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Abstract
A hydrodynamic description for inelastic Maxwell mixtures driven by a
stochastic bath with friction is derived. Contrary to previous works where con-
stitutive relations for the fluxes were restricted to states near the homogeneous
steady state, here the set of Boltzmann kinetic equations is solved by means of
the Chapman–Enskog method by considering a more general time-dependent
reference state. Due to this choice, the transport coefficients are given in terms
of the solutions of a set of nonlinear differential equations which must be in
general numerically solved. The solution to these equations gives the trans-
port coefficients in terms of the parameters of the mixture (masses, diameters,
concentration, and coefficients of restitution) and the time-dependent (scaled)
parameter ξ∗ which determines the influence of the thermostat on the system.
The Navier–Stokes transport coefficients are exactly obtained in the special
cases of undriven mixtures (ξ∗ = 0) and driven mixtures under steady con-
ditions (ξ∗ = ξ∗st, where ξ∗st is the value of the reduced noise strength at the
steady state). As a complement, the results for inelastic Maxwell models (IMM)
in both undriven and driven steady states are compared against approximate
results for inelastic hard spheres (IHS) (Khalil and Garzó (2013 Phys. Rev. E
88 052201)). While the IMM predictions for the diffusion transport coefficients
show an excellent agreement with those derived for IHS, significant quantitative
differences are specially found in the case of the heat flux transport coefficients.
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1. Introduction

Linking macroscopic laws with microscopic ones is one of the main aims of statistical mechan-
ics. While this issue is well understood for macroscopic fluid systems under thermodynamic
equilibrium conditions (where Gibbs’ formulation connects the Hamiltonian of a system with
their thermodynamic properties), a general theory for out-of-equilibrium systems is still lack-
ing. An exception is when the fluid system is dilute enough and hence, the particles collide
with short-range interactions. In this case, a kinetic theory description based on a combina-
tion of Boltzmann kinetic equation and different methods of solution has been proved to be
a powerful tool. In particular, the Navier–Stokes and Burnett hydrodynamic equations with
explicit expressions for the transport coefficients have been derived for general potential inter-
actions by solving the Boltzmann kinetic equation by means of the Chapman–Enskog method
[1]. This perturbative method is based on the expansion of the distribution function around a
chosen reference state, a state where the system keeps close to.

The Chapman–Enskog method has been mainly employed to solve the Boltzmann equation
for ordinary or molecular gases (namely when the collisions among particles are elastic). In this
case, the solution to the Boltzmann equation in the absence of spatial gradients (zeroth-order
approximation) is given by the local version of the Maxwell–Boltzmann velocity distribution
function, namely, the distribution function obtained from the Maxwell–Boltzmann distribution
by replacing temperature, density and flow velocity with their actual nonequilibrium values.
Since a well-known feature of the equilibrium state is that the gas evolves spontaneously toward
it after a few collisions per particle [2, 3] (regardless of the initial preparation of the system),
the election of the above reference state is well justified for ordinary gases. However, when
the number of particles [4–6], the linear momentum [7], and/or the kinetic energy [8–10] are
not conserved in collisions, then the situation becomes more cumbersome and the choice of a
proper reference state is not simple nor even unique.

A natural question to ask in all the above situations is: what is the appropriate reference state
to be used in a perturbative method like the Chapman–Enskog method? As said before, for
ordinary fluids close to thermal equilibrium, a good choice is the local Maxwell–Boltzmann
distribution function. However, in the case of systems inherently out of equilibrium such as
granular gases (a gas constituted by macroscopic particles that undergo inelastic collisions), the
Maxwell–Boltzmann distribution is not a solution of the homogeneous (inelastic) Boltzmann
equation and hence, we have to look for another reference distribution function. In particular,
for freely cooling granular gases, the zeroth-order approximation in the Chapmann–Enskog
expansion is the local version of the so-called homogeneous cooling state, namely, a homoge-
neous state where the granular temperature monotonically decays in time [8–11]. The homoge-
neous cooling state has been widely used as the reference state in the Chapman–Enskog method
to obtain not only the general form of the hydrodynamic equations, but also to explicitly deter-
mine the expressions of the Navier–Stokes [12, 13] and Burnett [14] transport coefficients.
Although this reference state is a time-dependent state (since the temperature decreases in
time due to the collisional cooling), the resulting hydrodynamic equations describe reasonably
well for not strong values of inelasticity the transport properties of unsteady and steady states
eventually reached by the system when energy is injected through the boundaries [15–18].
However, when the energy input is done globally [19, 20] or by means of a vibrating plate
[21–26], it is more convenient to take a time-dependent reference state different from the
conventional homogeneous cooling state.

Beyond the homogeneous cooling state, another type of reference states can be chosen
when, for instance, the granular gas is strongly sheared [18, 27–29] or subjected to strong
temperature gradients [30–32]. Another relevant situation is when the granular gas is driven
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by the action of an external driving force or thermostat [33]. This is the usual way to drive a
granular gas in computer simulations [23, 34–43]. In the case of spatially homogeneous situ-
ations, when the energy injected by the thermostat is exactly compensated for by the energy
lost by collisions, a nonequilibrium steady state is reached, a state analogous to the equilib-
rium state of molecular gases. However, the above steady state could not be a good choice for
the reference state in the Chapman–Enskog solution, since a local election of the hydrody-
namic variables induces a collisional cooling that, in general, cannot be exactly compensated
for by the energy injected in the system by the thermostat [44]. This means that the dynam-
ics close to the steady state requires a time-dependent reference homogeneous solution to the
kinetic equation. This is a subtle and important point that must be taken into account when one
attempts to obtain the transport properties.

The Navier–Stokes transport coefficients of driven granular gases modeled as inelastic hard
spheres (IHS) have been recently obtained for mono [45–47] and multicomponent [48–50]
systems. In the above papers, the gas is driven by a stochastic bath with friction. However,
there are two important limitations in the above works. First, although the reference state is
a time-dependent distribution, the explicit forms of the transport coefficients were derived by
assuming steady state conditions, namely, when there is an exact balance between the energy
input and the energy dissipated by collisions. This allowed us to get analytical expressions
for the Navier–Stokes transport coefficients. Second, due to the mathematical complexity of
the Boltzmann collision operator, the results were approximately achieved by considering the
leading terms in a Sonine polynomial expansion. This second limitation can be overcome
by considering the so-called inelastic Maxwell models (IMM) [51–55]: a model where the
collision rate of two particles about to collide is assumed to be independent of their relative
velocity. As in the case of the conventional Maxwell molecules [56], the above collisional
simplification allows us to obtain the exact forms of the velocity moments of the velocity
distribution functions [57, 58] without their explicit knowledge.

The main objective of this work is to provide a closed Navier–Stokes hydrodynamicdescrip-
tion of driven granular mixtures. Our starting point is the set of kinetic Boltzmann equations
for IMM that is solved by means of the Chapman–Enskog expansion around a time-dependent
reference state which can be arbitrarily far away from the homogeneous steady state. This
type of description differs from the one previously reported [48] where the expressions of
the transport coefficients were restricted to states close to the homogeneous steady state. In
the present work, the choice of a general time-dependent reference state provides a general
hydrodynamic description where, for instance, we can find regions in the system where the
transport coefficients are very close to those obtained for undriven granular mixtures together
with other regions where the dynamics is dominated by the effect of the bath or thermostat.
As an intermediate situation, an exact balance between dissipation in collisions and energy
injected by the thermostat (steady state conditions) can be seen as well. In this context, the
present theory include all previous ones [48, 59], which are recovered taking the appropriate
limits.

Since the determination of the complete set of transport coefficients for driven granular
mixtures requires long and complex calculations, here we consider IMM instead of IHS. This
makes the presentation simpler as well as the achieved results exact, without the need of addi-
tional and sometimes uncontrolled approximations. In any case, the methodology employed
here for IMM can be adapted to IHS for the determination of its corresponding transport
coefficients; most of the present results being intuitively extrapolated to other models of driven
granular gases.

In contrast to previous derivations for undriven [59, 60] and driven [48] granular mixtures,
the transport coefficients associated with the mass flux, the pressure tensor, and the heat flux
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are given in terms of the solution of a set of nonlinear coupled differential equations. These
differential equations involve the derivatives of the (scaled) transport coefficients with respect
to the scaled parameter of the thermostat ξ∗. The above differential equations can be analyti-
cally solved in two cases: (i) undriven granular mixtures (ξ∗ = 0; whose results were already
reported in reference [60]) and (ii) driven mixtures in steady state conditions (ξ∗ = ξ∗st, where
ξ∗st is the value of the reduced noise strength at the steady state). Beyond these limit cases,
the transport coefficients are obtained via a numerical integration of the above set of differen-
tial equations. Apart from the usual transport coefficients, our results show that the first-order
contributions T (1)

i to the partial temperatures are different from zero. This new contribution
(which is also present in dense mixtures [61, 62]) to the breakdown of energy equipartition
was neglected in previous works [48, 49] on driven mixtures. Since this contribution is pro-
portional to the divergence of the flow velocity, it is involved then in the evaluation of the
first-order contribution ζU to the cooling rate. Our results show that the magnitude of T (1)

i (see
for instance, figure 7) can be significant in some regions of the parameter space of the system.
The fact that T (1)

i �= 0 contrasts with the results for undriven granular mixtures [59, 60] since
this coefficient vanishes in the low-density limit.

The organization of the paper is as follows. In section 2 we introduce the model as well as
the kinetic and hydrodynamic descriptions. The reference time-dependent state is analyzed in
section 3 where it is shown that this state reduces to both the homogeneous cooling state and
the homogeneous steady state in their corresponding limits. The Chapman–Enskog method is
briefly described in section 4 while the kinetic equation verifying the first-order distribution
function is provided in section 5. Technical details on the determination of the Navier–Stokes
transport coefficients as well as the first-order contributions to the partial temperatures are
relegated to appendices A and B. As said before, the transport coefficients are given in terms
of the solution of a set of nonlinear coupled differential equations. These equations are solved
for some representative cases, showing the dependence of the transport coefficients on the
parameters of the system. As a complement, a comparison with the results obtained in previous
works for IHS [48, 49] in steady state conditions is also addressed in section 6. The paper ends
in section 7 with a brief discussion of the results reported along the text.

