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ABSTRACT

The Navier–Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres
are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equation is obtained via the
Chapman–Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes
are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They
are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to the previous results obtained for
low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures Tð1Þi and
the cooling rate f(1). Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities Tð1Þi and f(1) are
obtained by assuming steady state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport
coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mix-
ture. The results apply, in principle, for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass, and/or
size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quanti-
fied in terms of the parameter space of the problem.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032919

I. INTRODUCTION

Granular gases can be considered as a collection of discrete mac-
roscopic particles (typically of the order of micrometers or larger).
Normally, grains differ in size, mass, or in their mechanical properties,
and as a consequence, granular gases require a multicomponent
description. Due to their macroscopic dimensions, in contrast to
molecular or ordinary gases, all collisions between grains are inelastic,
and so, the total kinetic energy of the particles decreases with time.1,2

Thus, in order to maintain the system in the so-called rapid flow
regime, an external energy input is needed to inject energy into the
system and compensate for the energy dissipated by collisions. When
both mechanisms cancel each other, the system achieves a steady non-
equilibrium state. The injection of energy can be done, for instance, by
vibrating walls3,4 or by bulk driving, as in air-fluidized beds.5,6

However, this way of providing energy develops in most cases strong
spatial gradients, and hence, the theoretical description of the system
is quite complicated. To avoid the above problem, it is common in the-
oretical and computational studies to feed energy into the system by
means of external driving forces or thermostats.7–16 A remarkable
observation is that the transport properties of granular systems depend
not only on the mechanical properties of the grains but also on the
thermostating method (see, for example, the comparison between the
Navier–Stokes shear viscosity obtained from the Chapman–Enskog
expansion around the homogeneous cooling state17 and the non-
Newtonian shear viscosity of the uniform shear flow state;18,19 a
detailed discussion on this issue can be found in Ref. 2).

An alternative to the use of external forces has been proposed in
the past few years.20–27 The idea is to employ a particular geometry
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where the granular gas is confined in a box whose z-direction is
slightly larger than one particle diameter, so particles are confined in
the vertical direction. We refer to this geometry as a quasi-two-dimen-
sional geometry. The box is vertically vibrated so that energy is
injected into the vertical degrees of freedom of particles via the colli-
sions of grains with the top and bottom plates. The energy gained by
collisions with the walls is then transferred to the horizontal degrees of
freedom when a collision between particles takes place. Under certain
conditions, the system presents a liquid–solid like phase separation.
Complementarily, it remains in a homogeneous fluidized state (when
it is observed from above) for a wide range of parameters (see Ref. 27
for a review of this geometry).

The full collisional dynamics in this geometry is highly complex
particularly due to the severe restrictions to the set of possible impact
parameters imposed by the confinement.29 To advance in the under-
standing of the quasi-two-dimensional geometry, a collisional model
for the transfer of energy from the vertical to horizontal degrees of
freedom was proposed years ago by Brito et al.28 As mentioned earlier,
the vertical vibration accumulates energy into the z-component of the
velocity. In this model, particles move only in two-dimensions, but
when a collision between particles occurs, part of the accumulated
energy is released into the horizontal components of the velocity. In
practice, an extra velocity D is added to the relative motion of colliding
spheres, and hence, the magnitude of the normal component of the
relative velocity is increased by a given factor in the collision. The mag-
nitude of the factor D can be related with the intensity of the vertical
vibrations in the experiments.29 For simplicity, D is assumed to be
constant; this choice has the advantage of adding only a single parame-
ter to the conventional inelastic hard sphere (IHS) model. The param-
eter D fixes the energy scale of the steady state. Moreover, it has been
shown for constant D that the system remains homogeneous for all
values of the global density.28 A more realistic version of the above col-
lisional model has been recently proposed,30 where D is assumed to be
a function of the local density. Such model gives rise to a van der
Waals loop and a phase separation, in agreement with experi-
ments.20–23 However, the derivation of the hydrodynamic equations
from this model is much more involved than that of the model where
D is constant since an additional hydrodynamic field is needed.

The collisional model with constant D (referred to here as the D-
model) has been widely employed by several groups in the past few
years to describe the properties of the quasi-two-dimensional geometry.
In particular, Brey et al. considered this model in the dilute regime (i) to
analyze the homogeneous state,31,32 (ii) to derive the Navier–Stokes
hydrodynamic equations with explicit forms for the corresponding
transport coefficients,33 and (iii) to perform a linear stability analysis of
the homogeneous time-dependent state.34 The shear viscosity of a dilute
granular gas has been also independently determined,35 and theoretical
predictions compare quite well with computer simulations. The above
previous works33,35 studying the D-model have been recently extended
to moderate densities by considering the Enskog kinetic equation, and
explicit forms of the Navier–Stokes transport coefficients have been
explicitly obtained in terms of the coefficient of restitution and the den-
sity.36 In addition, very recently, the D-model has been extended to
binary mixtures where the lack of equipartition has been analyzed in the
stationary state.37 Besides this work, we are not aware of any previous
study on granular hydrodynamics in the relevant case of multicompo-
nent systems in the context of the D-model.

The goal of this paper is to provide a description of hydrodynam-
ics in binary granular mixtures at low density with a comparable accu-
racy to that for the monocomponent case, namely, valid over the
broadest parameter range including strong inelasticity.33,35,36 As a pre-
vious step, the reference homogeneous time-dependent state for a
binary mixture has been discussed in detail recently.37 The characteri-
zation of this reference state is crucial to provide the proper basis of
transport due to spatial inhomogeneities.

As in previous works on granular mixtures,38–43 the
Chapman–Enskog method44 conveniently adapted to account for dis-
sipative collisions is used to solve the coupled set of the Boltzmann
equations for the two components.2 In the first order of spatial gra-
dients, the constitutive equations for the mass, momentum, and heat
fluxes are derived, and the transport coefficients of the mixture are
identified: three coefficients (D, Dp, and DT) associated with the mass
flux, the shear viscosity coefficient g associated with the pressure ten-
sor, and three coefficients (D00, L, and k) associated with the heat flux.
In addition, there are also contributions to the partial temperatures
Tð1Þi and the cooling rate fU proportional to the divergence of the flow
velocity field. While these two latter quantities vanish in the conven-
tional IHS model for dilute gases38,41,43 (but not for dense mix-
tures45,46), they are different from zero in the D-model. The seven
relevant Navier–Stokes transport coefficients of the mixture and Tð1Þi
and fU are given in terms of the solutions of a set of nine coupled lin-
ear integral equations. This is, of course, a cumbersome task. For this
reason, in this work, we will address the determination of the set of
transport coefficients D;Dp;DT ; gf g and the quantities Tð1Þi and fU.
The thermal heat flux transport coefficients (D00, L, and k) will be
obtained only to the lowest order, which give trivial vanishing values
when the two components are mechanically equivalent.

As usual, approximate forms of the above transport coefficients
will be obtained by solving the integral equations by considering the
leading terms in a Sonine polynomial expansion of the first-order dis-
tribution function. However, given the technical difficulties for obtain-
ing explicit forms of the transport coefficients in the time-dependent
problem, here, the relevant state of confined granular mixtures with
steady temperature is considered. This simplification offers the possi-
bility of providing analytical expressions of transport properties in
terms of the parameter space of the system.

As a simple application of the present results, the violation of
Onsager’s reciprocity relations is studied. To accomplish it, as said
before, the heat flux transport coefficients (D00, L, and k) can be
expressed in terms of the diffusion coefficients when only the first
Sonine approximation is retained. The study of Onsager’s relations in
the D-model complements a previous analysis carried out years ago in
the conventional IHS model.39 As expected, since time reversal invari-
ance does not fulfill in granular systems, Onsager’s relations do not
apply for finite inelasticity. However, it is interesting to gauge the devi-
ations of the above relations as inelasticity increases.

The plan of this paper is as follows. In Sec. II, the D-model for
granular mixtures is introduced, and the coupled set of Boltzmann
equations and the hydrodynamic equations are recalled. The
Chapman–Enskog method adapted to inelastic binary mixtures is
described in Sec. III, while the determination of the Navier–Stokes
transport coefficients and the first-order contributions to the partial
temperatures and the cooling rate is worked out in Sec. IV. Technical
details on this derivation are relegated to three Appendixes. Explicit
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expressions for all the above quantities are obtained at steady state
conditions in Sec. V. In dimensionless forms, they are given in terms
of the coefficients of restitution, concentration, and the mass and
diameter ratios. The results for the above six quantities are illustrated
in a two-dimensional system for a common coefficient of restitution
and several values of the remaining parameters. The deviations from
ordinary gases are, in general, significant but smaller than those previ-
ously found in the conventional IHS model.39 The usual Onsager rela-
tions among the mass and heat flux transport coefficients for ordinary
gases are then noted and tested for the granular gas in Sec. VI. The
expected violation is demonstrated as a function of the coefficient of
restitution. Finally, the results are discussed in Sec. VII.

II. BOLTZMANN KINETIC EQUATION FOR A MODEL
OF A CONFINED QUASI-TWO-DIMENSIONAL
GRANULAR BINARY MIXTURE
A. Collision rules for the D-model

Let us consider a granular binary mixture modeled as a gas of
smooth inelastic hard spheres of massesmi and diameters ri (i¼ 1, 2).
Let v1; v2ð Þ denote the pre-collisional velocities of two spherical par-
ticles of species i and j, respectively, while (v1

0, v2
0) denote their corre-

sponding post-collisional velocities. The collision rules in the so-called
D-model read

v01 ¼ v1 � lji 1þ aijð Þðbr � gÞbr � 2ljiDijbr; (1)

v02 ¼ v2 þ lij 1þ aijð Þðbr � gÞbr þ 2lijDijbr; (2)

where lij ¼ mi/(mi þ mj), g ¼ v1 � v2 is the relative velocity, and br is
the unit collision vector joining the centers of the two colliding spheres
and pointing from particle 1 to particle 2. Particles are approaching ifbr � g > 0. In Eqs. (1) and (2), 0 < aij � 1 is the (constant) coefficient
of normal restitution for collisions i and j, and Dij is an extra velocity
added to the relative motion. This extra velocity points outward in the
normal direction br, as required by the conservation of angular
momentum.47 The relative velocity after collision is

g0 ¼ v01 � v02 ¼ g� ð1þ aijÞðbr � gÞbr � 2Dijbr (3)

so that

ðbr � g0Þ ¼ �aijðbr � gÞ � 2Dij: (4)

Similarly, the collision rules for the so-called restituting collisions
v001 ; v

00
2

� �
! v1; v2ð Þ with the same collision vector br are defined as

v001 ¼ v1 � lji 1þ a�1ij

� �
ðbr � gÞbr � 2ljiDija

�1
ij br; (5)

v002 ¼ v2 þ lij 1þ a�1ij

� �
ðbr � gÞbr þ 2lijDija

�1
ij br: (6)

Equations (5) and (6) yield the relationship

ðbr � g00Þ ¼ �a�1ij ðbr � gÞ � 2Dija
�1
ij : (7)

B. Boltzmann kinetic equation

In the low-density regime and neglecting the effect of the gravity
field, the one particle distribution function fi(r, v; t) of the species or
component i obeys the Boltzmann kinetic equation,

@

@t
fi þ v � rfi ¼

X2
j¼1

Jij½r; vjfi; fj� ði ¼ 1; 2Þ; (8)

where the Boltzmann collision operators Jij of the D-model read

Jij½v1jfi; fj� � rd�1
ij

ð
dv2

ð
dbr Hð�br � g� 2DijÞ

� ð�br � g� 2DijÞa�2ij fiðr; v001 ; tÞfjðr; v002 ; tÞ

�rd�1
ij

ð
dv2

ð
dbr Hðbr � gÞðbr � gÞfiðr; v1; tÞ

� fjðr; v2; tÞ; (9)

where H(x) is the Heaviside step function, rij ¼ rijbr, and rij

¼ (ri þ rj)/2. Note that although the D-model was built to describe
quasi-two dimensional systems, the calculations worked out here will
be performed for an arbitrary number of dimensions d.

