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Far from equilibrium particle and momentum transport in a binary mixture subject to uniform 
shear flow is analyzed. Particles of each species are labeled by a “color charge.” Mutual 
diffusion is created by the action of an external field that accelerates particles of different 
species along opposite directions. For a dilute gas of Maxwell molecules, the set of two coupled 
Boltzmann equations is seen to be solvable by the moment method. The color conductivity 
tensor and the shear viscosity coefficient are obtained as nonlinear functions of the shear rate 
and the color field. The usual choice of the external color field [Cummings et al., J. Chem. 
Phys. 94,2149 ( 199 1) ] yields a zero-field limit of the color conductivity tensor different from 
the self-diffusion tensor. In order to avoid the above discrepancy, a different form of the 
external field is proposed. 

I. INTRODUCTION 
The study of transport properties in fluids is a subject of 

great interest from a theoretical perspective, as well as from a 
practical point of view. For states near equilibrium, the de- 
scription of transport processes can be considered as well 
established. ’ Nevertheless, many questions remain still open 
regarding transport problems in far from equilibrium 
states.’ Recently, a great deal of effort has been devoted to 
the computer simulation of some of these states.3 However, 
theoretical advances lag simulation, especially in the case of 
dense fluids. 

In order to capture the essential aspects of nonlinear 
transport, a monatomic, dilute gas with short-range interac- 
tions can be taken as a prototype system. Instead of a fully 
statistical-mechanical description in terms of the phase- 
space probability density, it is much more convenient to 
adopt a kinetic description, according to which the state of 
the system is characterized by the one-particle velocity dis- 
tribution function. The evolution equation for this function 
is the well-known Boltzmann equation.lp4 However, due to 
its mathematical complexity, only a few solutions are known 
for spatially inhomogeneous states far from equilibrium.* 
Perhaps the most physically relevant solutions correspond 
to planar shear flow at uniform temperature and density 
(usually referred to as “uniform shear flow”) 6 and steady 
heat flow at constant pressure.7 Both solutions are restricted 
to Maxwell molecules and are given in terms of the velocity 
moments of the distribution function. 

The aim of this paper is to analyze particle and momen- 
tum transport in a binary mixture subject to uniform shear 
flow. Particles of each species are labeled by a “color 
charge,” but otherwise they are mechanically equivalent. 
Mutual diffusion is not created by concentration gradients, 
but by the action of an external field that accelerates parti- 
cles of different species along opposite directions. This way 
of producing particle fluxes is referred to as the color field 
method and has been proposed in computer simulation 
works.8*9 In the problem under consideration, there are two 
independent parameters measuring the departure from equi- 

librium: the shear rate and the color vector field. Here we 
study the problem starting from the Boltzmann equation for 
Maxwell molecules, i.e., particles interacting via a potential 
V(r) = KrW4. For this particular interaction, the set of two 
coupled Boltzmann equations can be exactly solved by the 
moment method. In the case of a general interaction, the 
problem is much more complicated. The most important 
transport properties are related to the first few moments, 
namely, the particle fluxes and the total pressure tensor. 
From these fluxes one can define generalized transport coef- 
ficients, such as the color conductivity and the shear viscos- 
ity, which are nonlinear functions of both the shear rate and 
the color field. 

In absence of shear flow, the color field method is an 
efficient alternative to compute the self-diffusion coefficient 
as the zero-field limit of the color conductivity coeffi- 
cient.**” However, this equivalence is not established for 
arbitrary shear rates. I’ The clarification of this point is one 
of the main objectives of this paper. In addition, we study the 
general coupling between mass and momentum transport 
for arbitrary shear rate and color field. 

The plan of this paper is as follows. The physical prob- 
lem is described in Sec. II. The special case of Maxwell mole- 
cules is worked out in Sec. III. The transport coefficients are 
shown to be expressed in terms of a parameter that obeys a 
fifth-degree equation. The limit of small shear rate, but finite 
color field, is considered in Sec. IV. Section V deals with the 
limit of small color field and finite shear rate. The results 
show that, with the usual choice of the color field proposed 
in molecular dynamics simulations,8’9 the self-diffusion and 
color conductivity tensors are different. This confirms the 
analysis of modified Green-Kubo relations for mechanical 
transport coefficients carried out by Evans et al.” and shows 
that the agreement observed by Cummings et aL9 from mo- 
lecular dynamics results was fortuitous. Section VI is devot- 
ed to the analysis of nonlinear transport with finite shear rate 
and color field. For the sake of clarity, we consider the par- 
ticular case of a color field parallel to the gradient of the flow 
velocity. Finally, the results are discussed in Sec. VII. 