2. Boltzmann kinetic theory and hydrodynamics

2.1. Model and kinetic description

Consider a granular binary mixture modeled as a binary mixture of inelastic Maxwell gases at
low density. The Boltzmann equation for IMM [51–55] can be obtained from the Boltzmann
equation for IHS by replacing the rate for collisions between particles of components i and j
by an average velocity-independent collision rate, which is proportional to the square root of
the ‘granular’ temperature T (defined later). With this simplification, the velocity distribution
function fi (r, v; t) of a particle of component i (i = 1, 2) with position r and velocity v at time
t satisfies the following set of nonlinear Boltzmann kinetic equations:

∂t fi + v · ∇ fi + Fi fi =
2∑

j=1

Jij[v| fi, f j], (1)

where the Boltzmann collision operator Jij[fi, fj] for IMM in d dimensions is [10]

Jij[v1| fi, f j] =
νi j

n jΩd

∫
dv2

∫
dσ̂
[
α−1

i j fi(r, v′
1, t) f j(r, v′2, t) − fi(r, v1, t) f j(r, v2, t)

]
. (2)
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Here,

ni =

∫
dv fi(v) (3)

is the number density of component i, ν ij is an effective collision frequency (to be chosen
later) for collisions of type i–j, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions,
and αij = αji � 1 refers to the constant coefficient of normal restitution for collisions between
particles of component i with j. Although negative values of αij can be considered [11], we
restrict ourselves in this work to positive values ofαij. In equation (2), the relationship between
the pre-collisional {v′

1, v′
2} and post-collisional {v1, v2} velocities is:

v′
1 = v1 − μji

(
1 + α−1

i j

)
(σ̂ · g12)σ̂, v′

2 = v2 + μi j

(
1 + α−1

i j

)
(σ̂ · g12)σ̂, (4)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit vector directed
along the centers of the two colliding spheres, μij = mi/(mi + mj), and mi is the mass of com-
ponent i. The collision rules (4) conserve the number of particles of each component and the
total linear momentum. However, the total kinetic energy of the colliding pair is reduced by
a factor 1 − α2

i j after the collision, hence αij = 1 and αij = 0 correspond to the elastic and
completely inelastic limits, respectively.

The operator Fi in the Boltzmann equation (1) accounts for the effect of an external force
(or thermostat) on particles of component i. The external force has two contributions: (i) a
frictional or drag force proportional to the relative velocity v − Ug (Ug being the known flow
velocity of the background or interstitial gas), and (ii) a stochastic force with the form of a
Gaussian white noise [63]. Thus, the operator Fi has the form [48]

Fi fi = − γb

mβ
i

∂

∂v
·
(
v − Ug

)
fi −

1
2
ξ2

b

mλ
i

∂2 fi
∂v2

, (5)

where γb is the drag (or friction) coefficient and ξ2
b represents the strength of the correlation in

the Gaussian white noise. Moreover, β and λ are arbitrary constants of the driven model.
As widely discussed in reference [48], the model (5) is a generalization of previous driven

models since it coincides with them for specific values of β and λ. In particular, when γb = 0
and λ = 0, our thermostat reduces to the stochastic thermostat employed in several papers
[64, 65] for conducting numerical simulations in granular mixtures. The choice β = 1 and
λ = 2 leads to the conventional Fokker–Planck model for molecular mixtures [66]. This latter
sort of thermostat has been extensively employed [23, 34–36, 40, 41], specially when studying
granular Brownian motion. As a third possibility, the choice ξ2

b = 2γbTb (Tb being the back-
ground or bath temperature), β = 0, and λ = 1 implements a force Fi quite similar to the
fluid–solid interaction force that models the effect of the viscous gas on monodisperse solid
particles [67, 68]. It is also interesting to remark that the term (5) has been derived from the for-
malism describing the general interaction between particles of the component i with a thermal
bath [69, 70]. The main assumption for deriving (5) is that the action of the bath on component
i depends only on its velocity distribution fi. More details on the driven model (5) can be found
in references [48, 70].

Taking into account the form (5) of the forcing term Fi fi, the Boltzmann equation (1)
becomes

∂t fi + v · ∇ fi −
γb

mβ
i

ΔU · ∂

∂v
fi −

γb

mβ
i

∂

∂v
· V fi −

1
2
ξ2

b

mλ
i

∂2

∂v2
fi =

2∑
j=1

Jij[v| fi, f j], (6)
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where ΔU = U − Ug, V = v − U is the peculiar velocity, and

U = ρ−1
2∑

i=1

∫
dvmiv fi(v) (7)

is the mean flow velocity of grains. In equation (7), ρ =
∑

i ρi is the total mass density and
ρi = mini is the mass density of component i.

The Boltzmann collision operators have the following properties:∫
dv Jij[v| fi, f j] = 0,

2∑
i=1

2∑
j=1

mi

∫
dv v Jij[v| fi, f j] = 0, (8)

2∑
i=1

2∑
j=1

mi

∫
dv V2 Jij[v| fi, f j] ≡ −dnTζ. (9)

The last equality defines the total ‘cooling rate’ ζ due to inelastic collisions among all species,

T =
1
n

2∑
i=1

∫
dv

mi

d
V2 fi(v) (10)

is the granular temperature, and n = n1 + n2 the total number density. Moreover, an interesting
quantity at a kinetic level is the partial kinetic temperature Ti defined as

Ti =
mi

dni

∫
dv V2 fi(v). (11)

The granular temperature T can also be written as

T =

2∑
i=1

xiTi, (12)

where xi = ni/n is the mole fraction of species i. We can introduce the partial cooling rates ζ i

associated with the partial temperatures Ti as

ζi =

2∑
j=1

ζi j = − mi

dniTi

2∑
j=1

∫
dv V2Jij[v| fi, f j], (13)

where ζ ij are defined through the second equality. As for the granular temperature, the total
cooling rate ζ can be written as

ζ = T−1
2∑

i=1

xiTiζi. (14)

As happens for elastic Maxwell molecules [56], the collisional moments of the Boltzmann
operator Jij[fi, fj] for IMM can be exactly computed without the knowledge of the velocity
distributions fi and fj [58, 71]. In particular, the quantities ζ ij (which define the cooling rate ζ)
are given by [72]

ζi j =
2νi j

d
μji(1 + αi j)

[
1 − μji

2
(1 + αi j)

θi + θ j

θ j
+

μji(1 + αi j) − 1
dρ jpi

ji · j j

]
, (15)
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where θi = miT/mTi, m = m1m2/(m1 + m2) is the reduced mass, pi = niTi is the partial
pressure of component i and

ji = mi

∫
dv V fi(v) (16)

is the mass flux of component i relative to the local flow. According to equation (12), the
hydrostatic pressure is p =

∑
i pi = nT.

In order to fully define the model we still have to choose the collision frequencies ν ij of
equation (2). As in previous works on IMM [60, 72], ν ij are chosen so that the partial cooling
rates ζ ij coincide with that of IHS in the so-called homogeneous cooling state [10]. With this
choice, ν ij is defined as

νi j =
Ωd√
π

x j

(
σi j

σ12

)d−1(
θi + θ j

θiθ j

)1/2

ν0, (17)

where σij = (σi + σj)/2, σi is the diameter of particles of component i, and

ν0 = nσd−1
12

√
2T
m

(18)

is an effective collision frequency. Upon deriving equation (17) use has been made of the fact
that the mass flux ji = 0 in the homogeneous cooling state.

Several observations are in order. On the one hand, not all quantities are independent
since, for instance, we have x1 + x2 = 1, T = x1T1 + x2T2, and j1 = −j2. In addition, as will
be shown later, the partial temperatures Ti, and hence θi, have nonzero contributions in the
Navier–Stokes domain (first-order in spatial gradients), namely Ti = T (0)

i + T (1)
i with T (1)

i �= 0
in general. These contributions are proportional to the divergence of the flow velocity, namely,
T (1)

i ∝ ∇ · U. Thus, for the sake of simplicity, the partial temperatures defining the colli-
sion frequencies ν ij in equation (17) are taken to be of order zero in spatial gradients (i.e.,
θi = miT/mT (0)

i ). Table 1 collects most of the definitions employed along the paper.

2.2. Hydrodynamic description

The hydrodynamic balance equations for ni, U, and T can be easily derived by multiply-
ing the set of Boltzmann equations (6) by mi, miv, and 1

2 miV2, respectively, integrating over
velocity, and taking into account the properties (8) and (9) of the operator Jij[fi, fj]. Then, the
corresponding hydrodynamic equations for the mole fraction x1 = n1/n, the hydrostatic pres-
sure p, the temperature T, and the d components of the local flow velocity U can be easily
obtained:

Dtx1 +
ρ

n2m1m2
∇ · j1 = 0, (19)

DtU + ρ−1∇ · P = −γb

ρ

(
ΔU

2∑
i=1

ρi

mβ
i

+

2∑
i=1

ji

mβ
i

)
, (20)

DtT−
T
n

2∑
i=1

∇ · ji

mi
+

2
dn

(∇ · q+P : ∇U) =−ζ T− 2γb

dn

2∑
i=1

ΔU · ji

mβ
i

−2γb

2∑
i=1

xiTi

mβ
i

+
ξ2

b

n

2∑
i=1

ρi

mλ
i

,

(21)
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Table 1. Definitions of some of the quantities appearing along the text. The equations
where these quantities appear for the first time are provided by the last column.

Symbol Name Definition Equations

Ωd Solid angle in d dimensions 2πd /2/Γ(d/2) (2)
σij (σi + σj)/2 (17)
μij mi/(mi + mj) (4)
m Reduced mass m1m2/(m1 + m2) After (15)
Mi mi/m (30)
ni Number density of component i

∫
dvfi (2)

n Total number density p/T (10)
x1 Mole fraction of component 1 n1T/p (12)
x2 Mole fraction of component 2 1 − x1 (12)
ρ1 Mass density of component 1 m1px1/T After (7)
ρ2 Mass density of component 2 m2p(1 − x1)/T After (7)
ρ Total mass density p [m1x1 + m2(1 − x1)] /T (7)
χ1 Zeroth-order temperature T1/T (26)

ratio of component 1
χ2 Zeroth-order temperature (1 − x1χ1)/(1 − x1) (26)

ratio of component 2
θ1 M1/χ1 (15)
θ2 M2(1 − x1)/(1 − x1χ1) (15)
v0 Thermal speed v0 =

√
2T/m (28)

ν0 Effective collision frequency nσd−1
12 v0 (17)

ν ij Collision frequencies (Ωd/
√
π)(σi j/σ12)d−1x j

√
(θi + θ j)/θiθ jν0 (2)

ω∗ Dimensionless drift (γb/mβ)
(
mλ/2ξ2

b

)1/3(
pσd−1

12 /T
)−2/3

(28)
ξ∗ Dimensionless noise ξ2

b/(ν0Tmλ−1) (28)
ζ i Partial cooling rate of Equation (13) Before (13)

component i

Dt p+ p∇ · U+
2
d

(∇ · q + P : ∇U) = −ζ p− 2γb

d

2∑
i=1

ΔU · ji

mβ
i

− 2γb
p
T

2∑
i=1

xiTi

mβ
i

+ ξ2
b

2∑
i=1

ρi

mλ
i
.

