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ABSTRACT

Non-Newtonian transport properties of an inertial suspension of inelastic rough hard spheres under simple shear flow are determined by
the Boltzmann kinetic equation. The influence of the interstitial gas on rough hard spheres is modeled via a Fokker-Planck generalized
equation for rotating spheres accounting for the coupling of both the translational and rotational degrees of freedom of grains with the
background viscous gas. The generalized Fokker-Planck term is the sum of two ordinary Fokker-Planck differential operators in linear v
and angular w velocity space. As usual, each Fokker-Planck operator is constituted by a drag force term (proportional to v and/or w) plus
a stochastic Langevin term defined in terms of the background temperature Tey. The Boltzmann equation is solved by two different but
complementary approaches: (i) by means of Grad’s moment method and (ii) by using a Bhatnagar-Gross-Krook (BGK)-type kinetic model
adapted to inelastic rough hard spheres. As in the case of smooth inelastic hard spheres, our results show that both the temperature and
the non-Newtonian viscosity increase drastically with an increase in the shear rate (discontinuous shear thickening effect) while the fourth-
degree velocity moments also exhibit an S-shape. In particular, while high levels of roughness may slightly attenuate the jump of the viscosity
in comparison to the smooth case, the opposite happens for the rotational temperature. As an application of these results, a linear stability
analysis of the steady simple shear flow solution is also carried out showing that there are regions of the parameter space where the steady
solution becomes linearly unstable. The present work extends previous theoretical results (H. Hayakawa and S. Takada, “Kinetic theory of
discontinuous rheological phase transition for a dilute inertial suspension,” Prog. Theor. Exp. Phys. 2019, 083]J01 and R. G. Gonzélez and
V. Garzd, “Simple shear flow in granular suspensions: Inelastic Maxwell models and BGK-type kinetic model,” J. Stat. Mech. 2019, 013206)
to rough spheres.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015241

. INTRODUCTION

Needless to say, shear thickening (a rheological process in
which the viscosity increases with the shear rate) in non-Newtonian
gas—-solid flows is likely one of the most challenging and open
problems in suspensions of particles in gases or liquids. Apart
from its practical interest (it has been broadly found in nature'
and industry”™’), its understanding from a more fundamental

point of view has attracted the attention of many researchers in
the last few years.”*' Shear thickening can occur as a smooth
increase in the viscosity with an increase in the shear rate;
this effect is usually referred to as continuous shear thickening
(CST). On the other hand, it can also be observed as a drastic
increase in the viscosity at a specific shear rate; this dramatic ver-
sion of CST is known as discontinuous shear thickening (DST).
These two different phenomena can be observed, for instance,
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in a suspension of cornstarch on water at different cornstarch
concentrations.

On the other hand, although the shear-induced solid-like
behavior produced in DST has generated significant interest, most
of the studies have been focused on densely packed suspensions
where extensive simulations have been carried out to disclose the
origin of this unexpected phenomenon. As has been widely dis-
cussed in the review of Brown and ]aeger,'l the above-mentioned
studies propose three main mechanisms based on particle reorga-
nization to explain the shear thickening phenomena: hydrocluster-
ing, order—disorder transition, and/or dilatancy. However, DST has
been shown to appear also at relatively low-density regimes™
where specific structural characteristics that influence the stress
transmission are not apparently substantial enough to explain such
a sharp transition. Thus, in order to unveil in a clean way the
microscopic mechanisms involved in DST, it would be also con-
venient to consider relatively low-density systems where kinetic
theory can provide a quantitative theoretical description. In the
context of kinetic theory, some previous works™ *° have shown
the existence of a DST-like process for the temperature between
a quenched state (a low-temperature state) and an ignited state
(a high-temperature state) in homogeneously sheared gas-solid
suspensions.

However, all the above works™ ® consider a suspension model
where the effects of thermal fluctuations on the dynamics of grains
were neglected. A more accurate suspension model where the effect
of the interstitial gas on solid particles is accounted for via a viscous
drag force plus a stochastic Langevin term’’ has been recently con-
sidered”” * for obtaining the shear-rate dependence of the kinetic
temperature and the stress tensor. The theoretical results” " have
been compared against event-driven Langevin simulation for hard
spheres (EDLSHS),” showing very good agreement, especially for
low-density systems. Both approaches (kinetic theory and simula-
tions) conclude that there is a transition from DST (found for very
dilute systems) to CST as the volume fraction of the granular gas
increases.

An important limitation of the above-mentioned theoretical
works” " is that the solid particles were modeled as smooth inelas-
tic hard spheres. This means that the effects of tangential friction
and rotation induced by each binary collision on rheology were
ignored in the above attempts. The purpose of the present paper
is to extend the previous theoretical efforts of smooth spheres to
rough spheres in order to assess the impact of roughness on the
rheological properties of the suspension. Thus, we want to uncover
the whole range values of the normal « and tangential  restitu-
tion coefficients and derive explicit expressions for the rotational
T, and translational T; temperatures as well as for the relevant ele-
ments of the pressure tensor Py¢. Given the mathematical difficulties
involved in the general problem, as in Refs. 29 and 30, we consider
here very dilute systems for which the Boltzmann kinetic equation
offers a reliable description. To the best of our knowledge, only
three previous papers”'”'” have addressed the role of roughness in
the rheological phenomena. However, given that these works™'>'/
consider concentrated colloidal suspensions at the jamming transi-
tion, no analytical results were derived since they combine exper-
imental and computer simulation results of spherical colloids. In
this sense, the present contribution complements these previous
attempts”'>'” since our results allows us to unveil the combined
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effect of both « and f3 on the shear-rate dependence of the pressure
tensor.

As said before, our goal here is to determine the rheological
properties of an inertial suspension of inelastic rough hard spheres
under simple shear flow. This state is macroscopically characterized
by a constant density #, a uniform temperature T, and an homo-
geneous shear field Uy = ay, where a is the constant shear rate. As
usual, we are interested here in steady state conditions. In addition,
as in previous works,””’ the influence of the viscous gas on solid
particles is modeled by means of an operator representing the gas—
solid interaction force. In the limit case of purely smooth spheres
(e =1 and B = —1), only translational degrees of freedom play a
role in the dynamics of grains. In this special case, the fluid-force
is composed of a viscous drag force proportional to the (instanta-
neous) velocity of particles v (the coefficient of proportionality is the
translational drift coefficient y;) plus a Langevin-like term defined
in terms of the background temperature Tex. On the other hand,
beyond the smooth case, one has to take into account the coupling
between the rotational degrees of freedom of grains and the inter-
stitial gas. Following a model introduced years ago by Hess” for
Brownian motion of rotating particles, we assume that the struc-
ture of the rotational part of the fluid-force is similar to that of
the translational part: a drag force term proportional to the angu-
lar velocity w (the coefficient of proportionality is the rotational
drift coefficient y;) plus a stochastic Langevin-like term defined in
terms of Tex. The coefficients y; and y, are proportional to the shear
viscosity of the interstitial gas, and hence, both coefficients are pro-
portional to \/Tex. This suspension model has been more recently
considered to study a segregation problem of microswimmer
mixtures.”’

The suspension model for inelastic rough hard spheres is
solved by two different but complementary theoretical tools. First,
Grad’s moment method™ is considered to approximately get the
explicit forms of both the (reduced) translational T;/Tex and rota-
tional T,/Tex temperatures and the (reduced) elements Pyo/(nTex)
of the pressure tensor in terms of the restitution coefficients «
and f and the (reduced) shear rate a* = a/y;. Then, as a sec-
ond alternative and to overcome the mathematical difficulties of
the Boltzmann collision operator, a Bhatnagar-Gross—Krook (BGK)
model kinetic equation recently proposed for inelastic rough hard
spheres™® is considered. This kinetic model retains the essential
physical properties of the Boltzmann equation and allows one to
obtain all the velocity moments of the velocity distribution func-
tion. In particular, the results derived for the pressure tensor from
the kinetic model coincide with those derived from the Boltz-
mann equation when one conveniently chooses a free parameter
of the model. Apart from the second-degree velocity moments, the
shear-rate dependence of the fourth-degree moments is also widely
analyzed.

The plan of the paper is as follows. Section II is devoted to the
definition of the suspension model for inelastic rough hard spheres
in the low-density limit. Starting from the Boltzmann kinetic equa-
tion, the exact balance equations for the densities of mass, momen-
tum, and energy are derived with expressions for the momentum
and heat fluxes. These expressions are defined in terms of the veloc-
ity distribution function. Section III deals with the simple shear
flow state where the time evolution of the elements of the pres-
sure tensor Py, is exactly obtained. The above set of equations for
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Py is solved by estimating the collisional moment associated with
the transfer of momentum by means of Grad’s moment method.
This permits to achieve explicit forms for Ty, T, and Py, under
steady state conditions. The results obtained from the BGK-like
model are discussed in Sec. V. Before considering the results for
inertial suspensions, Sec. V analyzes the results in the so-called dry
granular gases, namely, when the influence of the interstitial gas is
neglected (i.e., when y; = y, = 0). Although these results are inter-
esting by themselves, they offer the opportunity to compare the
present theory with the results derived many years ago by Lun’’ for
nearly elastic collisions (& $ 1) and nearly perfectly rough particles
(B < 1). The results for the rheological properties and the fourth-
degree velocity moments of inertial suspensions are illustrated in
Sec. VI for several values of the coefficients & and . It is clearly
shown that the roughness does not substantially change the con-
clusions found in the smooth limit case since DST is also present
for inelastic rough spheres. In addition, the BGK results also show
that the fourth-degree moments increase dramatically with the shear
rate in a certain region of values of the shear rate. A linear stabil-
ity analysis of the steady simple shear flow solution is carried out
in Sec. VIIL. As expected from the previous analysis performed for
smooth spheres,”’ the homogeneous steady sheared solution can be
linearly unstable in certain regions of the parameter space. The paper
is closed in Sec. VIII with a brief discussion on the results reported
here.

