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Enskog kinetic theory of binary granular suspensions:
Heat flux and stability analysis of the homogeneous steady state
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The Enskog kinetic theory of multicomponent granular suspensions employed previously [Gómez González,
Khalil, and Garzó, Phys. Rev. E 101, 012904 (2020)] is considered further to determine the four transport coeffi-
cients associated with the heat flux. These transport coefficients are obtained by solving the Enskog equation by
means of the application of the Chapman-Enskog method around the local version of the homogeneous state.
Explicit forms of the heat flux transport coefficients are provided in steady-state conditions by considering the
so-called second Sonine approximation to the distribution function of each species. Their quantitative variation
on the control parameters of the mixture (masses and diameters, coefficients of restitution, concentration, volume
fraction, and the background temperature) is demonstrated and the results show that in general the dependence
of the heat flux transport coefficients on inelasticity is clearly different from that found in the absence of the
gas phase (dry granular mixtures). As an application of the general results, the stability of the homogeneous
steady state is analyzed by solving the linearized Navier-Stokes hydrodynamic equations. The linear stability
analysis (which holds for wavelengths long compared with the mean free path) shows that the transversal and
longitudinal modes are always stable with respect to long-enough wavelength excitations. This conclusion agrees
with previous results derived for monocomponent and (dilute) bidisperse granular suspensions but contrasts with
the instabilities found in previous works in dry (no gas phase) granular mixtures.

DOI: 10.1103/PhysRevE.106.064902

I. INTRODUCTION

The most typical feature of granular matter is the dissipa-
tive character of the collisions suffered by its elementary units.
Due to this fact, some kind of external agitation is required
to maintain the system under rapid flow conditions. In this
sense, granular matter can be considered as a good example
of a system that inherently is in a nonequilibrium state. To
keep granular flows in rapid conditions, several experimental
investigations have been performed in the past by exciting
the particles by means of mechanical-boundary shaking, air-
fluidized bed, or magnetic forces [1–6]. Nonetheless, these
ways of supplying energy can create instabilities and can
produce strong spatial gradients (beyond the Navier-Stokes
description) in the bulk domain [7–10].

To avoid mathematical intricacies, the study of granular
gases (granular matter under rapid flow conditions) ne-
cessitates the challenging condition that particles distribute
homogeneously and isotropically under external excitations
[11]. For this reason, the theoretical research of granular gases
is mostly carried out via computer simulations that drive
the granular agitation as a bulk thermostat [12–20]. So far,
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simulation data of granular gases driven by thermostats is
well accepted as it was reproduced using different theoretical
approaches [21–26]. However, we want to reproduce realistic
situations that can arise in nature. An interesting example of
thermostated granular gases in this regard is the case of solid
particles immersed in an interstitial fluid.

The understanding of the flow of solid particles in one
or more fluid phases entails enormous difficulties. However,
in spite of the complexity of these flows, the fact that they
take place in many industrial processes (such as circulating
fluidized beds) or can also affect our daily lives (clean air and
water) [27] has attracted the attention of many researchers in
the past few years since their comprehension is a challenging
problem not only from a fundamental point of view but also
from a practical perspective.

Among the different types of gas-solid flows, a particularly
interesting type of flow corresponds to the so-called particle-
laden suspensions where small and typically dilute particles
are immersed in a carrier fluid [27]. In the case that the above
suspensions are dominated by collisions among solid parti-
cles (or “grains”), the kinetic theory (conveniently adapted
to account for the inelastic character of collisions) can be
considered as a reliable and useful tool to describe these types
of flows [27,28]. Moreover, the dispersion of particles causes
the hydrodynamic interactions to become less relevant [29].
Hence, the dynamics of solid particles arises from the thermal
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fluctuations in the fluid, and therefore external, Brownian, and
interparticle forces prevail [30]. Regarding the last, we assume
here the hard-sphere dynamics with inelastic collisions as one
of the most noteworthy models for granular media in rapid
flow conditions [31,32].

Nonetheless, it is worth mentioning that in other scenarios
(for example, in plasma physics [33] or phase transitions
[34]) one needs to add long-range attractive forces in the
form of a Vlasov term to the corresponding kinetic equa-
tions. Although the passage from the Enskog-Vlasov kinetic
equation to hydrodynamic equations has been extensively in-
vestigated [35,36], we consider here a system of hard spheres
with instantaneous inelastic binary collisions as a reliable
model that provides a basically correct description of the
structure and dynamics of granular suspensions. In this case, a
possible starting point for studying the gas-solid flows (grains
surrounded by different phases) would be a set of coupled
Enskog kinetic equations for each one of the velocity distribu-
tion functions of the different phases. Nevertheless, although
some progresses have been recently [37] made in this direc-
tion in the low-density regime, the resulting kinetic theory
would be very difficult to solve especially if one is interested
in multicomponent granular suspensions (namely, a mixture
of grains of different masses and sizes immersed in a fluid
phase).

Therefore, due to the technical intricacies involved in the
above approach, it is quite common in the description of
gas-solid flows to model the influence of the fluid phase
on the dynamics of grains via a fluid-solid interaction force
(coarse-grained description) [38–41]. Some models for gran-
ular suspensions [42–49] only consider the Stokes linear drag
law, namely, a viscous drag force proportional to the particle
velocity. This drag force tries to mimic the friction of grains
with the interstitial gas. Other more sophisticated models [50]
include also a stochastic Langevin-like term mimicking the
energy transfer from the particles of the surrounding gas to
the granular particles.

The use of effective forces for modeling gas-solid flows
is essentially based on the following assumptions. First, as-
suming that the granular particles are sufficiently rarefied
(dilute particles), one can suppose that the state of the in-
terstitial gas is practically unaffected by the presence of
solid particles. This means that the background gas may
be treated as a thermostat at a constant temperature Tex.
Second, one supposes that the collision dynamics is mainly
dominated by the collisions among grains themselves. This
means that the effect of gas phase on collision dynamics is
very weak and so the Enskog collision operator is not af-
fected by the surrounding gas. As a third assumption, one
assumes low Reynolds numbers and so only laminar flows are
considered. Finally, as a fourth assumption, the friction coef-
ficient appearing in the drag force is assumed to be a scalar
quantity.

The Langevin-like model was recently [51] considered as
the starting point for obtaining the Navier-Stokes transport
coefficients of a binary granular suspension at moderate densi-
ties. The corresponding set of Enskog kinetic equations for the
mixture has been solved by means of the Chapman-Enskog
method [52] conveniently adapted to account for the inelastic
character of collisions. As in the case of dry (no gas phase)

granular mixtures [32,53,54], the transport coefficients are
defined in terms of the solutions of a set of coupled linear
integral equations. As for elastic collisions [52,55], these
integral equations are approximately solved by considering
the leading terms in a Sonine polynomial expansion of the
distribution functions of each species. On the other hand,
the determination of the 12 relevant Navier-Stokes transport
coefficients of a binary mixture (ten transport coefficients
plus two first-order contributions to the partial temperatures
Ti and the cooling rate ζ ) requires one to solve ten integral
equations. For this reason, this task was in part carried out
in Ref. [51] where a complete study of the four diffusion
coefficients (associated with the mass flux), the shear and bulk
viscosities coefficients (associated with the pressure tensor),
and the first-order contributions to Ti and ζ was worked out
in steady-state conditions. Thus, one of the first objectives
of the present paper is to complete the determination of
the set of Navier-Stokes transport coefficients of the mix-
ture and compute the heat flux. The transport coefficients
associated with the heat flux are the thermal conductivity coef-
ficient, the Dufour coefficients, and a new coefficient (velocity
conductivity coefficient) connecting the heat flux with the
difference between the mean velocities of the solid and gas
phases.

The knowledge of the Navier-Stokes transport coefficients
of the mixture opens up the possibility of performing a stabil-
ity analysis of the so-called homogeneous steady state (HSS).
The study of the stability of the HSS is important by itself
and also because this state plays a similar role to that of the
homogeneous cooling state (HCS) in dry granular mixtures
(the HSS is in fact the reference state in the Chapman-Enskog
expansion [23,25,51,56,57]). In the case of dry granular gases,
it is well known [58,59] that the HCS becomes unstable when
the linear size of the system, L, is larger than a certain critical
length Lc, which is a function of the parameter space of the
system. An estimate of Lc can be obtained from a linear
stability analysis of the Navier-Stokes hydrodynamic equa-
tions. Theoretical predictions for Lc [60–63] have been shown
to compare very well with computer simulations [64–68],
even for strong inelasticities. This good agreement rein-
forces the reliability of kinetic theory for describing granular
flows.