(22)

In equations (19)–(22), Dt = ∂t + U · ∇ is the material derivative, ji is defined by
equation (16),

P =
2∑

i=1

mi

∫
dv VV fi(v) (23)

is the total pressure tensor,

q =

2∑
i=1

mi

2

∫
dv V2V fi(v) (24)

is the total heat flux, and the cooling rate ζ is defined by equation (9). Note that the bal-
ance equations (19)–(22) apply for both interaction models IHS and IMM. The difference
between both models is unveiled when the explicit forms of the Boltzmann collision operators
are accounted for in the evaluation of the transport coefficients and the cooling rate.
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Note that the balance equations (19)–(22) [which are a direct consequence of the properties
(8) and (9) of the Boltzmann collision operators] are local versions of the (macroscopic) con-
servation laws. These hydrodynamic laws could in principle be derived independently of the
kinetic theory viewpoint by invoking symmetry considerations. On the other hand, a kinetic
description provides a clear bridge between microscopic (dynamics of two grains) and macro-
scopic (hydrodynamics fields) descriptions that make easier the derivation of hydrodynamic
equations.

The balance equations (19)–(22) become a closed set of differential equations for the hydro-
dynamic fields once the irreversible fluxes and the cooling rate are expressed in terms of the
hydrodynamic fields. These relations are the so-called constitutive equations. This goal can be
achieved by solving the Boltzmann equations by means of the well-known Chapman–Enskog
method [1] adapted to driven granular mixtures.

The determination of the Navier–Stokes transport coefficients for IHS was accomplished
in references [48, 49]. Nevertheless, due to the mathematical difficulties of the problem, only
steady state conditions were considered. In this paper, we revisit this problem in the case of
IMM (where all the results are exact) but for arbitrary unsteady conditions. This allows us
to determine the transport coefficients not only in the steady state but also for more general
physical conditions. Since the characterization of the time-dependent homogeneous state is
essential for deriving the Navier–Stokes hydrodynamic equations, before considering inho-
mogeneous situations we will study first the homogeneous states. This will be carried out in
the following section.

3. Homogeneous time-dependent states

As extensively discussed in references [11, 44] for monocomponent granular gases, two sepa-
rate stages can be identified in the dynamical evolution of a system from any initial condition.
A fast first stage (for times of the order of the mean free time) can be identified where the
evolution of the gas clearly depends on the initial preparation of the system. Then, a second
slow stage can be observed where the evolution of the gas is completely determined by the
time evolution of the hydrodynamic fields. While the first stage defines the so-called kinetic
regime, the second one refers to the so-called hydrodynamic regime. Here, we are interested in
the hydrodynamic regime. A more systematic description of the system in the fast stage regime
is, in principle, possible [73–75] but beyond the scope of the present work.

In homogeneous states, the concentration x1 is constant, the pressure p and temperature
T are spatially uniform, and with an appropriate choice of the reference frame Ug = U = 0.
Under these conditions, the set of Boltzmann equations (6) becomes

∂t fi −
γb

mβ
i

∂

∂v
· v fi −

1
2
ξ2

b

mλ
i

∂2 fi
∂v2

=
2∑

j=1

Jij[v| fi, fi]. (25)

The balance equations (19)–(22) for homogeneous states simply reduce to ∂tx1 = ∂tUi = 0
and T−1∂tT = p−1∂tp = −Λ, where

Λ = ζ + 2γb

2∑
i=1

xiχi

mβ
i

− ξ2
b

p

2∑
i=1

ρi

mλ
i

, (26)

and χi = Ti/T. Since the time dependence of the distribution functions enters through
T and p in the hydrodynamic regime, we have the identity ∂t fi = −Λ

(
T∂T + p∂p

)
fi and the

Boltzmann equation (25) reads

9
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−Λ
(
T∂T + p∂p

)
fi −

γb

mβ
i

∂

∂v
· v fi −

1
2
ξ2

b

mλ
i

∂2 fi
∂v2

=

2∑
j=1

Jij[v| fi, fi]. (27)

As discussed in reference [48], the solutions to the set of coupled Boltzmann equations (27)
have the scaling forms

fi(v, t) = xi
p(t)
T(t)

v0(t)−dϕi(x1, c,ω∗, ξ∗), (28)

where v0(t) =
√

2T(t)/m is the thermal speed, c = v/v0 is the scaled velocity, and we have
introduced the following dimensionless thermostat parameters:

ω∗ =
γb

mβ

(
mλ

2ξ2
b

)1/3(
pσd−1

12

T

)−2/3

, ξ∗ =
ξ2

b

ν0Tmλ−1
. (29)

Since the total number density n = p/T is independent of time, then ω∗ does not depend on
time. Equation (28) reveals that the time dependence of the scaled distribution ϕi is encoded
through the dimensionless velocity c and the (reduced) noise strength ξ∗.

In terms of the above dimensionless parameters, equation (27) can be rewritten as

Λ∗
(

1
2
∂

∂c
· cϕi +

3
2
ξ∗
∂ϕi

∂ξ∗

)
− ω∗ξ∗1/3

Mβ
i

∂

∂c
· cϕi −

1
4
ξ∗

Mλ
i

∂2ϕi

∂c2
=

2∑
i=1

J∗
i j[ϕi,ϕ j], (30)

where Mi = mi/m, Λ∗ = Λ/ν0, and

J∗
i j[c|ϕi,ϕ j] =

Jij[v| fi, f j]
niv

−d
0 ν0

=
ν∗i j
Ωd

∫
dc2

∫
dσ̂
[
α−1

i j ϕi(c′1, t)ϕ j(c′2, t) − ϕi(c1, t)ϕ j(c2, t)
]

, (31)

with ν∗i j = νi j/ν0. As for IHS, the solution to equation (30) is not known. Nevertheless, the
form of the Boltzmann operator for IMM allows us to determine exactly its velocity moments.
In particular, the differential equations for the temperature ratios χi = Ti/T can be derived by
multiplying both sides of equation (30) by mic2 and integrating over velocity,

3
2
Λ∗ξ∗

∂χi

∂ξ∗
= χiΛ

∗ − Λ∗
i , (32)

where Λ∗ = x1Λ
∗
1 + x2Λ

∗
2,

Λ∗
i = 2ω∗ξ∗1/3 χi

Mβ
i

− ξ∗

Mλ−1
i

+ χiζ
∗
i , (33)

and ζ∗i = ζi/ν0 is

ζ∗i =

2∑
j=1

2ν∗i j
d

μji(1 + αi j)

[
1 − μji

2
(1 + αi j)

θi + θ j

θ j

]
, (34)

where ν∗i j = νi j/ν0. In the case of elastic collisions (ζ∗i = 0), the steady solution (Λ∗ = Λ∗
1

= Λ∗
2 = 0) to equation (32) yields the result

10
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Ti,el =
ξ2

b

2γbmλ−β−1
i

. (35)

Thus, T1,el = T2,el if m1 = m2 (regardless of the values of λ and β) or λ− β = 1 for m1 �= m2.
This suggests to introduce the bath temperature Tb as

Tb =
ξ2

b

2γb(2m)λ−β−1
. (36)

The bath temperature can be interpreted as the temperature of the molecular gas surrounding
the solid particles. Of course, the thermostat parameters ξ2

b and γb fix the value of Tb.
Since ξ∗(t) ∝ T(t)−3/2, we can take ξ∗ instead of the (scaled) time t/t0 (t0 being an arbitrary

unit of time) to analyze the time-dependence of the temperature ratios. Thus, the solution to
equation (32) provides the dependence of the temperature ratios χi(x1,ω∗, ξ∗) on the reduced
noise strength ξ∗. Note first that equation (32) reduces to that of the undriven case when ξ∗ → 0
but keeping ω∗ finite (which is equivalent to γb → 0 and ξb → 0 but keeping γbξ

−2/3
b finite).

This physical situation could be achieved by assuming that the granular temperature is much
larger than that of the bath Tb and so, the dynamic of grains is not substantially affected by the
presence of the bath. In this limit case (ξ∗ → 0), equation (32) reduces to

ζ∗1 = ζ∗2 = ζ∗. (37)

Equation (37) is no more than the condition for determining the temperature ratio T1/T2 in
the homogeneous cooling state [76]. The solution to equation (37) gives χ1 in terms of the
mass and diameter ratios, the concentration x1, and the coefficients of restitution. It is worth-
while remarking that the theoretical results for IMM obtained from equation (37) [by using
the expression (34) for the cooling rates] exhibits an excellent agreement with those obtained
from Monte Carlo simulations of IHS [60]. On the other hand, for states close to the undriven
case (ξ∗ 
 1), equation (32) admits the solution

χ1(x1,ω∗, ξ∗) → χ1,0(x1) + χ1,1(x1,ω∗)ξ∗1/3, (38)

where χ1,0(x1) is the solution to equation (37) and the coefficient χ1,1(x1,ω∗) is

χ1,1 = − 2δmβω
∗

ζ(1)
1 − ζ(1)

2 +
ζ(0)

1
2x2χ1,0χ2,0

, (39)

with ζ (0)
1 and ζ (0)

2 given by equation (34) after the replacement χi → χi,0,

ζ(1)
1 =

ν∗12

2d
μ2

21(1 + α12)2 M1

x2M2χ2
1,0

, ζ(1)
2 = −ν∗21

2d
μ2

12(1 + α12)2 M2

x2M1χ2
2,0

, (40)

and

δmβ =
mβ

2 − mβ
1

(m1 + m2)β
. (41)

Beyond the above cases, we have to numerically solve equation (32) to get χ1(x1,ω∗, ξ∗)
for the homogeneous reference state. The initial condition is generated by using equation (38)
for ξ∗ 
 1. This allows us to avoid the singular point ξ∗ = 0. Figure 1 shows χ1 versus ξ∗ for
six different initial conditions (namely, different values of ξ∗ and χ1). Here, as in our previ-
ous works on driven granular mixtures [48, 70], β = 1, λ = 2, and ω∗ � 0.107 (it corresponds

11
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Figure 1. Temperature ratio χ1 versus the (reduced) strength noise ξ∗ for d = 3,
σ1 = σ2, m1/m2 = 10, x1 = 1

2 , and the (common) coefficient of restitution α11 = α22
= α12 = 0.9. Six different initial conditions are considered for χ1(ξ∗): χ1(0.1) = 0.5
(violet line), χ1(0.1) = 1.5 (green line), χ1(0.2) = 0.5 (light-blue line), χ1(0.2) = 1.5
(yellow line), χ1(1.1) = 0.5 (red line), and χ1(1.1) = 1.2 (blue line). The filled circle
corresponds to the value of χ1 in the steady state (Λ∗ = 0). Regardless of the initial con-
dition considered we observe that the system evolves along the hydrodynamic solution
(common thick black line) until the steady state is reached.

to the volume fraction 0.007 85, which is of course very small). In figure 1 it is clearly seen
that all the curves converge rapidly toward the (common) thick black line regardless of the
initial condition considered. This universal curve is identified as the hydrodynamic solution
χ1(x1,ω∗, ξ∗). The steady state (Λ∗ = 0) is represented by the filled circle. This state was
widely studied in reference [48] where it was shown that χ1 and its derivatives are regular
functions of x1, ω∗, and ξ∗. Apart from the homogeneous steady state, the transport prop-
erties in states close to the steady state were also determined in the above papers [48–50].
Here, we will generalize this study by considering transport around arbitrary homogeneous
time-dependent reference states, represented by the thick black line of figure 1 in the plane
(ξ∗,χ1).