Il. BOLTZMANN KINETIC EQUATION
FOR GAS-SOLID FLOWS OF INELASTIC
ROUGH HARD SPHERES

A. Boltzmann equation for inertial suspensions

We consider a set of solid particles of diameter o, mass m,
and moment of inertia I immersed in a molecular gas of viscosity
#g. The solid particles are modeled as inelastic rough hard spheres.
We assume that the collisions among particles are inelastic and are
characterized by constant coefficients of normal restitution (&) and
tangential restitution (). While the coefficient « ranges from 0 (per-
fectly inelastic collisions) to 1 (perfectly elastic collisions), the coef-
ficient f ranges from —1 (perfectly smooth spheres) to 1 (perfectly
rough spheres). Kinetic energy is, in general, dissipated by collisions,
except in the cases « = 1 and = +1. An interesting feature of this
model is that inelasticity affects both translational and rotational
degrees of freedom of the spheres.

In the low-density regime (no” < 1, where # is the number
density), all the relevant information on the state of the suspen-
sion is given through the one-particle velocity distribution function
f(r, v, w; t), where v and w are the (instantaneous) linear (trans-
lational) and angular velocities, respectively. Neglecting the effects
of the gravity field, the velocity distribution f obeys the Boltzmann
kinetic equation,”® "

of
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][vl,w1|f,f]:azfdvzfda)zfd}?(a(ff‘g)('&»g)
x [a%ﬁzf(r,vil,w{'; t)f(r,vg,wg; t)
—f(l‘,Vl,wl;t)f(l‘,Vz,wz;t)]. 2)

Here, O(x) is Heaviside’s step function, @ is the unit collision vec-
tor joining the centers of the two colliding spheres and pointing
from the sphere labeled by 1 to the sphere labeled by 2, and g
=v) — V3 is the relative translational velocity. In Eq. (2), the double
primes on the linear and angular velocities denote the initial veloc-
ities {v}’, w}’,v}, @} } that lead to the final velocities {vi, @1, v, w2}
following a binary restituting collision. The restituting (or inverse)

collision rules are”” """

vi=vi-Q', vi=w+Q", (3)
" 2A " " 2A "
w =w—-—0xQ, w=w-—0xQ", (4)
oK oK
where Q" reads
v l+at_ k 1+p7°
= o' o'. —
Q (@ 8) l+x 2
o
x[?i(?i-g)—g+ Eﬁx (w1+w2)]. (5)

In Egs. (4) and (5), x = 4]/mo” is a dimensionless parameter char-
acterizing the mass distribution within a sphere. It runs from the
extreme values ¥ = 0 (namely, when the mass is concentrated on
the center of the sphere) and « = % (namely, when the mass is con-
centrated on the surface of the sphere). In the case that the mass is
uniformly distributed, x = 2.

Similarly, the collisional rules for the direct collision (vi, w1,
Vo, w2) — (v{,w{,vﬂ,w;) are

Vi=vi-Q v;=m+Q (6)
2 2
W =w -—6xQ, w=w—-—6xQ, (7)
oK oK
where Q is given by
l+a__, k 1+p
Q=578
x[ﬁ(3~g)—g+gﬁx(w1+wz)]. (8)

Equations (6) and (8) allow us to evaluate the variation of the total
energy (translational plus rotational energy). After some algebra,
one gets

m 2 2 2 2 I 2 2 2 2
AE = 5(’1]1 + U, —’Ul—’Uz)'l'E(wl + Wy —wl—wz)

T v vf + 7 = vl f(0.1(0)) 0
1—/32 K [A (A w1+w2)]2
=—-m————|ox|Gxg+o
where Fis an operator characterizing the influence of the interstitial 4 l+x 2
as on grains and J[f, f] is the Boltzmann collision operator given 1-a
%Ym: 8 T P § -m (%-g)°. 9
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The right hand side of Eq. (9) vanishes (and so the total energy is
conserved in a collision) when « = 1 and 8 = —1 (perfectly smooth
spheres) and « = 1 and f = 1 (perfectly rough spheres).

As in our previous works on granular suspensions,” " the
effect of the interstitial gas on the inelastic rough hard spheres is
accounted for by the operator F acting on the velocity distribution
function f. In the case that the spheres are perfectly smooth (and so
inelasticity only affects the translational degrees of freedom of the
spheres), for low Reynolds numbers, the instantaneous fluid force is
usually constituted by two terms: (i) a drag force term proportional
to the relative velocity v — U, (U, being the known mean flow veloc-
ity of the background gas) and (ii) a stochastic Langevin-like term
modeled as a Gaussian white noise.”” While the first term (Stokes’
law) takes into account the dissipation of energy due to the fric-
tion of grains on the viscous gas, the stochastic force gives energy
to the solid particles in a random way. This latter term mimics the
interaction between the solid particles and the particles of the sur-
rounding (bath) gas. Both terms account for the coupling between
the translational degrees of freedom of the spheres and the back-
ground gas. Needless to say, one might expect similar effects with the
rotational degrees of freedom of grains in the case of inelastic rough
spheres.

Therefore, following a generalized Fokker—Planck equation for
rotating spheres proposed many years ago by Hess,”” we write the
operator F acting on f as

Ff = Ff+ F"f, (10)

where F* and F**' denote the corresponding Fokker-Planck terms
associated with the translational and rotational degrees of free-
dom of spheres. As usual, the translational part F"f can be written

27,28,30
as

Tex O
(v=Ug)f —yi— aé’ (11)

ftrf —Y[
where y; is a drag coefficient associated with the translational degrees
of freedom and Te is the temperature of the interstitial molecu-
lar gas. Although y; is, in general, a tensor, it may be considered
as a scalar proportional to the viscosity of the background fluid
#g o< /Tex in the case of very dilute suspensions. More specifically,
if the diameter of the sphere is very large compared with the mean
free path of the viscous gas, then y; = 3707g/m. It must be noted that
the strength of the correlation in the stochastic term of Eq. (11) has
been chosen to be consistent with the fluctuation-dissipation theo-
rem when collisions are elastic.”’ Similarly, the rotational part F "'f
has an analogous structure to Eq. (11), except that the linear velocity
v is replaced by the angular velocity w. It is given by’

To O

7)
m Ow?

Fl’()tf —)/y- f— (12)

where y, = 10°1,/I. Note that in contrast to ", the “drag” term of
F ™" is proportional to the (instantaneous) angular velocity w; we are
assuming for simplicity that the mean angular velocity of the sur-
rounding gas is zero. Moreover, in Eqgs. (11) and (12), we are also
neglecting a term which takes into account the coupling of transla-
tional and rotational motions. This term stems from the transverse

scitation.org/journal/phf

force v x w and was originally proposed in the Brownian model of
rotating particles.” A consequence of this decoupling is that the
solution to the Boltzmann equation from Grad’s method” in the
uniform shear flow problem is defined in terms of a two-temperature
Maxwellian distribution [see Eqgs. (38) and (40)] where the transla-
tional and rotational degrees of freedom are not correlated. By using
this simple approach, the corresponding contributions to the stress
tensor coming from the above transverse force term vanish by sym-
metry. A simpler version of the generalized Fokker-Planck model
(10) has been recently employed to study the colloidal Brazil nut
effect in microswimmer mixtures.’

According to Egs. (11) and (12), the Boltzmann kinetic equa-
tion (1) can be written as

of _ of 0y TaOf
ot TV AU g Ve
To O

yraw (Uf— yr I Ow? - [f’f] (13)

Here, AU=U - Uy,

U(r;t):ﬁfdv/ dovf(r,v,wt) (14)

is the mean flow velocity of spheres, V = v — U is the translational
peculiar velocity, and

n(r;t):fdv/dwf(r,v,w;t) (15)

is the number density.

It is quite apparent that the collision dynamics of the suspen-
sion model (13) is not affected by the presence of the background gas
(namely, the form of the Boltzmann collision operator is the same as
that of a dry granular gas), and hence, we neglect the inertia of the
gas phase As has been widely discussed in several papers on suspen-
sions,””***"*" the above-mentioned approximation requires that the
stresses exerted by the molecular gas on the inelastic rough spheres
are sufficiently small to assume that they have a mild impact on the
motion of grains. As the particle density decreases with respect to
the gas/fluid density (for instance, glass beads in liquid water), the
inertia of the gas phase is not negligible, and hence, the presence of
the background gas must be considered in the Boltzmann collision
operator.

B. Balance equations

The transfer equation for an arbitrary dynamic property y(r,
v, w, t) can be obtained by multiplying both sides of the Boltzmann
equation (13) by y and integrating over v and w. In order to obtain
the transfer ‘equation, an useful property of the Boltzmann collision
operator is"

T = [ an [ deyvie)imalff)

:ngdvl/dwldeZfdwzfd3®(3'g)

< (@ g)[y(nvi, @) - y(rvi, @), (16)
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where the collisional rules for the direct collision are given by
Egs. (6) and (8).
The evolution equation for the average

1
n(r,t)

(v) = /dvf dw y(r,v,w;t)f(r,v, w;t) (17)

can be now easily obtained with the result

2 ) = n{ 3L} 49 Catww) - - 9)
v (S} v ) - ()

0 rTex [ O
I B o BT R

The macroscopic balance equations for the densities of mass,
momentum, and energy can be obtained from the transfer equation
(18) when y = {1, mv,mV?/2 + Iw2/2}. They are given by

Din+nvV-U=0, (19)
pDU = —py, AU -V - P, (20)

DT + (Tt — Tex) + pr(Tr — Tex)
1
:—CT—E(V-qHD:VU). (1)

In Egs. (19)-(21), p = mn is the mass density, D; = 0; + U-V is
the material time derivative, and the granular temperature T(r, t) is
defined as

T- %(Tt+Tr), 22)

where the (partial) translational T; and rotational T, temperatures
are defined as

I

m T, = g<w2>, (23)

T[ = §<V2>,

where the averages (---) are defined by Eq. (17). Moreover, the
pressure tensor P(r, t) is

P =p(VV), (24)
while the heat flux vector q(r, ¢) is given by
9=9;*+9, (25)

where the translational q; and rotational q, contributions are defined
as

a=L(vV), .= 2V (26)

Moreover, the cooling rate { (which gives the rate of energy dissipa-
tion due to inelasticity) is

3 T: T,
(= ﬁ(t + ﬁ(ra (27)
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where the partial energy production rates associated with the trans-
lational ({;) and rotational ({;) degrees of freedom are

I

__ 2
G = mrj[“’ Ifif1 (28)

m

(t - 37’!T¢

TIff1,

One third of the trace of the pressure tensor P defines the hydrostatic
pressure p as

p= nT;. (29)

At a kinetic theory level, it is also convenient to derive the bal-
ance equations for the partial temperatures T; and T,. They are given
by

2
Dy Ty +2y(Ty — Tex) + G Ty :*Q(V'qt-kpl VU), (30)

2

DtTr+2Yr(Tr*Tex)+(rTr: 3n

V-q,. (31)
Combination of Egs. (30) and (31) leads to Eq. (21).