An interesting question is whether the HSS may be un-
stable with respect to long-enough wavelength perturbations,
as the HCS is. For small values of the (dimensionless) wave
number k [defined in units of the length nσ d−1

12 , where n is
the total number density of particles, σ12 = (σ1 + σ2)/2, and
σi is the diameter of particles of species i], a careful sta-
bility analysis of the linearized Navier-Stokes hydrodynamic
equations (including the complete dependence of the transport
coefficients on the parameter space of the mixture) shows that
the HSS is always linearly stable. This conclusion agrees with
previous stability analysis carried out for monocomponent
granular suspensions [69] and for binary granular suspen-
sions at low density [70,71] (considering a suspension model
simpler than the one studied here). However, as expected,
the forms of the d − 1 transversal shear modes (d being the
dimensionality of the system) and the four longitudinal modes
(i.e., those associated with the partial densities, the longitu-
dinal component of the flow velocity, and the temperature)
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derived here differ from the ones obtained in the above previ-
ous works [69,70].

The plan of the paper is as follows. In Sec. II, we in-
troduce the suspension model and derive the corresponding
Navier-Stokes hydrodynamic equations of the binary granular
suspensions. Then, Sec. III addresses the determination of
the Navier-Stokes transport coefficients associated with the
heat flux. These coefficients are given in terms of the di-
mensionality of the system, d , the masses and diameters of
the mixture, the concentration (or mole fraction), the volume
fraction (or density), the coefficients of restitution, and the
background temperature. The dependence of the heat flux
transport coefficients (scaled with respect to their counterparts
for elastic collisions) on inelasticity is illustrated for binary
mixtures with a (common) coefficient of restitution α, the
same diameter ratio, a concentration x1 = 0.4, a moderate
density φ = 0.1, and two values of the mass ratio. As expected
from the results obtained in Ref. [51], it is shown that the
effect of the gas phase on heat transport is in general important
since their dependence on α differs from the one observed
in dry granular mixtures [32]. Once the complete set of the
Navier-Stokes transport coefficients is known, Sec. IV focuses
on the linear stability analysis around the HSS. While the
stability of the d − 1 transversal shear modes is easily proved,
the study of the evolution of the longitudinal hydrodynamic
modes is much more intricate. For this reason, the case of an
inviscid fluid (Euler hydrodynamics, wave vector k = 0) is
previously studied; the analysis shows that these modes are
also linearly stable. For nonzero values of the wave vector
(which is equivalent to consider the terms coming from the
spatial gradients in the constitutive equations), one has to
resort to a numerical analysis. At finite but small values of
wave number, a systematic analysis of the dependence of the
longitudinal modes on the control parameters shows that these
modes also decay in time and so the HSS is linearly stable.
The paper is closed in Sec. V with a brief discussion of the
results reported in this paper.

II. HYDRODYNAMICS FROM ENSKOG KINETIC THEORY
FOR MULTICOMPONENT GRANULAR SUSPENSIONS

We consider a granular binary mixture of smooth inelas-
tic hard disks (d = 2) or spheres (d = 3) of masses mi and
diameters σi (i = 1, 2). We assume that the solid particles
are immersed in a molecular gas of viscosity ηg. Since the
spheres are completely smooth, then inelasticity of collisions
between particles of species i and j is characterized by the
constant (positive) coefficients of restitution, αi j � 1. As in
previous works [25,51,70], the effect of the interstitial gas on
the dynamics of grains is accounted for in the Enskog equa-
tion by two different terms: (i) a drag force proportional to
the velocity of the particle and (ii) a stochastic Langevin force
represented by a Gaussian white noise [72]. While the first
term mimics the friction of particles of species i with the vis-
cous gas, the second term attempts to model the interchange
of kinetic energy of grains due to their collisions with the
particles of the surrounding gas [73]. Under these conditions,
for moderate densities, the set of coupled nonlinear Enskog
equations for the one-particle distribution function fi(r, v; t )

of species i reads [51]

∂ fi

∂t
+ v · ∇ fi − γi	U · ∂ fi

∂v
− γi

∂

∂v
· V fi

(1)

−γiTex

mi

∂2 fi

∂v2
=

2∑
j=1

Ji j[r, v| fi, f j],

where Ji j[ fi, f j] is the Enskog collision operator. Its expres-
sion form can be found, for instance, in Ref. [32]. In Eq. (1),
γi is the friction or drift coefficient of species i and Tex can
be seen as the temperature of the background gas. In addition,
	U = U − Ug, Ug is the mean fluid velocity of the gas phase,
V = v − U is the peculiar velocity, and

U = ρ−1
2∑

j=1

∫
dv miv fi(v) (2)

is the local mean flow velocity of grains. Here, ρ = m1n1 +
m2n2 is the total mass density where

ni =
∫

dv fi(v) (3)

is the local number density of species i.
The friction coefficients γi are assumed here to be scalar

quantities proportional to ηg [41]. According to the results
obtained in lattice-Boltzmann simulations in bidisperse sus-
pensions [74–78], the coefficients γi can be written as

γi = γ0Ri(φi, φ), γ0 = 18ηg

ρσ 2
12

, (4)

where we recall that σ12 = (σ1 + σ2)/2. For low-Reynolds-
number fluid and moderate densities, for hard spheres (d = 3),
the dimensionless functions Ri are given by [74,75,77]

Ri = ρσ 2
12

ρiσ
2
i

(1 − φ)φiσi

φ

2∑
j=1

φ j

σ j

[
10φ

(1 − φ)2

+ (1 − φ)2(1 + 1.5
√

φ)

]
. (5)

Here, ρi = mini is the mass density of species i, φ = φ1 + φ2

is the solid volume fraction, and

φi = π

6
niσ

3
i (6)

for hard spheres.
It must be noted that the structure of kinetic equation (1)

can be formally obtained from the Boltzmann-Lorentz col-
lision operator (characterizing the effect of collisions on the
distribution fi due to the eventual collisions between the
granular particles and the particles of the molecular gas)
when a Kramers-Moyal expansion in powers of the mass ratio
mg/m (mg being the mass of the particles of the molecular
gas) is considered. This expansion allows us to approximate
the Boltzmann-Lorentz operator by the Fokker-Planck oper-
ator [72]. In this expansion, the background molecular gas
is assumed to be at equilibrium at the bath temperature Tex

[11,72,79–81]. Recent results [37] derived from a suspension
model based on the Boltzmann-Lorentz collision operator
have shown the consistency between the results obtained in
the Brownian limit (mg/m → 0) for the transport coefficients
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and those derived from the Langevin-like model (1). This
agreement may justify the use of the suspension model (1)
to analyze the dynamic properties of a granular mixture im-
mersed in a molecular gas.

Apart from the partial densities ni and the flow velocity
U, the other important hydrodynamic field is the granular
temperature T . As usual, it is defined as

T = 1

n

2∑
i=1

∫
dv

mi

d
V 2 fi(v), (7)

where n = n1 + n2 is the total number density. At a kinetic
level, it is also convenient to introduce the partial kinetic
temperatures Ti for each species. These quantities measure the
mean kinetic energy of each species. They are defined as

Ti = mi

dni

∫
dv V 2 fi(v). (8)

According to Eq. (7), the granular temperature T of the mix-
ture can be also written as

T =
2∑

i=1

xiTi, (9)

where xi = ni/n is the concentration or mole fraction of
species i.

Note that upon deriving Eq. (1) we have assumed that
the time window over which a collision between grains takes
place is small enough so the duration of a collision is smaller
or comparable with the collision frequency associated with
the collisions among grains and the molecular particles [19].
Moreover, as discussed in previous works on granular suspen-
sions [38,42,43,82], we are interested in describing situations
where the stresses exerted by the interstitial gas on solid
particles are sufficiently small so that the gas phase has a
weak effect on grains. This justifies the fact that the Enskog
collision operator Ji j[ fi, f j] is not affected by the presence of
the surrounding gas. Thus, when the particle-to-fluid density
ratio decreases (for instance, glass beads in liquid water), the
above assumption cannot be justified and so one would need to
account for the impact of the background fluid in the Enskog
collision operator.

The balance equations for the densities of mass, momen-
tum, and energy were derived in Ref. [51]. They are given by

Dt ni + ni∇ · U + ∇ · ji

mi
= 0, (10)

Dt U +
2∑

i=1

ρi

ρ
γi	U = −ρ−1(γ1 − γ2)j1 − ρ−1∇ · P, (11)

Dt T − T

n

m2 − m1

m1m2
∇ · j1 + 2

dn
(∇ · q + P : ∇U)

= − 2

dn
(γ1 − γ2)	U · j1 + 2

2∑
i=1

xiγi(Tex − Ti ) − ζT .