An important property of the Boltzmann collision operators
is31,35

Iwi
�
ð
dv1 wiðv1ÞJij½v1jfi; fj�

¼ rd�1
ij

ð
d v1

ð
dv2

ð
dbr Hðbr � gÞðbr � gÞ

� fiðr; v1; tÞfjðr; v2; tÞ wiðv01Þ � wiðv1Þ
� �

; (10)

where v1
0 is defined by Eq. (1). Property (10) is identical to the one

obtained in the conventional IHS model (Dij¼ 0).1,2

The relevant hydrodynamic fields in a granular mixture are the
number densities ni, the flow velocity U, and the granular temperature
T. They are defined in terms of velocity moments of the velocity distri-
butions fi as

ni ¼
ð
dvfiðvÞ; qU ¼

X2
i¼1

mi

ð
dvvfiðvÞ; (11)

nT ¼ p ¼
X2
i¼1

niTi ¼
X2
i¼1

mi

d

ð
dvV2fiðvÞ; (12)

where V ¼ v � U is the peculiar velocity, n ¼ n1 þ n2 is the total
number density, q ¼ m1n1 þ m2n2 is the total mass density, and p is
the hydrostatic pressure. The third equality of Eq. (12) defines the
kinetic temperatures Ti for each component, which measure their
mean kinetic energies. It is also convenient to work with the local mole
fractions (or concentrations) xi¼ ni/n.

The collision operators conserve the particle number of each
component, and the total momentum but the total energy is not con-
served. This yields the following conditions:ð

dv1Jij½v1jfi; fj� ¼ 0; (13)

X2
i¼1

X2
j¼1

ð
dv1miv1Jij½v1jfi; fj� ¼ 0; (14)

X2
i¼1

X2
j¼1

ð
dv1

1
2
miv

2
1Jij½v1jfi; fj� ¼ �

d
2
nTf; (15)

where f is identified as the “cooling rate” due to inelastic collisions
among all components. From Eqs. (13)–(15) and using the property
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(10) for wi � 1;miv; 12miv2
� 	

, the macroscopic balance equations for
the mixture can be easily obtained. In fact, their structure is similar to
that of the conventional IHS model,38,41,43 and they are given by

Dtni þ nir � Uþ
r � ji
mi
¼ 0; (16)

DtUþ q�1r � P ¼ 0; (17)

DtT �
T
n

X2
i¼1

r � ji
mi
þ 2
dn
r � qþ P : rUð Þ ¼ �fT: (18)

In the above equations, Dt¼ @tþ U � r is the material derivative,

ji ¼ mi

ð
dv1 V1 fiðv1Þ; (19)

is the mass flux for the component i relative to the local flow,

P ¼
X2
i¼1

ð
dv1 miV1V1 fiðv1Þ; (20)

is the total pressure tensor, and

q ¼
X2
i¼1

ð
dv1

1
2
miV

2
1V1 fiðv1Þ; (21)

is the total heat flux.
It is quite apparent that the balance equations (16)–(18) do not

constitute a closed set of hydrodynamic equations for the fields ni, U,
and T. This can be achieved when the fluxes (19)–(21) and the cooling
rate f are expressed in terms of the above hydrodynamic fields and
their spatial gradients. To get this functional dependence, one has to
solve the Boltzmann equation by means of the Chapman–Enskog
method44 conveniently modified to account for the inelasticity of
collisions.

III. CHAPMAN–ENSKOG EXPANSION

The Chapman–Enskog method44 is applied in this section to
solve the set of Boltzmann equations (1) for the binary mixture up to
first order in spatial gradients. The first-order solution will be used
later to determine the Navier–Stokes transport coefficients in terms of
the coefficients of restitution aij, the masses mi, and diameters ri of
grains, the parameters Dij, the local mole fraction x1, and the tempera-
ture T.

A. Sketch of the Chapman–Enskog method

As discussed in different textbooks,44,48–50 two separate stages are
identified in the relaxation of an ordinary gas toward equilibrium. A
kinetic stage (for times of the order of the mean free time) is first iden-
tified where the main effect of collisions is to relax quickly the gas
toward a local equilibrium state. This stage depends on the initial con-
ditions of the system. Then, a slow stage is identified where the gas has
completely forgotten its initial preparation, and so, its microscopic
state is governed by the hydrodynamic fields. The second stage is usu-
ally referred to as the hydrodynamic regime. In the case of granular
gases, the above two-stage regimes are also expected to be identified.
However, in the kinetic stage, the distribution function will relax to a
time-dependent nonequilibrium distribution (the so-called local

homogeneous cooling state in the conventional IHS model)51 instead
of the local equilibrium distribution. This time-dependent distribution
must be consistently obtained as the solution to the Boltzmann kinetic
equation in the absence of spatial gradients. Moreover, in the hydrody-
namic stage, although the granular temperature T is not a conserved
field due to inelastic collisions, it is still considered as a slow hydrody-
namic variable (i.e., its time evolution is much slower than other veloc-
ity moments of fi such as those related with the irreversible fluxes).
This assumption has been clearly confirmed by good agreement found
between granular hydrodynamics and computer simulations in differ-
ent nonequilibrium situations.52–64

This way, according to the above scenario, in the hydrodynamic
regime, the velocity distribution functions fi(r, v; t) of the mixture are
expected to depend on space and time through a functional depen-
dence on the hydrodynamic fields. In this paper, similarly as in previ-
ous works on dilute granular mixtures,38,39,41,43 we will choose the set
n � x1; p;T;Uf g as the hydrodynamic fields of the binary mixture
instead of n1; n2;T;Uf g,

fiðr; v1; tÞ ¼ fi v1jx1ðtÞ; pðtÞ;TðtÞ;UðtÞ½ �: (22)

Solution (22) is called a “normal” solution. Note that functional
dependence in (22) means that in order to determine fi at the point r,
one needs to know the hydrodynamic fields and all their spatial gra-
dients at r.

It is quite apparent that the determination of the normal solution
(22) from the set of coupled Boltzmann kinetic equations (8) is, in
general, a very complex problem. This task becomes more accessible
when the spatial gradients are small. In this case, the
Chapman–Enskog method44 converts the functional dependence (22)
into a local space dependence through an expansion of fi in powers of
the Knudsen number Kn (Kn ¼ ‘/h, where ‘ is the mean free path
and h is a characteristic hydrodynamic length). Since h is the typical
distance over which the distributions fi change substantially, then h�1

� jr ln fij, and hence, the expansion in Kn is actually equivalent to
an expansion in powers of the spatial gradients of the hydrody-
namic fields. In addition, as usual in the perturbation expansions, a
bookkeeping parameter � is introduced to label the relative orders
of magnitude of the different terms appearing in the expansion.
Thus, for small spatial variations, fi is written as a series expansion
in powers of �,

fi ¼ f ð0Þi þ � f
ð1Þ
i þ �2 f

ð2Þ
i þ � � � ; (23)

where, for instance, a term of order � is of first order in gradients
(� � rn), while a term of order �2 is either a product of two first-order
gradients [(@in)(@jn)] or one second degree gradient (@2i n). The formal
parameter � is taken to be equal to 1 at the end of the calculations.

Expansions (23) and (27) yield similar expansions for the fluxes
and the cooling rate when substituted into Eqs. (15) and (19)–(21),

ji ¼ jð0Þi þ � j
ð1Þ
i þ � � � ; P ¼ Pð0Þ þ �Pð1Þ þ � � � ; (24)

q ¼ qð0Þ þ � qð1Þ þ � � � ; f ¼ fð0Þ þ � fð1Þ þ � � � : (25)

Although the partial temperatures Ti are not hydrodynamic quantities,
they are also involved in the evaluation of the cooling rate.46 Its expan-
sion is

Ti ¼ Tð0Þi þ �T
ð1Þ
i þ � � � : (26)
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To obtain the kinetic equations verifying the approximations f ðkÞi
since the term rf ðkÞi is of order k þ 1 in spatial gradients, then one
formally replacesr! �r in the Boltzmann equation (1) and expands
the time derivative @t as

65

@t ¼ @ð0Þt þ �@
ð1Þ
t þ � � � : (27)

The action of the time derivatives @ðkÞt on x1, U, p, and T can be
obtained from the balance equations (16)–(18) after taking into
account expansions (24)–(26), setting r ! �r, and collecting terms
of the same order of �. In particular, the action of the operators @ð0Þt
and @ð1Þt on ni, U, and T can be easily obtained from Eqs. (16)–(18) as

@
ð0Þ
t ni ¼ @ð0Þt Uk ¼ 0; T�1@ð0Þt T ¼ �fð0Þ; (28)

@
ð1Þ
t ni ¼ �nir � U; (29)

@
ð1Þ
t Uk ¼ �U � rUk � q�1rp; (30)

@
ð1Þ
t T ¼ �U � rT þ 2

d
Tr � U� Tfð1ÞT: (31)

Here, to be consistently verified later, we made use of the results
jð0Þi ¼ qð0Þ ¼ 0 and Pð0Þkb ¼ pdkb.

As usual, in the Chapman–Enskog method,44 the hydrodynamic
fields ni, p, T, and U are defined in terms of the zeroth-order
distributions, ð

dv fi � f ð0Þi

� �
¼ 0; (32)

X2
i¼1

ð
dv miv;

mi

2
V2


 �
fi � f ð0Þi

� �
¼ 0; 0f g: (33)

Since constraints (32) and (33) must hold at any order in �, the
remainder of the expansion must obey the orthogonality conditions,ð

dvf ðkÞi ¼ 0 (34)

and

X2
i¼1

ð
dv miv;

mi

2
V2


 �
f ðkÞi ¼ 0; 0f g; (35)

for k	 1. The constraints (35) yield the following relations:

jðkÞ1 ¼ �j
ðkÞ
2 ; n1T

ðkÞ
1 ¼ �n2T

ðkÞ
2 ; (36)

for k 	 1. As expected, the second condition in Eq. (36) prevents that
the total temperature T is affected by the spatial gradients.