Before finishing this section, it is worth remarking that in the
definition of T, [second relation of Eq. (23)], we have not referred
the angular velocities w to the mean value Q = (w). This contrasts
with the definition of T} [first relation of Eq. (23)] where the (instan-
taneous) velocity v has been referred to U. As noted in previous
works,”” we have not defined T, in terms of the difference @ — Q
because € is not a conserved quantity. In the case that we defined
the rotational temperature as T, = é((w - 0)?), the granular tem-
perature T = (T; + T,)/2 would not be a conserved hydrodynamic
field in the case of elastic (¢ = 1) and completely rough (8 = 1)
spheres, although the total energy is conserved in collisions [see
Eq. (9), where AE=0ifa=f=1].

Ill. SIMPLE SHEAR FLOW

We assume that the inertial suspension is under simple (uni-
form) shear flow. As described in many previous works, " this state
is macroscopically characterized by a constant number density n, a
uniform granular temperature T(t), and a macroscopic velocity field

U,' = aijrj, a,‘j = a&x@-y, (32)
with a being the constant shear rate. We also assume that the mean
angular velocity = 0 and, as usual in uniform sheared suspensions,
the average (linear) velocity of particles follow the velocity of the
fluid phase: U = U,. At a microscopic level, the main advantage of
the simple shear flow is that this state becomes spatially homoge-
neous when the velocities of the particles v are referred to the frame
moving with the linear velocity field U.””’ In this frame, the distri-
bution function has the form f(r, v, w; t) = f(V, w; t), and hence, the
Boltzmann equation (13) becomes

of of 9 Tex O°f
ot~ Vrgv, oy VT g
0 Tex 0°f
—)’rafw'“’f—erW =JIf-f] (33)
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Since Vn = VT = 0, the heat flux vanishes (q = 0) in the sim-
ple shear flow and the (uniform) pressure tensor P is the relevant
irreversible flux of the problem. The knowledge of P allows us to
identify the most significant non-Newtonian transport properties of
the suspension.

In the simple shear flow problem, the conservation equations
(19) and (20) apply trivially while the balance equations (30) and
(31) for the translational T; and rotational T, temperatures, respec-
tively, yield

oT, 2a
87; + Zyt(Tt — Tex) + {tTt = *gpxy, (34)
867;’ +29,(T, = Tox) + 8Ty = 0. (35)

Note that the (partial) energy production rates {; and {, are defined
in terms of the velocity distribution function f(V, w) [see Eq. (28)].
This means that one has necessarily to get a solution of the Boltz-
mann equation (33) to determine {; and {, and the stress tensor Pyy.
Once the above quantities are known, then the partial temperatures
T; and T, can be obtained by solving Eqgs. (34) and (35).

According to Egs. (34) and (35), there are two competing mech-
anisms in the time evolution of the temperature. On the one hand,
there are cooling terms arising from inelastic cooling and the fric-
tion of grains on viscous gas. On the other hand, there are heating
terms arising from the viscous heating and the energy provided to
the particles by the stochastic driving term. After a transient period,
one expects that both mechanisms compensate for each other and a
steady state is achieved.

In the absence of shear rate (a = 0) and in the steady state (0:f
=0), for a = 1 and |B| = 1, the total kinetic energy is conserved, and
the solution to Eq. (33) is given by the following Maxwellian velocity
distribution:

ml \3? mv? Iw’
vV, = - - . 36
fu(V. @) ”(4n2T3x) eXp( 2Tex)eXP( 2Ter (36)

On the other hand, beyond the above-mentioned two special cases,
the solution to Eq. (33) is not known.

The relevant elements of the pressure tensor may be obtained
by multiplying both sides of Eq. (33) by mV; V;, and integrating over
V and w. The result is

&Pkg + aijgj + angjk + Zyt(Pkg - }’lTex(skg)
=mJ [ViVe| f.f]- (37)

On the other hand, the exact form of J [V, V| f,f] is not known,
even in the simplest case & = 1 and 8 = +1 where the kinetic energy
is conserved in collisions. Thus, one has to resort to alternative
approaches for computing the pressure tensor P;;. As mentioned in
the Introduction, we will determine the elements of the pressure ten-
sor by using two different but complementary routes: (i) by solving
the Boltzmann equation by means of Grad’s moment method and
(ii) by considering a BGK-like kinetic model recently proposed ™ for
inelastic rough hard spheres.

scitation.org/journal/phf

IV. GRAD'S MOMENT METHOD

. . 2427 7(":
As has been clearly shown in several previous works, %'

Grad’s moment method can be considered an accurate tool
to estimate the collisional moment J[V;V|f,f]. In the same
way as in molecular fluids,” the idea of Grad’s method is to
expand the velocity distribution function in powers of gener-
alized Hermite polynomials, the coefficients of the expansion
being the corresponding velocity moments. This expansion is trun-
cated at a given order k; therefore, the moments of degree higher
than k are neglected in the corresponding solution. In the case of
a three-dimensional gas, the usual thirteen-moment approximation
includes the density n, the three components of the mean flow veloc-
ity U, the six elements of the pressure tensor P [recall that T; =
(1/3n)(Pxx + Pyy + Pz.)], and the three components of the heat flux
vector q.””” Since the heat flux vanishes in the simple shear flow
problem, Grad’s solution is given by’

m 1
where
Hij = Pij —p(Sij (39)

is the traceless part of the pressure tensor and fy is the two-
temperature Maxwellian velocity distribution,

ml 3/2 mv? Iw*
W) = - = 4
fo(V,w) n(4n2TtTy) exp( oT, )exp( o, (40)

Upon writing the distribution (38), we have ignored the possible
contributions to f coming from the combination of traceless dyadic
products of the three vectors V, (V- w), and V x @ with unknown
scalar coefficients.” These contributions are absent because we have
neglected the orientational correlations between V and w in the
Fokker-Planck operator F [see Eqs. (10)-(12)]. Thanks to this sim-
plification, we resort to the weight distribution fy, which is isotropic
in velocity space. In addition, we have also neglected in Grad’s solu-
tion (40) the contribution of the fourth-degree velocity moments
(cumulants) to the distribution f. These cumulants have been deter-
mined in homogeneous situations,” ™’ showing that, in general,
these quantities are small, especially when the system is driven by
a white-noise stochastic thermostat.”””” On the other hand, despite
the above-mentioned approximations, it is worth noting that the
theoretical predictions for the temperature ratio T,/T; obtained by
replacing f by fo in homogeneous states have been shown to compare
very well with Monte Carlo and molecular dynamics simulations.”
We expect that this fair agreement is also kept in the simple shear
flow state.

The collisional moment J [V V¢| f,f] can be computed when
the trial distribution (38) is inserted into the definition of this
moment. The calculations are long but standard and are based on
the relationship (16). After some algebra, one gets’””*

mJT [ViVe| f,f] = —vylke — pliSkes (41)

where we recall that p = nT;, and
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- _ 2
vn—[(?x’+[3)(2—~—ﬁ)+§1(;::]vt, (42)
22
(,_i[a(l_'oz)+ﬁ(1—’ﬁ)—i;:]vt. (43)
In Egs. (42) and (43),
~ l+a = 'k 1+
=== P (44)

V= —no*y [ —. (45)
5 m

In addition, the cooling rate {, associated with the rotational degrees
of freedom [defined by the second relation of Eq. (28)] can be also
determined from Grad’s distribution (38) with the result’”*

[ - 5ﬂ[1—[3+2ﬂ(1——)] (46)

Upon deriving Eq. (41), nonlinear terms in the tensor I, have been
neglected. Equation (37) can be more explicitly written when the
expression (41) is accounted for. The result is

8tpkg + aij]-g + ang]-k + 2Yt(Pkl - l’lTex(skg)
= ~VyPre = p(G = vy)de. (47)

Equation (47) clearly shows that P,, = P, and hence, the con-
straint (29) yields P, = 3p — 2Pyy. The equality Py, = P,, does not
agree with computer simulation results obtained for smooth granu-
lar suspensions.”””* The above-mentioned drawback could be fixed
if one would retain nonlinear terms in IT;, in the evaluation of
J [ViVe| f.f]- The inclusion of these nonlinear corrections provides
nonzero contributions to the normal stress differences in the plane
orthogonal to the shear flow (namely, Py, — P, # 0).”* However, the
difference Py, — P.. is, in general, very small; therefore the expression
(41) can be still considered as a good approximation.