(12)

In Eqs. (10)–(12), Dt = ∂t + U · ∇ is the material derivative
and

ji = mi

∫
dv V fi(v) (j1 = −j2) (13)

is the mass flux for species i relative to the local flow U.
For moderate densities, the pressure tensor P(r, t ) and the
heat flux q(r, t ) have both kinetic and collisional transfer
contributions:

P = Pk + Pc, q = qk + qc. (14)

The kinetic contributions Pk and qk are given by

Pk =
2∑

i=1

∫
dv miVV fi(v), (15)

qk =
2∑

i=1

∫
dv

mi

2
V 2V fi(v), (16)

while the forms of the collisional contributions Pc and qc and
the (total) cooling rate ζ are given by Eqs. (27) and (28),
respectively, of Ref. [51].

Navier-Stokes hydrodynamic equations

As expected, the set of hydrodynamic equations (10)–(12)
does not constitute a closed set of nonlinear differential equa-
tions for the hydrodynamic fields n1, n2, and T . To close
them, one needs to express the fluxes and the cooling rate in
terms of the hydrodynamic fields (constitutive equations). Up
to the Navier-Stokes hydrodynamic order (first order in spatial
gradients), the constitutive equations are

j1 = −m2
1

ρ
D11∇n1 − m1m2

ρ
D12∇n2 − ρ

T
DT

1 ∇T − DU
1 	U,

(17)

Pk� = pδk� − η

(
∇kU� + ∇�Uk − 2

d
δk�∇ · U

)
− δk�ηb∇ · U,

(18)

q = −T 2

n1
Dq,1∇n1 − T 2

n2
Dq,2∇n2 − κ∇T − κU 	U, (19)

ζ = ζ (0) + ζU ∇ · U, (20)

where ∇k ≡ ∂/∂rk . In Eq. (17), Di j are the mutual diffusion
coefficients, DT

1 is the thermal diffusion coefficient, and DU
1 is

the velocity diffusion coefficient. In Eq. (18), p is the hydro-
static pressure, η is the shear viscosity coefficient, and ηb is
the bulk viscosity coefficient. In Eq. (19), Dq,i are the Dufour
coefficients, κ is the thermal conductivity coefficient, and κU

is the velocity conductivity. Finally, in Eq. (20), ζ (0) and ζU

are the zeroth- and first-order contributions to the cooling rate,
respectively. Moreover, the partial temperatures Ti are given
by

Ti = T (0)
i + �i∇ · U, (21)

where T (0)
i and �i denote the zeroth- and first-order contri-

butions to the partial temperature Ti. Relation (9) yields the
constraints

T = x1T (0)
1 + x2T (0)

2 , �2 = −(n1/n2)�1. (22)

The integral equations verifying the set of Navier-Stokes
transport coefficients {Di j, DT

1 , DU
1 , η, ηb} as well as the

quantities �i and ζU were approximately solved in the
steady state by considering the leading terms in a Sonine
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polynomial expansion. The determination of the remaining
transport coefficients {Dq,i, κ, κU } associated with the heat
flux will be accomplished in Sec. III of the present paper. In
reduced forms, the transport coefficients are given in terms of
the mass m1/m2 and diameter σ1/σ2 ratios, the concentration
x1, the coefficients of restitution, αi j , the volume fraction φ,

and the (dimensionless) bath temperature T ∗
ex = Tex/(mσ 2

12γ0)
[here, m = (m1 + m2)/2].

Once the complete set of transport coefficients is known,
the Navier-Stokes hydrodynamic equations of binary granular
suspensions can be obtained by substituting Eqs. (17)–(21)
into the exact balance equations (10)–(12). They are given by

Dt n1 + n1∇ · U = ∇ ·
(

m1

ρ
D11∇n1 + m2

ρ
D12∇n2 + ρ

m1T
DT

1 ∇T + DU
1

m1
	U

)
, (23)

Dt n2 + n2∇ · U = −∇ ·
(

m2
1

m2ρ
D11∇n1 + m1

ρ
D12∇n2 + ρ

m2T
DT

1 ∇T + DU
1

m2
	U

)
, (24)

DtU� + ρ−1∇� p = ρ−1∇k

[
η

(
∇�Uk + ∇kU� − 2

d
δk�∇ · U

)
+ ηbδλβ∇ · U

]
− ρ−1

(
ρ1γ1 + ρ2γ2

)
	U�

+ ρ−1(γ1 − γ2)

(
m2

1

ρ
D11∇�n1 + m1m2

ρ
D12∇�n2 + ρ

T
DT

1 ∇�T + DU
1 	U�

)
, (25)

(Dt + ζ (0) )T + 2

dn
p∇ · U = −T

n

m2 − m1

m1m2
∇ ·

(
m2

1

ρ
D11∇n1 + m1m2

ρ
D12∇n2 + ρ

T
DT

1 ∇T + DU
1 	U

)

+ 2

dn

[
η

(
∇�Uk + ∇kU� − 2

d
δk�∇ · U

)
+ ηbδk�∇ · U

]
∇�Uk

+ 2

dn
∇ ·

(
Dq,1

n1
∇n1 + Dq,2

n2
∇n2 + κ∇T + κU 	U

)

+ 2

dn
(γ1 − γ2)	U ·

(
m2

1

ρ
D11∇n1 + m1m2

ρ
D12∇n2 + ρ

T
DT

1 ∇T + DU
1

m1
	U

)
+ 2T [x1γ1(θ−1 − τ1) + x2γ2(θ−1 − τ2)] − [2x1(γ1 − γ2)�1 + T ζU ]∇ · U. (26)

Here, θ ≡ T/Tex is the reduced temperature and the hydro-
static pressure p is [51]

p = nT + πd/2

d�
(

d
2

) 2∑
i, j=1

μ jinin jσ
d
i jχ

(0)
i j T (0)

i (1 + αi j ), (27)

where μi j = mi/(mi + mj ) and χ
(0)
i j is the pair correlation

function of two hard spheres, one of species i and the other
of species j, at contact (namely, when the distance between
their centers is σi j).

Note that the general form of the cooling rate should
include second-order gradient contributions in Eq. (26). How-
ever, as was shown for monocomponent dilute granular gases
[60], these contributions to ζ are in general negligible as com-
pared with its zeroth-order counterparts. We expect the same
happens for the case of polydisperse granular suspensions.
Apart from this approximation, the Navier-Stokes hydrody-
namic equations (23)–(26) are exact to second order in the
spatial gradients.

III. HEAT FLUX TRANSPORT COEFFICIENTS

This section is devoted to the determination of the Navier-
Stokes transport coefficients associated with the heat flux.

The kinetic contributions to the thermal conductivity κ and
velocity conductivity κU coefficients are defined, respectively,
as

κk = − 1

dT

2∑
i=1

∫
dV

mi

2
V 2V · Ai(V), (28)

κk
U = − 1

d

2∑
i=1

∫
dV

mi

2
V 2V · E i(V). (29)

The Dufour coefficients Dq,i can be written as

Dq,i =
2∑

�=1

Dq,�i, (30)

where the kinetic contributions Dk
q,i j to the coefficients Dq,i j

are defined as

Dk
q,i j = − 1

dT 2

∫
dV

mi

2
V 2V · Bi j (V). (31)

The quantities Ai(V), Bi j (V), and E i(V) are functions of the
peculiar velocity V and the kinetic coefficients. They are the
solutions of the linear integral equations (73), (74), and (77),
respectively, of Ref. [51].

The expressions of the collisional contributions to the heat
flux transport coefficients Dq,i j and κ are formally the same
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as those obtained in the dry granular case [32], except that
one has to replace in these forms the corresponding kinetic
contributions to the transport coefficients obtained here for
binary granular suspensions. We will go back to this point at
the end of this section.