The kinetic equations obeying the successive approximations f ðkÞi
can be easily obtained by inserting the expansions in power of � in the
Boltzmann equation (1) and equating terms of the same order in �. In
this paper, only terms up to first-order in � (Navier–Stokes hydrody-
namic order) will be accounted for to compute the irreversible fluxes
and the cooling rate.

B. Zeroth-order approximation

To zeroth-order in � [which is equivalent to neglect all gradients
in the normal solution (22)], the Boltzmann kinetic equation (8)
becomes

@
ð0Þ
t f ð0Þi ¼

X2
j¼1

Jij½vjf ð0Þi ; f ð0Þj �: (37)

Since f ð0Þi is a normal solution, its time dependence only occurs
through its dependence on the hydrodynamic fields n,

@
ð0Þ
t f ð0Þi ¼ @f

ð0Þ
i

@x1
@
ð0Þ
t x1 þ

@f ð0Þi

@Uk
@
ð0Þ
t Uk þ

@f ð0Þi

@p
@
ð0Þ
t pþ @f

ð0Þ
i

@T
@
ð0Þ
t T

¼ �fð0Þ T
@f ð0Þi

@T
þ p

@f ð0Þi

@p

 !
; (38)

where the cooling rate f(0) is determined by Eqs. (15) to zeroth-order,
namely,

fð0Þ ¼ � 2
dnT

X
i;j

ð
dv1

1
2
mi V

2
1 Jij½v1jf

ð0Þ
i ; f ð0Þj �: (39)

To obtain Eqs. (38), we made use of the results @ð0Þt x1 ¼ 0 and

p�1@ð0Þt p ¼ �fð0Þ: (40)

According to Eqs. (38), the Boltzmann equation (37) can be rewritten
as

�fð0Þ T
@f ð0Þi

@T
þ p

@f ð0Þi

@p

 !
¼
X2
j¼1

Jij½vjf ð0Þi ; f ð0Þj �: (41)

For elastic collisions and Dij ¼ 0, the cooling rate vanishes (f(0)

¼ 0), and hence, Eqs. (41) become

0 ¼
X2
j¼1

JðelÞij ½vjf
ð0Þ
i ; f ð0Þj �; (42)

where JðelÞij is defined by Eqs. (9) with aij¼ 1 and Dij¼ 0. The solution
to Eqs. (42) is simply the local equilibrium distribution function
f ðiÞLE ðVÞ, given by

f ðiÞLE ðVÞ ¼ ni
mi

2pT

� 
d=2

e�miV2=2T : (43)

Note that in Eqs. (43), the fields are evaluated at the point r and time t.
In the case of inelastic collisions (aij 6¼ 1), f(0) 6¼ 0 and to date an

exact solution to Eqs. (41) has not been found, even for monocompo-
nent granular gases. On the other hand, in the hydrodynamic regime,
dimensional analysis and symmetry considerations suggest that the
solution to Eqs. (37) must be of the form32,37

f ð0Þi ¼ xi
p
T

t�dth uiðc;D
11;D


22;D



12Þ; (44)

where c ¼ V/tth and D
ij ¼ Dij=tth, with tth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
being the

thermal velocity. Here, m ¼ ðm1 þm2Þ=2. The consistency of the
assumption (44) has been confirmed by computer simulations carried
out for monocomponent31,32 and multicomponent37 granular gases.
Apart from its dependence on c and D
ij, the scaled distributions ui

are also expected to be functions of the coefficients of restitution aij
and the parameters of the mixture (mole fraction, masses, and
diameters).
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Since the dependence of f ð0Þi on T and p is of the form
pT�ð1þ

d
2ÞuiðV=

ffiffiffiffi
T
p

;Dij=
ffiffiffiffi
T
p
Þ, one has the following relations:

T
@f ð0Þi

@T
¼ �f ð0Þi �

1
2
@

@V
� Vf ð0Þi

� �
� 1
2
f ð0Þi D


@ lnui

@D

; (45)

p
@f ð0Þi

@p
¼ f ð0Þi ; (46)

where we have introduced the shorthand notation,

D

@

@D

� D
11

@

@D
11
þ D
22

@

@D
22
þ D
12

@

@D
12

� 

: (47)

Note that in the particular case D
11 ¼ D
22 ¼ D
12 ¼ D
, only one of
the three terms of the identity (47) must be considered.

The Boltzmann equation (41) can be more usefully written by
employing the relations (45) and (46) as

1
2
fð0Þ

@

@V
� Vf ð0Þi

� �
þ 1
2
fð0Þf ð0Þi D


@ lnui

@D

¼
X2
j¼1

Jij½vjf ð0Þi ; f ð0Þj �: (48)

As expected, Eq. (48) has the same form as the Boltzmann equation
for the D-model in time-dependent homogeneous states.37 Thus, as is
standard for ordinary gases, the gradient expansion in the
Chapman–Enskog method is taken with respect to the reference local
time-dependent state, i.e., that resulting from the neglect of all gra-
dients but evaluated at the value of the hydrodynamic fields at the cho-
sen point and time. In other words, the election of the reference state
in the Chapman–Enskog method for granular gases comes from the
solution to the Boltzmann equation to zeroth-order in gradients and
cannot be chosen a priori.

In dimensionless form, the Boltzmann equation (48) for ui can
be rewritten as

1
2
f
0
@

@c
� cuið Þ þ

1
2
f
0D


 @ui

@D

¼
X2
j¼1

J
ij ½ui;uj�; (49)

where f
0 ¼ fð0Þ=�, J
ij ¼ ðtth=ni�ÞJij, and

� ¼ nrd�1
12 tth ¼

ffiffiffiffiffi
2
m

r
rd�1
12 pT�1=2 (50)

is an effective collision frequency. The equation for the temperature
ratio

ci �
Tð0Þi

T
¼ 2

d
mi

m

ð
dc c2uiðcÞ (51)

can be easily derived by multiplying both sides of Eqs. (49) by c2 and
integrating over the velocity. The result is

1
2
f
0D


 @ci
@D

¼ ci f
0 � f
i

� �
; (52)

where the (reduced) partial cooling rates f
i are defined as

f
i ¼ �
2
d

hi
X2
j¼1

ð
dc c2J
ij ½ui;uj� (53)

and hi ¼ mi=ðmciÞ.

As expected, since the distribution functions f ð0Þi are isotropic in
velocity space, then

jð0Þ1 ¼ qð0Þ ¼ 0; Pð0Þkb ¼ pdkb: (54)

Although the exact form of the distributions f ð0Þi is not known, an
indirect information on them is provided by the kurtosis (or fourth-

cumulants) aðiÞ2 (i ¼ 1, 2). These quantities measure the departure of

f ð0Þi from its Maxwellian form. In the context of the D-model, the kurto-
sis has been evaluated for monocomponent gases, and the results show
that its magnitude is, in general, small.31,32 The asymptotic steady
homogeneous state of a granular binary mixture has been recently stud-

ied37 by assuming Maxwellian distributions at Tð0Þi for f ð0Þi . Despite this
approximation, theory compares, in general, quite well with Monte
Carlo and molecular dynamics simulations when computing the tem-

perature ratio Tð0Þ1 =Tð0Þ2 and the global temperature, specially for low-

density systems. Thus, non-Gaussian corrections to f ð0Þi can be
neglected for practical purposes.

To determine the Navier–Stokes transport coefficients under
steady state conditions, one needs to evaluate derivatives such as
ð@ci=@D
Þs and ð@f
0=@D


Þs. Here, the subscript s means that the
derivatives are evaluated in the steady state (i.e., when f
1 ¼ f
2 ¼ 0).
The above derivatives measure the departure of the steady state from
the perturbed time-dependent state. The calculation of these deriva-
tives is performed in Appendix A.

IV. FIRST-ORDER APPROXIMATION: NAVIER–STOKES
TRANSPORT COEFFICIENTS

The first-order contribution f ð1Þi to the distribution functions
is considered in this section. Given that the mathematical steps
involved in this calculation are quite similar to those carried out
years ago38,41 in the conventional IHS model, some parts of this
derivation are omitted here. We refer the interested reader to Ref. 2
or Refs. 38 and 41 for specific details. The only subtle point (which
is absent in the conventional IHS model) is that there are non-
vanishing contributions to the partial temperatures Tð1Þi and the
cooling rate f(1) in the first-order solution. Some technical details
are provided in Appendix B.

The first-order distribution function f ð1Þi ðVÞ is given by

f ð1Þi ¼ A i � rx1 þBi � rpþ Ci � rT

þDi;bk
1
2

@Ub

@rk
þ @Uk

@rb
� 2
d

dbkr � U
� 


þ Eir � U; (55)

where b and k refer to Cartesian components and an implicit summa-
tion over repeated indices is used. The quantities A iðVÞ, BiðVÞ,
CiðVÞ, Di;bkðVÞ, and EiðVÞ obey the linear coupled integral equations
(B16)–(B20), respectively. Use of Eqs. (55) in the definitions (19)–(21)
allows us to obtain the forms of the irreversible fluxes. As expected,
they are given by

jð1Þ1 ¼ �
m1m2n

q
Drx1 �

q
p
Dprp�

q
T
DTrT; (56)

Pð1Þkb ¼ �g
@Uk

@rb
þ @Ub

@rk
� 2
d

dkbr � U
� 


; (57)
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qð1Þ ¼ �T2D00rx1 � Lrp� krT: (58)

The Navier–Stokes transport coefficients in Eqs. (56)–(58) are the dif-
fusion coefficient D, the pressure diffusion coefficient Dp, the thermal
diffusion coefficient DT, the shear viscosity coefficient g, the Dufour
coefficient D00, the pressure energy coefficient L, and the thermal con-
ductivity coefficient k.66 Note that the bulk viscosity vanishes for a
low-density mixture.

The transport coefficients associated with the mass flux are iden-
tified as

D ¼ � 1
d

q
m2n

ð
dv V �A1; (59)

Dp ¼ �
1
d
m1p
q

ð
dv V �B1; (60)

DT ¼ �
1
d
m1T
q

ð
dv V � C1: (61)

The shear viscosity g is

g ¼ � 1
ðd � 1Þðd þ 2Þ

X2
i¼1

ð
dv VkVbDi;kbðVÞ: (62)

Finally, the transport coefficients for the heat flux are

D00 ¼ � 1
dT2

X2
i¼1

ð
dv

mi

2
V2V �A i; (63)

L ¼ � 1
d

X2
i¼1

ð
dv

mi

2
V2V �Bi; (64)

k ¼ � 1
d

X2
i¼1

ð
dv

mi

2
V2V � Ci: (65)

As mentioned before, apart from the transport coefficients, an
interesting quantity in the D-model is the first-order contribution Tð1Þi
to the partial temperature Ti. Since this quantity is a scalar, it is cou-
pled to the divergence of the flow velocityr �U,

Tð1Þi ¼ -ir � U; (66)

where

-i ¼
mi

dni

ð
dv V2 EiðVÞ: (67)

Note that Tð1Þi ¼ 0 at low-density in the conventional IHS
model,38,39,41,43 although it is different from zero at finite densities.45,46

As usual, to obtain the explicit forms of the transport coefficients
and the quantities -i, one has to resort to the leading terms in a Sonine
polynomial expansion of the unknowns A i;Bi;Ci;Di;bk; Ei

� 	
. This

task is carried out below.