It is convenient now to introduce dimensionless quantities.
Among the different possibilities, as in previous works on sheared
granular suspensions,” """ we scale the quantities associated with
the solid particles with those referring to the gas phase, namely, y;,
yr, and Tex. Since the pressure tensor (which is the most relevant flux
in the simple shear flow state) is mainly related to the translational
degrees of freedom, we reduce here the shear rate and the external
temperature with respect to the (translational) friction coefficient y;,
namely,

* T.
a = ﬂ’ Ts = —= > (48)
ye ma?y;

In addition, the translational and rotational temperatures are scaled
with respect to Tex (08¢ = Tt/ Tex and 0, = Tr/Te), and we introduce
the dimensionless quantities

scitation.org/journal/phf

et “ﬁ[a'u—a')fﬁ’(l—is‘) "Z] T (49)

\/G_t)/r_ 3

- SVl @ Be-a-) ‘i%] VI 0

Here, n* = no” is the reduced density. As already noted in previ-
ous studies,” the explicit dependence of {;* and vy on density comes
from the dimensionless quantities a* and T. This way of reducing
the above-mentioned quantities is closer to the one made in com-
puter simulations for smooth inelastic hard spheres.”””* Needless to
say, if you had reduced a and T with the collision frequency v:
(this sort of scaling is usual in sheared molecular gases™"), the above-
mentioned density dependence had been removed. Note that {; and
v,’; are independent of both the (translational) temperature T; and
the background temperature Tex because y; o< \/Tex.

In terms of the above-mentioned dimensionless variables,
Eq. (47) becomes

OcPig + agPiy + ag;Py + 2(Piy — Oie)
= vy VOP - 00/ 0 (& - vy ) Sk (51)

where we have introduced the (scaled) time variable 7 defined as
dr = y:dt.

A. Steady state solution

As said before, after a transient regime, one expects that the
suspension reaches a steady state. The interesting point is that this
steady sheared state is inherently non-Newtonian.”’ The main goal
of this paper is to determine the rheological properties of the inertial
suspension in the steady uniform shear flow.

An inspection of the results derived in the smooth case’’ shows
that Eq. (51) (with 8;P;, = 0) is formally equivalent to that of
this limit case when one makes the changes 6 — 6, {* — {/, and

Voj2 = Vy» where the quantities 6, {*, and v, are defined in Ref. 30.
Consequently, the expressions of P}, Py, and a* can be obtained
from comparison with those obtained in the smooth case [see Egs.

(32), (33), and (35) of Ref. 30]. They are given by

24 (- 00
2+/6v; ’

xx = 39t (52)

}’J”

2+ (v = ()00
P;.y __ (vq Ct ) t\/_ta*) (53)

(2+0v;)?

at = \‘ 3 \/G_t(t +2(17 ( \/_v ) (54)

20(v; - )+201

The steady (reduced) temperatures 6; and 6, can be determined from
Egs. (34) and (35) (with 0:6; = 9,0, = 0) as
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206, - 1) + /0.6, 7—fa P}, (55)
2%(6, 1) +/0,6,0 =0, (56)
t
where y,/y: = 4/(3x) and
* ° ﬁ _ _ * *
= fyz 3\/" [1 [3+2ﬁ(1 )]n VT (57)

On the other hand, as already happens in smooth granular suspen-
sions,”””*"" it is not possible to express in Eq. (54) 6; in terms of
a* and the remaining parameters of the suspension. Thus, for given
values of «, 8, , n*, and Tg, one can consider 6y, for instance, as
an input parameter and determine a* and 6, as the solutions to
Eqgs. (54) and (56).

Once the (scaled) translational temperature 0; is known, the
rheological properties of the suspension are obtained from Egs. (52),
(53), and (56). In particular, the (dimensionless) non-Newtonian
shear viscosity

P
* xy

= 58
"= (58)

is given by

; 0
,7* — & (59)

(24 E;)

Since (linear) Grad’s solution (51) yields P}, = Py, the only nonvan-
ishing viscometric function is the one associated with the difference

) P;y. In the dimensionless form, the first viscometric function is
defined as

2(1-6") +Vag
2+/0v; '

As expected, the expressions (54), (59), and (60) agree with the ones
derived for inelastic Maxwell models’’ [see Egs. (35), (39), and (40)
of Ref. 30] when one makes the replacements 6; — 6, {{ — {*, and
vy = Vg Where the quantities 6, {*, and vy, are defined in Ref. 30.

¥* = P}, - P), = 36 (60)

B. Navier-Stokes results

In order to get analytical results, it is illustrative to consider the
limits of small and large shear rates. First, when a* — 0, Eq. (54)
yields the following relation for determining the (translational)

9}0)(1+%(:\/ef°))—1:0. (61)

The rotational temperature 6" is easily obtained from Eq. (56) as

temperature 950):

-1

60 - (1 + %ﬂc:\/ef‘”) . (62)
Vr
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Substitution of Eq. (61) into Eq. (59) gives the following form of the
Navier-Stokes shear viscosity #ys:

. 9(0)
fNs = ———— =—. (63)
Gt( )v,’;

In the opposite limit (a* — o), the asymptotic expressions for

{#0,a<1,and |B| # 1 are
* * /2
( - )3 *
= \/7*3/2(*51 . (64)

When { = 0, one has Gt(m) = a**/(9v;?) and nk = a**/(3v;?).
The corresponding expressions for 75, can be obtained from (63) by

6(00) {t* a*Z, :o
3 Vﬂz(:t

replacing 9(0) by 9(°°)

Similarly to suspensions of smooth 1nelast1c hard spheres,”
Egs. (63) and (64) clearly show that while " is finite in the Navier—
Stokes domain, it diverges for very large shear rates. In fact, the
ratio % (a* — o0)/n*(a* — 0) becomes very large as the shear
rate increases; this could explain the existence of DST of the shear
viscosity coefficient. As mentioned in Sec. I, this behavior gradu-
ally changes as the density increases since the theoretical results
derived from the Enskog kinetic theory (and conﬁrmed by molecular
dynamics simulations) show CST for finite densities.”’

Although we are mainly in this paper interested in non-
Newtonian transport properties, Eq. (63) gives the expression of the
Navier-Stokes shear viscosity coefficient of a suspension of inelas-
tic rough hard spheres. We are not aware of any previous deriva-
tion of this relevant transport coefficient. On the other hand, in the
absence of the interstitial gas (dry granular gas), the Navier-Stokes
shear viscosity coefficient was obtained in Ref. 54. Its explicit form is

27,28,30

1.25

1.20

(1,0)

1.15

*
NS

(0.0)/m

1.10

*
MNNs

1.05

1.00

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Plot of the ratio 75 () /155 (1) Vs the coefficient of normal restitution «
for granular suspensions (a) and dry granular gases (b). Here, we have assumed
spheres with a uniform mass distribution (x = é) and a coefficient of tangential
restitution 8 = 0.
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*
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FIG. 2. Plot of the ratio 1754 (e, B) /1155 (1, B) Vs the coefficient of normal restitution
o for x = § and four different values of the coefficient of tangential restitution :

=-1(a), =05 (b), =0.5(c), and g = 1 (d). Here, 755 (1, 8) is given by
Eq. (63) with a = 1.

provided in the Appendix for the sake of completeness. It is quite
apparent that the form of the Navier-Stokes shear viscosity of a
dry gas of inelastic rough hard spheres [see Eq. (A1)] differs from
the one derived here [see Eq. (63)], as expected To illustrate these
differences with and without interstitial gas, Fig. 1 shows the a-
dependence of the ratios nys(a)/nxs(1) for granular suspensions
[line (a)] and dry granular gases [line (b)]. In the dry case, fys
= nnsve/(nTy). InFig. 1,k = 2, B =0, and s (1) refers to the value
of the shear viscosity at « = 1. We observe that the dependence of
the ratio #ys () /s (1) on « is very different in both systems, even
at a qualitative level since, while this ratio exhibits a non-monotonic
dependence on the coefficient of normal restitution in the case of
granular suspensions, it increases with decreasing « in the dry gran-
ular case. Regarding granular suspensions and to show the combined
effect of & and 8 on 7y, Fig. 2 plots the ratio nys(a, B) /nxs (1, B) as
a function of « for different values of . We observe that, at fixed
a, the above ratios present a monotonic 3-dependence since those
coefficients decrease from 8 = —1 to § = 1. In addition, at fixed f3, we
see that while those coefficients increase with decreasing & when f
is negative, they exhibit a non-monotonic dependence on & when
B is positive. In any case, Fig. 2 highlights the intricate interplay
between the coefficients of restitution « and f3 on the behavior of
the Navier—Stokes shear viscosity coefficient.

V. BGK-LIKE KINETIC MODEL
OF THE BOLTZMANN EQUATION

To complement the results derived from the Boltzmann equa-
tion from Grad’s moment method, we consider now a BGK-like
kinetic model for a granular gas of inelastic rough hard spheres.”
As usual in kinetic models, the intricate mathematical structure of
the Boltzmann collision operator J[v, w| f, f] is replaced by a simpler
term K[v, w| f] that retains the basic physical properties of the true

scitation.org/journal/phf

Boltzmann operator. More specifically, J[f, f] is substituted by the
sum of three terms:* (i) a relaxation term toward a two-temperature
local equilibrium distribution, (ii) a nonconservative drag force pro-
portional to V, and (iii) a nonconservative torque equal to a linear
combination of w and Q. In the context of the simple shear flow
problem, the operator K[v, w| ] becomes

Klw ol /1= x(@B)n( £ ) + 420 ()
Lo (). (65

where v; is the collision frequency defined by Eq. (45), fo is given
by Eq. (40), and the forms of {; and {; are provided by Egs. (43) and
(46), respectively. Moreover, the quantity y(«, ) can be seen as a free
parameter of the model to be adjusted to agree with some property
of interest of the Boltzmann equation. With the replacement (65),
the BGK-like model for the granular suspension in the steady state
reads

of .9 T 8f . 8 Tex Of
Vo, May Y T e M ee Y T T aa
=—xvi(f = fo), (66)
where
A=y + % A= yr+ Q (67)