The evaluation of the kinetic coefficients Dk
q,i j , κk , and κk

U
requires to consider the second Sonine approximation to the
unknowns Ai, Bi j , and E i. In this approximation, the above
quantities can be written as

Ai(V) → fi,M(V)

[
− ρ

niT
(0)

i

VDT
i − 2

d + 2

T mi

niT
(0)3

i

κiSi

]
,

(32)

Bi j (V) → fi,M(V)

[
− miρ j

ρniT
(0)

i

VDi j − 2

d + 2

T 2mi

niT
(0)3

i

dq,i jSi

]
,

(33)

E i(V) → fi,M(V)

[
− 1

niT
(0)

i

VDU
i − 2

d + 2

mi

niT
(0)3

i

κU
i Si

]
,

(34)

where

fi,M(V) = ni

(
mi

2πT (0)
i

)d/2

exp

(
−miV 2

2T (0)
i

)
(35)

is the Maxwellian distribution of species i at the temperature
T (0)

i and

Si(V) =
(

mi

2
V 2 − d + 2

2
T (0)

i

)
V. (36)

In Eqs. (32)–(34), it is understood that DT
i , Di j , and DU

i
have been already evaluated in the first Sonine approximation.
Their expressions are given by Eqs. (C10), (C2), and (108),
respectively, of Ref. [51]. The coefficients κi, dq,i j , and κU

i are
defined as

κi = − 1

dT

∫
dv Si(V) · Ai(V), (37)

dq,i j = − 1

dT 2

∫
dv Si(V) · Bi j (V), (38)

κU
i = − 1

d

∫
dv Si(V) · E i(V). (39)

In terms of these coefficients, the kinetic contributions Dk
q,i j ,

κk , and κk
U can be written as

Dk
q,i j = dq,i j + d + 2

2T 2

ρ jT
(0)

i

ρ
Di j, (40)

κk =
2∑

i=1

(
κi + d + 2

2T

ρT (0)
i

mi
DT

i

)
, (41)

κk
U =

2∑
i=1

(
κU

i + d + 2

2

T (0)
i

mi
DU

i

)
. (42)

The evaluation of the kinetic coefficients κi, dq,i j , and κU
i

is a relatively quite long task. Some technical details on this
calculation are displayed in Appendix A. The solution to the
algebraic equations (A1), (A9), and (A10) provides the de-
pendence of these kinetic coefficients on the parameter space
of the system. Their forms are very large and will be omitted
here for the sake of simplicity.

Once the kinetic contributions are known, their collisional
contributions can be expressed in terms of their kinetic contri-
butions κi, dq,i j , and κU

i . In dimensionless form, the collisional
contributions κc, Dc

q,i j , and κU
c to κ , Dq,i j , and κU can be

written, respectively, as [32]

{κ∗
c , Dc∗

q,i j} = 2

d + 2

(m1 + m2)ν0

n

{
κc

T
, Dc

q,i j

}
, (43)

κU∗
c = 2

d + 2

κU
c

nT
, (44)

where

ν0 = nσ d−1
12 vth (45)

is an effective collision frequency and vth = √
2T/m is a ther-

mal speed of a binary mixture. The expressions of the reduced
coefficients κ∗

c , Dc∗
q,i j , and κU∗

c are [32,54]

κc∗ = 3

2

πd/2

d (d + 2)�
(

d
2

)n∗
2∑

i=1

2∑
j=1

xi

(
σi j

σ2

)d

χ
(0)
i j μi j (1 + αi j )

{
[(5 − αi j )μi j − (1 − αi j )μ ji]κ

∗
j + (m1 + m2)DT ∗

j

×
[

τ j

m j
((5 − αi j )μi j − (1 − αi j )μ ji ) + τi

mi
((3 + αi j )μ ji − (7 + αi j )μi j )

]
+ 16

3
√

π

x jmj

m1 + m2
n∗

(
σi j

σ2

)d(
σ12

σ2

)
C∗

i j

}
,

(46)

Dc∗
q,i j = 3

2

πd/2

d (d + 2)�
(

d
2

)xin
∗

2∑
�=1

(
σi�

σ2

)d

χi�μi�(1 + αi�)

{
[(5 − αi j )μi� − (1 − αi j )μ�i]d

∗
q,� j + (m1 + m2)x jD

∗
� j

[
τ�

m�

×((5 − αi�)μi� − (1 − αi�)μ�i ) + τi

mi
((3 + αi�)μ�i − (7 + αi�)μi�)

]
− 32

3
√

π

x�m�

m1 + m2
n∗

(
σi j

σ2

)d(
σ12

σ2

)
C∗

i� j

}
, (47)
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κU∗
c = 3

2

πd/2

d (d + 2)�
(

d
2

)n∗
2∑

i=1

2∑
j=1

xi

(
σi j

σ12

)d

μi jχ
(0)
i j (1 + αi j )

{
[(1 − αi j )μi j + (3 + αi j )μ ji]κ

U∗
j

+ x1m1 + x2m2

mi

[
τi((3 + αi j )μ ji − (7 + αi j )μi j ) + mi

mj
τ j ((1 − αi j )μi j + (3 + αi j )μ ji )

]
DU∗

j

}
. (48)

Here, n∗ = nσ d
12, τi = T (0)

i /T , and we have introduced the (reduced) kinetic transport coefficients

{d∗
q,i j, κ

∗
i } = 2

d + 2

(m1 + m2)ν0

n

{
dq,i j,

κi

T

}
, (49)

DT ∗
j = ρν0

nT
DT

i , D∗
i j = mimjν0

ρT
Di j, (50)

κU∗
i = 2

d + 2

κU
i

nT
, DU∗

j = ρ−1DU
j . (51)

In addition, the dimensionless quantities C∗
i j and C∗

i� j are given by [32]

C∗
i j = (βi + β j )

−1/2(βiβ j )
−3/2

{
2β2

i j + βiβ j + (βi + β j )[(βi + β j )μi jμ ji + βi j (1 + μ ji )]
}

+ 3

4
(1 − αi j )(μ ji − μi j )

(
βi + β j

βiβ j

)3/2

[μ ji + βi j (βi + β j )
−1], (52)

C∗
i� j = (βi + β�)−1/2(βiβ�)−3/2

{
δ j�βi�(βi + β�) − 1

2
βiβ�

[
1 + μ�i(βi + β�) − 2βi�

β�

]
∂ ln τ�

∂ ln n j

}

+ 1

4
(1 − αi�)(μ�i − μi�)

(
βi + β�

βiβ�

)3/2(
δ j� + 3

2

βi

βi + β�

∂ ln τ�

∂ ln n j

)
, (53)

where

βi j = μi jβ j − μ jiβi, βi = mi

mτi
. (54)

A. Mechanically equivalent particles

Before considering a binary mixture, it is interesting to
check the consistency of the expressions of the heat flux
transport coefficients derived here with those obtained for
monocomponent granular suspensions [69]. For mechanically
equivalent particles (m1 = m2 = m, σ1 = σ2 = σ , αi j = α,
and γ1 = γ2 = γ ), DT

1 = DU
1 = 0, D21 = −D11, D12 = −D22,

κU
i = κk

U = κU
c = 0, and the kinetic coefficients Dk

q,i and κk

are given by

Dk
q,1

n1
= Dk

q,2

n2
= dq,11 + dq,21 = dq,22 + dq,12, (55)

κk = κ1 + κ2. (56)

A careful analysis of the results obtained for binary mixtures
shows that the heat flux for mechanically equivalent particles
can be written as

q = −μ∇n − κ∇T, (57)

where

μ = μk

[
1 + 3

2d−2

d + 2
φχ (0)(1 + α)

]
, (58)

κ = κk

[
1 + 3

2d−2

d + 2
φχ (0)(1 + α)

]
+ 22d+1(d − 1)

π (d + 2)2

×φ2χ (0)(1 + α)κ0. (59)

Here,

κ0 = �
(

d
2

)
π (d−1)/2

d (d + 2)2

16(d − 1)

√
T/m

σ d−1
(60)

is the thermal conductivity coefficient for a dilute hard-sphere
gas with elastic collisions. The kinetic coefficients κk and μk

are given, respectively, as

κk = d + 2

2

nT

m

1 − 2d−33
d+2 φχ (0)(2α − 1)(1 + α)2

νκ + γ − 3
2ζ (0)

, (61)

μk = dq,11 + dq,21

= T/n

νκ + 3γ

{
κk

[
ζ (0)

(
1 + φ

∂ ln χ (0)

∂φ

)
− 2

(
θ−1 − 1

)
φ

× ∂ ln R

∂φ
γ
]

− 3
2d−2(d − 1)

d (d + 2)
φχ (0)

(
1 + 1

2
φ

∂ ln χ (0)

∂φ

)

×α(1 − α2)κ0

}
, (62)

where χ (0) ≡ χ
(0)
i j and γ = γ0R(φ). Equations (57)–(62)

agree with the expressions obtained in Ref. [69] when one
neglects non-Gaussian corrections to the zeroth-order distri-
bution function (namely, when one takes the kurtosis a2 =
0 in the results displayed in Ref. [69]). This shows the
self-consistency between the results obtained here for multi-
component granular suspensions and those derived before in
the limiting case of mechanically equivalent particles.
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FIG. 1. Plot of the scaled thermal conductivity coefficient
κ (α)/κ (1) as a function of the (common) coefficient of restitution,
α, for a granular binary suspension mixture of hard spheres (d = 3)
with σ1 = σ2, x1 = 0.4, φ = 0.1, T ∗

ex = 0.01, and two different values
of the mass ratio, m1/m2 = 0.5 (dashed line) and m1/m2 = 4 (solid
line).