A. Diffusion transport coefficients

The lowest order Sonine polynomial approximations forA i, Bi,
and Ci are

A i

Bi

Ci

0@ 1A! fi;MV
ai
bi
ci

0@ 1A; (68)

where

fi;MðVÞ ¼ ni
mi

2pTð0Þi

� 
d=2
exp �miV2

2Tð0Þi

 !
(69)

is the Maxwellian distribution characterized by the partial temperature
Tð0Þi . The coefficients ai, bi, and ci are related in this approximation to
the transport coefficientsD, Dp, andDT through Eqs. (59)–(61) as

a1 ¼ �
n2T

ð0Þ
2

n1T
ð0Þ
1

a2 ¼ �
m1m2n

qn1T
ð0Þ
1

D; (70)

b1 ¼ �
n2T

ð0Þ
2

n1T
ð0Þ
1

b2 ¼ �
q

pn1T
ð0Þ
1

Dp; (71)

c1 ¼ �
n2T

ð0Þ
2

n1T
ð0Þ
1

c2 ¼ �
q

Tn1T
ð0Þ
1

DT : (72)

In Eqs. (70) and (71), n1T
ð0Þ
1 þ n2T

ð0Þ
2 ¼ nT ¼ p.

The transport coefficients D, Dp, and DT are determined by sub-
stitution of Eq. (68) into the integral equations (B16)–(B18). Next,
multiplication of the above equations by m1V and integration over
velocity yields

� 1
2
fð0Þ 1� D


@ lnD


@D


� 

þ �D

� �
D

¼ q
m1m2n

@

@x1
n1T

ð0Þ
1

� 

p;T
þ q

@fð0Þ

@x1

 !
p;T

Dp þ DTð Þ

24 35;
(73)

1
2
fð0Þ 1þ D


@ lnD
p
@D


� 

� 2fð0Þ þ �D

� �
Dp

¼ n1T
ð0Þ
1

q
1�m1nT

qTð0Þ1

 !
þ fð0ÞDT ; (74)

1
2
fð0ÞD


@ lnD
T
@D


þ @ ln f
0
@D


� 

þ �D

� �
DT

¼ � n1T
2q

D

@c1
@D

� fð0Þ

2
1þ D


@ ln f
0
@D


� 

Dp; (75)

where

�D¼�
1

dn1T
ð0Þ
1

ð
dv1m1V1 � J12½f1;MV1;f

ð0Þ
2 ��

n1T
ð0Þ
1

n2T
ð0Þ
2

J12½f ð0Þ1 ;f2;MV2�
 !

:

(76)

In Eq. (73), the derivatives with respect to x1 at constant pressure and
temperature are given by

@

@x1
n1T

ð0Þ
1

� 

p;T
¼ p c1 þ x1

@c1
@x1

� 

; (77)
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@fð0Þ

@x1

 !
p;T

¼ � @f
0
@x1

� 

c1

þ @f


0

@c1

@c1
@x1

" #
: (78)

Note that c2 ¼ (1 � x1c1)/(1 � x1), and hence, @x1c2 can be easily
expressed in terms of @x1c1. The derivative @x1c1 is evaluated in
Appendix A in the steady state. Moreover, in the definition of �D, the
self-collision terms arising from J11 do not contribute since they con-
serve momentum of species 1. In addition, upon obtaining Eqs.
(73)–(75), we have introduced the dimensionless transport
coefficients,

D
 ¼ m1m2�

qT
D; D
p ¼

q�
nT

Dp; D
T ¼
q�
nT

DT ; (79)

and used the following relations:

T
@

@T
þ p

@

@p

� 

D ¼ D

2
1� D


@ lnD


@D


� 

; (80)

T
@

@T
þ p

@

@p

� 

q
p
Dp ¼ �

q
2p

Dp 1þ D

@ lnD
p
@D


� 

; (81)

T
@

@T
þ p

@

@p

� 

q
T
DT ¼ �

q
2T

DT 1þ D

@ lnD
T
@D


� 

: (82)

An explicit expression for �D can be obtained when f ð0Þi is replaced by
its Maxwellian approximation fi,M. The result is (see Appendix C for
more details)

�D ¼
2pðd�1Þ=2

dC
d
2

� 
 x1l12 þ x2l21ð Þnrd�1
12 tth

� h1 þ h2
h1h2

� 
1=2

ð1þ a12Þ þ
ffiffiffi
p
p

D
12

" #
: (83)

In contrast to the conventional IHS model, the diffusion transport
coefficients are obtained as the solutions of the set of coupled nonlin-
ear differential equations (73)–(75). When D
11 ¼ D
22 ¼ D
12 ¼ 0, Eqs.
(73)–(75) are consistent with those obtained in the IHS model.38,41

B. Shear viscosity coefficient

According to Eq. (62), g¼ g1þ g2, where

gi ¼ �
1

ðd � 1Þðd þ 2Þ

ð
dv VkVbDi;kbðVÞ: (84)

To get the coefficients gi, one considers now the leading Sonine
approximation for the functionDi;kbðVÞ,

Di;kbðVÞ ! �fi;MðVÞRi;kbðVÞ
gi

niT
ð0Þ2
i

; (85)

where

Ri;kbðVÞ ¼ mi VkVb �
1
d

dkbV
2

� 

: (86)

As in the case of the diffusion coefficients, the partial contributions gi
are obtained by substituting Eq. (85) into the integral equation (B19),

multiplying it by Ri,kb, and integrating over the velocity. After some
algebra, one achieves the following result:

X2
j¼1

sij �
1
2
fð0Þ 1� D


@ ln g
i
@D


� 
� �
gj ¼ niT

ð0Þ
i ; (87)

where g
i ¼ ð�=niTÞgi and the collision frequencies sij are defined
as

sii ¼�
1

ðd� 1Þðdþ 2Þ
1

niT
ð0Þ2
i

 ð
dvRi;kbJii f ð0Þi ; fiMRi;kb

h i

þ
X2
j¼1

ð
dvRi;kbJij fi;MRi;kb; f

ð0Þ
j

h i!
; (88)

sij ¼ �
1

ðd � 1Þðd þ 2Þ
1

njT
ð0Þ2
j

ð
dvRi;kbJij f

ð0Þ
i ; fj;MRj;kb

h i
ði 6¼ jÞ:

(89)

The expressions of the collision frequencies sii and sij in the
Maxwellian approximation are given in Appendix C. Upon deriv-
ing Eq. (87), we have accounted for that gi / ðp=

ffiffiffiffi
T
p
Þg
i ðD
Þ, and

hence,

T
@

@T
þ p

@

@p

� 

gi ¼

1
2
gi 1� D


@ ln g
i
@D


� 

: (90)

As in the case of the diffusion coefficients, when
D
11 ¼ D
22 ¼ D
12 ¼ 0, Eq. (87) is consistent with the one derived for
the shear viscosity in the IHS model.38,41

C. First-order contributions to the partial temperatures

The first-order contributions to the partial temperatures are
defined by Eqs. (66) and (67). To determine -i, we consider the lead-
ing Sonine approximation to EiðVÞ, given by

EiðVÞ ! fiMðVÞWiðVÞ
-i

Tð0Þi

; WiðVÞ ¼
miV2

2Tð0Þi

� d
2
: (91)

The coefficients -i are coupled with the first-order contribution
to the cooling rate f(1) ¼ fUr �U. The relationship between -i

and fU can be made more explicit when one substitutes Eq. (91)
into Eqs. (B21) and (B22). After some algebra, one gets the fol-
lowing result:

fU ¼
X2
i¼1

ni-i; (92)

where ni ¼ nð0Þi þ nð1Þi ,

nð0Þi ¼
3pðd�1Þ=2

2dC
d
2

� 
 mit3th
nTTð0Þi

�
X2
j¼1

ninjr
d�1
ij ljið1� a2ijÞ hi þ hj

� �1=2h�3=2i h�1=2j (93)
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nð1Þi ¼ �
4pðd�1Þ=2

dC
d
2

� 
 tth
nT

X2
j¼1

ninjr
d�1
ij ljiD



ij

�
n ffiffiffi

p
p

aij þ hi þ hj
� ��1=2h3=2i h�1=2j D
ij

� d � d hi þ hj
� �

h�1i þ ðd þ 1Þhih�1j

h io
: (94)

The set of differential equations obeying the coefficients -i are
obtained by multiplying both sides of Eq. (B20) by miV

2 and integrat-
ing over V. After some algebra, one gets

X2
j¼1

xij þ
1
2
fð0Þ 1� D


@ ln-
i
@D


� 

dij �

1
2
TD


@ci
@D


nj þ Tð0Þi nj

� �
-j

¼ T
d

D

@ci
@D


; (95)

where-
i ¼ ðnrd�1
12 tth=TÞ-i and

xii ¼
1

dniT
ð0Þ
i

 X2
j¼1

ð
dv miV

2Jij fi;MWi; f
ð0Þ
j

h i

þ
ð
dv miV

2Jii f ð0Þi ; fi;MWi

h i!
; (96)

xij ¼
1

dniT
ð0Þ
j

ð
dv miV

2Jij f
ð0Þ
i ; fj;MWj

h i
ði 6¼ jÞ: (97)

The expressions of xii and xij in the Maxwellian approximation are
given in Appendix C. To achieve Eq. (95), we have taken into account
the following relation:

T
@

@T
þ p

@

@p

� 

-i ¼

1
2
-i 1� D


@ ln-
i
@D


� 

: (98)

In the case that D
11 ¼ D
22 ¼ D
12 ¼ 0, Eq. (95) yields -i ¼ 0 as
expected.