As already mentioned, even though the exact form of the distributions ϕi is not known, their
fourth cumulants (or kurtosis) Ki (which measure the deviations of ϕi from their Maxwellian
form π−d/2θ

d/2
i e−θic

2
) can be exactly computed. They are defined as

Ki = 2

[
4

d(d + 2)
θ2

i

∫
dc c4ϕi(c) − 1

]
. (42)

The evolution equation of Ki can be obtained by multiplying both sides of the Boltzmann
equation (30) by mic4 and integrating over velocity. The calculations are long and will be
omitted here for the sake of brevity. As in the case of the temperature ratio χ1, the results
show that both cumulants tend to converge toward the universal hydrodynamic functions after
a short transient period. This behavior is clearly illustrated in figure 2 where K1(ξ∗) and K2(ξ∗)
are plotted versus ξ∗ for the same initial conditions as in figure 1.

4. Chapman–Enskog solution of the Boltzmann equation for IMM

The Chapman–Enskog method [1] generalized to inelastic collisions is applied in this section
to solve the set of Boltzmann equations (6) for IMM up to first order in spatial gradi-
ents. The Chapman–Enskog solution will be employed then to determine the Navier–Stokes

12
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Figure 2. Cumulants K1 (solid lines) and K2 (dotted lines) versus the (reduced) strength
noise ξ∗ for d = 3, σ1 = σ2, m1/m2 = 10, x1 = 1

2 , and the (common) coefficient of
restitution α11 = α22 = α12 = 0.9. Two different initial conditions are considered for
Ki(ξ

∗): K1(0.2) = 0.1 (violet solid line) and K2(0.2) = −0.1 (violet dotted line), and
K1(1.1) = 0.1 (green solid line) and K2(1.1) = −0.1 (green dotted line). The solid and
dotted black lines correspond to the hydrodynamic values of K1 and K2, respectively.
The filled circles correspond to the values of K1 and K2 in the steady state (Λ∗ = 0).

transport coefficients as functions of the coefficients of restitution, composition, the masses
and diameters of grains, and the thermostat parameters.

4.1. Sketch of the Chapman–Enskog method

As in the conventional Chapman–Enskog method [1], we assume the existence of a normal
solution to the Boltzmann equation in which the velocity distribution functions fi depend on
space and time through a functional dependence on the hydrodynamic fields:

fi(r, v, t) = fi[v|x1(t), U(t), T(t), p(t)]. (43)

For small enough spatial gradients, the functional dependence (43) can be made explicit by
expanding fi(r, v, t) in powers of a formal parameter ε:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (44)

where each factor ε means an implicit gradient of the hydrodynamic fields x1, U, p, and T.
The time derivatives of the fields are also expanded as ∂t = ∂(0)

t + ε∂(1)
t + ε2∂(2)

t + · · · . The
expansion (44) yields similar expansions for the fluxes and the cooling rate when substituted
into equations (13), (14), (15), (16), (23), and (24):

ji = j(0)
i +ε j(1)

i +· · · , P = P(0)+εP(1)+· · · , q= q(0)+εq(1)+· · · , ζ=ζ(0)+ε ζ(1)+· · · .

(45)

In addition, since the partial temperatures Ti are not hydrodynamic quantities, they must be
also expanded in powers of the gradients as [50, 62]

Ti = T (0)
i + ε T (1)

i + · · · (46)

On the one hand, the action of the time derivatives ∂(k)
t on x1, U, p, and T can be obtained

from the balance equations (19)–(21) after taking into account the expansions (45) and (46).
With respect to the thermostat parameters γb and ξ2

b and the difference ΔU, as in our previous

13
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study on IHS [48] we assume that γb and ξ2
b are of zeroth order in the gradients while ΔU is

considered at least to be of first order in the gradients. More details on the ordering of the terms
in the kinetic equations can be found in reference [48].

As usual [1], the hydrodynamic fields x1, p, T, and U are defined by the zeroth-order
distributions, hence∫

dv
(

fi − f (0)
i

)
= 0, (47)

2∑
i=1

∫
dv
{

miv,
mi

2
V2
}(

fi − f (0)
i

)
= {0, 0} . (48)

Since the constraints (47) and (48) must hold at any order in ε, the remainder of the expansion
must obey the orthogonality conditions∫

dv f (k)
i = 0, (49)

and
2∑

i=1

∫
dv
{

miv,
mi

2
V2
}

f (k)
i = {0, 0} , (50)

for k � 1. A consequence of equation (49) is that the partial densities are of zeroth order while
equation (50) yields the relations

j(k)
1 = −j(k)

2 , n1T (k)
1 = −n2T (k)

2 , (51)

for k � 1.

4.2. Zeroth-order solution

In the zeroth order, f (0)
i obeys the Boltzmann equation (25) with the replacements

v → V(r, t) = v − U(r, t), ∂t → ∂(0)
t , x1 → x1(r, t), T → T(r, t), and p → p(r, t). The balance

equations to zeroth order are

∂(0)
t x1 = ∂(0)

t Ui = 0, T−1∂(0)
t T = p−1∂(0)

t p = −Λ(0), (52)

where

Λ(0) = ζ(0) + 2γb

2∑
i=1

xiχi

mβ
i

− ξ2
b

p

2∑
i=1

ρi

mλ
i

. (53)

Here, χi = T (0)
i /T and ζ(0) =

∑
i xiχiζ

(0)
i where

ζ(0)
i =

2νi j

d
μji(1 + αi j)

[
1 − μji

2
(1 + αi j)

θi + θ j

θ j

]
. (54)

We recall that ν ij is defined by equation (17) with Ti = T (0)
i . The velocity distribution f (0)

i is
given by the scaling (28) except that now the hydrodynamic fields are local quantities. Since
f (0)
i is isotropic in V, it follows that

j(0)
i = q(0) = 0, P(0)

k� = pδk�, (55)

where p = nT.
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5. First-order solution. Navier–Stokes transport coefficients

The first-order contributions to the distribution functions are considered in this section. Since
the mathematical steps involved in the determination of f (1)

i (V) are quite similar to those made
in reference [48] for IHS, the derivation is omitted, and we refer the interested reader to the
appendix B of [48] for specific details. The only subtle point not accounted for in reference
[48], but recognized later in an erratum [50], is the existence of non vanishing contributions to
the partial temperatures T (1)

i .
Taking into account the contributions to f (1)

i (V) coming from T (1)
i , the kinetic equation of

f (1)
i can be written as

∂(0)
t f (1)

1 − γb

mβ
1

∂

∂v
· V f (1)

1 − 1
2
ξ2

b

mλ
1

∂2 f (1)
1

∂v2
+ L1 f (1)

1 +M1 f (1)
2

=A1 · ∇x1+B1 · ∇p+C1 · ∇T+D1,k�
1
2

(
∇kU�+∇�Uk−

2
d
δk�∇ · U

)
+E1∇ · U+G1 ·ΔU,

(56)

where

A1(V) = −V
∂ f (0)

1

∂x1
+
γbm1m2δmβ

ρ2mβ

p
T

D
∂ f (0)

1

∂V
, B1(V) = −V

∂ f (0)
1

∂p
− ρ−1 ∂ f (0)

1

∂V
+
γbδmβ

pmβ
Dp

∂ f (0)
1

∂V
, (57)

C1(V) = −V
∂ f (0)

1

∂T
+

γbδmβ

Tmβ
DT

∂ f (0)
1

∂V
, D1,k�(V) = Vk

∂ f (0)
1

∂V�
, (58)

E1(V) =

(
2
d
+ ζU + 2γbx1χU

δmβ

mβ

)(
p∂p + T∂T

)
f (0)
1 + p

∂ f (0)
1

∂p
+

1
d

V · ∂ f (0)
1

∂V
, (59)

G1(V) =
γb

ρ

δmβ

mβ
(ρ2 + DU)

∂ f (0)
1

∂V
. (60)

In equation (56), the linear operators L1 and M1 are defined as

L1X = −J11[v| f (0)
1 , X] − J11[v|X, f (0)

1 ] − J12[v|X, f (0)
2 ], M1X = −J12[v| f (0)

1 , X], (61)

where X(v) is a generic function of the velocity. The kinetic equation for f (1)
2 can be easily

obtained from equation (56) by just making the changes 1 ↔ 2. Upon writing equations (57)
and (58) use has been made of the constitutive equation for the mass flux j(1)

1 . It is given by
[48]

j(1)
1 = −m1m2 p

ρT
D∇x1 −

ρ

p
Dp∇p− ρ

T
DT∇T − DUΔU, (62)

where D is the diffusion coefficient, Dp is the pressure diffusion coefficient, DT is the thermal
diffusion coefficient, and DU is the velocity diffusion coefficient. In addition, to get the expres-
sion (59) for E1(V), we have taken into account that the scalar quantities T (1)

i and ζ(1) can only
be coupled to the divergence of the flow velocity field ∇ · U. As a consequence,

T (1)
1 =

T
ν0

χU∇ · U, ζ(1) = ζU∇ · U, (63)
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where χU and ζU are dimensionless quantities to be determined. Since n1T (1)
1 = −n2T (1)

2 ,
then T (1)

2 = −(x1T/x2ν0)χU∇ · U, where ν0 is the effective collision frequency defined in
equation (18).