B. Some illustrative mixtures

In dimensionless forms, the heat flux transport coefficients
of a binary granular suspension depend on many parameters:
{x1, σ1/σ2, m1/m2, φ, T ∗

ex, α11, α22, α12}. It is quite apparent
that a complete study on the dependence of the transport
coefficients on the parameter space is simple but beyond
the objective of the present paper. As done in many previ-
ous works, to assess the impact of inelasticity on transport
properties, we scale the heat flux transport coefficients with
respect to their values for elastic collisions. Moreover, for the
sake of simplicity, we consider a moderately dense mixture
(φ = 0.1) of hard spheres (d = 3) with a common diameter
(σ1 = σ2), a common coefficient of restitution (α11 = α22 =
α12 ≡ α), a concentration x1 = 0.4, T ∗

ex = 0.01, and two dif-
ferent values of the mass ratio, m1/m2 = 0.5 and 4.

In Figs. 1–4, we plot the scaled coefficients κ (α)/κ (1),
Dq,1(α)/Dq,1(1), Dq,2(α)/Dq,2(1), and κU (α)/κU (1), respec-
tively, as a function of α for the mixtures mentioned before.

FIG. 2. Plot of the scaled Dufour coefficient Dq1(α)/Dq1(1) as a
function of the (common) coefficient of restitution, α, for a granular
binary suspension mixture of hard spheres (d = 3) with σ1 = σ2,
x1 = 0.4, φ = 0.1, T ∗

ex = 0.01, and two different values of the mass
ratio, m1/m2 = 0.5 (dashed line) and m1/m2 = 4 (solid line).

FIG. 3. Plot of the scaled Dufour coefficient Dq2(α)/Dq2(1) as a
function of the (common) coefficient of restitution, α, for a granular
binary suspension mixture of hard spheres (d = 3) with σ1 = σ2,
x1 = 0.4, φ = 0.1, T ∗

ex = 0.01, and two different values of the mass
ratio, m1/m2 = 0.5 (dashed line) and m1/m2 = 4 (solid line).

Here, κ (1), Dq,1(1), Dq,2(1), and κU (1) refer to the values
of these coefficients for elastic collisions. Figure 1 shows the
(scaled) thermal conductivity coefficient κ . We observe that κ

exhibits a monotonic dependence on inelasticity: it increases
(decreases) on inelasticity when the defect species 1 is heavier
(lighter) than the excess species 2. Moreover, the impact of
inelasticity on the functional form of thermal conductivity is
more significant for m1/m2 > 1 than in the opposite case. A
comparison with the results obtained for dry granular mixtures
(see Fig. 5.9 of Ref. [32] for the same values of the mass
ratios) shows important quantitative differences since in the
latter case the ratio κ (α)/κ (1) always decreases with decreas-
ing α (increasing inelasticity) regardless of the value of the
solid volume fraction φ.

Figures 2 and 3 show the (scaled) Dufour coefficients
Dq,1 and Dq,2, respectively. Note that Dq,1 = (n1/n2)Dq,2 for
mechanically equivalent particles. Conversely, the magnitude
of the Dufour coefficients for molecular binary mixtures
is in general very small. This is likely the reason for

FIG. 4. Plot of the scaled velocity conductivity coefficient
κU (α)/κU (1) as a function of the (common) coefficient of restitution,
α, for a granular binary suspension mixture of hard spheres (d = 3)
with σ1 = σ2, x1 = 0.4, φ = 0.1, T ∗

ex = 0.01, and two different values
of the mass ratio, m1/m2 = 0.5 (dashed line) and m1/m2 = 4 (solid
line).
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which the magnitude of the ratios Dq,1(α)/Dq,1(1) and
Dq,2(α)/Dq,2(1) is relatively large in comparison with the
remaining heat transport coefficients. While the (scaled) co-
efficient Dq,2(α)/Dq,2(1) presents a monotonic dependence
on α (it increases with increasing inelasticity whatever the
mass ratio considered is), the ratio Dq,1(α)/Dq,1(1) ex-
hibits a nonmonotonic dependence on inelasticity in the case
m1 > m2. Regarding the comparison with dry granular mix-
tures (se Figs. 5.10 and 5.11 of Ref. [32]), we see important
differences between both systems (with and without gas
phase), especially at a quantitative level. Finally, the (scaled)
velocity conductivity coefficient κU (α)/κU (1) is plotted in
Fig. 4. This is a new transport coefficient connecting the heat
flux with the velocity difference 	U (“convection current”).
It is quite apparent that the effect of inelasticity on κU is very
tiny since κU (α) � κU (1) for the different values of the mass
ratio considered.

In summary, the influence of the gas phase on the heat flux
transport coefficients of granular binary mixture is in general
important since their forms differ noticeably from those ob-
tained in the absence of gas phase (dry granular mixtures)
[32,62]. We have also found that, depending on the values
of the mass ratio, in some cases the (scaled) transport coeffi-
cients increase with increasing inelasticity while in others they
decrease with decreasing α. Moreover, as already noted for
dilute granular suspensions [70], it is quite difficult to provide
a simple explanation of the trends in the mass ratio observed in
Figs. 1–4 due to the intricacy of the expressions derived here
for these coefficients. Finally, regarding the influence of the
inelasticity on the heat flux transport coefficients, we observe
that the impact of α on them is in general important since
their forms differ significantly from their elastic counterparts,
except in the case of the coefficient κU . However, the impact of
inelasticity on heat transport is smaller than the one found for
dry granular mixtures, especially in the case of the Dufour co-
efficients (compare for instance, Figs. 2 and 3 with Figs. 5.10
and 5.11 of Ref. [32]).

IV. LINEAR STABILITY ANALYSIS OF THE HSS

The knowledge of the complete set of Navier-Stokes trans-
port coefficients of the binary granular suspension opens up
the possibility of performing a linear stability analysis of the
HSS. This analysis will provide us a critical length Lc beyond
which the system becomes unstable. Previous studies on dry
granular fluids [58,59] have shown that the so-called HCS
becomes unstable for long-enough wavelength perturbations
[60–63]. These theoretical predictions of Lc have been shown
to compare well with computer simulations for monocompo-
nent [64–66] and binary [67,68] granular fluids. In the case of
granular suspensions, previous works for simple dense fluids
[69] and binary dilute gases [70] (with a suspension model
simpler than that considered here) have concluded that the

HSS is always linearly stable. A natural question arises then
as to whether, and if so to what extent, the conclusions drawn
before [69] for monocomponent dense granular suspensions
may be changed when a bidisperse system is considered.

As usual, to analyze the stability of the HSS, one has to lin-
earize first Eqs. (23)–(27) around the above state. In the HSS
the hydrodynamic fields take the steady values ni,s = const,
	U = U − Ugs = 0, and Ts = const. The subscript s means
that the hydrodynamic fields are evaluated in the HSS. In addi-
tion, the steady-state conditions determining the temperature
ratios τi are

2γi(θ
−1 − τi ) = τiζ

(0)
i , i = 1, 2, (63)

where ζ
(0)
i denotes the zeroth-order contribution to the partial

cooling rate ζi. An approximate expression of ζ
(0)
i is given by

Eq. (48) of Ref. [51].
Since

∑
i xiτi = 1, and

∑
i xiτiζ

(0)
i = ζ (0), then the condi-

tions (63) (for i = 1 and 2) yield the relation

2[x1γ1(θ−1 − τ1) + x2γ2(θ−1 − τ2)] = ζ (0). (64)

We assume that the deviations δyμ(r, t ) = yμ(r, t ) − yμs

are small where δyμ denotes the deviations of n1, n2, U,
and T from their values in the HSS. Moreover, as usual we
also suppose that the interstitial fluid is not perturbed and so
Ug = Ugs = 0. Before writing the linearized version of the
Navier-Stokes hydrodynamic equations (23)–(26), it is con-
venient to rewrite them in terms of dimensionless quantities.
Thus, we introduce first the following dimensionless space
and time variables:

dτ = ν0dt, dr′ = ν0

vth
dr. (65)

The dimensionless time scale τ is a measure of the average
number of collisions per particle in the time interval between
zero and t . Moreover, the unit length vth/ν0 = nσ d−1

12 is pro-
portional to the mean free path for collisions between particles
of species 1 and 2.