D. Heat flux transport coefficients

The evaluation of the heat flux transport coefficients D00, L, and k
is more involved since it requires going up to the second Sonine
approximation. This calculation lies beyond the scope of the present
paper. However, it is still possible to obtain expressions for these coef-
ficients when the first Sonine approximations (70)–(72) are considered
forA i,Bi, and Ci, respectively. In this approximation, one gets

D00 ¼ d þ 2
2

nm1m2

qT
c1
m1
� c2
m2

� 

D; (99)

L ¼ d þ 2
2

q
n

c1
m1
� c2
m2

� 

Dp; (100)

k ¼ d þ 2
2

q
c1
m1
� c2
m2

� 

DT : (101)

According to Eqs. (99)–(101), for mechanically equivalent compo-
nents (i.e., when r1 ¼ r2, m1 ¼ m2, a11 ¼ a22 ¼ a12, and
D
11 ¼ D
22 ¼ D
12), energy equipartition holds (c1 ¼ c2),

37 and so, the
first Sonine approximation to the heat transport coefficients vanishes

(D00 ¼ L ¼ k ¼ 0). Hence, the forms (99)–(101) are not able to repro-
duce the monocomponent limit. Nevertheless, these expressions are
consistent in the order of approximation used to obtain the mass flux
transport coefficients and, consequently, can be employed to study the
violation of Onsager’s relations in Sec. VI.

V. TRANSPORT COEFFICIENTS AT THE STATIONARY
TEMPERATURE

As mentioned before, the determination of the
Navier–Stokes transport coefficients and the first-order contribu-
tions to the partial temperatures requires to numerically solve
intricate first-order differential equations in the (dimensionless)
D-parameters D
11, D
22, and D
12. A detailed study of the depen-
dence of the transport coefficients on the inelasticity was made in
Ref. 33 for a monocomponent low-density granular gas (i.e., when
aij � a and D
ij � D
). Here, since we want to get analytical forms
for those coefficients, the relevant state of a two-dimensional con-
fined granular mixture with stationary temperature is considered.
In this case (@ð0Þt T ¼ @ð0Þt p ¼ 0), according to Eqs. (28) and (40),
fð0Þ1 ¼ fð0Þ2 ¼ fð0Þ ¼ 0, and hence, Eqs. (73)–(75), (87), and (95)
become linear algebraic equations.

In dimensionless forms, in the steady state, the diffusion trans-
port coefficients D
p , D



T , andD


 are given by

D
p ¼
x1
�
D

c1 �
l

x2 þ lx1

� 

; (102)

D
T ¼ �
x1D



s
@c1
@D


� 

s
þ D
s

@f
0
@D


� 

s
D
p

2�
D þ D
s
@f
0
@D


� 

s

; (103)

D
 ¼
c1 þ x1

@c1
@x1

� 

s
þ D
p þ D
T
� � @f
0

@x1

� 

s

�
D
; (104)

where �
D ¼ �D=�, l ¼ m1/m2 is the mass ratio, and the subindex s
means that the quantities must be evaluated in the steady state. In
addition, we recall that the operator D
s @D
 is defined by Eq. (47), and
the derivatives @x1c1, @x1f



0, @D
c1, and @D
f



0 are determined in

Appendix A. Since jð1Þ1 ¼ �j
ð1Þ
2 andrx1¼�rx2, Dmust be symmet-

ric, whileDp and DTmust be antisymmetric with respect to the change
1$ 2. This can be easily verified from Eqs. (103) and (104) by noting
that x1c1þ x2c2¼ 1 and x1@c1/@D


 ¼ �x2@c2/@D
.
The (reduced) shear viscosity coefficient g
 ¼ (�/p)g can be

obtained from Eq. (87) as

g
 ¼ s
22 � s
21ð Þx1c1 þ s
11 � s
12ð Þx2c2
s
11s



22 � s
12s



21

; (105)

where s
ij ¼ sij=�. Finally, the dimensionless coefficient

-
1 ¼ ðnrd�1
12 tth=TÞ-1 can be determined from Eq. (95) as

-
1 ¼
1
d

D
s
@c1
@D


� 

s

K
1
; (106)

where
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K
1 ¼ x
11 �
x1
x2

x
12 �
1
2
TD
s

@c1
@D


� 

s
� c1

" #
n
1 �

x1
x2

n
2

� 

: (107)

Here, x
ij ¼ xij=nrd�1
12 tth and n
i ¼ ni=nr

d�1
12 Ttth. The expression for

-
2 can be easily obtained from Eq. (106) by making the changes 1$ 2.
The solution (106) must be indeed consistent with the requirement
x1-
1 þ x2-
2 ¼ 0. This is because x1c1 þ x2c2 ¼ 1, @c1/@D


 ¼ �(x2/
x1)@c2/@D


, and x
11 � ðx1=x2Þx
12 þ ðn
1=x1Þ ¼ x
22 � ðx2=x1Þx
21
þðn
2=x2Þ.

A. Some illustrative systems

Now, we want to assess the dependence of the diffusion coeffi-
cients, the shear viscosity, and the first-order contributions to the par-
tial temperature and the cooling rate on the parameter space of the
system. For the sake of illustration, it is more convenient to plot the
transport coefficients in their dimensionless forms. In the case of the
diffusion coefficients, D
p , D



T , and D
 are given by Eqs. (102)–(104),

respectively, the shear viscosity g
 is defined by Eq. (105), the coeffi-
cient fU is given by Eqs. (92)–(94), and the expression of -
1 is pro-
vided by Eq. (106). Note that the coefficient fU is already a
dimensionless quantity.

It is quite apparent that the above transport coefficients
depend on the mass ratio l ¼ m1/m2, the ratio of diameters x
¼ r1/r2, the mole fraction x1, the dimensionless parameters D
ij,
and the coefficients of restitution aij. For the sake of simplicity, we
will assume the case D
11 ¼ D
22 ¼ D
12 � D
 and will take a com-
mon coefficient of restitution a11 ¼ a22 ¼ a12 � a. Moreover, a
two-dimensional system (d ¼ 2) will be considered. Since in the
steady state, D
 is a function of a, x1, and the mechanical parame-
ters of the mixture, then the parameter space is reduced to three
quantities: l;x; x1f g.

Given that the most interesting feature in a granular mixture is
the dependence of the transport coefficients on inelasticity, we will
normalize the values of the (dimensionless) transport coefficients
with respect to their values for elastic collisions. Figures 1–3 show
D
(a)/D
(1), D
pðaÞ=D
pð1Þ, and D
TðaÞ as a function of a for x1 ¼ 0.5,
x ¼ 2, and two different values of the mass ratio l: l ¼ 0.5 and l
¼ 4. For elastic collisions, D
ð1Þ ¼ D
Tð1Þ ¼ 0 and

D
pð1Þ ¼
x1x2
�
Dð1Þ

1� l
1þ ðl� 1Þx1

; D
ð1Þ ¼ 1
�
Dð1Þ

; (108)

where

�
Dð1Þ ¼
2
ffiffiffi
2
p

pðd�1Þ=2

dC
d
2

� 
 x1l12 þ x2l21ffiffiffiffiffiffiffiffiffiffiffiffiffi
l12l21
p : (109)

The thermal diffusion coefficient D
TðaÞ has not been normalized with
its value in the elastic limit because this coefficient vanishes for elastic
collisions in the first Sonine approximation.48,67 Beyond the first
Sonine solution, D
Tð1Þ 6¼ 0, but its magnitude is very small. We
observe that, in general, the effect of inelasticity on mass transport is
significant since the (reduced) coefficients D
, D
p , andD



T clearly devi-

ate from their forms for elastic collisions. However, these deviations
are, in general, smaller than those obtained in the conventional IHS
model (see, for instance, Figs. 1–3 of Ref. 39). This feature was already

previously noted in the monodisperse case.36 With respect to the
dependence on the mass ratio, we see that there is a monotonic
decrease in the diffusion coefficients with decreasing a, except for the
scaled diffusion D
(a)/D
(1) when l ¼ 4 since this coefficient exhibits
in this case a non-monotonic dependence on inelasticity. Moreover,
for sufficiently strong inelasticity (let us say, a � 0.75), the impact of
the coefficient of restitution on mass transport increases as the mass of
the small particle increases. Figure 3 also highlights that the thermal
diffusion coefficient D
T seems to be always positive, at least in the case
D
11 ¼ D
22 ¼ D
12 illustrated here. This feature contrasts to what hap-
pens in the conventional IHS model where this coefficient can be neg-
ative (see, for instance, Fig. 3 of Ref. 39). The signature of the
coefficient D
T is relevant in problems such as granular segregation by
thermal diffusion.40,60,68–74

The ratio g
(a)/g
(1) is plotted in Fig. 4 as a function of the
coefficient of restitution a. As before, g
(1) refers to the shear vis-
cosity coefficient for elastic collisions. As occurs in the case of the
diffusion coefficients, we observe that the effect of inelasticity on
the shear viscosity is less important than in the conventional IHS
model (see, for instance, Fig. 5 of Ref. 41). In addition, depending
on the mass ratio, the normalized shear viscosity decreases
(increases) when decreasing a when the mass ratio is larger
(smaller) than 1. The (reduced) coefficients -
1 and fU are plotted
in Figs. 5 and 6, respectively. We recall here that -
1 ¼ fU ¼ 0 in
the conventional IHS model. First, as expected, both coefficients
vanish for elastic collisions. However, as inelasticity increases, the
magnitude of both coefficients is not negligible. This means that
-
1 and fU should be considered when one would solve the corre-
sponding Navier–Stokes hydrodynamic equations. At a given value
of l, while -
1 increases with decreasing a, fU increases (decreases)
with inelasticity when l < 1 (l > 1). This means that for the con-
sidered case of equal D and a, fU is always positive (negative) when
the mass ratio is smaller (larger) than 1.

FIG. 1. Plot of the dimensionless diffusion transport coefficient D
(a)/D
(1) as a func-
tion of the (common) coefficient of restitution aij � a for d ¼ 2, x ¼ r1/r2 ¼ 2, x1
¼ 0.5, and two different values of the mass ratio l ¼ m1/m2: l ¼ 0.5 and l ¼ 4.
Here, D
(1) refers to the value of the diffusion coefficient D
 for elastic collisions (a ¼ 1).
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VI. ONSAGER’S RECIPROCAL RELATIONS

Explicit knowledge of the Navier–Stokes transport coefficients
for the D-model of granular binary mixtures opens the possibility of
several interesting applications. Among them, the quantification of the
(possible) violation of the Onsager reciprocal relations is likely one of
the most simple applications. This problem was already studied in the
case of the conventional smooth IHS model.39 Since time reversal sym-
metry is broken in granular gases (because collisions are inelastic), it is
expected that Onsager’s relations fail for finite degree of inelasticity.
On the other hand, we think that the assessment of the expected viola-
tion and the influence of inelasticity on it is still an interesting
problem.

In the usual language of the linear irreversible thermodynamics
for ordinary fluids, the constitutive equations for the mass flux (56)
and heat flow (58) of a binary mixture are written as75

ji ¼ �
X
i

Lij
rlj

T

� 

T
� Liq

rT
T2
� Cprp; (110)

Jq ¼ qð1Þ � d þ 2
2

T
m2 �m1

m1m2
jð1Þ1

¼ �LqqrT �
X
i

Lqi
rli

T

� 

T
� C0prp; (111)

FIG. 5. Plot of the dimensionless coefficient -
1ðaÞ as a function of the (common)
coefficient of restitution aij � a for d ¼ 2, x ¼ r1/r2 ¼ 2, x1 ¼ 0.5, and two differ-
ent values of the mass ratio l ¼ m1/m2: l ¼ 0.5 and l ¼ 4.