The use of the BGK-like model allows us to determine not only
the rheological properties (which are connected with the elements of
the pressure tensor) but also all the velocity moments of the velocity
distribution function. For a three-dimensional system, it is conve-
nient in the simple shear flow problem to define the general velocity
moments

My ok, = / dw f AV VE VR VES(V, 0). (68)

Note that here we are essentially interested in computing the veloc-
ity moments of f involving the translational (peculiar) velocities V.
To obtain these moments, we multiply both sides of Eq. (37) by
Vfl V}lf2 Vé" and integrate over V and w. The result is

akiMj, —1 g1 + (v + kA My ok, = N ks (69)
where k = k; + k; + k3, and
Tex
Ni, ok = %Rkbkz,& +XVtMl]€1,kz,k3~ (70)

The quantities Ry, k, x, and M,%1 Kok, are defined, respectively, as

Ry ks = / dw f dv (v, w)i(vkl sz Vk3)
= ki (ki = )M a4k, + k2 (ko = 1) My, g2k,
+ks (ks = 1) M, gy k25 71)
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and

k/2
Mk . _n(ZTt) _3/2 (k1+1)r(k2+1)r(k3+1) (72)
PR m 2 2 2

if k1, k2, and k3 are even, being zero otherwise. As expected, the
structure of Eq. (69) is the same as in the smooth case,” and hence,
the solution to Eq. (69) can be written as

k
L k1! (7€l)q
M =

ki ko oks q;) (kl _ q)! (th + k/lt)“q

Nkl—q,k2+q,k3~ (73)

The (reduced) nonzero elements of the pressure tensor Pj, and
the (reduced) shear rate a* can be easily obtained from Egs. (70)-
(73). Their expressions are

. 2+ i /0.0

= (74)
P2 (v + GOV
P;- - _ 2 +th \/e_tet . a*’ (75)
[2+ (o + )V
. 2+ xvi V06 Lt 2a*? 76)
T2 (o WO [24 (o +0OVET

* d\/e_t(t*'*'z(l_G;I) * *
’ J 2 e YW@}

where (/" is defined by Eq. (49) and

* Vi 16 *
v, = —— = —+/nn \JTE. (78)
2 T Vn" /T

Upon deriving Egs. (74)-(77), use has been made of the first identity
of Eq. (67).

Comparison between Egs. (43)-(54) (derived from Grad’s solu-
tion to the Boltzmann equation) and Egs. (74)-(77) shows that the
BGK results for the non-Newtonian transport properties coincide
with the Boltzmann ones when x(x, «, f) is chosen as

_(;:ga'(1+2a’)+§7§(1+27§) ~E+Zﬁ—9—. 79)

X= v
We will take this choice for computing the remaining moments of

the distribution f.

A. Suspension model at Tex =0 and y, =0

As happens in the smooth case,” despite the apparent simplic-
ity of the BGK-like model (66), it is still intricate to get the explicit
form of the velocity distribution function f(V, w). In order to obtain
f and following the arguments of Ref. 36, we focus our attention in
the marginal distribution function

= [ def(v.a). (80)

Given that the rheological properties are essentially linked to the
translational part of the distribution f, one expects that f captures
the main properties of the global distribution f. Moreover, as in
Ref. 30, we also assume the simple limit case Tex = 0, yr = 0, but
keeping y; = const. In other words, we are neglecting first the cou-
pling between the rotational degrees of freedom of spheres with
the background gas (y, = 0). In addition, we are also supposing
that Tex is much smaller than the translational temperature T; in
such a way that the only relevant effect of the surrounding intersti-
tial gas on grains is through the viscous drag force. In the case of
smooth inelastic hard spheres, this simple model has been employed
to analyze rheology in sheared granular suspensions,” ***’ particle
clustering due to hydrodynamic interactions,’’ and driven steady
states’” and to assess the impact of friction in sheared hard-spheres
suspensions.' '

The BGK kinetic equation for f"(V) can be easily obtained from
Eq. (66) by integrating over w,

aVyaV —f" —)ttf VI + " = yufy (81)

where

3/2 N
foE(V) = fdwfo(Vw)—n(zT) P (82)

Exploiting the analogy with the smooth case,” the hydrodynamic
solution to Eq. (81) is

tr(V) f ds e—(l 3)s as Yé)v el,sV avftr(V) (83)

where 1, = /\r/(XW) and @ = a/()m) In Eq. (83), the action of the

velocity operators ¢ V5% and V'3 onan arbitrary function g(V)
is
VI g(Viy Vi V2) = g(Vie + sV, Vi V2), (84)
MV (Vio V3, V2) = (Vi eV, VL), (85)

The elements of the pressure tensor can be computed from the
marginal distribution function (83). They are®’

n T[ n Tt

P, =P,= "t p o-__""t &
wETET e YT T (v 20)”

(86)

and Py, = 3p — 2P),. Here, & is the real root of the cubic equation
3E(1 + 28)* = 3. More explicitly, it is given by

E(a)—fsmh[ cosh™ (1+%{2)]. (87)

Here, the steady balance equation (34) for T; becomes 2y, T; + {; T;
= —(2/3n)aPsy. This equation can be more explicitly written when
one takes into account Egs. (86) and (87) with the result

ye = xvié - %(L (88)

. . 30,60 .
Thus, as noted in previous works,” " at given values of a, f, and «,

the right hand side of Eq. (88) vanishes for a certain value ao(a, 3, x)
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of the (reduced) shear rate. Since y; is strictly positive (except for a
=0 and {; = 0), physical solutions to (88) are only possible for val-
ues of the shear rate d larger than or equal to dy. Thus, in particular,
when « # 1 or || # 1], the constraint (88) prevents the possibility of
obtaining the Navier-Stokes shear viscosity (i.e., when'@ — 0) of the
granular suspension. This is, in fact, a drawback of this simple model
not shared by the generalized Fokker-Planck suspension model
introduced in Sec. II. In the case of smooth inelastic hard spheres,
this drag model has been widely used for many authors™***° to
study the discontinuous transition for the temperature between the
quenched and the ignited state.

VI. RHEOLOGY OF SHEARED DRY GRANULAR GASES

Although the main goal of this paper is to assess the influence
of the interstitial gas on the rheological properties of inelastic rough
hard spheres, it is interesting first to analyze the results obtained in
the dry limit case (namely, when the effect of the background gas is
neglected). To the best of our knowledge, this problem was indepen-
dently studied many years ago for moderately dense gases by Jenkins
and Richman™ for hard disks and by Lun’’ for hard spheres. In both
works, the calculations were in principle restricted to nearly elas-
tic collisions (& < 1) and either nearly smooth particles (f < 1) or
nearly perfectly rough spheres (f 2 —1). A more recent study has
been performed by Santos™® by using the BGK-like kinetic model
defined in Eq. (65). Given that the BGK results for rheology agree
with those derived by solving the Boltzmann equation from Grad’s
moment method, only a comparison with the theoretical predictions
reported by Lun’’ for a three-dimensional gas will be offered in this
section.

A way of obtaining the results for the dry case consists in for-
mally setting y; = y» = 0. However, one has to take care in extract-
ing the results for the dry case from those derived in Sec. V since
practically all of them have been expressed in terms of dimension-
less quantities that diverge when y; — 0. Thus, one has to solve

first the set (47) for the nonzero elements Pj;y and Pfcl}r,y (recall that

Py = 3p - ZP;I;Y) and then substitute these forms into the balance
equation (34). After some simple algebra, one simply gets

( Pdry

i di d

Py =pPr=1-2", py=-2g (89)
Vi Vi

=2 %’; (90)

2Py
where v, and {; are given by Eqs. (42) and (43), respectively. Finally,
the ratio of the rotational to translational temperature can be easily
obtained from the balance equation (35) by taking y, = 0. It leads to
the condition {, = 0, which according to Eq. (46) yields

T, dryi 1+
(i) = Kil —ﬂ+2K' (91)

Equation (91) was already obtained by Lun.”” As happens in the
homogeneous steady state driven by a white-noise thermostat,” the
temperature ratio of the steady shear flow problem is independent
of the coefficient of restitution a. This conclusion contrasts with the
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results derived in the homogeneous cooling case,"”** ** where T/ T}
depends on both «a and f§ [see Eq. (A3) of the Appendix.]

Contrary to the case of granular suspensions, the balance equa-
tion (34) establishes an intrinsic relation between the (reduced)
shear rate a/v; and the mechanical parameters of the system (the
coefficients of normal restitution « and tangential restitution 8 and
the dimensionless moment of inertia ). This means that a/v; is not
an independent parameter and is a function of «, f, and .