It is worth noting that equations (56)–(60) are similar to those obtained for IHS [48, 50],
except for the explicit forms of the terms Ei(V) and the linearized Boltzmann collision operators
Li andMi. However, the road map for determining the transport coefficients for IMM is differ-
ent to that for IHS. An important advantage of using the forms of Li and Mi of IMM is that the
Navier–Stokes transport coefficients can be exactly obtained from the Boltzmann collisional
moments associated with miV, miVV, and mi

2 V2V [60]. This contrasts with the results derived
for IHS [48] where the transport coefficients were approximately determined by truncating a
series expansion of the distribution functions f (1)

i (V) in Sonine polynomials.
Once the kinetic equations verifying the distributions f (1)

i are known, the set of
Navier–Stokes transport coefficients of the granular binary mixture can be obtained. While
the mass flux j(1)

1 is defined by equation (62), the pressure tensor is

P(1)
k� = −η

(
∂Ui

∂r j
+

∂U j

∂ri
− 2

d
δk�∇ · U

)
, (64)

and the heat flux is

q(1) = −T2D′′∇x1 − L∇p− κ∇T − κUΔU. (65)

In equations (64) and (65), η is the shear viscosity coefficient, D′′ is the Dufour coefficient,
L is the pressure energy coefficient, κ is the thermal conductivity, and κU is the velocity
conductivity.

The evaluation of the transport coefficients as well as the first-order contribution to the par-
tial temperatures follows similar mathematical steps to those made in the case of IHS [48].
Since these calculations are standard in organization (although somewhat complex in execu-
tion), we relegate the long and tedious technical details of these calculations to the appen-
dices A and B. As expected, the time-dependent forms of the set of transport coefficients
{D, Dp, DT , DU, η, D′′, L,κ,κU} are given in terms of the solutions of nonlinear differential
equations in the (reduced) variable ξ∗. Only simple analytical solutions to these equations
are obtained in the cases of undriven granular mixtures (ξ∗ = 0) and driven granular mix-
tures under steady state conditions (Λ(0) = 0). These two cases will be separately considered
to perform a comparison with previous results obtained for IHS [48, 59, 60].

6. Time-dependent transport coefficients. Comparison with IHS

6.1. Unsteady hydrodynamic solution

Although most of the works devoted on transport in driven granular gases have been focused
in the steady state, it is also worthwhile studying the time-dependent forms of the transport
coefficients. As said in the introduction, this is in fact one of the new added values of the
present contribution. As we discussed in section 3, after a transient kinetic regime, we expect
that the mixture achieves an unsteady hydrodynamic state [11, 44] where the (scaled) transport
coefficients (D∗, D∗

p, D∗
T , . . .) depend on time only through the reduced parameter ξ∗. The

definitions of the above scaled transport coefficients are given in equations (A6) and (A22)
of the appendix A. In the sequel, we illustrate the ξ∗–dependence of the (scaled) transport
coefficients for different values of the parameter space of the system.
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Figure 3. Plot of the dimensionless diffusion transport coefficients as a function of ξ∗/ξ∗st
for d = 2, σ1 = σ2, m1/m2 = 2, x1 = 1

2 , and two different values of the (common) coef-
ficient of restitution: α = 0.9 (left panel) and α = 0.6 (right panel). The black, green,
blue, and violet lines correspond to the coefficients D∗, D∗

T , D∗
U , and D∗

p, respectively.
Note that the value of ξ∗st is different in each panel.

As in our previous papers [48, 49] on driven granular mixtures, we are here mainly inter-
ested in studying the dependence of the (scaled) transport coefficients on inelasticity. To cap-
ture this dependence, the above coefficients are normalized with respect to their values for
elastic collisions. In addition, only the simplest case of a common coefficient of restitution
(α11 = α22 = α12 ≡ α) of an equimolar binary mixture (x1 =

1
2 ) with the same diameters

(σ1 = σ2) and with parameters β = 1, λ = 2 is considered. In addition, we take a volume
fraction of 0.007 85, which corresponds to a very dilute system. The value of ω∗ for this sys-
tem can be easily inferred from table 1. The above choice of parameters reduces the parameter
set to three quantities: {ξ∗, m1/m2,α}.

Figure 3 shows the dependence of the scaled diffusion coefficients (D∗, D∗
p, D∗

T , and D∗
U; they

are defined in equation (A6)) on the scaled parameter ξ∗/ξ∗st for a two-dimensional granular
mixture with m1/m2 = 2 and two different values of the coefficient of restitution: α = 0.9
(left panel) and α = 0.6 (right panel). The steady value ξ∗st is obtained from the condition
x1Λ

∗
1 + x2Λ

∗
2 = 0. It corresponds to the value of ξ∗ where the density and granular temperature

reach the local values imposed by the thermostat. Note that we restrict our study on the unsteady
solution to the interval between the undriven state (ξ∗ = 0) and the asymptotic final steady state
(ξ∗/ξ∗st = 1). The undriven state can be achieved either because both parameters γb and ξ2

b go

to zero (keeping γbξ
−2/3
b finite) or because the granular temperature is big enough (T  Tb).

As expected, figure 3 shows that the influence of the thermostat (as measured by the difference
between the values of the dimensionless diffusion coefficients with and without a thermostat)
is more significant as the inelasticity increases. This is quite apparent in the right panel of
figure 3, specially in the case of the diffusion coefficient D∗.

The coefficient χU is plotted in figure 4 as a function of ξ∗/ξ∗st for α = 0.9 and 0.6 and
different values of the mass ratio m1/m2. This coefficient is defined by equation (63) and pro-
vides the first-order contribution to the partial temperature T1. Although this coefficient was
calculated many years ago [61] for dense molecular mixtures and more recently, for dense
granular mixtures [62, 77], we do not aware of any previous calculation of χU for low-density
driven granular mixtures. As expected, χU vanishes (i) for ξ∗ = 0 (undriven case) [59] and (ii)
for mechanically equivalent particles (σ1 = σ2, m1 = m2 and αij = α). We observe that χU is
negative near ξ∗ = 0 and then it becomes positive for larger values of ξ∗. It is also quite appar-
ent that χU exhibits a non-monotonic dependence on ξ∗ since it decreases (increases) with
increasing ξ∗ for ξ∗ � 0.05 (ξ∗�0.05). In addition, for strong inelasticity, we observe that the
influence of ξ∗ on χU increases with the mass ratio. The dependence of the (reduced) shear
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Figure 4. Plot of the coefficient χU of the first-order contribution to the partial temper-
atures as a function of ξ∗/ξ∗st for d = 2, σ1 = σ2, x1 = 1

2 , and three different values of
the mass ratio m1/m2. Two different values of the (common) coefficient of restitution
are considered: α = 0.9 (left panel) and α = 0.6 (right panel). Note that the value of ξ∗st
is different in each panel.

Figure 5. Plot of the dimensionless shear viscosity η∗ as a function of ξ∗/ξ∗st for
d = 2, σ1 = σ2, x1 = 1

2 , and three different values of the mass ratio m1/m2. Two
different values of the (common) coefficient of restitution are considered: α = 0.9
(left panel) and α = 0.6 (right panel). Note that the value of ξ∗st is different in each panel.

viscosity η∗ = (ν0/p)η on ξ∗/ξ∗st is plotted in figure 5. We infer similar conclusions to those
found before for the diffusion transport coefficients. On the one hand, at a given value of the
coefficient of restitution, the impact of the (scaled) parameter ξ∗ on η∗ is more noticeable as
the mass ratio increases. On the other hand, at a given value of the mass ratio, the bigger the
inelasticity the more the influence of the thermostat is. Similar conclusions are obtained for
the (scaled) heat flux transport coefficients.

6.2. Comparison with the transport coefficients of IHS: undriven and driven steady solutions

Apart from analyzing the dependence of transport coefficients on ξ∗, the exact analytical results
derived here in the undriven and driven steady states allows us to gauge the degree of reli-
ability of IMM via a comparison with previous results derived for IHS in both situations
by considering the so-called leading Sonine approximation. To the best of our knowledge,
the only comparison between IMM and IHS for granular mixtures has been performed in
reference [60] for the diffusion coefficients in the case of undriven mixtures and in refer-
ences [72, 78] for non-Newtonian transport coefficients. Here, we extend such comparison
between both interaction models by considering the complete set of Navier–Stokes trans-
port coefficients for ξ∗ = 0 (free cooling mixtures) and ξ∗ = ξ∗st (driven mixtures under steady
conditions).
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Figure 6. Plot of the dimensionless diffusion transport coefficients versus the (common)
coefficient of restitution α for hard disks (d = 2) with x1 = 1

2 , m1/m2 = 2, and σ1/σ2

= 1. We consider both driven (ξ∗ = ξ∗st) and undriven (ξ∗ = 0) granular mixtures. The
solid lines refer to the results derived here for IMM while the dotted lines correspond to
the results obtained for IHS in reference [48] in the first-Sonine approximation.

The dimensionless diffusion transport coefficients are plotted in figure 6 versus α for hard
disks (d = 2) with x1 = 1

2 , m1/m2 = 2, and σ1/σ2 = 1. We include the results obtained for
IHS (dotted lines) [48, 59]. Figure 6 highlights the excellent agreement found between the
predictions of the first Sonine approximation for IHS and the exact results for IMM in the
whole range of values of α analyzed. We have seen that this excellent agreement is kept when
we consider other type of systems (disparate masses and/or strong inelasticity).

The α–dependence of the coefficient χU of the first-order contribution to the partial tem-
peratures is plotted in figure 7 in the steady state (ξ∗ = ξ∗st) for a two-dimensional system with
x1 =

1
2 , σ1 = σ2, and two values of the mass ratio. We recall that this coefficient is zero for

the undriven case (ξ∗ = 0). Given that the coefficient χU has not been determined so far for
IHS, we cannot make any comparison between IMM and IHS for this transport coefficient.
We observe that the magnitude of χU is not small, specially for high mass ratios and moderate
inelasticity. This means that the first-order contribution to the partial temperatures cannot be
neglected in the hydrodynamic description of the mixture (for instance, it should be taken into
account in the stability analysis of the homogeneous state). Moreover, figure 7 highlights that
χU is positive and a decreasing function of α. Regarding its dependence on the mass ratio, we
observe that χU is an increasing function of m1/m2.