J. Chem. Phys. 97 (3), 1 August 1992 0021-9606/92/152039-07$06.00 @ 1992 American institute of Physics 2039 Downloaded 05 Oct 2007 to 158.49.20.67. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2040 V. Garzd and A. Santos: Nonlinear mass and momentum transport 

II. COLOR CONDUCTIVITY UNDER UNIFORM SHEAR 
FLOW 

Let us consider a dilute gas in a steady uniform shear 
flow state. This nonequilibrium state is characterized by a 
linear velocity profile and constant density and tempera- 
ture3*12 

Thus the field strengths E, play the role of chemical potential 
gradients. The total force acting on each particle of color r is 
thesumofF,Eq. (2.7),andF,,Eq. (2.8). 

The velocity distribution function f, (V) of species r sat- 
isfies the Boltzmann equation 

tii = aUrj, aU = aS,Sjy , (2.1) 
n = const., (2.2) 
T = const. (2.3) 

Here a is the constant shear rate. The number density n, the 
flow velocity u, and the temperature Tare defined in terms of 
moments of the velocity distribution functionf(r,v) as 

a -- 
av, aUVj - 4 + 9r.i 

> fr =J [Lf]9 (2.9) 
m 

where f = f, +-f2 is the total distribution function and J is 
the Boltzmann collision operator, which in standard nota- 
tion is’ 

n= dvJ 
s (2.4) 

J[f,f,] =I& j.dW-v,Idlv-v,I,B) 

x [f,wlA(v; 1 -f,(v)L(v, I]. (2.10) 
Conservation of total momentum, namely, 

nu = dvvJ; (2.5) 

nk,T=$ dvm(v-u)% 
s 

(2.6) 

where k, is the Boltzmann constant and m is the mass of a 
particle. In order to maintain a steady state, an external drag 
force must be applied 

s dvv(J[f,f] +J[f,f]) =O, (2.11) 

leads to the constraint 
nlel +n2e2 =O. (2.12) 

Here n, is the number density of species r and is defined by an 
equation similar to Eq. (2.4). Conservation of total energy, 

dvu2(J[fd-] +J[f,f]) =O, F= -aV. (2.7) 
In this equation, V=v - u is the peculiar velocity and a is a 
thermostat parameter to be adjusted by consistency. In the imposes the condition 

uniform shear flow, the distribution function becomes ho- 
mogeneous under the change of variable v+V, i.e., 
f( r,v) -f(V) .12 This state has been extensively studied from 
the theoreticall and the computer simulation3.14 points of 
view. 

(2.13) 

m jl*El P a= --- -!EaZL. 
3n2 3 P 

Here 

An interesting physical problem is that of diffusion in 
presence of shear flow. The anisotropy induced by the shear 
flow makes the diffusion coefficient to become a nonsymme- 
tric tensor that is a nonlinear function of the shear rate. This 
tensor reduces to the usual scalar diffusion coefficient in the 
Navier-Stokes limit. Previous theoretical studies have dealt 
with self-diffusion of tagged particles’5~‘6 and diffusion in 
the Fokker-Planck” and the tracer limits.” Recently, 
Cummings et aL9 have performed molecular dynamics sim- 
ulations to compute the self-diffusion tensor through three 
different routes: Einstein relations, Green-Kubo expres- 
sions, and color field method. The ftrst two methods have 
been subsequently validated by the work of Sarman et a1.19 
and, consequently, the results from these methods are reli- 
able. 

j, = dV Vf(V) 
s 

(2.14) 

(2.15) 

is the particle flux (or color current) of species r, Px,, is the xy 
element of the total pressure tensor P = P, + P, , where 

P, = dV mWfr(V), 
s 

(2.16) 

and p =p, +p2 = nk, T, pr = (1/3)Tr P,. Upon writing 
Eq. (2.14) we have taken into account Eq. (2.12) and the 
relation j, = - j, . 