Since the results derived by Lun’” apply in principle to slightly
inelastic, slightly rough spheres, the normal stress differences van-

ish: Pﬂ? = Pj}fy = Pszry = p. On the other hand, his expressions for

ngry and a/v; are formally equivalent to our results when one takes
P;ly'y = 1in Egs. (89) and (90). Figure 3 shows the a-dependence of

the (reduced) yy-element PS;Y [nT;fork = % and four different values
of : B = -1 (perfectly smooth spheres), f = —0.5 (moderate rough-
ness), f = 0.5 (medium roughness), and = 1 (strong roughness).
Results obtained Direct Simulation Monte Carlo (DSMC) method
simulations® for perfectly smooth spheres are also included. It is
quite apparent first that the combined effect of « and S gives rise

to anisotropic effects in the yy-element of the pressure tensor; these
effects are measured by the departure of the ratio P;I;y /nT; from 1.
We also see that, for a given value of f3, these non-Newtonian effects
increase monotonically with decreasing «. In addition, for a given
value of «, P}C};y /nT; presents a non-monotonic dependence on f; the
impact of roughness is higher for central values of § (let us say |f]
« 0.5). Comparison with Monte Carlo simulations for 8 = —1 shows
good agreement; we hope that this agreement is also extended for
the remaining values of . As a complement of Fig. 3, Fig. 4 plots

dry
Pw /nT,

FIG. 3. Plot of the (reduced) element Pﬁ}y/nT, as a function of the coefficient of
normal restitution « for x = % and four different values of the coefficient of tangen-
tial restitution B: B = -1 (a), =-0.5 (b), $=0.5(c), and 8 = 1 (d). Symbols refer
to DSMC results obtained for spheres perfectly smooth (8 = —1).9° Reproduced
with permission from J. M. Montanero and V. Garzo, “Rheological properties in a
low-density granular mixture,” Physica A 310, 17 (2002). Copyright 2002 Elsevier.
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FIG. 4. Plot of the (reduced) element —Pg;,y/nT, as a function of the coefficient
of normal restitution « for ¥ = % and two different values of the coefficient of
tangential restitution 3: 8= -1 (a) and 3 = 0.5 (b). The solid lines correspond to the
results obtained here while the dashed lines refer to the results derived by Lun."’
Symbols refer to DSMC results obtained for spheres perfectly smooth (8 = —1).%°
Reproduced with permission from J. M. Montanero and V. Garzé, “Rheological
properties in a low-density granular mixture,” Physica A 310, 17 (2002). Copyright
2002 Elsevier.

fPfci;y /nT; vs a for f=—-1and f = 0.5. The theoretical predictions of

Lun’ are also represented. As expected, we observe that the agree-
ment between Lun’s predictions and our results is excellent for « < 1
and |B| < 1. On the other hand, the discrepancies between both the-
ories increase as inelasticity increases (at a given value of roughness)
or as roughness increases (at a given value of inelasticity). As in the
case of Fig. 3, Fig. 4 highlights again the good performance of Grad’s
solution when & = 1 and 8 = —1 since the aforementioned solution
compares very well with simulations.

VIl. RHEOLOGY AND FOURTH-DEGREE MOMENTS
OF SHEARED INERTIAL SUSPENSIONS

We consider now sheared inertial suspensions (y; # 0 and y,
# 0). In Sec. IV, we have determined the elements of the (reduced)
pressure tensor P;, by solving the Boltzmann equation (33) by
means of Grad’s moment method. Then, in Sec. V, we have replaced
the Boltzmann collision operator J[f, f] by the BGK-like collision
term (65) and have explicitly obtained all the velocity moments of
the velocity distribution function. In dimensionless form, all the
aforementioned quantities (pressure tensor and higher degree veloc-
ity moments) have been expressed in terms of the restitution coef-
ficients « and f3, the (reduced) moment of inertia «, the reduced
density n*, the (reduced) bath temperature Tg, and the (reduced)
shear rate a™.

We want essentially to assess the shear-rate dependence of 17,
¥*, 6, 0,, and the fourth-degree moments for fixed values of «, 3,
x, n*, and Tex. Since the theoretical results for 6, 1, and ¥* will
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be compared against event-driven simulations’’ carried out for the
case a = 0.9 and B = —1, the values of n* and Tex employed in those
simulations (n* = 0.01 and Tex = 1) and the value x = % will be used
in the remaining plots of this section.

A. Rheology

The dependence of the (steady) translational temperature 0;,
the non-Newtonian shear viscosity *, and the viscometric function
¥* on the (reduced) shear rate a* is shown in Fig. 5. The analytical
forms of the above quantities are given by Egs. (54), (59), and (60),
respectively. We recall that the corresponding expressions of the
BGK equation agree with those derived from Grad’s solution when
one makes the choice (79) for the free parameter y of the kinetic
model. In addition, as will be discussed in Sec. VIII, depending on
the values of & and 3, the steady solution can be linearly unstable.
The thick lines in Fig. 5 denote the linearly unstable regions.

The main conclusion of Fig. 5 is that the roughness does not
change the trends observed in previous works”***’ for perfectly
smooth inelastic spheres: there is a drastic increase in all the rheo-
logical properties with an increase in the shear rate. In particular,
panel (c) of Fig. 5 highlights the existence of DST for the shear vis-
cosity i, regardless of the value of the coefficient of restitution j3.
On the other hand, at a more quantitative level, we observe that,
for a given value of a”, high levels of roughness can slightly atten-
uate the jump of 1™ relative to the frictionless case. This is a quite
unexpected result since most of the results obtained for concentrated
suspensions have shown that friction enhances DST. However, this
trend is not monotonic since there is a change in the aforementioned
behavior for very high shear rates; in fact, the line corresponding
to strong roughness (8 = 1) intersects the curves of § = 0.5, f =0,
and 8 = -0.5 for a* > 10. In addition, the agreement between the-
ory and simulations for perfectly smooth spheres (¢ = 0.9 and S
= —1) is relatively good, except in a small region close to the tran-
sition point where simulation data suggest a sharper transition than
the Boltzmann one. We think that this small discrepancy is mainly
due to the limitations of the Boltzmann equation for accounting
small density corrections to #* around this transition point. As a
matter of fact, the Enskog predictions for this quite small density (n*
= 0.01) compare slightly better with simulation data than the ones
obtained from the Boltzmann equation; see, for instance, Fig. 2 of
Ref. 27.

Although similar trends are observed for 6; and V", it is worth
noting that the combined effect of & and f on the viscometric func-
tion ¥* is quite important since, while this quantity is tiny for small
shear rates, it suddenly increases for not quite large values of the
shear rate (let us say a* ~ 1). It must be recalled that the results
obtained in the context of the Enskog equation for moderately dense
gases have shown a transition from DST for very dilute suspensions
to CST at relatively moderate densities.”**

More influence of roughness on rheology can be found in the
case of the (steady) rotational granular temperature 6, = T,/ Tex. This
quantity does not play any role in the perfectly smooth case. Panel
(b) of Fig. 5 shows the shear-rate dependence of 0. It is quite appar-
ent that, for large shear rates, roughness clearly enhances the value
of 6, in contrast to what happens for ;. It must be remarked that
similar features of the rheological properties have been observed for
other values of the coefficient of restitution.
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FIG. 5. Plots of the (steady) translational granular temperature 6; [panel (a)], the
(steady) rotational granular temperature 6, [panel (b)], the non-Newtonian shear
viscosity n* [panel (c)], and the viscometric function ¥* [panel (d)] as a function
of the (reduced) shear rate a* for « = 0.9 and different values of the coefficient of
tangential restitution 8: = —1 (black line), 8 = —0.5 (red line), B = 0 (green line),
B =0.5 (blue line), and = 1 (cyan line). Here, x = § n*=0.01,and T3 = 1. The
thick lines represent the linearly unstable regions. Symbols refer to computer sim-
ulation results obtained for spheres perfectly smooth (8 = —1).” Reproduced with
permission from H. Hayakawa, S. Takada, and V. Garzd, “Kinetic theory of shear
thickening for a moderately dense gas-solid suspension: From discontinuous thick-
ening to continuous thickening,” Phys. Rev. E 96, 042903 (2017). Copyright 2017
American Physical Society.
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B. Fourth-degree velocity moments

We consider now the relevant fourth-degree velocity moments
obtained in the context of the BGK model. They can be easily deter-
mined from Eq. (73). As discussed in Ref. 30, there are eight inde-
pendent fourth-degree (symmetric) moments: five of them are even
functions of the (reduced) shear rate a* while the remaining three
are odd functions of a*. To illustrate the shear-rate dependence of
those moments, we chose the representative moments

My = f dv f do V* f(@, V)
= Moo + 2(Moao + M2z + Mooz + Monz), (92)

and

My, = / dv f dw V2V, Vyf (@, V)
= M310 + M130 + M112, (93)

where the canonical moments My, , x, are given by Eq. (73). Upon
writing Eq. (92), use has been made of the identity Mos = Moos.
While the moment My is an even function of a* (and so My # 0
when a* = 0), the moment M)y, is an odd function of a* (and so
My =0 when a* = 0). To see more clearly the influence of both

a and ff on M4|0 and M2|xy, we consider first the region 0 < a* <1
where non-Newtonian effects are expected to be still important.

(@)

-
~

(()).0 0.2 0.4 0.6 0.8 1.0
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a

FIG. 6. Shearrate dependence of the (scaled) fourth-degree moments
Mj;lo(a*)/Mjlo(O) [panel (a)] and —Mz*lxy(a*) [panel (b)] for « = 0.9 and dif-
ferent values of the coefficient of tangential restitution 8: 8 = —1 (black line), 8
=-0.5 (red line), B = 0 (green line), 8= 0.5 (blue line), and 3 = 1 (cyan line). Here,

x=2%n*=001and T = 1.
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Figure 6 shows the shear-rate dependence of My, (a™)/M,,(0) and

—M;lx (a*) for @« = 0.9 and several values of . Here, we have
introduced the dimensionless moments

2
{MZIO’M;IX}/} = "71(T£) {M4\0’M2|xy}' (94)
ex

In Fig. 6, M:lo(O) refers to the value ofMIlO when a” = 0, namely,

MZ\O(O) =

9
44+/6 (yvr +207)
2+ v/ 66
| i /696 4 4 X‘(O) | 95)
2+ 60 (i +8)

where Gt(o) is a real solution of Eq. (61). As expected, we observe first
in Fig. 6 that these fourth-degree moments clearly depart from their
equilibrium values (in the absence of shear rate). Surprisingly, at a
given value of «, the impact of  on those moments is very small since
all the curves collapse in a common one. This feature contrasts with
the results obtained for the rheological properties since the effect of
Bonboth 1 and ¥* is remarkable in this range of values of the shear
rate (a* < 1). It must be recalled that a similar property appears in the
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FIG. 7. Shear-rate dependence of the (scaled) fourth-degree moments
M:lo(a*)/Mjlo(O) [panel (a)] and —Mz*lxy(a*) [panel (b)] for « = 0.9 and dif-
ferent values of the coefficient of tangential restitution g: f = —1 (black line),
B =-0.5 (red line), 8 = 0 (green line), B = 0.5 (blue line), and B = 1 (cyan line).
Here, x = 2, n* =0.01, and T¢, = 1.

smooth limit case’” since the effect of & on M o(a”) and =My (a*)
was also found very tiny at a given value of the shear rate.