FIG. 2. The same as in Fig. 1 but for the dimensionless pressure diffusion coeffi-
cient D
pðaÞ=D
pð1Þ. Here, D
pð1Þ refers to the value of the pressure diffusion coeffi-
cient D
p for elastic collisions (a ¼ 1).

FIG. 3. The same as in Fig. 1 but for the dimensionless thermal diffusion coefficient
D
T ðaÞ.

FIG. 4. Plot of the dimensionless shear viscosity coefficient g
(a)/g
(1) as a func-
tion of the (common) coefficient of restitution aij � a for d ¼ 2, x ¼ r1/r2 ¼ 2, x1
¼ 0.5, and three different values of the mass ratio l ¼ m1/m2: l ¼ 0.5, l ¼ 2,
and l ¼ 4. Here, g
(1) refers to the value of the shear viscosity coefficient g
 for
elastic collisions (a ¼ 1).
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where li is the chemical potential of the component i. In the low-
density regime,

rli=mi

T

� 

T
¼ 1

mi
rlnðxipÞ: (112)

The coefficients Lij are the so-called Onsager phenomenological coeffi-
cients. For ordinary or molecular fluids (aij¼ 1), Onsager showed that
time reversal invariance of the underlying microscopic equations of
motion leads to the restrictions,

Lij ¼ Lji; Liq ¼ Lqi; Cp ¼ C0p ¼ 0: (113)

The first two symmetries are called reciprocal relations as they relate
transport coefficients for different processes. Thus, the coefficients Lqi
link the mass flux to the thermal gradient, while the coefficients Liq
link the heat flux to the gradient of the chemical potentials. The last
two identities (Cp ¼ 0 and Cp

0 ¼ 0) are statements that the pressure
gradient does not appear in any of the fluxes even though it is admit-
ted by symmetry. In particular, the condition Cp

0 ¼ 0 is important for
monocomponent elastic gases since it yields Fourier’s law for heat flux
(q(1) / r T), and hence, there is no any contribution proportional to
the heat flux coming from the density gradient rn. On the contrary,
for the IHS model, Cp

0 6¼ 0, and there is an additional contribution to
the heat flux proportional torn.2,17,76

In order to analyze the violation of Onsager’s relations, one has
first to express the Onsager coefficients (Lij, L1q, Cp, Lqq, Lq1, and Cp

0)
in terms of both the diffusion (D, Dp, DT) and heat flux (D00, L, k)
transport coefficients. To make this connection, since rx1 ¼ �rx2,
then Eq. (112) yields

ðrl1ÞT � ðrl2ÞT
T

¼ nq
q1q2

rx1 þ
n1n2
nq
ðm2 �m1Þrln p

� �
: (114)

The relationships between the Onsager coefficients Lij and those
appearing in Eqs. (56) and (58) are

L11 ¼ �L12 ¼ �L21 ¼
m1m2q1q2

q2
D; L1q ¼ qTDT ; (115)

Lq1 ¼ �Lq2 ¼
T2q1q2

nq
D00 � d þ 2

2
Tq1q2

q2
ðm2 �m1ÞD; (116)

Lqq ¼ k� d þ 2
2

q
m2 �m1

m1m2
DT ; (117)

Cp ¼
q
p
Dp �

q1q2

pq2
ðm2 �m1ÞD; (118)

C0p ¼ L� d þ 2
2

T
m2 �m1

m1m2
Cp �

n1n2
npq

T2ðm2 �m1ÞD00: (119)

As said before, since D is symmetric under the change 1 $ 2, then
Onsager’s relation L12 ¼ L21 trivially holds. To analyze the other rela-
tions, we define the dimensionless function,

PðaijÞ�
c1
l12
� c2

l21
�m2

2�m2
1

m1m2

 !
D
� 2

dþ2
ðm1þm2Þnq

q1q2
D
T ; (120)

which vanishes when L1q¼ Lq1. Similarly,

QðaijÞ � D
p �
q1q2

nq
m2 �m1

m1m2
D
 (121)

vanishes when Cp¼ 0. Finally, when Cp¼ 0 and Cp
0 ¼ 0, the function

RðaijÞ � l21ð1� c1Þ � l12ð1� c2Þ½ �QðaijÞ (122)

equals zero.
For elastic collisions, D
T ¼ 0 and D
p and D
 are given by Eqs.

(108) and (109); this leads to P(1) ¼ Q(1) ¼ R(1) ¼ 0. In addition, for
mechanically equivalent particles with arbitrary a, D
p ¼ D
T ¼ 0 so
that P, Q, and R vanish. However, beyond these limit cases, Onsager’s
relations do not apply as expected. At this macroscopic level, the origin
of this failure is due to the homogeneous reference state [which gives
contributions to diffusion coefficients coming from the derivatives
ð@x1f
i Þs and ð@D
f



i Þs] and the occurrence of different kinetic tempera-

tures for both components (c1 6¼ c2). Figure 7 shows the dependence of
the quantities P, Q, and R on the (common) coefficient of restitution aij
� a for mass ratios l ¼ 0.5 and 2. Violation of Onsager’s relations is
especially relevant in the case of the function P. We see that the depar-
ture from zero in the cases of Q and R is very small even for strong dis-
sipation, implying that Cp and Cp

0 are small. In fact, the deviations
from Onsager’s relations are significantly much smaller than those
found in the IHS model for the same systems (see Figs. 7–9 of Ref. 39).

VII. DISCUSSION

The present paper focused on the derivation of the
Navier–Stokes hydrodynamic equations for a granular binary mixture
of inelastic hard spheres in the context of the so-called D-model. This
model was originally proposed by Brito et al.28 to mimic the transfer
of energy from the vertical to horizontal degrees of freedom in a quasi-
two-dimensional geometry.15,16,20–26 Beyond its possible connection
with this sort of experiments, the D-model can also be seen as a nice
and reliable alternative to the use of external driving forces to achieve
a nonequilibrium steady state in a granular gas when collisional cool-
ing is compensated for by the injected energy.

Although this collisional model has been widely employed by sev-
eral groups31–36 for studying dynamic properties (kurtosis in

FIG. 6. The same as in Fig. 5 for the dimensionless coefficient fU(a).
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homogeneous states, transport coefficients, …) for monocomponent
granular gases, we are not aware of any previous attempt for extending
the previous efforts to the interesting case of multicomponent granular
gases, except for our previous analysis on the lack of equipartition in
homogeneous binary mixtures.37 Needless to say, the determination of
the complete set of Navier–Stokes transport coefficients of granular
mixtures is challenging not only from a fundamental point of view but
also from a more practical view since granular matter is usually pre-
sented in nature as a collection of particles of different sizes, shapes,
masses, and/or coefficients of restitution. Thus, given the high number
of parameters involved in the description of these systems, one usually
considers simple systems to gain some insights. For this reason, the
low-density regime has been considered here where the set of
Boltzmann kinetic equations for the mixture provides an accurate
framework for analyzing transport properties.

As in previous works on granular mixtures,38,41 the constitutive
equations for the mass, momentum, and heat fluxes and the cooling
rate have been obtained by solving the Boltzmann equation by means
of the Chapman–Enskog expansion up to first order in the spatial gra-
dients. The constitutive equation of the mass flux is given by Eq. (56)
where the diffusion transport coefficients D, Dp, and DT are defined by
Eqs. (59)–(61), respectively. The pressure tensor is given by Eq. (57)
where the shear viscosity coefficient g is defined by Eqs. (62). The heat
flux is given by Eq. (58) where the heat flux transport coefficients D00,
L, and k are defined by Eqs. (63)–(65), respectively. Apart from
the above transport coefficients, there are non-vanishing first-order
contributions Tð1Þi to the partial temperatures and the cooling rate
fU; they are given by Eqs. (66), (67), and (92), respectively. This
latter result contrasts with the one previously obtained in the con-
ventional IHS model where Tð1Þi ¼ fU ¼ 0 at low-density.38,41

Explicit forms of the above transport coefficients have been
obtained by considering the leading terms in a Sonine polynomial
expansion of the first-order distribution function. This is the usual
way for determining these quantities for elastic44 and inelastic2 gases.
On the other hand, given that the evaluation of the heat flux transport
coefficients requires to consider the second Sonine approximation,
here, we have addressed the computation of the diffusion transport
coefficients, the shear viscosity, and the quantities Tð1Þi and fU. In the
general time-dependent problem, the differential equations obeying
the diffusion coefficients are given by Eqs. (73)–(75), the viscosity
obeys Eq. (87), and the first-order contributions to the partial tempera-
tures are given in terms of the solution of Eq. (95). The numerical sol-
utions of the above differential equations provide the dependence of
the transport coefficients on the parameter space of the system.

Considering that the zeroth-order distribution functions f ð0Þi are
involved in the evaluation of transport coefficients, one has to charac-
terize first these distributions before computing transport. This study
has been previously made in Ref. 37 where it has been shown that f ð0Þi
has the scaling form (44) and the temperature ratios ci obey the set of
coupled equations (51). In the steady state (fð0Þ1 ¼ fð0Þ2 ¼ fð0Þ ¼ 0),
the dependence of ci on the parameters of the mixture has been explic-
itly obtained by approximating the scaled distributions ui by
Maxwellian distributions at Tð0Þi [see Eq. (A2)]. Despite this approxi-
mation, the theoretical results for the temperature ratio compare quite
well with computer simulations, specially for low-density mixtures.37

Once the reference state is well characterized, the forms of the
above set of transport coefficients under steady state conditions have

FIG. 7. Plot of the dimensionless coefficients P(a), Q(a), and R(a) vs the (common)
coefficient of restitution aij � a for d ¼ 2, x ¼ r1/r2 ¼ 1, x1 ¼ 0.2, and two differ-
ent values of the mass ratio l ¼ m1/m2: l ¼ 0.5 and l ¼ 2.
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been explicitly determined; their expressions are displayed in Eqs.
(102)–(106). It is apparent that, in general, they exhibit a quite complex
dependence on the coefficients of restitution and the remaining parame-
ters of the mixture. An interesting point is that their expressions not
only depend on the hydrodynamic fields in the steady state, but, in addi-
tion, there are also contributions to them coming from the derivatives of
both the temperature ratio and the cooling rate in the vicinity of the
steady state. These contributions measure the distance of the perturbed
state from the steady reference state. This sort of contributions are also
present in the case of driven granular mixtures,77–79 but they are absent
in the conventional IHS model for undriven granular mixtures.38,41,43

To illustrate the dependence of transport on the (common) coeffi-
cient of restitution a, the simplest caseD11¼ D22¼ D12 has been consid-
ered. Figures 1–6 highlight the significant effect of inelasticity on mass
and momentum transport and on the partial temperatures. However, at
a more quantitative level, the influence of a on the transport coefficients
is smaller than that of the conventional collisional model.38,41,43

It is well known that the hydrodynamic equations for granular
mixtures are the same as for a molecular mixture, except for (i) a sink
in the energy equation due to granular cooling and (ii) additional
transport coefficients in the mass and heat flux constitutive equations.
These additional contributions arise because Onsager reciprocal rela-
tions75 among various transport coefficients are expected to fail. Here,
as an application of the previous results, we have assessed in Sec. VI
the violation of Onsager’s relations as inelasticity increases. Notably, as
Fig. 7 shows, the failure of these relations is much smaller than those
reported in Ref. 39 for the same systems.