In this problem, the most important transport coeffi- 
cients are the generalized color conductivity tensor a, and 
shear viscosity 7. They are defined, respectively, by 

The aim of this paper is to analyze self-diffusion induced 
by a color field in presence of uniform shear flow, in the 
framework of the Boltzmann equation. In the color field 
method, the system is a binary mixture of mechanically 
equivalent particles that are only distinguished by a “color 
charge.“’ Particles of color T (r = 1,2) are accelerated by 
the action of a color field 

J1.i = - giknlEl,k¶ 

q= -!I&. 
a 

(2.17) 

(2.18) 

Making use of Eq. (2.12), one can get from Eq. (2.9) 
the following set of coupled equations: 

F, = - k,Te,. (2.8) 

The macroscopic effect of 7,. is to produce particle fluxes 
(“color currents”) in absence of concentration gradients. 

a 
( 

k,T -- E- Vi +a#& +--qi av, m m ’ If , =qfif], (2.19) 

a -- 
[( -5 av, m 

Vi + a, V;. Jf 

-~~~~,i(f-$.h)] =Jlffl* (2.20) 
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Equations (2.19) and (2.20) contain all the relevant 
physical information about the problem. The coupling be- 
tween momentum and mass (color) transport is represented 
by the shear rate a and the field strength E, , which are inde- 
pendent parameters measuring the departure from equilibri- 
um. As a matter of fact, this problem reduces to the homoge- 
neous color conductivity case when a = 0 (Refs. 8, 10) and 
to the pure shear flow when e1 = 0.3*‘2-14 According to rela- 
tion (2.14), it is clear that the nonlinear character of Eqs. 
(2.19) and (2.20) is not only due to the collision terms. In 
general, the usual method to solve the Boltzmann equation, 
Eqs. (2.19) and (2.20) in our case, is the Chapman-Enskog 
expansion.4 In this method, the solution is expressed as a 
perturbation expansion around local equilibrium. In the 
problem described by Eqs. (2.19) and (2.20) the perturba- 
tion parameters are a and ei. However, the Chapman-Ens- 
kog is not expected to be adequate far from equilibrium. 
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d* -L- 
1 +ya* ( 6, - 2y a2 1 +ya* > (3.4) 

is the reduced color conductivity tensor. In Eq. (3.4), 
a*ra/(mnA ‘), y=.;l ‘/a, and a$ = a*6,6fi, with 
a* =a/( U ‘n). In a similar way, from Eq. (2.20) one gets 

$5 (El.jl,k +jl,iEl,k) + apik f + [ay$k + akjei] 
2 

= -a”n(P,, -@jk). (3.5) 
Notice that Eq. (2.14) can be reobtained by taking the trace 
in both sides of Eq. (3.5). Inserting Eqs. (2.17) and (3.4) 
into Eq. (3.5), one obtains, after some algebra, 

For a general interaction, the exact solution of Eqs. 
(2.19) and (2.20) does not seem to be feasible. Nevertheless, 
the hierarchy of moments corresponding to the set of Eqs. 
(2.19) and (2.20) can be solved recursively if we restrict 
ourselves to Maxwell molecules. In the next section we will 
solve the first few equations of the hierarchy in order to ob- 
tain the color conductivity and the shear viscosity as func- 
tions of both the shear rate and the field strength. 

+ 2 
(1 +a*)’ 

a$& + 
3 

2yCl-t p*) 
Eye 

3 
l + y - ~ - 

2y(l+ ya*) 1+ a* 1+ ya* 

a$eXq+a$@fE:- 2 ----a$i$fla; . 
l+a* >I 

(3.6) 

Here P $ eP,/p, and 

III. TRANSPORT PROPERTIES FOR MAXWELL 
MOLECULES 

The main mathematical advantage of Maxwell mole- 
cules is that a moment of order k of the collision operator 
only involves moments of order less than or equal to k. In 
particular,20 

s dVVJ [AL] = -R(n,j, - n,js), (3.1) 

I dVmWJ[.fX] 

=a’[ (v, + w, ++dr*js)l - (n,P, + n,P,) 
+m(jJ, +j,j,)] -WbP, -n,P,L (3.2) 

where/l = 1.19~(dm)“*,A’ = 0.777/2.Themomentequa- 
tions obtained from Eqs. (2.19) and (2.20) can be solved 
following a recursive scheme. If all the moments off andf, of 
order less than k are known, Eq. (2.20) allows one to obtain 
the moments offof order k. Once these moments are known, 
Eq. (2.19) gives the moments offi of order k. As said before, 
here we will only consider the moments associated to the 
transport of color and of total momentum. Higher moments, 
such as the partial pressure tensors and the total energy flux, 
can also be obtained straightforwardly. 

