosity ηb and the first-
order contribution ζU to the cooling rate.

The goal of this paper has been to determine the coeffi-
cients T (1)

i from the Chapman-Enskog solution to the (inelas-
tic) version of the Enskog kinetic equation [3]. As in previous
works [27,28], this task has been achieved in two different
steps. First, we have obtained in an exact way the set of
linear integral equations that the first-order contributions T (1)

i
satisfy. This has allowed us to prove the solubility condition
for solving this set of integral equations. As a second step, an
approximate solution to the above set of equations is required
for practical purposes in order to explicitly express the coef-
ficients T (1)

i in terms of the parameter space of the problem
(masses, diameters, composition, density, and coefficients of
restitution). This task has been achieved by considering the
leading terms in the Sonine polynomial expansion. Thus, the
results derived here for T (1)

i extend to inelastic collisions the
calculations performed many years ago [30–32] for ordinary
hard-sphere mixtures. Moreover, the expressions obtained
here for ηb [given by Eqs. (28)–(30)] and ζU [given by
Eqs. (32), (47), and (48)] correct the previous results derived
in Refs. [27,28] where the contributions η′′

b and ζ (1,1) to ηb and
ζU , respectively, were implicitly neglected.

For the sake of illustration and to assess the impact of T (1)
i

on ηb and ζU , a binary mixture with a common coefficient
of restitution (αi j ≡ α) has been considered to analyze the
dependence of the above transport coefficients on inelasticity.
First, as Fig. 1 shows, we observe that the effect of inelasticity
on the first-order contributions to the partial temperatures is in
general quite important, specially for large mass ratios. With
respect to the influence of T (1)

1 on ηb and ζU , Figs. 2 and 3
highlight that the impact of the first-order partial tempera-
ture on both the bulk viscosity and the cooling rate can be
relatively important for moderate inelasticity and/or disparate
mass ratios.

An interesting problem is to extend the present results
to the case of polydisperse granular mixtures driven by a
stochastic bath with friction [40–42]. This kind of thermostat
models the effect of the surrounding interstitial viscous gas on
the dynamics of grains (granular suspensions). An extensive
study on the transport coefficients for driven granular mixtures
at low density has been carried out in Refs. [43–45]. In
contrast with the findings reported here for freely cooling
granular dilute gases (where T (1)

i = 0 when φ = 0), the results
derived for driven systems [45] show that the first-order con-
tributions T (1)

i to the partial temperatures are different from
zero even when φ = 0. The extension of the results obtained
in Refs. [43–45] to finite density is an interesting project.
Work along this line will be initiated in the near future.

In summary, we have revisited previous works on polydis-
perse granular mixtures [27,28] where the first-order contri-
butions T (1)

i to the partial temperatures were neglected. The
present work fixes the above limitation by including not only
the calculation of T (1)

i but also their influence on the bulk vis-
cosity ηb and on the first-order contribution ζU to the cooling
rate. Our results show first that the first-order coefficients T (1)

i
exhibit in general a complex dependence on the coefficients
of restitution of the mixture. In addition, they also show that
the impact of T (1)

i on both ηb and ζU cannot be neglected for
disparate masses and/or strong dissipation. In this context,
the results derived before for polydisperse dense granular
mixtures [27,28] must be slightly modified by including the
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contributions coming from the partial temperatures T (1)
i to the

transport properties and the cooling rate.
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