Figure 8 plots the (scaled) shear viscosity coefficient η∗(α)/η∗(1) versus α for d = 2,
x1 =

1
2 , and σ1 = σ2. Three different values of the mass ratio are considered. As occurs in

monocomponent granular gases [79, 80], we observe that in general the qualitative depen-
dence of the Navier–Stokes shear viscosity of the mixture (for driven and undriven systems)
on inelasticity of IHS is well reproduced by IMM: η∗ increases with decreasing α. On the
other hand, this increase is faster for IMM and so, the IMM predictions overestimate their IHS
counterparts.
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Figure 7. Plot of the coefficient χU of the first-order contribution to the partial tempera-
tures versus the (common) coefficient of restitution α for d = 2, σ1 = σ2, x1 = 1

2 , and
m1/m2 = 2 (violet line) and m1/m2 = 4 (green line). The conditions of the steady state
(ξ∗ = ξ∗st) are considered here.

Figure 8. Plot of the scaled shear viscosity coefficient η∗(α)/η∗(1) as a function of
the (common) coefficient of restitution α for hard disks (d = 2) with x1 = 1

2 and
σ1/σ2 = 1. Three different values of the mass ratio are considered: m1/m2 = 1 (black
lines), m1/m2 = 2 (violet lines), and m1/m2 = 4 (green lines). We consider both driven
granular mixtures under steady conditions (ξ∗ = ξ∗st, left panel) and undriven granular
mixtures (ξ∗ = 0, right panel). The solid lines refer to the results derived in this paper
for IMM while the dotted lines correspond to the results obtained for IHS in reference
[48] in the first-Sonine approximation. Here, η∗(1) is the value of the shear viscosity
when the collisions are elastic.

Finally, figures 9 and 10 show the dimensionless heat flux transport coefficients as a function
of the coefficient of restitution for ξ∗ = ξ∗st and ξ∗ = 0, respectively. Figure 9 refers to hard
disks (d = 2) while figure 10 corresponds to hard spheres (d = 3). Although the theoretical
results of IMM capture qualitatively the trends of IHS for some heat flux transport coefficients,
significant quantitative discrepancies between both interaction models are found for strong
inelasticity. These type of discrepancies were already reported for monocomponent granular
gases [79, 80].

7. Discussion

This work has focused on the evaluation of the Navier–Stokes transport coefficients of a gran-
ular binary mixture driven by a stochastic bath with friction. The results have been obtained by
solving the set of nonlinear (inelastic) Boltzmann equations by means of the Chapman–Enskog
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Figure 9. Plot of the dimensionless transport coefficients associated with the heat flux
as a function of the (common) coefficient of restitution α for driven granular mixtures
under steady conditions (ξ∗ = ξ∗st). The parameters of the mixture are d = 2, m1/m2
= 2, and σ1/σ2 = 1. The solid lines are for IMM while the dashed lines refer to IHS.
The dimensionless coefficients D′′∗ and κ∗ have been scaled with respect to their values
for elastic collisions.

method [1]. Since this method requires the choice of a reference base state (zeroth-order
approximation f (0)

i in the perturbation expansion), as a first step we have characterized the time-
dependent homogeneous state of the mixture. In particular, we have obtained the dependence of
both the temperature ratio between the components of the mixture as well as the fourth cumu-
lants (which measure the deviation of the distribution functions from their Maxwellian forms)
on the (scaled) thermostat parameter ξ∗(t) ∝ T(t)−3/2 [ξ∗ being the reduced noise strength
defined in equation (29)]. As a second step, we have derived the kinetic equation (56) veri-
fying the first-order solution f (1)

i (v) to the Chapman–Enskog expansion. The knowledge of
the distributions fi allowed us to determine the irreversible fluxes and identify the nine rel-
evant Navier–Stokes transport coefficients of the mixture: four coefficients associated with
the mass flux (the diffusion coefficient D, the pressure diffusion coefficient Dp, the thermal
diffusion coefficient DT, and the velocity diffusion coefficient DU), the shear viscosity coef-
ficient η associated with the pressure tensor, and four coefficients associated with the heat
flux (the Dufour coefficient D′′, the pressure energy coefficient Lp, the thermal conductivity
coefficient DT, and the velocity conductivity coefficient κU).

On the other hand, it is important to remark that, unlike previous attempts for IHS [48–50],
the present work considered a time-dependent reference state that can be far away from
the homogeneous steady state. This means that the determination of the transport coef-
ficients is not necessarily restricted to states near the above homogeneous states and so,
the Navier–Stokes transport coefficients are in general given in terms of the (numerical)
solution of a set of nonlinear differential equations. Analytical solutions to these equations
can be obtained only in two particular situations: (i) undriven granular mixtures (ξ∗ = 0)
and (ii) driven mixtures in steady state conditions [ξ∗ = ξ∗st where ξ∗st is obtained from the

21



J. Phys. A: Math. Theor. 53 (2020) 355002 N Khalil and V Garzó

Figure 10. Plot of the dimensionless transport coefficients associated with the heat flux
as a function of the (common) coefficient of restitution α for undriven granular mixtures
(ξ∗ = 0). The parameters of the mixture are d = 3 and σ1/σ2 = 1; three different values
of the mass ratio m1/m2 are considered: m1/m2 = 1 (black line), m1/m2 = 2 (violet
line), and m1/m2 = 4 (green line). The solid lines refer to the results derived here for
IMM while the dotted lines correspond to the results obtained for IHS in reference [49].
The dimensionless coefficients D′′∗ and κ∗ have been scaled with respect to their values
for elastic collisions.

condition x1Λ
∗
1 + x2Λ

∗
2 = 0, Λ∗

i being defined by equation (33)]. Moreover, due to the tech-
nical difficulties involved in the time-dependent problem, we have considered here IMM
instead of IHS to simplify the calculations and get the exact forms of the transport coeffi-
cients. Regarding the homogeneous state, we have shown that the set of Boltzmann equations
admits the hydrodynamic scaling solutions (28) where the temperature dependence of the
scaled distributions ϕi occurs only through the (dimensionless) velocity c = v/v0(t) (v0(T)
being the thermal speed) and the dimensionless noise strength ξ∗(T). Although the exact form
of the distributions ϕi is not exactly known even for IMM, they can be characterized by
their first velocity moments. In particular, we have studied the time evolution of the tem-
perature ratio χ1 = T1/T (which is formally equivalent to analyze the ξ∗–dependence of
χ1) for different systems and different initial conditions. As figure 1 clearly shows, after a
short transient regime, all the curves collapse in an unsteady hydrodynamic solution χ1(ξ∗)
before reaching the asymptotic final steady state. The same behavior has been found for the
fourth cumulants Ki of the distributions ϕi and similar time evolution is expected for higher
cumulants.

Once the reference state is well characterized, the complete set of transport coefficients has
been determined. As in the case of χ1 and Ki, we have seen that the (scaled) transport coeffi-
cients evolve in time toward the asymptotic steady state. Apart from the transport coefficients,
we have also evaluated the first order contributions T (1)

i to the partial temperatures. These con-
tributions are proportional to the divergence of the flow velocity (namely, T (1)

1 = TχU∇ · U
and T (1)

2 = −(x1/x2)TχU∇ · U). Although these coefficients are not hydrodynamic quantities,
their calculation is interesting by itself and also because they are involved in the first order
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contribution ζ (1) to the cooling rate. The existence of a nonzero first-order contribution T (1)
i

induces a breakdown of the energy equipartition, additional to the one appearing in the homo-
geneous state (which is only due to the inelastic character of collisions). In fact, T (1)

i = 0 for
undriven granular mixtures at low-density [59] but T (1)

i �= 0 for moderately dense mixtures
[61, 62]. Although the existence of a non-vanishing contribution to the partial temperature T (1)

i
for IHS has been recently recognized in an erratum [50], its expression for IHS has not been
calculated so far. The results obtained in this paper for IMM show that the magnitude of the
coefficient χU is in general not small and hence, the impact of T (1)

i on ζ(1) cannot always be
neglected.

Before considering the undriven and driven steady solutions, we have analyzed the time
dependence of the (scaled) transport coefficients for given values of both the coefficients of
restitution and the parameters of the mixture (masses, diameters, and concentration). This is
in fact equivalent to studying the ξ∗–dependence of the (scaled) transport coefficients, which
in turn allowed us to assess the influence of the thermostat on the transport properties. As
expected, for small inelasticity (say α� 0.9), the transport coefficients depend very weakly
on ξ∗. By contrast, the impact of ξ∗ on the (scaled) transport coefficients becomes in general
more significant as the inelasticity increases. Thus, a very good approximation when describing
driven IMM with small inelasticity is to use the expressions of the transport coefficients of the
undriven case (keeping in mind that the constitutive equations have to include the terms of the
thermostat). The previous conclusion is expected to be applicable to IHS as well.

As a complement of the previous results, we have also carried out an extensive comparison
between the analytical expressions obtained here for IMM and those previously reported for
undriven IHS mixtures [59] and for IHS mixtures driven by the same type of thermostat con-
sidered in this paper [48, 49]. To the best of our knowledge, this comparison between transport
coefficients for granular mixtures of IMM and IHS had been only performed for the mass flux
transport coefficients [60] and for non-Newtonian transport in mixtures under uniform shear
flow [8]. The comparison shows in general an excellent agreement between IMM and IHS
for the transport coefficients associated with the mass flux (for both undriven and driven mix-
tures), a qualitative agreement for the shear viscosity coefficient, and significant quantitative
discrepancies for the heat flux transport coefficients, specially at strong inelasticity.

As a final comment, we want to emphasize that in this paper we have shown that a family
of flow regimes which traditionally has been regarded as different when analyzed through the
Chapman–Enskog scheme can in fact be collected in a single group. This unification has been
possible thanks to the use of a more general time-dependent reference state. This is, in our
opinion, an important step toward having a unified hydrodynamic description of driven and
undriven granular gases.
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Appendix A. Some technical details on the evaluation of the transport
coefficients

In this appendix we provide some technical details on the calculation of the Navier–Stokes
transport coefficients and the first-order contribution to the partial temperatures.
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A.1. Mass flux

Let us start with the determination of the diffusion transport coefficients. The first-order
contribution j(1)

1 to the mass flux is defined as

j(1)
1 =

∫
dv m1V f (1)

1 (V). (A1)

To compute j(1)
1 , we multiply both sides of equation (56) by m1V and integrate over velocity.

After some algebra, we get

∂(0)
t j(1)

1 +
γb

mβ
1

j(1)
1 + νDj(1)

1 = −
[

p
∂

∂x1
(x1χ1) +

γbρ1m1m2δmβ

ρ2mβ

p
T

D

]
∇x1

−
[

x1

(
χ1 + p

∂χ1

∂p

)
− ρ1

ρ
+

γbρ1δmβ

pmβ
Dp

]
∇p

−
(

px1
∂χ1

∂T
+

γbρ1δmβ

mβ
DT

)
∇T − γbρ1

ρ

δmβ

mβ
(ρ2 + DU)ΔU.