Multiplying both sides of Eq. (2.19) by V and integrat- 
ing, one gets 

From Eq. (3.6), the generalized shear viscosity defined in 
Eq. (2.18) turns out to be given as 77~ (p/U ‘n)v*, with 

1 - ~- 
v*= lfa* L 

1 3 
1 +a* WC 1 t- ya*)a* 

eq 

+ 
3 

( 
1 ---+-J- .qf” . 

2y(l+ ya*) 1 +a* 1+ ya* > 1 
(3.8) 

It is important to point out that Eqs. (3.4) and (3.8) are 
not sufficient to give the dependence of the reduced conduc- 
tivity tensor o$“k and shear viscosity q* on the reduced shear 
rate a* and field strength E*. It still remains to determine the 
parameter a* as a function of a* and E*. In order to close the 
problem, we impose on Eq. (3.6) the consistency condition 
Pz + P$ + Pz = 3. Thus one gets the following implicit 
algebraic equation: 

a*( 1 +a*)2( 1 + ya*)* 

s*.i + ai&,k f 
k,T 

-n,e,,i = -Rnj, j. 
m 

=-+a*2(l+ya*)2+~(l+a*)2(l+ya*) 

+ l+Y(l+2a*).a*[a*e;2- 
Y 

(1 +a*)eE:]. 

(3.9) 

The solution of this equation can be cast into form (2.17) 
with o,=(k,T/m,d)d*,, where 

Equations (3.4), (3.8), and (3.9) are the major results of 
this paper. They have been derived exactly from the Boltz- 
mann equation for a binary mixture of Maxwell molecules. 
Insertion into Eqs. (3.4) and (3.8) of the physically mean- 
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ingful solution of Eq. (3.9) yields flk (a*,~*) and V. SMALL COLOR FIELD 
rl* (a*,E*), respectively. These coefficients describe the cou- 
pling between color and momentum transport for arbitrary 
values of the shear rate and the color field strength. 

The asymptotic behavior of a* in the limit of large shear 
rate is given by 

,*,$ I 0 l/3 
aw3 (3.10) 

On the other hand, in the limit of large color field one has 

a*zIE*la 
1/2Y 

(3.11) 

The particular limits of small shear rate and color field will 
be analyzed in the next two sections. 

If terms of order higher than first in E* are neglected, 
Eq. (3.9) reduces to a cubic equation whose real solution is 

a*=$sinh2[&cosh-‘(1 +9a*2)]. (5.1) 
At this order, the pressure tensor P$(a*) is given by the 
well-known expressions of the pure uniform shear flow for 
Maxwell molecules.6~‘5 A new result is obtained when Eq. 
(5.1) is substituted into Eq. (3.4). In this case, the transport 
coefficient o$~ (a*) measures the linear response to the exter- 
nal field (2.8) of a system of colored particles under shear 
flow, being a nonlinear function of the shear rate. 

In principle, the color field problem must be distin- 
guished from the familiar self-diffusion problem. In the lat- 
ter, no external field (such as 9, ) is present, but diffusion is 
created by a gradient of concentration of tagged particles. If 
the system seen as a whole is subject to uniform shear flow, a 
generalized self-diffusion tensor D 2 (a*) can be defined 
from a generalized Fick’s law. For the case of a dilute Max- 
well gas in the context of the Boltzmann equation, this tensor 
has been explicitly obtained from a generalized Green-Kubo 
formula’s and also from a Chapman-Enskog formalism.‘6 

Cummings et al9 have evaluated ey (a* ) (through the 
color field method) and D;y (a*) (through the Einstein and 
Green-Kubo methods which have been proved to be cor- 
rect” ) by nonequilibrium molecular dynamics of a Len- 
nardJones fluid at its triple point. Their results indicate that 
both quantities agree within the statistical errors. However, 
the exact results obtained in this paper and in Refs. 15 and 16 
show that 