For very large values of the shear rate, it is interesting to see
whether the fourth-degree moments increase also dramatically with
the shear rate in a similar way as the non-Newtonian shear viscosity
#*. This is illustrated in Fig. 7, where it is clearly shown that both
scaled moments exhibit an S-shape for any value of . In addition,
we also see that the effect of  on these moments is really significant
for large values of a™.

(@)

-2 -1 0 1 2

FIG. 8. Plot of the ratio R (c,) = ¢(cc)/(n/2e7%) vs the scaled velocity

¢ = \/m/2T;V, fory; = 0.1 and five different values of the coefficient of tan-
gential restitution 8: § = —1 (black line), § = —0.5 (red line), 3 = 0 (green line),
B = 0.5 (blue line), and B = 1 (cyan line). Three different values of the coefficient
of normal restitution « are considered: « = 1 [panel (a)], « = 0.7 [panel (b)], and
a=0.5 [panel (c)]. Here, x = 2, n* =0.01, and Tg; = 1.
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C. Velocity distribution function interesting question is to see if actually the steady state solution pro-
vided by Egs. (52)-(56) is indeed a (linearly) stable solution. In order
to perform this analysis, we write first the four relevant equations for
0:, and 0, from Eq. (51) as follows:

As mentioned in Sec. V, one of the main practical advantages
of kinetic models is the possibility of obtaining the explicit form of
the velocity distribution function. Here, we have obtained it in the Py, Py
special case Tex = y» = 0 and is given by Eq. (83). To illustrate the * 1y _ o a
dependence of (V) on the parameter space of the problem, let us OcPyy + 2(P7y 1) = \/G_t Py et) \/_et(t » 99)
rewrite this distribution as

” 0:P, +a* P}, + 2P}, = —vi\/0.P, (100)
W)= () e, %)
2T
B:0: +2(6, - 1) +\/0,6,5 = —-Za* P, (101)
where ¢ = /m/2T,V is the reduced peculiar velocity and the
reduced velocity distributions function ¢(c) is given by 9.6, + 2V 0, - 1)+ \/9_[ 0,0" = 0. (102)
Yt
o(c) = a / ds e (1730s We want to solve the set of Egs. (99)-(102) by assuming small
0 x ., deviations from the steady state solution. Thus, we write
- [ (cx +dscy)” + ¢, + . 97 .
X eXP{ e [(C aSCy) Cy Cz)]} ( ) yy(T) yy5+ap (T) ny(T) _ +5Px (T) (103)
Upon writing Eq. (97), use has been made of Egs. (84) and (85). Fig- 00(7) = Bue + 80:(1),  6,(7) = 6y + 06, (), (104)

ure 8 shows the ratio Re(cx) = <px(cx)/(ﬂ_l/ze_ci) for j; = 0.1 and
different values of the restitution coefficients o and 3. Here, ¢x(cy) is
the marginal distribution,

where the subscript s means that the quantity is evaluated in the
steady state. Here, for the sake of simplicity, we have assumed that
the interstitial fluid is not perturbed, and hence, the parameters y;,
s oo yr, and Tex are constant in the time-dependent shear flow problem.

px(cx) f dey f dez ¢(c) This means that the reduced shear rate a* = a/y; is also constant.
- e T)s 5 Substituting Eqs. (103) and (104) into Egs. (99)-(103) and neglect-

\/_ f “——ex p( s Cx ) (98) ing nonlinear terms in the perturbations, after some algebra, one gets

1+a2s2 ) the set of linear differential equations,
Figure 8 shows that, in general, Ri(cy) is clearly different from 1, By Py
namely, the distribution (pf(cx) is highly distorted from its local o %cy - _L. %)' i (105)
equilibrium value (77'/2¢™%). At a given value of the coefficient of bed bed
tangential restitution f3, the distortion is more significant as the coef- 0 O
ficient of normal restitution « decreases (increasing inelasticity). The where
impact of roughness on Ry(cy) increases with decreasing a. - )
_ P~ SPL(D)
Py (1) = P* s Py(r) = pr
VIII. LINEAR STABILITY ANALYSIS s o (106)
OF THE STEADY SOLUTION Bi(r) = 59:(1) B(r) - 36, (7).
Although our study has been mainly focused on the determina- Ors
tion of the rheological properties under steady state conditions, an The square matrix L is
Vi =20, 2vi-w, -0 117
SRV SR ) (A L A AT /7 EAR LT
20: Py Pyy Py
P; 1
a*PZy 2+ \/H_t(ivf,qu) Oy
L= v , (107)
2 Pya’ 3., .
O VB (36 -4)+2 VoG
3 6 2
1,, P )
0 0 \/9_t E(r + (r )’ et((r (r)
Phys. Fluids 32, 073315 (2020); doi: 10.1063/5.0015241 32,073315-15

Published under license by AIP Publishing


https://scitation.org/journal/phf

Physics of Fluids

where the subscript s has been omitted for the sake of brevity. This
means that it is understood that all the quantities appearing in the
matrix L are evaluated at the steady state. In Eq. (107), we have
introduced the quantities

B, = iﬁﬁj&n*\/w G=-10m, &=24 (os)
1 15 K 6 e ” er

t
In the purely smooth case (f = -1), E =y, = Zt = Z, = 0, and hence,
the matrix L is consistent with the one obtained in Ref. 29 for a linear
stability analysis for smooth hard spheres.”’

The eigenvalues ¢ of the square matrix L govern the time evolu-
tion of the deviations {ﬁyy,ﬁxy,ﬁt,gr} from the steady solution given
by the set {P;y)s,P;},, s, 0,,5}. If the real parts of those eigenvalues
are positive, the steady solution is linearly stable, while it is unstable
otherwise.

On the other hand, as already occurs for smooth spheres,“‘ " the
(steady) translational temperature 6;(a*) turns out to be a multi-
valued function of the (reduced) shear rate in a certain interval of
values of a* (see the vicinity of the saddle point in Fig. 5). Thus, as
already did in Refs. 29 and 30, in order to analyze the stability of
the steady solution we take 0; as an independent parameter instead
of a* for the sake of convenience. Of course, once 0:(a*) is known,
a” can be determined from Eq. (54). As expected from the previous
stability analysis performed for smooth spheres,” a careful analysis
of the eigenvalues ¢ shows that, for given values of & and f, the real
part of one of the eigenvalues (the one associated with the rotational
temperature 6,) can become negative for values of 6; belonging to
the range 6" < 6; < 61*). The critical values 6" depend on n*, T,
a, B, and «. This means that the steady simple shear flow solution is
linearly unstable in the region 9;1) <0 < 9;2).

As an illustration, Fig. 9 shows the real part of the eigenvalues
Ui (i =1, 2,3, 4) of the matrix L as a function of the translational
temperature 6 for n* =0.01, T, = 1,k = %, a=1,and f=-0.5. We

10*

FIG. 9. Plot of the real part of the eigenvalues ¢; (i = 1, 2, 3, 4) of the matrix L for
n*=001,Tg =1,k= § a=1,and = -0.5. The green line corresponds to the
real part of the complex conjugate pair (¢2, ¢3). The red and blue lines refer to the
other two eigenvalues (¢4, £4), which become a complex conjugate pair for high
values of 6;. The region where the real parts of ¢4 and ¢4 vanish is shown more
clearly in the inset.
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find that two of the eigenvalues (let us denote them, for instance,
by ¢, and ¢3) are complex conjugate while the other two (¢; and ¢4)
become a complex conjugate pair for high values of 6;. It is quite
apparent that while the real part of ¢, (or ¢3 since Re ¢, = Re ¢3)
is always positive, the real parts of ¢; and ¢4 become negative for
certain critical values of 0; (see the inset where the position of these
critical values is more clearly shown). This means that there are two
different unstable regions for this system.

The aforementioned feature is clearly confirmed in Fig. 10,
where we plot a phase diagram delineating the regions between sta-
ble and unstable solutions in the {a, 6;} plane for smooth inelastic
hard spheres (8 = —1) with n* = 0.01, Toy = 1, and « = % While
the hatched regions refer to values of («, 6;) where the steady shear
flow solution is stable, the unfilled regions correspond to combined
values of « and 0; for which the steady solution is unstable. It is
worth noting that the dependence of the boundary line separating
both stable and unstable regions on « is not quite trivial since, at a
given value of a, there is a re-entrance feature as the translational
temperature 6; increases: we first find a transition from the stable
to unstable region, followed by a subsequent transition to the stable
region. Surprisingly, the size of the unstable region decreases with
inelasticity. As a complement of Fig. 10, Fig. 11 shows two different
phase diagrams in the {f3, 6;} plane for two values of the coefficient
of normal restitution a: & = 0.9 [panel (a)] and « = 1 [panel (b)].
We observe first that there are two separate unstable regions around
B = -0.5 in the case of & = 1. This is consistent with the find-
ings of Fig. 9. The second unstable region corresponding to higher
0’s is more squeezed than the first one. In addition, we see that
the size of the unstable region decreases with increasing roughness
(B increases). This is more apparent in the case of panel (a) of Fig. 11
where only a single unstable region is found. This means that rough-
ness attenuates the instability of the time-dependent sheared prob-
lem. In fact, at a given value of a, there exists a critical value fc(«) for
which the unstable region is destroyed, and hence, the steady solu-
tion is always linearly stable for 8 > f.. In particular, 3. ~ 0.75 for
a=0.9 and . ~ 0.94 for « = 1. Figure 11 also highlights the complex

= unstable
10*F 1
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10! : : : :
0.0 0.2 0.4 0.6 0.8 1.0
o

FIG. 10. Phase diagram for the behavior of the eigenvalues of the matrix L in
the case of purely smooth granular gases (B = —1) for n* = 0.01, Tg;, = 1, and
K= § The hatched regions correspond to states where the steady simple shear

flow solution is linearly stable, while the unfilled region refers to states where the
steady solution is linearly unstable.
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FIG. 11. Phase diagram for the behavior of the eigenvalues of the matrix L for
n* =001, T =1« = § and two different values of a: a = 0.9 [panel (a)] and
a = 1 [panel (b)]. The hatched regions correspond to states where the steady
simple shear flow solution is linearly stable, while the unfilled regions refer to states
where the steady solution is linearly unstable.

dependence of the boundary lines for « = 1 around 8 = —0.5 since
the following series stable — unstable — stable — unstable — stable
occurs when 0; increases at fixed f3.