Moreover, in dimensionless forms, the transport coeffi-
cients η, ηb, Dq,i, �1, κ , and κU can be written, respectively,
as

η = nT

ν0
η∗, ηb = nT

ν0
η∗

b, (66)

Dq,i = d + 2

2

n

(m1 + m2)ν0
D∗

q,i, �1 = T

ν0
� ∗

1 , (67)

κ = d + 2

2

nT

(m1 + m2)ν0
κ∗, κU = d + 2

2
nT κU . (68)

Neglecting second- and higher-order terms in the pertur-
bations, in terms of the above dimensionless quantities, the
linearized hydrodynamic equations of δn1, δn2, δU, and δT
are

∂

∂τ

δn1

n1
+ ∇′ · δU

vth
= D∗

11

4μ12
∇′2 δn1

n1
+ x2

x1

D∗
12

4μ12
∇′2 δn2

n2
+ DT ∗

1

4x1μ12
∇′2 δT

T
+ ρ

ρ1
DU∗

1 ∇′ · δU
vth

, (69)

∂

∂τ

δn2

n2
+ ∇′ · δU

vth
= − x1

4x2

D∗
11

μ21
∇′2 δn1

n1
− D∗

12

4μ21
∇′2 δn2

n2
− DT ∗

1

4x2μ21
∇′2 δT

T
− ρ

ρ2
DU∗

1 ∇′ · δU
vth

, (70)
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∂

∂τ

δU�

vth
+ nm

2ρ

[
pn1∇′

�

δn1

n1
+ pn2∇′

�

δn2

n2
+ p∗

(
1 + θ

∂ ln p∗

∂θ

)
∇′

�

δT

T

]

= nm

2ρ

(
d − 2

d
η∗ + η∗

b

)
∇′

�∇′ · δU
vth

+ nm

2ρ
η∗∇′2 δU�

vth
−

(
ρ1

ρ
γ ∗

1 + ρ2

ρ
γ ∗

2

)
δU�

vth

+ (γ ∗
1 − γ ∗

2 )
nm

2ρ

(
x1D∗

11∇′
�

δn1

n1
+ x2D∗

12∇′
�

δn2

n2
+ DT ∗

1 ∇′
�

δT

T

)
+ (γ ∗

1 − γ ∗
2 )DU∗

1
δU�

vth
, (71)

∂

∂τ

δT

T
+ 2

d
p∗∇′ · δU

vth

= −m

2

m2 − m1

m1m2

(
x1D∗

11∇′2 δn1

n1
+ x2D∗

12∇′2 δn2

n2
+ DT ∗

1 ∇′2 δT

T
+ 2ρ

nm
D∗U

1 ∇′ · δU
vth

)

+ d + 2

4d

(
D∗

q,1∇′2 δn1

n1
+ D∗

q,2∇′2 δn2

n2
+ κ∗∇′2 δT

T
+ 4κ∗

U ∇′ · δU
vth

)
− [2x1(γ ∗

1 − γ ∗
2 )� ∗

1 + ζU ]∇′ · δU
vth

+ [2γ ∗
1 (θ−1 − τ1) − 2γ ∗

2 (θ−1 − τ2)]x1x2

(
δn1

n1
− δn2

n2

)
+ 2x1ν

−1
0 (θ−1 − τ1)

(
γ1,n1

δn1

n1
+ γ1,n2

δn2

n2

)

+ 2x2ν
−1
0 (θ−1 − τ2)

(
γ2,n1

δn1

n1
+ γ2,n2

δn2

n2

)
− 2(x1γ

∗
1 + x2γ

∗
2 )θ−1 δT

T
− 2x1(γ ∗

1 − γ ∗
2 )

×
(

τ1,n1

δn1

n1
+ τ1,n2

δn2

n2
+ θ	θ,1

δT

T

)
− 2(τ2 − τ1)x1x2γ

∗
2

(
δn1

n1
− δn2

n2

)
−

(
x1ζ

∗
0 + n1

∂ζ ∗
0

∂n1

)
δn1

n1

−
(

x2ζ
∗
0 + n2

∂ζ ∗
0

∂n2

)
δn2

n2
−

(
1

2
ζ ∗

0 + θ
∂ζ ∗

0

∂θ

)
δT

T
. (72)

In Eqs. (69)–(72), ∇′
� ≡ ∂/∂r′

�,

p∗ ≡ p

nT
, γ ∗

i ≡ γi

ν0
, ζ ∗

0 = ζ (0)

ν0
, (73)

pni = (nT )−1ni
∂ p

∂ni
, γi,n j = n j

∂γi

∂n j
, τ1,ni = ni

∂τ1

∂ni
, (74)

ζT = T
∂ζ (0)

∂T
, ζni = ni

∂ζ (0)

∂ni
. (75)

In addition, the subscript s has been omitted for the sake of
simplicity; it is understood that all the quantities (except the
perturbations δni, δU, and δT ) are evaluated in the steady
state. In addition, upon deriving Eq. (72), we have made use
of the identities

δx1 = −δx2 = x1x2

(
δn1

n1
− δn2

n2

)
, (76)

δτ2 = x1

(
δn1

n1
− δn2

n2

)
(τ2 − τ1) − x1

x2
δτ1. (77)

Then, a set of Fourier transform dimensionless variables is
introduced as

ρ1k(τ ) = δn1k(τ )

n1
, ρ2k(τ ) = δn2k(τ )

n2
, (78)

wk(τ ) = δUk

vth
, �k(τ ) = δTk(τ )

T
, (79)

where δykμ(τ ) ≡ {ρ1k(τ ), ρ2k(τ ), wk(τ ),�k(τ )} is defined
as

δykμ(τ ) =
∫

dr′ e−ık·r′
δykμ(r′, τ ). (80)

Note that here the wave vector k is dimensionless; namely, it
is measured in units of the length vth/ν0.

A. Transversal shear modes

In terms of the above dimensionless variables, the d − 1
transverse velocity components wk⊥ = wk − (wk · k̂ )̂k (or-
thogonal to the wave vector k) are decoupled from the
other four longitudinal modes. This is the expected result in
Eq. (71). The time evolution of wk⊥(τ ) is simply given by

∂wk⊥
∂τ

= λ⊥wk⊥, (81)

where the eigenvalue λ⊥ is

λ⊥ = ρ∗
1ρ∗

2
(γ ∗

1 − γ ∗
2 )2

ν∗
D + ρ∗

1γ ∗
2 + ρ∗

2γ ∗
1

− (ρ∗
1γ ∗

1 + ρ∗
2γ ∗

2 ) − nm

2ρ
k2η∗,

(82)

where ρ∗
i = ρi/ρ and ν∗

D is

ν∗
D = 2π (d−1)/2

d�
(

d
2

) χ
(0)
12

ρ(1 + α12)

n(m1 + m2)

(
β1 + β2

β1β2

)1/2

. (83)
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The expression of the (reduced) shear viscosity η∗ was ob-
tained in Ref. [51]. Since it is very large, it will be omitted
here for the sake of simplicity.

The solution to Eq. (81) is

wk⊥(k, τ ) = wk⊥(k, 0)eλ⊥τ . (84)

Since η∗ > 0, according to Eq. (82), the sign of λ⊥ is the same
as the sign of the term

X ≡ ρ∗
1ρ∗

2
(γ ∗

1 − γ ∗
2 )2

ν∗
D + ρ∗

1γ ∗
2 + ρ∗

2γ ∗
1

− (ρ∗
1γ ∗

1 + ρ∗
2γ ∗

2 )

= −ρ∗
2γ ∗

2 ν∗
D + γ ∗

1 (ν∗
Dρ∗

1 + γ ∗
2 )

ν∗
D + ρ∗

1γ ∗
2 + ρ∗

2γ ∗
1

< 0 (85)

because the quantities ν∗
D, ρ∗

i , and γ ∗
i (i = 1, 2) are positive.

Therefore, the transversal shear modes λ⊥ are always (lin-
early) stable. This conclusion agrees with previous results
obtained for monocomponent granular suspensions [69] and

for dilute bidisperse suspensions [70] by considering a simpler
version of the suspension model studied here.