As mentioned in Sec. I, the D-model was originally proposed to
mimic the quasi-two-dimensional geometry of a confined granular
gas.20–26 However, although this collisional model is able to describe
quite well80 the homogeneous evolution observed in the experiments,
it fails to predict the existence of non-equilibrium phase transitions.
For this reason, modified Boltzmann kinetic equations for this special
quasi-two-dimensional confinement have been proposed,30,81 and the
inhomogeneous cooling state has been widely analyzed.29,82,83

On the other hand, there are still some interesting open problems
in the D-model. Among them, the evaluation of the heat flux transport
coefficients by considering the second Sonine approximation is a chal-
lenging issue. The knowledge of these coefficients will allow us to per-
form a linear stability analysis of the homogeneous steady state. A
previous study for monocomponent gases34 has shown the stability of
the homogeneous state for small spatial perturbations, and it is rele-
vant to determine if the stability of the homogeneous steady state is
extended for granular mixtures. Moreover, given that most of the theo-
retical results found here have been obtained under certain approxi-
mations (Maxwellian distribution functions for the reference states
f ð0Þi , leading Sonine approximations for the diffusion transport coeffi-
cients and the shear viscosity), a natural project is to undertake

simulations to gauge the reliability of the present results. In particular,
we plan to carry out computer simulations to measure the tracer diffu-
sion coefficient (namely, a binary mixture where the concentration of
one of the components is negligible) in a similar way as those simula-
tions performed in the conventional IHS model.53,84,85 An additional
challenging problem is to measure the Navier–Stokes shear viscosity
by studying the decay of a small perturbation to the transversal com-
ponent of the velocity field.52 Finally, another possible project for the
next future is to analyze thermal diffusion segregation.71–74 Works on
the above issues will be developed in the near future.
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APPENDIX A: DERIVATIVES OF THE TEMPERATURE
RATIO IN THE VICINITY OF THE STEADY STATE

In this appendix, the derivatives of the temperature ratio
c1 ¼ Tð0Þ1 =T with respect to D
11, D



22, D



12, and x1 in the vicinity of the

steady state are evaluated. The derivatives of c2 ¼ Tð0Þ2 =T can beeasily
obtained by taking into account the relation c2 ¼ x�12 ð1� x1c1Þ.

Let us consider first the derivative of c1 with respect to D
11. To
determine it, we consider Eq. (52) for i ¼ 1,

1
2
f
0D


 @c1
@D

¼ c1 f
0 � f
1

� �
: (A1)

The (reduced) partial cooling rates f
1 are functionals of the (scaled)
distributions u1 and u2 whose exact forms are not known.
However, recent results37 have clearly shown that the quantities f
i
can be well estimated by using Maxwellian distributions at different
temperatures. This is justified by good agreement found between
theory (based on the above assumption) and simulations for the
global temperature and the temperature ratio even for strong dissi-
pation and/or disparate values of the mass and size ratios. Thus, to
estimate f
1, we consider the following approximation:

uiðcÞ ! p�d=2hd=2i e�hi c2 : (A2)

In the Maxwellian approximation (A2), the cooling rate f
1 is
37

f
1¼
ffiffiffi
2
p

pðd�1Þ=2

dC
d
2
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 x1
r1

r12

� 
d�1
h�1=21 1�a211�2D
211h1�

ffiffiffiffiffiffiffiffiffiffi
2ph1

p
D
11a11

� �
þ4pðd�1Þ=2

dC
d
2
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 x2l21ð1þa12Þh�1=21 1þh12ð Þ1=2 1�1
2
l21ð1þa12Þð1þh12Þ

� �

� 4pd=2

dC
d
2

� 
x2l21D


12

2l21D


12ffiffiffi

p
p h1=21 1þh12ð Þ1=2�1þl21ð1þa12Þ 1þh12ð Þ

� �
; (A3)
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where hij ¼ hi/hj. The expression of f
2 can be obtained from Eq. (A3)
by making the change 1 $ 2. The total cooling rate is given by
f
0 ¼ x1c1f



1 þ x2c2f



2 ¼ f
2 þ x1c1ðf
1 � f
2Þ, where we made use of

the relation x1c1 þ x2c2 ¼ 1. In the steady state, f
1 ¼ f
2 ¼ f
0 ¼ 0,
and hence, Eq. (A1) is trivially verified. To determine the derivative
@c1=@D



11 at the steady state, we take first the derivative with respect

to D
11 in both sides of Eq. (A1) and then take the steady state limit.
After some algebra, one gets the following result:

1
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x1c1s
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1
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� 2c1s

�
¼ �c1s
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1
@D
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 !
s

; (A4)

where the subscript s means that all the quantities are evaluated in
the steady state. According to Eq. (A3), f
i depends on D
11 explicitly
and also through its dependence on c1. Thus,
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i
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11

 !
s

¼ @f
i
@D
11

 !
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11
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s

: (A5)

Equations defining the remaining derivatives @c1=@D


22 and @c1=@D



12

can be easily obtained by following identical steps. They are given as
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¼ �c1s

@f
1
@D
22

 !
s

; (A6)

1
2
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1
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12

 !
s

þ x2c2s
@f
2
@D
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 !
s

24 35�D
11 @c1
@D
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þ D
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þ D
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@D
12

� 

s

� 2c1s

�
¼ �c1s

@f
1
@D
12

 !
s

: (A7)

The solution to the set of algebraic nonlinear equations (A4), (A6),
and (A7) provides the derivatives @c1=@D



11, @c1=@D



22, and

@c1=@D


12 at the steady state. A more simple expression can be

obtained for the particular case D
11 ¼ D
22 ¼ D
12 ¼ D
. In this situ-
ation, it is easy to see that the derivative Kc1;D � ð@c1=@D


Þs obeys
the following quadratic equation:

BD
K2
c1;D
þ AD
 � 2Bc1s þ c1s

@f
1
@c1

� 

Kc1;D

� 2Ac1s þ c1s
@f
1
@c1
¼ 0; (A8)

where

A ¼ 1
2

x1c1s
@f
1
@D


� 

c1

þ x2c2s
@f
2
@D


� 

c1

" #
;

B ¼ 1
2

x1c1s
@f
1
@c1
þ x2c2s

@f
2
@c1

� 

:

(A9)

An analysis of the solutions to Eq. (A8) shows that, in general, one
of the roots leads to unphysical behavior of the diffusion coefficients
for nearly elastic spheres. We take the other root as the physical
root of the quadratic equation.

The derivative Kc1;x1 � ð@c1=@x1Þs at the steady state can be
determined in a similar way by taking first the derivative with
respect to x1 in both sides of Eq. (A1) and then taking the steady
state limit. The result is

Kc1;x1 ¼ �
c1s
@f
1
@x1
þ 1
2

x1c1s
@f
1
@x1
þ x2c2s

@f
2
@x1

� 

D
11

@c1
@D
11

� 

s

þ D
22
@c1
@D
22

� 

s

þ D
12
@c1
@D
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� 

s

� 2c1s

" #

c1s
@f
1
@c1
þ 1
2

x1c1s
@f
1
@c1
þ x2c2s

@f
2
@c1

� 

D
11

@c1
@D
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� 

s

þ D
22
@c1
@D
22

� 

s

þ D
12
@c1
@D
12

� 

s

� 2c1s

" # : (A10)

In Eq. (A10), it is understood that the derivative @x1f


i is taken at c1

� const.

APPENDIX B: SOME TECHNICAL DETAILS ON THE
FIRST-ORDER CHAPMAN–ENSKOG SOLUTION

To first order in the gradients, the equation for f ð1Þi is

@
ð0Þ
t þ Li

� �
f ð1Þi þMif

ð1Þ
j ¼ � Dð1Þt þ V � r

� �
f ð0Þi ; (B1)

where Dð1Þt ¼ @
ð1Þ
t þ U � r. In Eq. (B1), it is understood that i 6¼ j,

and the linear operators Li andMi are

Lif ð1Þi ¼ � Jii½f ð0Þi ; f ð1Þi � þ Jii½f ð1Þi ; f ð0Þi � þ Jij½f ð1Þi ; f ð0Þj �
� �

; (B2)

Mif
ð1Þ
j ¼ �Jij½f ð0Þi ; f ð1Þj �: (B3)

The action of the time derivatives Dð1Þt on the hydrodynamic fields is

Dð1Þt x1 ¼ 0; Dð1Þt p ¼ � d þ 2
d

pr � U� pfð1Þ;

Dð1Þt T ¼ � 2
d
Tr � U� Tfð1Þ; Dð1Þt U ¼ �q�1rp;

(B4)

where we made use of the results jð0Þi ¼ qð0Þ ¼ 0. Here, f(1) is the
first-order contribution to the cooling rate. The right-hand side of
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Eq. (B1) can be explicitly evaluated from the relations (B4) with the
following result:

� Dð1Þt þ V � r
� �

f ð0Þi

¼ � @

@x1
f ð0Þi

� 

p;T

V � rx1 �
f ð0Þi

p
Vþ q�1

@f ð0Þi

@V

 !
� rp

� @f
ð0Þ
i

@T
V � rT þ Vb

@f ð0Þi

@Vk

1
2

@Ub

@rk
þ @Uk

@rb
� 2
d

dbkr � U
� 


þ d þ 2
d

p
@f ð0Þi

@p
þ 2
d
T
@f ð0Þi

@T
þ 1
d
V � @f

ð0Þ
i

@V

 !
r � U

þ p
@f ð0Þi

@p
þ T

@f ð0Þi

@T

 !
fð1Þ: (B5)

The kinetic equation for f ð1Þi can be easily written when one
takes into account Eq. (B5),

@
ð0Þ
t þ Li

� �
f ð1Þi þMif

ð1Þ
j � p

@f ð0Þi

@p
þ T

@f ð0Þi

@T

 !
fð1Þ

¼ Ai � rx1 þ Bi � rpþ Ci � rT

þ Di;bk
1
2

@Ub

@rk
þ @Uk

@rb
� 2
d

dbkr � U
� 


þ E0ir � U: (B6)

The coefficients of the field gradients on the right-hand side are
functions of V and the hydrodynamic fields. They are given by

AiðVÞ ¼ �
@

@x1
f ð0Þi

� 

p;T

V; BiðVÞ ¼ �
@f ð0Þi

@p
V� q�1

@f ð0Þi

@V
;

(B7)

CiðVÞ ¼ �
@f ð0Þi

@T
V; Di;bkðVÞ ¼ Vb

@f ð0Þi

@Vk
; (B8)

E0iðVÞ ¼
d þ 2
d

p
@f ð0Þi

@p
þ 2
d
T
@f ð0Þi

@T
þ 1
d
V � @f

ð0Þ
i

@V
: (B9)

Note that f(1) is given in terms of the unknown distribution function
f (1). In addition, since f(1) is a scalar, then it must be proportional to
r �U since rx1, rp, and rT are vectors and the tensor @kUb þ @bUk

� (2/d)dkbr �U is a traceless tensor. Therefore, the term f(1) can be
written as

fð1Þ ¼ fUr � U; (B10)

and Eq. (B6) reads

@
ð0Þ
t þ Li

� �
f ð1Þi þMif

ð1Þ
j

¼ Ai � rx1 þ Bi � rpþ Ci � rT

þ Di;bk
1
2

@Ub

@rk
þ @Uk

@rb
� 2
d

dbkr � U
� 


þ Eir � U; (B11)

where

EiðVÞ ¼ E0iðVÞ þ p
@f ð0Þi

@p
þ T

@f ð0Þi

@T

 !
fU

¼ � 1
d

D

@f ð0Þi

@D

� 1
2
fU

@

@V
� Vf ð0Þi

� �
þ D


@f ð0Þi

@D


" #
: (B12)

Upon obtaining Eq. (B12), we made use of the relations (45)
and (46).