(A2)

Upon obtaining equation (A2), use has been made of the result [60]∫
dv m1V

(
L1 f (1)

1 +M1 f (1)
2

)
= νDj(1)

1 , (A3)

where

νD = ρ
ν12

dn2

1 + α12

m1 + m2
. (A4)

The solution to equation (A2) is of the form (62), as expected. Dimensional analysis
shows that D ∝ T1/2, Dp ∝ DT ∝ T3/2/p, and DU ∝ p/T and hence, ∂(0)

t {D, Dp, DT , DU}
= − 1

2Λ
(0) {D, Dp, DT , 0}. Thus, the time derivative ∂(0)

t j(1)
1 can be computed as

∂(0)
t j(1)

1 =
p
ν0

[
Λ(0)

(
1
2

D∗ − 3
2
ξ∗∂ξ∗D∗

)
+ (D∗

p + D∗
T )∂x1Λ

(0)

]
∇x1

+
1
ν0

[
Λ(0)

(
1
2

D∗
p −

3
2
ξ∗∂ξ∗D∗

p

)
+ (D∗

p + D∗
T )p∂pΛ

(0)

]
∇p

+
p

Tν0

[
Λ(0)

(
1
2

D∗
T − 3

2
ξ∗∂ξ∗D∗

T

)
+ (D∗

p + D∗
T)T∂TΛ

(0)

]
∇T

− 3pmΛ(0)

2T

(
ξ∗∂ξ∗D∗

U

)
ΔU, (A5)

where we have introduced the dimensionless coefficients

D =
ρT

m1m2ν0
D∗, Dp =

p
ρν0

D∗
p, DT =

p
ρν0

D∗
T , DU =

pm
T

D∗
U. (A6)

The diffusion coefficients D, Dp, DT, and DU can be easily identified after inserting
equation (A6) into equation (A2). While the (reduced) coefficients D∗, D∗

p, and D∗
T obey
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a set of coupled differential equations, the (reduced) coefficient D∗
U obeys an autonomous

equation,
3Λ(0)

2ν0
ξ∗∂ξ∗D∗

U + a44D∗
U = a40, (A7)

where the coefficients aij are defined in appendix B. In matrix form, the remaining coefficients
verify the following set of differential equations:⎛⎜⎜⎜⎜⎜⎜⎝

a11 +
3Λ(0)

2ν0
ξ∗∂∗

ξ a12 a12

0 a22 +
3Λ(0)

2ν0
ξ∗∂∗

ξ a23

0 a32 a33 +
3Λ(0)

2ν0
ξ∗∂∗

ξ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝D∗

D∗
p

D∗
T

⎞⎠ =

⎛⎝a10

a20

a30

⎞⎠ . (A8)

Note that there are two ways of ‘removing’ the presence of the derivatives ∂∗
ξ in

equations (A7) and (A8): (i) either by taking the limit Λ(0) → 0 (the system and the thermostat
locally thermalize and a steady state is achieved) or (ii) by taking the limit ξ∗ → 0 (undriven
granular mixtures). The former limit was analyzed in references [48, 49] for IHS, while the
latter was studied in reference [59] for IHS and in reference [60] for IMM. In both limit sit-
uations (Λ(0) = 0 or ξ∗ → 0), we can obtain analytical expressions for the diffusion transport
coefficients. However, beyond both special situations, as expected we have to get the above
coefficients by numerically solving equations (A7) and (A8).

A.2. Pressure tensor

The first-order contribution P(1) to the pressure tensor can be written as P(1) = P(1)
1 + P(1)

2 ,
where

P(1)
i = mi

∫
dv VV f (1)

i (v). (A9)

The partial contributions P(1)
1 can be obtained by multiplying both sides of equation (56) by

m1VV and integrating over V. After some algebra, we have

∂(0)
t P(1)

1,k� +

(
2γb

mβ
1

+ τ11

)
P(1)

1,k� + τ12P(1)
2,k�

= −p(0)
1

(
∂kU� + ∂�Uk −

2
d
δk�∇ · U

)
+

[
p∂pp(0)

1 − d + 2
d

p(0)
1

+

(
2
d
+ ζU + 2γbx1

δmβ

mβ
χU

)(
p∂p + T∂T

)
p(0)

1

)]
δk�∇ · U, (A10)

where p(0)
1 = n1T (0)

1 and use has been made of the result [60]∫
dv m1VV

(
L1 f (1)

1 +M1 f (1)
2

)
= τ11P(1)

1 + τ12P
(1)
2 , (A11)

and
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τ11 =
ν11

d(d + 2)
(1 + α11)(d + 1 − α11) + 2

ν12

d
μ21(1 + α12)

[
1 − μ21(1 + α12)

d + 2

]
,

τ12 = −2
ν12

d(d + 2)
ρ1

ρ2
μ2

21(1 + α12)2. (A12)

The corresponding equation for P(1)
2 is

∂(0)
t P(1)

2,k� +

(
2γb

mβ
2

+ τ22

)
P(1)

2,k� + τ21P(1)
1,k� = −p(0)

2

(
∂kU� + ∂�Uk −

2
d
δk�∇ · U

)

+

[
p∂pp(0)

2 − d + 2
d

p(0)
2 +

(
2
d
+ ζU + 2γbx1

δmβ

mβ
χU

)(
p∂p + T∂T

)
p(0)

2

]
δk�∇ · U.

(A13)

The expressions of the collision frequencies τ 22 and τ 21 can be taken from equation (A12) after
interchanging 1 ↔ 2.

Contrary to what happens in the undriven case [59, 60], equations (A10) and (A13) show
clearly that Tr P(1)

i = dp(1)
i = dniT

(1)
i �= 0. The equation defining the first-order contribution

p(1)
1 to the partial pressure of component 1 can be easily derived by taking the trace in

equation (A10) or, alternatively, by multiplying equation (56) by m1V2 and integrating over
v. The result is

∂(0)
t p(1)

1 +

(
2γb

mβ
1

+ τ11

)
p(1)

1 + τ12 p(1)
2 = −D(1)

t p(0)
1 − d + 2

2
p(0)

1 ∇ · U. (A14)

The corresponding equation for p(1)
2 can be easily obtained from equation (A14) by the change

1 ↔ 2. Summing the equations for p(1)
1 and p(2)

2 , we find that p(1)
1 = −p(1)

2 , in accordance with
the consistency condition defined in the second relation of equation (51). This means that the
granular temperature T is not affected by the spatial gradients.

Equation (A14) has the solution p(1)
1 = x1

p
ν0
χU∇ · U, where χU verifies

3Λ∗

2
ξ∗∂ξ∗χU +

[
−Λ∗

2
+

2ω∗ξ∗1/3

Mβ
1

+ τ ∗11 − τ ∗12 +
(
τ ∗11 + τ ∗21 − τ ∗22 − τ ∗12 + 2ω∗ξ∗1/3δmβ

)
× 3x1

2
ξ∗∂ξ∗χ1

]
χU = −d + 3

d
ξ∗∂ξ∗χ1 −

2
3
ω∗∂ω∗χ1, (A15)

where τ ∗i j = τi j/ν0, and use has been made of the relations p∂pχ1 = −ξ∗∂∗
ξ χ1 − (2/3)ω∗∂∗

ωχ1

and T∂Tχ1 = −(1/2)ξ∗∂∗
ξ χ1 + (2/3)ω∗∂∗

ωχ1. Note that for ξ∗ → 0, equation (38) yields
ω∗∂ω∗χ1 → 0 and so, equation (A15) leads toχU = 0 as expected [59]. However, when ξ∗ �= 0,
the right-hand side of equation (A15) is in general different from zero and hence χU �= 0 for
driven granular mixtures at low density.

To identify the shear viscosity coefficient η, it is convenient to rewrite P(1)
1,k� as

P(1)
1,k� = p(1)

1 δk� +Π(1)
1,k�, (A16)
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where Π(1)
1,k� is the traceless part of the partial pressure tensor P(1)

1,k�. From equation (A10), we

get the differential equation obeying Π(1)
1,k�:

∂(0)
t Π(1)

1,k� +

(
2γb

mβ
1

+ τ11

)
Π(1)

1,k� + τ12Π
(1)
1,k� = −px1χ1

(
∂kU� + ∂�Uk −

2
d
δk�∇ · U

)
. (A17)

The differential equation of Π(1)
2,k� can be easily inferred from equation (A17) by interchanging

1 ↔ 2. The solution to equation (A17) (and its counterpart for Π(1)
2,k�) can be written as

Π(1)
i,k� = −ηi

(
∂Uk

∂r�
+

∂U�

∂rk
− 2

d
δk�∇ · U

)
, i = 1, 2. (A18)

According to equation (64), the shear viscosity of the mixture is η = η1 + η2. Dimensional
analysis requires that ηi ∝ T1/2 and so,

∂(0)
t ηi = − p

ν0
Λ(0)

(
1
2
η∗i −

3
2
ξ∗
∂η∗i
∂ξ∗

)
, (A19)

where η∗i = (ν0/p)ηi. Thus, in matrix form, the set of equations for η∗i is given by⎛⎜⎜⎝b11 +
3Λ(0)

2ν0
ξ∗∂∗

ξ b12

b21 b22 +
3Λ(0)

2ν0
ξ∗∂∗

ξ

⎞⎟⎟⎠(η∗1η∗2
)

=

(
b10

b20

)
, (A20)

where the coefficients bij are defined in appendix B. The solution to equation (A20) gives the
shear viscosity coefficient η. In the case of undriven granular gases (ξ∗ → 0), equation (A20)
agrees with the one derived before for IMM [60]. Moreover, for steady state conditions
(Λ(0) = 0), we also obtain a simple analytical solution. Beyond both limit cases, the numer-
ical solution to the set of equation (A20) provides the shear viscosity coefficient in the
time-dependent driven state.

A.3. Heat flux

To first order, the heat flux is given by

q(1) = −T2D′′∇x1 − L∇p− κ∇T − κUΔU, (A21)

where, in dimensionless forms, the Dufour coefficient D′′, the pressure energy coefficient L,
the thermal conductivity κ, and the velocity conductivity κU are defined as

D′′ =
p

Tmν0

(
D′′∗

1 + D′′∗
2

)
, L =

T
mν0

(
L∗

1 +L∗
2

)
, κ =

p
mν0

(
κ∗

1 +κ∗
2

)
, κU = p

(
κ∗

U1 +κ∗
U2

)
.