In summary, our stability analysis shows that there are regions
of the parameter space of the problem where the steady simple shear
flow state can be linearly unstable. This restricts, of course, the anal-
ysis performed here for rheology to specific regions of the parameter
space where the steady solution is stable. Hopefully, the size of the
stable regions is, in general, larger than that of unstable regions.

IX. SUMMARY AND DISCUSSION

The determination of the non-Newtonian transport properties
in inertial suspensions under simple shear flow has stimulated in
the past few years the use of kinetic theory tools. Starting from the
Boltzmann kinetic equation (which holds for very dilute systems)
and/or the Enskog kinetic equation (which applies for moderately
dense systems), several works™* " have obtained explicit expressions
of the shear-rate dependence of the kinetic temperature, the non-
Newtonian viscosity, and the viscometric functions. In most of the
cases, the analytical results have been validated against computer
simulations showing, in general, good agreement for conditions of
practical interest. An interesting conclusion is that the viscosity
exhibits DST for very dilute systems;””” this means that there is a
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sudden relative increase in viscosity with an increase in the shear
rate. On the other hand, it has been also shown that DST gradually
becomes CST as the density increases.

However, all previous theoretical works”>*" have considered
inertial suspensions of smooth inelastic hard spheres, and hence, the
effects of tangential friction in particle collisions on non-Newtonian
rheology have been neglected. In the context of kinetic theory, we
are not aware of any previous attempt on addressing the impact
of roughness on the non-Newtonian transport properties. In this
paper, we have addressed this problem; more specifically and due to
the complexity of the problem, we have considered a granular sus-
pension of inelastic rough hard spheres at low density. In this case,
the Boltzmann kinetic equation conveniently adapted for account-
ing the effect of the interstitial gas on grains is a reliable equation
for obtaining the kinetic contributions to the temperature and the
relevant elements of the pressure tensor.

In the case of smooth spheres,”’ *’ the influence of the gas phase
on solid particles has been usually accounted for by a gas-solid force
constituted by two terms: (i) a drag force term proportional to the
(instantaneous) velocity v plus (ii) a stochastic term represented by a
Fokker-Planck operator of the form —(y;Tex/ m)@zf/avz. While the
first term models the friction of grains on the continuous gas phase,
the second one takes into account thermal fluctuations. On the other
hand, when the spheres are not completely smooth and there is a cer-
tain friction between both spheres, one has also to take into account
the coupling between the rotational degrees of freedom of grains and
the gas phase. Here, we have assumed that this coupling has a sim-
ilar structure to the one assumed in the smooth case; therefore, one
has to add two new terms in the corresponding suspension model:
a term proportional to the angular velocity @ plus a Fokker—Planck
operator of the form —(y, Tex/ m)@zf/awz. The coefficients y; and y,
are proportional to the square root of the background temperature
Tex.

Once the suspension model is defined, as a first goal we have
approximately solved it by Grad’s moment method.” More specif-
ically, we have evaluated the collisional moment J [Vy, Vel f,f]
[defined by Eq. (16)] by using Grad’s distribution (38). The knowl-
edge of this collisional moment allows us to obtain the explicit
forms of the (reduced) rotational 6, and translational 6; temper-
atures as well as the (reduced) relevant elements of the pressure
tensor Py , in terms of the parameter space of the problem (the resti-
tution coefficients « and f3, the reduced moment of inertia «, the
reduced shear rate a”, the reduced background temperature Tg,
and the reduced density n*). Although the determination of non-
Newtonian rheological properties (which are directly related with
the second-degree velocity moments) is the most important objec-
tive of the present contribution, higher degree velocity moments are
also relevant since they provide some indirect information on the
velocity distribution function, especially in the high velocity region.
Given that their evaluation from the true Boltzmann equation is
quite intricate, as a second goal we have obtained them by consider-
ing a BGK-like kinetic model™® recently proposed for inelastic rough
hard spheres. Beyond non-Newtonian rheology, the fourth-degree
moments are the first nontrivial moments in the steady simple shear
flow problem. Their knowledge allows us to disclose partially the
combined effect of the different physical mechanisms (shearing, gas
phase, and inelasticity) involved in the problem on the distribution
function.
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Regarding non-Newtonian rheology, the results derived here
for inelastic rough hard spheres show no new surprises relative to
the earlier works for smooth inelastic hard spheres:”’ " the flow
curve for the non-Newtonian viscosity 7" (a*) exhibits an S-shape,
and hence, DST is present. This means that #* discontinuously
increases/decreases if a* is gradually increased/decreased [see panel
(c) of Fig. 5]. We have also observed that, at a given value of a,
the dramatic increase in viscosity is slightly mitigated by roughness
(namely, as 8 increases). The influence of roughness on rheology is
more significant in the case of the (reduced) rotational temperature
0,. Panel (b) of Fig. 5 highlights that, for large shear rates, 6, increases
with increasing f.

With respect to the fourth-degree moments, at a given value of
the coefficient of normal restitution «, surprisingly the BGK results
show that the shear-rate dependence of those moments is practi-
cally independent of roughness in the range a* < 1, where nonlinear
effects are already important. This feature contrasts with the behav-
ior of n*(a*) since the value of n* clearly differs from its Navier-
Stokes form in this range of values of the shear rate. For larger
shear rates, we find that the fourth-degree moments also display an
S-shape in a similar way to the viscosity #* (see Fig. 7).

As a complement of the previous results, we have also ana-
lyzed the stability of the steady simple shear flow solution for non-
Newtonian rheology. To perform this analysis, since 6:(a”) is a
multi-valued function of a”, it is more convenient to take 6; as an
independent input parameter instead of the (reduced) shear rate. In
this case, as happens for smooth spheres,” the linear stability anal-
ysis shows regions of the parameter space of the system where the
steady solution is linearly unstable. More specifically, for given val-
ues of the set (n”, Tk, k, and «), the steady solution becomes unstable

in the region o < 6 < 952), where the critical values Gt(i) depend
on the coefficient of tangential restitution f. In addition, as panel
(b) of Fig. 11 clearly illustrates, the dependence of the boundary
lines delimitating stable/unstable regimes on f3 is quite complex, and
in fact, there may be two or more separate unstable regions. It is
worth noting that the unstable region usually belongs to the range of
(reduced) shear rates where DST appears [see the thick lines of panel
(c) of Fig. 5]. Thus, it would be tentative to speculate on the possi-
ble relation between DST and instability although this connection
requires a more rigorous analysis. We plan to elucidate this point
in the near future by considering a time-dependent inhomogeneous
solution.

As mentioned in Sec. I, the origin of DST has received a lot
of attention in the past few years. Several mechanisms'* have been
proposed, most of them directly related to the complex structure of
dense suspensions. On the other hand, as already discussed in Ref.
30, what is surprising here is the existence of DST in a structurally
simple system. In this case, the origin of DST in dilute suspensions of
inelastic hard spheres could be associated with both non-Newtonian
rheology in far from equilibrium states as well as the effect of the
interstitial gas on the dynamics of inelastic rough hard spheres.

The fact that the roughness of spheres does not have a signif-
icant impact on DST (in the sense that the trends observed here
are qualitatively similar to those observed for smooth spheres) could
be in part due to the Fokker-Planck suspension model considered
in this paper. As widely discussed in Sec. II, the above-mentioned
suspension model neglects the coupling between translational and
rotational degrees of freedom of grains in the form of the operator

scitation.org/journal/phf

F ™'f. A way of accounting for this coupling in our theory would be
to retain a term proportional to the vectorial product v x w in the
form of F ™. This would necessarily give rise to new contributions
in Grad’s solution coming from the combination of traceless dyadic
products of V, (V- w), and V x w. The extension of the present the-
oretical results by considering the aforementioned terms in Grad’s
solution is a very challenging problem to be carried out in the
future.

It is apparent that the theoretical results presented here are rel-
evant to make a comparison with computer simulations. Previous
simulations””*’ carried out for perfect smooth inelastic spheres (3
= —1) have shown good agreement with kinetic theory results, as is
clearly illustrated in most of the plots presented along the paper. We
expect that this agreement is also extended to the case of inelastic
rough hard spheres. We plan to carry on those simulations in the
near future. Another possible future project is the extension of the
present results to finite densities by considering the Enskog kinetic
equation. In this context, an interesting question is to see if actually
there is a transition from DST to CST as the density increases in a
similar way as in the limit case of perfectly smooth spheres. Work
on this line will be performed in the future.
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APPENDIX: NAVIER-STOKES SHEAR VISCOSITY
COEFFICIENT OF DRY GRANULAR GASES

The explicit expression of the Navier-Stokes shear viscosity
of a dry gas of inelastic rough hard spheres is displayed in this
Appendix.” It is given by

nTt 1
=, Al
NS = o1 (A1)

where v; and v; are defined by Eqgs. (45) and (50), respectively, and
the (reduced) cooling rate {* is

[1—a2+(1—ﬁ2)&6]‘ (A2)

1+x

s_5 1
T 121+6

Here, the temperature ratio 0 = T,/T} is

O=h+V1+h?, (A3)

where h is defined by
_ (1+K)2 [ 2 2 1+K]
h_72x(1+ﬂ)2 1-a"-(1 ﬁ)1+1c . (A4)
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