The solution to Eq. (B6) is of the form

f ð1Þi ¼ A i � rx1 þ Bi � rpþ Ci � rT

þDi;bk
1
2

@Ub

@rk
þ @Uk

@rb
� 2
d

dbkr � U
� 


þ Eir � U: (B13)

The coefficients A i, Bi, Ci, Di;bk, and Ei are functions of the pecu-
liar velocity V and the hydrodynamic fields. The cooling rate
depends on space through its dependence on x1, p, and T. The time
derivative @ð0Þt acting on these quantities can be evaluated by the
replacement @ð0Þt ! �fð0Þ T@T þ p@p

� �
. In addition, there are con-

tributions coming from the action of the operator @ð0Þt on the tem-
perature and pressure gradients, given by

@
ð0Þ
t rT ¼ �r Tfð0Þ

� �
¼ �fð0ÞrT � Trfð0Þ

¼ � fð0Þ

2
1� D


@ ln f
0
@D


� 

rT

� T
@fð0Þ

@x1

 !
p;T

rx1 þ
fð0Þ

p
rp

24 35; (B14)

@
ð0Þ
t rp ¼ �r pfð0Þ

� �
¼ �fð0Þrp� prfð0Þ

¼ �2fð0Þrp� p
@fð0Þ

@x1

 !
p;T

rx1

þ pfð0Þ

2T
1þ D


@ ln f
0
@D


� 

rT; (B15)

where we recall that f
0 ¼ fð0Þ=� and � ¼ nrd�1
12 tth.

The integral equations for A i, Bi, Ci, Di;bk, and Ei are identi-
fied as coefficients of the independent gradients in Eq. (B6),

�fð0Þ T@T þ p@p
� �

þ Li
h i

A i þMiA j

¼ Ai þ
@fð0Þ

@x1

 !
p;T

pBi þ TCið Þ; (B16)

�fð0Þ T@T þ p@p
� �

þ Li � 2fð0Þ
h i

Bi þMiBj ¼ Bi þ
Tfð0Þ

p
Ci;

(B17)

�fð0Þ T@T þ p@p
� �

þ Li �
1
2
fð0Þ 1� D


@ ln f
0
@D


� 
� �
Ci þMiCj

¼ Ci �
pfð0Þ

2T
1þ D


@ ln f
0
@D


� 

Bi; (B18)

�fð0Þ T@T þ p@p
� �

þ Li
h i

Di;bk þMiDj;bk ¼ Di;bk; (B19)
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�fð0Þ T@T þ p@p
� �

þ Li
h i

Ei þMiEj ¼ Ei: (B20)

In Eqs. (B16)–(B20), as said before, it is understood that i 6¼ j.
Since fU is coupled with the unknowns Ei, its explicit form can

be identified after expanding the expression (15) of the cooling rate
to first order in spatial gradients. After some algebra, fU can be

written as fU ¼ fð0ÞU þ fð1ÞU , where

fð0ÞU ¼
1
nT

pðd�1Þ=2

dC
d þ 3
2

� 
X2
i¼1

X2
j¼1

rd�1
ij mijð1� a2ijÞ

�
ð
dv1

ð
dv2 g

3 f ð0Þi ðV1ÞEjðV2Þ; (B21)

fð1ÞU ¼ �
1

dnT

X2
i¼1

X2
j¼1

rd�1
ij mij

ð
dv1

ð
dv2
�
f ð0Þi ðV1ÞEjðV2Þ

þf ð0Þj ðV2ÞEiðV1Þ
�
½�4B2Dijðg � V1Þ

þ4B2ljiDijð1þ aijÞg2 þ 4B1ljiD
2
ijg
�
: (B22)

Here, mij ¼ mimj/(mi þ mj) and

Bk ¼ pðd�1Þ=2
C

kþ 1
2

� 

C

kþ d
2

� 
 : (B23)

APPENDIX C: COLLISION FREQUENCIES mD, sij, AND
xij

In this appendix, we give some technical details for the evaluation
of the collision frequencies �D, sij, and xij. To obtain them, the prop-
erty (10) is used. Let us first consider �D. According to Eqs. (1), (2),
and (10), the quantity �D can be split in two parts: one of them already
computed in the conventional IHS model (i.e., when Dij ¼ 0) and the
other part involving terms proportional to Dij. Thus, the collision fre-
quency �D reads

�D ¼ �ð0ÞD þ �
ð1Þ
D ; (C1)

where �ð0ÞD was determined in Ref. 41 and its expression is

�
ð0Þ
D ¼

2pðd�1Þ=2

dC
d
2

� 
 ð1þ a12Þ
h1 þ h2
h1h2

� 
1=2

� x1l12 þ x2l21ð Þnrd�1
12 tth: (C2)

The quantity �ð1ÞD is

�
ð1Þ
D ¼

2pd=2

dC
d
2

� 
 l21D12

dn1T
ð0Þ
1

m1r
d�1
12

ð
dV1

ð
dV2

�
�
f1;MðV1Þf ð0Þ2 ðV2Þðg � V1Þ �

x1T
ð0Þ
1

x2T
ð0Þ
2

f2;MðV2Þ

� f ð0Þ1 ðV1Þðg � V2Þ
�
; (C3)

where we made use of the following result:

ð
dbrHðbr � gÞðbr � gÞbr ¼ B2g ¼

pd=2

dC
d
2

� 
 g: (C4)

To integrate over V1 and V2 in Eq. (C3), we substitute the zeroth-
order distributions f ð0Þi (i ¼ 1, 2) by their Maxwellian distributions
fi,M defined by Eq. (69). With these replacements, �ð1ÞD is finally
given by

�
ð1Þ
D ¼

2pd=2

dC
d
2

� 
D
12 x1l12 þ x2l21ð Þnrd�1
12 tth: (C5)

The expression (83) for �D can be easily obtained from Eqs. (C2)
and (C5).

The collision frequencies s11 and s12 are defined by Eqs. (88)
and (89), respectively. To obtain them, as before, we replace f ð0Þi by
its Maxwellian distribution fi,M. As in the case of �D, the forms of
s11 and s12 can be written as

s11 ¼ sð0Þ11 þ sð1Þ11 ; s12 ¼ sð0Þ12 þ sð1Þ12 ; (C6)

where the contributions sð0Þ11 and sð0Þ12 (i.e., when Dij ¼ 0) are41

sð0Þ11 ¼
2pðd�1Þ=2

dðd þ 2ÞC d
2

� 
 tth



n1r

d�1
1 ð2h1Þ

�1=2ð3þ 2d � 3a11Þ

� ð1þ a11Þ þ 2n2r
d�1
12 l21ð1þ a12Þh3=21 h�1=22

�
�
ðd þ 3Þðl12h2 � l21h1Þh�21 ðh1 þ h2Þ�1=2

þ 3þ 2d � 3a12
2

l21h
�2
1 ðh1 þ h2Þ1=2

þ 2dðd þ 1Þ � 4
2ðd � 1Þ h�11 ðh1 þ h2Þ�1=2

��
; (C7)

sð0Þ12 ¼
4pðd�1Þ=2

dðd þ 2ÞC d
2

� 
 tthn1r
d�1
12 l12h

3=2
2 h�1=21 ð1þ a12Þ

�
�
ðd þ 3Þðl12h2 � l21h1Þh�22 ðh1 þ h2Þ�1=2

þ 3þ 2d � 3a12
2

l21h
�2
2 ðh1 þ h2Þ1=2

� 2dðd þ 1Þ � 4
2ðd � 1Þ h�12 ðh1 þ h2Þ�1=2

�
: (C8)

The evaluation of sð1Þ11 and sð2Þ12 follows similar mathematical steps as
those made in the evaluation of �ð1ÞD . Only the final expressions are
provided here. They are given by
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sð1Þ11 ¼
ffiffiffi
2
p

pðd�1Þ=2

dðd þ 2ÞC d
2
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 tthn1r
d�1
1 D
11½

ffiffiffiffiffi
2p
p
ðd � 2a11Þ

�2h�1=21 D
11� �
8pðd�1Þ=2

dðd þ 2ÞC d
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 tthn2r
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ffiffiffi
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; (C9)
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2
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12 l12h
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ffiffiffi
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12�: (C10)

The expressions of s22 and s21 can be easily inferred from Eqs.
(C7)–(C10) by making the change 1 $ 2. In the case of mechani-
cally equivalent particles (m1 ¼ m2, r1 ¼ r2, aij ¼ a, and D
ij ¼ D
),
Eqs. (C9) and (C10) yield

sð1Þ11 þ sð1Þ12 ¼
ffiffiffi
2
p

pðd�1Þ=2

dðd þ 2ÞC d
2

� 
 tthnr
d�1D


ffiffiffiffiffi
2p
p
ðd � 2aÞ � 2D


h i
:

(C11)

This result is consistent with the one previously found for mono-
component granular gases in the D-model.33

Finally, the expressions of the collision frequencies x11 and
x12 are

x11 ¼ �
pðd�1Þ=2
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 tthh
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3ffiffiffi
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1 1� a211
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x12 ¼
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n ffiffiffi
p
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� h�1=21 h3=22 D
12 d � d h1 þ h2ð Þh�12 þ ðd þ 1Þh�11 h2
� �o

:

(C13)

As before, the expressions of x22 and x21 can be easily obtained from
Eqs. (C12) and (C13), respectively, by making the change 1$ 2.
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