(A22)

The differential equations verifying the (scaled) coefficients D′∗
i , L∗

i ,κ∗
i , andκ∗

Ui can be obtained
by following similar mathematical steps as those made for the other transport coefficients. As
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in the case of the diffusion coefficients, the (reduced) coefficients κ∗
Ui verify an autonomous

set of equations given by⎛⎜⎜⎝c77 +
3Λ(0)

2ν0
ξ∗∂∗

ξ c78

c87 c88 +
3Λ(0)

2ν0
ξ∗∂∗

ξ

⎞⎟⎟⎠(κ∗
U1

κ∗
U2

)
=

(
c70

b80

)
, (A23)

where the expressions of the coefficients cij are displayed in appendix B. The remaining coef-
ficients are coupled. By using matrix notation, the coupled set of six differential equations for
the unknowns {

D′′∗
1 , D′′∗

2 , L∗
1, L∗

2,κ∗
1,κ∗

2

}
(A24)

can be written as

ΣμνXν = Yμ. (A25)

Here, Xν is the column matrix defined by the set (A24), Σμν is the square matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 +
3Λ(0)

2ν0
ξ∗∂∗

ξ c12 c13 0 c13 0

c21 c22 +
3Λ(0)

2ν0
ξ∗∂∗

ξ 0 c24 0 c24

0 0 c33 +
3Λ(0)

2ν0
ξ∗∂∗

ξ c34 c35 0

0 0 c43 c44 +
3Λ(0)

2ν0
ξ∗∂∗

ξ 0 c46

0 0 c53 0 c55 +
3Λ(0)

2ν0
ξ∗∂∗

ξ c56

0 0 0 c64 c65 c66 +
3Λ(0)

2ν0
ξ∗∂∗

ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A26)

and the column matrix Y is

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
c10

c20

c30

c40

c50

c60

⎞⎟⎟⎟⎟⎟⎟⎠ . (A27)

In the undriven (ξ∗ = 0) and driven steady states (ξ∗ = ξ∗st) the solution to equation (A25) can
be written as

Xμ = (Σ)−1
μν Yν . (A28)

Appendix B. Expressions of the coefficients aij, bij, and cij

In this appendix we display the explicit expressions of the coefficients aij, bij, and cij defin-
ing the diffusion coefficients, the shear viscosity coefficient, and the heat flux coefficients,
respectively.
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The coefficients aij are introduced in equations (A7) and (A8) for the evaluation of the
(reduced) diffusion transport coefficients D∗

U, D∗, D∗
p, and D∗

T . They are given by

a10 = ∂x1 (x1χ1), a11 = −Λ(0)

2ν0
+

νD

ν0
+ ω∗ξ∗1/3 ρ1mβ

1 + ρ2mβ
2

ρ(m1 + m2)β
, a12 = − 1

ν0
∂x1Λ

(0), (B1)

a20 = x1χ1 −
ρ1

ρ
+ x1 p∂pχ1, a22 = a11 + a23, a23 = − p

ν0
∂pΛ

(0), (B2)

a30 = x1T∂Tχ1, a32 = − T
ν0
∂TΛ

(0), a33 = a11 + a32, (B3)

a40 =
Tρ1ρ2

pmρ
ω∗ξ∗1/3δmβ , a44 =

νD

ν0
+ ω∗ξ∗1/3 ρ1mβ

1 + ρ2mβ
2

ρ(m1 + m2)β
, (B4)

where

1
ν0

∂x1Λ
(0) = 2ω∗ξ∗1/3δmβ∂x1 (x1χ1) − ξ∗δmλ−1 + ∂x1ζ

∗,

p
ν0

∂pΛ
(0) = 2ω∗ξ∗1/3δmβx1 p∂pχ1 +

p
ν0

∂pζ
∗, (B5)

T
ν0

∂TΛ
(0) = 2ω∗ξ∗1/3δmβx1T∂Tχ1 + ξ∗

2∑
i=1

xi

Mλ−1
i

+
T
ν0

∂Tζ
∗. (B6)

The coefficients bij defining the shear viscosity in equation (A20) are

b10 = x1χ1, b11 =
τ11

ν0
+

2ω∗ξ∗

Mβ
1

− Λ(0)

2ν0
, b12 =

τ12

ν0
, (B7)

b20 = x2χ2, b21 =
τ21

ν0
, b22 =

τ22

ν0
+

2ω∗ξ∗

Mβ
2

− Λ(0)

2ν0
, (B8)

The coefficients cij of the heat flux are

c10 =

[
−mε12

Tν0
+ (d + 2)

ξ∗

2Mλ
1

+ (d + 2)
ω∗ξ∗1/3

2M1

δmβm1x1χ1

x1m1 + x2m2

]
D∗

+
d + 2
2M1

∂x1

[(
1 +

K1

2

)
x1χ

2
1

]
,

c11 = −3Λ(0)

2ν0
+

β11

ν0
+

3ω∗ξ∗1/3

Mβ
1

, c12 =
β12

ν0
, c13 = − 1

ν0
∂x1Λ

(0), (B9)

c20 =

[
mε21

Tν0
− (d + 2)

ξ∗

2Mλ
2

− (d + 2)
ω∗ξ∗1/3

2M2

δmβm2x2χ
(0)
2

x1m1 + x2m2

]
D∗

+
d + 2
2M2

∂x1

[(
1 +

K2

2

)
x2χ

2
2

]
, (B10)
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c21 =
β21

ν0
, c22 = −3Λ(0)

2ν0
+

β22

ν0
+

3ω∗ξ∗1/3

Mβ
2

, c24 = − 1
ν0

∂x1Λ
(0), (B11)

c30 =

[
−mε12

Tν0
+ (d + 2)

ξ∗

2Mλ
1

+ (d + 2)
ω∗ξ∗1/3

2M1

δmβm1x1χ1

x1m1 + x2m2

]
D∗

p

+
d + 2
2M1

{
∂p

[
p

(
1 +

K1

2

)
x1χ

2
1

]
− m1x1χ1

x1m1 + x2m2

}
, (B12)

c33 = −3Λ(0)

2ν0
− 1

ν0
p∂pΛ

(0) +
β11

ν0
+

3ω∗ξ∗1/3

Mβ
1

, c34 =
β12

ν0
, c35 = − 1

ν0
p∂pΛ

(0), (B13)

c40 =

[
mε21

Tν0
− (d + 2)

ξ∗

2Mλ
2

− (d + 2)
ω∗ξ∗1/3

2M2

δmβm2x2χ2

x1m1 + x2m2

]
D∗

p

+
d + 2
2M2

{
∂p

[
p

(
1 +

K2

2

)
x2χ

2
2

]
− m2x2χ2

x1m1 + x2m2

}
, (B14)

c43 =
β21

ν0
, c44 = −3Λ(0)

2ν0
− 1

ν0
p∂pΛ

(0) +
β22

ν0
+

3ω∗ξ∗1/3

Mβ
2

, c46 = − 1
ν0

p∂pΛ
(0), (B15)

c50 =

[
−mε12

Tν0
+ (d + 2)

ξ∗

2Mλ
1

+ (d + 2)
ω∗ξ∗1/3

2M1

δmβm1x1χ1

x1m1 + x2m2

]
D∗

T

+
d + 2
2M1

∂T

[
T

(
1 +

K1

2

)
x1χ

2
1

]
,

c53 = − 1
ν0

T∂TΛ
(0), c55 = −3Λ(0)

2ν0
− 1

ν0
T∂TΛ

(0) +
β11

ν0
+

3ω∗ξ∗1/3

Mβ
1

, c56 =
β12

ν0
, (B16)

c60 =

[
mε21

Tν0
− (d + 2)

ξ∗

2Mλ
2

− (d + 2)
ω∗ξ∗1/3

2M2

δmβm2x2χ2

x1m1 + x2m2

]
D∗

T

+
d + 2
2M2

∂T

[
T

(
1 +

K2

2

)
x2χ

2
2

]
, (B17)

c64 = − 1
ν0

T∂TΛ
(0), c65 =

β21

ν0
, c66 = −3Λ(0)

2ν0
− 1

ν0
T∂TΛ

(0) +
β22

ν0
+

3ω∗ξ∗1/3

Mβ
2

, (B18)

c70 =

[
−mε12

Tν0
+ (d + 2)

ξ∗

2Mλ
1

+ (d + 2)
ω∗ξ∗1/3

2
δmβmx1χ1

x1m1 + x2m2

]
D∗

U

+ (d + 2)
ω∗ξ∗1/3

2
δmβm2x1x2χ1

x1m1 + x2m2
, (B19)

c77 = −Λ(0)

ν0
+

β11

ν0
+

3ω∗ξ∗1/3

Mβ
1

, c78 =
β12

ν0
, (B20)

30



J. Phys. A: Math. Theor. 53 (2020) 355002 N Khalil and V Garzó

c80 =

[
mε21

Tν0
− (d + 2)

ξ∗

2Mλ
2

− (d + 2)
ω∗ξ∗1/3

2
δmβmx2χ2

x1m1 + x2m2

]
D∗

U

− (d + 2)
ω∗ξ∗1/3

2
δmβm1x1x2χ2

x1m1 + x2m2
, (B21)

c87 =
β21

ν0
, c88 = −Λ(0)

ν0
+

β22

ν0
+

3ω∗ξ∗1/3

Mβ
2

. (B22)

In equations (B9)–(B22), the fourth cumulants Ki are defined by equation (42) and we have
introduced the quantities

β11 = −ν11

4
(1 + α11)
d(d + 2)

[α11(d + 8) − 5d − 4] − ν12μ21
(1 + α12)
d(d + 2)

× {μ21(1 + α12) [d + 8 − 3μ21(1 + α12)] − 3(d + 2)} , (B23)

β12 = −3ν12μ
3
21

(1 + α12)3

d(d + 2)
ρ1

ρ2
, (B24)

ε12 = −ν11

8
(1 + α11)
d(d + 2)

[
α11(d2 −2d − 8) + 3d(d + 2)

] T (0)
1

m1
− ν12

2
μ21

(1 + α12)
d

{μ21(1 + α12)

× [d − 3μ21(1 + α12) + 2]
T (0)

2

m2
− x1

x2

[
d + 3μ2

21(1 + α12)2 −6μ21(1+α12)+2
] T (0)

1

m1

}
.

(B25)

The expressions of β22, β21, and ε21 can be easily inferred from the forms of β11, β12, and ε12,
respectively, by interchanging 1 ↔ 2.
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