IV. SMALL SHEAR RATE LIMIT 

For finite field strength but small shear rate, we can 
write 

a*(a*,e*) =a,(~*) + a, (E*)a* + B(a**). (4.1) 
Substitution into Eq. (3.9) gives 

ao(E*) =-$ [(1+2~*~)“*- 11, (4.2) 

a, (E*) = - 2 
1 +y(1+2a,) 

(l+2Y~o)[~*2+2y(l+yao)] 
eq, 

(4.3) 
where unphysical solutions have been discarded. Inserting 
Eq. (4.1) into Eqs. (3.4) and (3.6), we get, up to linear 
order in a*, 

K 1 -+&a*)6ik -&a$]p 
0 

(4.4) 

1 
p* =- 

3 
XY 

I 1 +a0 Ml +yao) 
eE: 

X 1- 
[ ( 

l+Y ala * 
1 + a0 1 + yao > 1 
3 

-Ml +yao) 1 +a, ( 
1 

-+ y 
1 +yao > 

Xa*.$* - 1 * -a . 
1 +a0 I 

(4.5) 

It is worth noticing that, if e#O and 6; #O, a finite amount 
of x component of momentum is transferred along they axis 
even for very weak shear rates. In absence of shear flow (i.e., 
a* = 0), the color conductivity becomes a scalar and the 
pressure tensor, Eq. (3.6), can be recast into the form 
P* = P:l + (Pi - Pf) 2, with Pr = 3 -2P: and 

Pf= 1++*2- 
( 

1 
> 

-1 

1 + Tao 
(4.6) 

This state of homogeneous color conductivity has been ana- 
lyzed in detail elsewhere. ” 

D;(a*) = o$(a*)Pc(a*). (5.2) 

For nonzero shear rates, the color conductivity and self-dif- 
fusion tensors have different qualitative features. For in- 
stance, a*, =qy =a*,, while Dzx>D,:,=Da; 
s*,<c$$ =o, while Df&cD,:, ~0; and O&-CDS, 
a*, > DC, but Tr g* <Tr D*. The difference between both 
tensors is of second order in a* for the diagonal elements and 
of first order for the xy and yx elements. As an illustration, 
Fig. 1 shows A,,,,(a*) and - A(a*), where 

A, = 
a*,-0; 

DFy = 
a*, (5.3) 

ASTro*-TrD* ya* 
Tr D* = - 1 + 2ya* * 

(5.4) 

It can be seen that the relative difference is much more im- 
portant in the case of the yy element than in the case of the 
trace. The former is about 72% at a* = 1, while the latter is 
always less than 50%. 

Evans et al.” have recently analyzed the relationship 
between the self-diffusion tensor (which is a thermal trans- 
port coefficient) and the zero-field limit of the color conduc- 
tivity tensor (which is a mechanical transport coefficient). 
Their results show the inadequacy of the color method to 
calculate the self-diffusion tensor in the non-Newtonian re- 
gime due to the existence of color current-pressure tensor 
cross correlations that do not die away at steady state. 
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2.5 L”“““““““““““““““““““““““‘, 
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15 
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/- / . I / , / / / 
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/ 

/ 

0 2 4 6 8 10 
a” 

FIG. 1. Plot of the relative difference between the color conductivity and 
the self-diffusion coefficients vs the shear rate square. The solid line corre- 
sponds to the absolute value of the trace ( - A), and the dashed line corre- 
sponds to theyyelement (A,). 

Vi. NONLINEAR MOMENTUM AND COLOR TRANSPORT 

In this section we will study the coupling between mo- 
mentum and color transport for finite shear rate and color 
field strength. In the special case c = 0, Eq. (3.9) reduces 
to a quartic equation, which possesses an exact solution. This 
case has been previously analyzed in Ref. 21. As a comple- 
ment, here we will deal with the case e = e = 0. As a mat- 
ter of fact, the simulations performed by Cummings et aL9 
correspond to this case. For this geometry, Eq. (3.9) be- 
comes 

(6.1) 
Y 

Since Eq. (6.1) is a fifth-degree equation in a*, no explicit 
expression of CY*((I*,E*) is known. However, it can be ob- 
tained implicitly from a*z(a*,e*2) or E*2(a*,a*2). The col- 
or conductivity tensor and the shear viscosity are obtained 
by substitution of a* into Eqs. (3.4) and (3.8), respectively. 
Notice that, according to Eq. (4.5) with e = e = 0, P$ is 
of first order in a* in the limit of small a*. Thus the shear 
viscosity is well defined in this limit. 