B. Four longitudinal modes

The remaining four longitudinal modes are the concentra-
tion fields ρ1k and ρ2k, the longitudinal component of the
velocity field wk|| = wk · k̂ (parallel to k), and the temperature
field �k. The evaluation of these four modes is much more
complicated than the transverse modes since they are coupled
and obey the time-dependent equation

∂δzkμ(τ )

∂τ
= (

M (0)
μν + ıkM (1)

μν + k2M (2)
μν

)
δzkμ(τ ), (86)

where δzkμ denotes the set of four variables
{ρ1k, ρ2k, wk‖,�k}. The square matrices in Eq. (86) are

M (0)
μν =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 (γ ∗
1 − γ ∗

2 )DU∗
1 − (ρ∗

1γ ∗
1 + ρ∗

2γ ∗
2 ) 0

A B 0 C

⎞⎟⎟⎟⎠, (87)

M (1)
μν =

⎛⎜⎜⎜⎜⎝
0 0 ρ∗−1

1 DU∗
1 − 1 0

0 0 −ρ∗−1
2 DU∗

1 − 1 0

− nm
2ρ

[pn1 − (γ ∗
1 − γ ∗

2 )x1D∗
11] − nm

2ρ
[pn2 − (γ ∗

1 − γ ∗
2 )x2D∗

12] 0 E

0 0 F 0

⎞⎟⎟⎟⎟⎠, (88)

M (2)
μν =

⎛⎜⎜⎜⎜⎜⎝
− D∗

11
4μ12

− x2
4x1

D∗
12

μ12
0 − DT ∗

1
4x1μ12

x1
4x2

D∗
11

μ21

D∗
12

4μ21
0 DT ∗

1
4x2μ21

0 0 − nm
ρ

(
d−1

d η∗ + 1
2η∗

b

)
0

m(m2−m1 )
2m1m2

x1D∗
11 − d+2

4d D∗
q1

m(m2−m1 )
2m1m2

x2D∗
12 − d+2

4d D∗
q2 0 m(m2−m1 )

2m1m2
DT ∗

1 − d+2
4d κ∗

⎞⎟⎟⎟⎟⎟⎠, (89)

where

A = 2x1x2[γ ∗
1 (θ−1 − τ1) − γ ∗

2 (θ−1 − τ2)] + 2x1ν
−1
0 (θ−1 − τ1)γ1,n1 + 2x2ν

−1
0 (θ−1 − τ2)γ2,n1

−2x1(γ ∗
1 − γ ∗

2 )τ1,n1 − 2x1x2γ
∗
2 (τ2 − τ1) −

(
x1ζ

∗
0 + n1

∂ζ ∗
0

∂n1

)
, (90)

B = −2x1x2[γ ∗
1 (θ−1 − τ1) − γ ∗

2 (θ−1 − τ2)] + 2x1ν
−1
0 (θ−1 − τ1)γ1,n2 + 2x2ν

−1
0 (θ−1 − τ2)γ2,n2

− 2x1(γ ∗
1 − γ ∗

2 )τ1,n2 + 2x1x2γ
∗
2 (τ2 − τ1) −

(
x2ζ

∗
0 + n2

∂ζ ∗
0

∂n2

)
, (91)

C = −2(x1γ
∗
1 + x2γ

∗
2 )θ−1 − 2x1(γ ∗

1 − γ ∗
2 )θ	θ,1 −

(
1

2
ζ ∗

0 + θ
∂ζ ∗

0

∂θ

)
, (92)

E = −nm

2ρ

[
p∗

(
1 + θ

∂ ln p∗

∂θ

)
− (γ ∗

1 − γ ∗
2 )DT ∗

1

]
, (93)

F = − 2

d
p∗ − ρ(m2 − m1)

nm1m2
DU∗

1 − [2x1(γ ∗
1 − γ ∗

2 )� ∗
1 + ζU ] + d + 2

d
κ∗

U . (94)

As in the case of the transverse modes, the subscript s has been
suppressed in Eqs. (87)–(93) for the sake of brevity. All the
derivatives appearing in those equations have been evaluated
in Ref. [51]. In the particular case of mechanically equivalent

particles, Eq. (82) and Eqs. (87)–(93) agree with the results
obtained for monocomponent granular suspensions [69].

The time evolution of the four longitudinal modes has
the form eλn (k)τ for n = 1, 2, 3, 4. The quantities λn(k) are
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the eigenvalues of the square matrix Mμν = M (0)
μν + ıkM (1)

μν +
k2M (2)

μν ; namely, they are the solutions of the quartic equation

det(M − λ1) = 0, (95)

where 1 is the matrix identity. The determination of the de-
pendence of the eigenvalues λn on the wave vector k and
the parameters of the mixture is a quite intricate problem.
Thus, to gain some insight into the general problem, it is
worth studying the solution to Eq. (95) when k = 0 (Euler
hydrodynamic equations).

C. Euler hydrodynamics

In the case of an inviscid fluid (k = 0), the square matrix
M reduces to M(0) whose eigenvalues are

λ‖ = {0, 0,C, λ
(0)
⊥ }, (96)

where the function C is given by Eq. (92) and λ
(0)
⊥ = λ⊥ when

k = 0, i.e.,

λ
(0)
⊥ = −ρ∗

2γ ∗
2 ν∗

D + γ ∗
1 (ν∗

Dρ∗
1 + γ ∗

2 )

ν∗
D + ρ∗

1γ ∗
2 + ρ∗

2γ ∗
1

< 0. (97)

According to Eq. (92), in general the dependence of C on the
parameters of the mixture is complex.

A more simple situation corresponds to the case of
mechanically equivalent particles where γ ∗

1 = γ ∗
2 = γ ∗,

∂ζ ∗
0 /∂θ = 0, λ

(0)
⊥ = −γ ∗ < 0, and so

C = −2γ ∗θ−1 − 1
2ζ ∗

0 < 0. (98)

Thus, the longitudinal mode C is also (linearly) stable in
agreement with the results obtained for monocomponent gran-
ular suspensions [69].

In the case of a binary mixture (γ ∗
1 �= γ ∗

2 ), expression (92)
shows that C could be positive (unstable mode) when γ ∗

2 >

γ ∗
1 . However, a detailed analysis of the dependence of C on

the parameters of the system shows that C is always negative
and, consequently, all the longitudinal modes are stable in
the Euler hydrodynamics of a binary granular suspension.
As an illustration, we plot in Fig. 5 the dependence of C on
the (common) coefficient of restitution, αi j ≡ α, for x1 = 0.5,
φ = 0.1, and T ∗

ex = 0.1. We consider three-dimensional binary
mixtures constituted by particles of the same mass density
[i.e., m1/m2 = (σ1/σ2)3]. Three different values of the mass
ratio are studied. We clearly observe that the eigenvalue C is
always negative; its magnitude increases with inelasticity.

D. General case

The study at finite wave vectors (but small values of k) is
quite complex and requires to numerically solve Eq. (95). This
is a quite hard task due to the large number of parameters in-
volved in the system. However, one of the longitudinal modes
could be unstable for values of k < kc

‖, where the critical wave
vector kc

‖ can be obtained from Eq. (95) when λ = 0. As in the
case of dilute mixtures [70], when λ = 0, the determinant of
the square matrix M can be written as

det M = k4(X2 + X4k2) = 0, (99)

where the expressions of the coefficients X2 and X4 are very
large and will be omitted here. The solutions to Eq. (99) give

FIG. 5. Dependence of the eigenvalue C on the (common) coef-
ficient of restitution, αi j ≡ α, for three-dimensional granular binary
mixtures constituted by particles of the same mass density [m1/m2 =
(σ1/σ2)3] with x1 = 0.5, φ = 0.1, and T ∗

ex = 0.1. Three different
values of the mass ratio m1/m2 are considered: m1/m2 = 4 (solid
line), m1/m2 = 6 (dashed line), and m1/m2 = 8 (dash-dotted line).

the critical values

kc
‖ =

(
0, 0, 0, 0,−

√
−X2

X4
,

√
−X2

X4

)
. (100)

As in the case of the eigenvalue C, the dependence of the ratio
X2/X4 on the parameter space has been widely analyzed and
the (numerical) results show that the ratio X2/X4 could be neg-
ative (unstable solution). However, the fact that the physical
values of kc

‖ for which the longitudinal mode
√−X2/X4 be-

comes linearly unstable are relatively large (kc
‖ � 2) discards

this finding since the solutions to Eq. (99) are only valid for
small values of the wave number k (which is equivalent to
small values of the spatial gradients in real space). To confirm
the existence of the instabilities associated to the longitudinal
(“heat”) mode for relatively large values of k, one should
consider at least the nonlinear contributions coming from the
viscous heating term Pk�∂�Uk . This term has been neglected in
the linear stability analysis carried out in this section. Since
the viscous heating term is proportional to the square of the
velocity gradient, it plays a relevant role in the formation of
velocity vortices, which are known to precede particle clus-
tering in dry granular gases [58,59]. In addition, the viscous
heating term has been shown to be relevant in the detection of
clustering instabilities via hydrodynamic theories [83,84] and
particle simulations [84,85].