The diagonal element a*, = eY = d*, = dt is plotted 
in Fig. 2 as a function of Ebb for several values of a*. We 
observe that o* decreases as E* and/or a* increase. There- 
fore, the color current increases with the color field more 
slowly than in a linear law. In addition, the color transport is 
inhibited by the presence of the shear. Both features contrast 
with Cummings et al.3 results,’ where the opposite behavior 
is observed. This qualitative discrepancy may be due to the 
fact that the Lennard-Jones potential has an attractive tail 
(which is absent in Maxwell molecules), or that the simula- 
tions were carried out for a dense fluid (where the Boltz- 
mann equation is not valid). 

0.25 

0.00 ~~~,,“~t”~~~~~~~“~‘~~t’r~“~~,~~l”~’t~~”~’l’ 
a 2 4 6 8 IO 

e 4 

FIG. 2. Plot of the diagonal element of the reduced color conductivity ten- 
sor vs the reduced field strength square for several values of the shear rate: 
a* = 0 (-), a* = 1 (---), a* = 2 (---). 

In Fig. 3, the shear viscosity is plotted vs a*2 for several 
values of E*. A generalized shear thinning effect is observed: 
At a given value of E*, the viscosity decreases as the shear 
increases. On the other hand, the viscosity does not behave 
monotonically with respect to the color field. In particular, 
at zero shear rate, 

lim q* = 
1+(3-t-@)a, +6ya$ 

0*-o (1 +ya,)(l +aoJ2 ’ 
(6.2) 

where a0 is given by Eq. (4.2). This quantity has a maxi- 
mum equal to 1.694 at E *2 = 1.636 and is smaller than 1 for 
e2 > 23.69. However, in the case e; = 0,” the momentum 
transport is always hindered by the presence of the color 
field, i.e., v* decreases as E* increases. 

VII. DISCUSSION 

The coupling between mass and momentum transport 
in a binary mixture of mechanically identical Maxwell mole- 
cules described by the Boltzmann equation has been ana- 
lyzed. The system is in a steady inhomogeneous state (the 

E”“““““““““““““““““‘““““~“‘~ ~~ . 

1.25 

1 .oo 

0.75 

0.50 

0.25 

8 10 
*a a 

FIG. 3. Plot ofthe reduced shear viscosity vs the reduced shear rate square 
for several values of the field strenght: E* = 0 (-), I? = 1 (---I, @ = 3 
(---). 
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so-called uniform shear flow) macroscopically character- 
ized by a constant total density and pressure, and a mean 
velocity along the x direction with a constant gradient along 
the y direction. Further, two different species are distin- 
guished by a label or “color.” Mutual diffusion is generated 
by a constant external force (color field) acting on particles 
of different colors in opposite directions. A nonconservative 
drag force is also included to maintain the temperature con- 
stant. The system is driven out of equilibrium by the shearing 
as well as by the color field. This state includes the pure 
uniform shear flow and the homogeneous color conductivity 
problem as particular cases. The color field method to pro- 
duce diffusion in absence of concentration gradients has 
been previously used in nonequilibrium molecular dynamics 
simulations.8*9 

where we have taken into account that in zeroth order in the 
color field,f, = (n, /n)f: Equation (7.1) has a form similar 
to the one in the self-diffusion problem [see Eq. (4.25) in 
Ref. 161, except that the term 

ZF, .&f (7.2) 
mn 

should be replaced by 

1 Vn, *Vf (7.3) 
n 

The color conductivity and the self-diffusion tensors are 
then identical if Eqs, (7.2) and (7.3) give the same contribu- 
tion to the particle flux. Equating the first velocity moments 
of Eqs. (7.2) and (7.3)) one gets The mathematical properties of the Boltzmann collision 

operator for Maxwell molecules enable one to solve the hier- 
archy of moment equations in a recursive way. In this paper, 
we have focused on the particle fluxes and the total pressure 

3-, = --l-p.+ 
n 

tensor. These quantities are related, respectively, to the 
transport of mass (or color) and total momentum. The rel- 
evant transport coefficients; namely, the color conductivity 
tensor oik and the shear viscosity 9, depend in a nonlinear 
way of both the color field e1 and the shear rate a. Proceed- 
ing further in the recursive scheme, higher order moments 
can also be obtained. 

In the linear limit in a, there exists in general a nonvan- 
ishing contribution to the transport of the x component of 
momentum along they direction. It comes from the motion 
of particles induced by the color field. This contribution van- 
ishes if the color field is orthogonal to the x and/or they axis. 
In this case, a shear viscosity is well defined in the limit of 
small shear rate. 

where we have identified the chemical potential gradient 
(Vn, )/n, with the field strenght el. Notice that Eq. (7.4) 
reduces to the one originally proposed in the color field 
method, Eq. (2.8)) if the pressure tensor is replaced by that 
of equilibrium. For finite shear rate, Eq. (7.4) takes into 
account the anisotropy of the problem, so that the vectors 
F, and E, are no longer parallel. We think that Eq. (7.4) 
gives the adequate external force to obtain the shear rate- 
dependent self-diffusion tensor from the color field method, 
even for dense fluids. It would be interesting to perform com- 
puter simulations to verify this point. 

In absence of shear (a = 0), the color conductivity u in 
the limit of small color field reduces to the self-diffusion co- 
efficient D. This coefficient is defined by the familiar Fick’s 
law and can be expressed by means of a Green-Kubo formu- 
la. Thus from the molecular dynamics point of view, the 
color field method represents an efficient alternative to the 
Green-Kubo formula to compute the self-diffusion coeffi- 
cient.’ The interesting question now is whether such an 
equivalence is still valid when the system as a whole is in a 
nonequilibrium state (such as the uniform shear flow). The 
analysis made in Ref. 11 shows that the answer is generally 
negative. The exact results reported in this paper for a Max- 
well dilute gas confirm that D, and gjik are clearly different, 
especially for large shear rates. In fact, this distinction is 
related to the presence of nonequilibrium normal and shear 
stresses, as shown by Eq. (5.2). 

Let us investigate whether a choice of the color field F, 
different from the one given by Eq. (2.8) could yield consis- 
tent results for the self-diffusion and the color conductivity 
tensors. In the linear order in the color field, the Boltzmann 
equation for&, Eq. (2.9)) becomes 

On the other hand, the analysis of nonlinear transport 
due to the coupling between the shear flow and the external 
color field given by Eq. (2.8) is a physically interesting prob- 
lem in itself. Here we have restricted to a color field parallel 
to the flow velocity gradient.22 This is the same geometry as 
in Ref. 9. For any value of the color field, the shear viscosity 
exhibits shear thinning. At a given value of the shear rate, the 
momentum transport is enhanced by color fields smaller 
than a certain threshold value, and is inhibited by greater 
color fields. This contrasts with the case E,,~ = 0,2’ where 
inhibition is always the effect of the presence of color field. 
Concerning the behavior of the color conductivity tensor, its 
diagonal elements are a monotonically decreasing function 
ofboth a and ~i,~ .The opposite behavior has been observed in 
computer simulations.’ The discrepancy is probably due to 
the potential contribution to transport, which is quite impor- 
tant for dense fluids.23 It must be noticed that in Ref. 9 the 
thermostat force is applied only to the motion in the x and z 
direction, rather than isotropically as in Eq. (2.7). We have 
verified that this other choice does not affect the main quali- 
tative conclusions reported in this paper. 

The analysis carried out in this work stimulates further 
work along several directions. First, we expect to study the 
coexistence between the shear flow and the color field given 
by Eq. (7.4). Moreover, the problem can be extended to the 
case of arbitrary mass ratio in the so-called tracer limit.” 
Finally, in order to get explicit expressions for the distribu- 
tion functions, it would be interesting to study the problem 
by using kinetic models.24 

a -- 
K aVi+auq 1-T 

W, m )f 
5f] =J[M], 

n m 
(7.1) 
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