Thus, for small values of the wave number k, we have
not found physical values of the wave vector for which the
longitudinal modes become (linearly) unstable. Consequently,
we can conclude that the eigenvalues of the matrix M have
always a negative real part and so the longitudinal hydrody-
namic modes are also linearly stable.

To illustrate the forms of the hydrodynamic modes, Fig. 6
shows the real parts of the transversal and longitudinal modes
λ(k) for the (common) coefficient of restitution, α = 0.8, with
x1 = 0.5, φ = 0.1, and T ∗

ex = 0.1. As in Fig. 5, we have con-
sidered three-dimensional binary mixtures where m1/m2 =
(σ1/σ2)3. As for dilute binary granular suspensions [70], the
six hydrodynamic modes have two degeneracies. In particular,
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FIG. 6. Real parts of the transversal and longitudinal eigenvalues
as functions of the wave number k for three-dimensional granular
binary mixtures constituted by particles of the same mass den-
sity [m1/m2 = (σ1/σ2)3] with αi j ≡ α = 0.8, x1 = 0.5, φ = 0.1, and
T ∗

ex = 0.1. Three different values of the mass ratio m1/m2 are consid-
ered. From top to bottom m1/m2 = 4, m1/m2 = 6, and m1/m2 = 8.

as happens for dry granular mixtures [62], the transversal
shear mode degeneracy remains at finite k. However, the
other degeneracy (associated with the longitudinal modes) is
removed at any finite value of the wave number. We also
observe that two real modes become a conjugate complex pair
for k larger than a certain value. Although not shown in the
figure, it is also quite apparent that the real part of two of the
four longitudinal modes turn out to be positive for sufficiently
large values of k. In any case, for small values of the wave
number, we observe that Re(λ) � 0 and hence the HSS is
linearly stable.

V. SUMMARY AND DISCUSSION

The first objective of the present paper has been to de-
termine the Navier-Stokes transport coefficients associated
with the heat flux of a binary granular suspension at mod-
erate densities. As in previous works [51], our starting point
has been the set of Enskog kinetic equations for the veloc-
ity distribution functions fi(r, v; t ) of the solid particles of
species i. The granular gas is surrounded by a molecular
gas made of smaller and lighter particles. We have also as-
sumed that the granular particles are sufficiently rarefied so

that the state of the interstitial gas is not perturbed by the
presence of them. This means that the background gas may
be considered as a thermostat at the temperature Tex. As usual
[38–50], a coarse-grained level of description is adopted and
so the influence of the gas phase on the granular mixture has
been modeled through a viscous drag force (proportional to
the particle velocity) plus a stochastic Langevin-like term.
While the first term attempts to mimic the friction of solid
particles on the interstitial gas, the second term models the
energy gained by the granular particles due to their collisions
with the more rapid particles of the background molecular
gas.

The heat transport coefficients are the thermal conductiv-
ity coefficient κ (connecting the heat flux with the thermal
gradient), the Dufour coefficients Dq,1 and Dq,2 (connecting
the heat flux with the density gradients), and the thermal
conductivity coefficient κU (connecting the heat flux with the
velocities difference). These coefficients have kinetic and col-
lisional transfer contributions. The kinetic contributions are
defined by Eqs. (40)–(42) while the collisional contributions
are given by Eqs. (46)–(48). Regarding the kinetic contribu-
tions and as occurs for dry granular mixtures [32,53,54], the
kinetic coefficients κi, dq,i j , and κU

i are given in terms of the
solutions of a set of coupled linear integral equations. These
equations are solved by considering the second Sonine ap-
proximations (32)–(34). Moreover, in order to achieve explicit
expressions for the above transport coefficients, steady-state
conditions have been considered. The steady conditions apply
when the cooling terms arising from collisional cooling and
viscous friction are compensated by the heat added to the
system by the stochastic Langevin term.

In the steady state, the algebraic equations defining the ki-
netic coefficients κi, dq,i j , and κU

i are displayed by Eqs. (A1),
(A9), and (A10), respectively. Once the kinetic coefficients
are known, the corresponding collisional contributions can be
obtained by substituting the solution to Eqs. (A1), (A9), and
(A10) into Eqs. (46)–(48). The sum of kinetic and collisional
contributions to the set {κ, Dq,1, Dq,2, κU } provides the final
forms of the heat transport coefficients.

As the remaining transport coefficients of the mixture were
obtained in a previous work [51], the determination of the heat
transport coefficients allows us to know the dependence of
the complete set of the Navier-Stokes transport coefficients on
the parameter space of a binary granular suspension. As has
been noted in several previous works [53,54,70,86], it is worth
remarking that there is no phenomenology involved in the
derivation of the above transport coefficients since their con-
tributions have been obtained by solving the set of (inelastic)
Enskog kinetic equations by means of the Chapman-Enskog
method [52]. Thus, the present expressions are not limited a
priori to nearly elastic spheres since the transport coefficients
are highly nonlinear functions of the coefficients of restitu-
tion. Furthermore, the impact of the energy nonequipartition
on transport has been also accounted for via the tempera-
ture ratios τi = T (0)

i /T and their derivatives with respect to
the (scaled) temperature θ = T/Tex, the composition x1, the
density φ, and the parameters of the suspension model. The
evaluation of these derivatives in the steady state introduces
technical difficulties in the computation of the Navier-Stokes
transport coefficients.
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As in the case of the diffusion and shear viscosity co-
efficients [51], Figs. 1–4 show clearly that the effect of
inelasticity on the heat transport coefficients is significant as
their forms are clearly different from those obtained for elastic
collisions. This feature cannot be extended to the coefficient
κU since the ratio κU (α)/κU (1) is close to 1, even for strong
inelasticity. Moreover, with respect to the influence of the
gas phase on heat transport, it is seen that its impact is in
general important since the dependence of the heat transport
coefficients on inelasticity is different from the one found in
dry granular mixtures [32].

As an interesting application of the previous results, we
have analyzed the stability of the HSS. This study extends to
dense systems a previous analysis made in the dilute regime
for binary mixtures [70] as well as extends to bidisperse sys-
tems a previous work [69] carried out for monocomponent
granular suspensions. As usual, the analysis is performed in
two steps. First, we have linearized the Navier-Stokes hydro-
dynamic equations around the HSS. Then, we have written the
linearized equations in Fourier space. As expected, the d − 1
transversal shear modes are decoupled from the four longi-
tudinal modes and so they obey an autonomous differential
equation. The results clearly show that the transversal shear
modes are always linearly stable. The analysis of the longi-
tudinal modes is much more intricate since they are coupled
and obey a quartic equation. The solutions to this equation in
the Euler hydrodynamics (wave number k = 0) show that the
longitudinal modes are stable. At finite but small values of the
scaled wave number k, a careful analysis of the dependence of
the numerical solutions to the quartic equation on the param-
eter space of the system indicates that these modes are also
linearly stable. Thus, the linear stability analysis of the HSS
carried out here for dense bidisperse granular suspensions
shows no surprises with respect to the previous works: the
HSS is linearly stable with respect to long-enough wavelength
excitations.

However, we want to remark that for sufficiently large
wave numbers (let us say, for instance, k � 2), the numerical
results for the longitudinal modes suggest that the real part of
two of these modes can be unstable. In any case, given that
this sort of instability is based on the results derived from a
linear stability analysis (where only linear perturbations to the
reference HSS are accounted for), the above conclusion could
not be considered as definitive since one should consider,
for instance, the nonlinear terms coming from the viscous
heating term in the energy balance equation for these large
values of k. A study on this problem will be carried out in the
future.

As in previous works on granular mixtures [53,54,62,86],
the evaluation of the transport coefficients for practical results
introduces a new approximation, truncation of an expansion
for the solutions to the integral equations in polynomials. In
the case of the heat flux transport coefficients, we have con-
sidered here the Sonine expansion to second order. However,
based on the known results for molecular mixtures (elastic
collisions) of noble gases [87,88], one expects that the second
Sonine solution cannot be quite accurate when one considers
granular mixtures where the masses of the constituents are
very different (e.g., electron-proton systems). In this case, one
should go beyond the second Sonine correction.

In this work, we have considered the Chapman-Enskog
method as a reliable procedure to connect the kinetic de-
scription of granular suspensions with hydrodynamics. One
possible extension to the present investigation could be to
put into a larger context the passage from kinetic theory to
hydrodynamics by looking into a solution in terms of Grad’s
hierarchy [89]. As happens in the case of dense dry granu-
lar gases [90], we expect the Grad results for the transport
coefficients to agree completely with those obtained in this
paper and in Ref. [51] by considering the leading Sonine
approximations. Work along this line will be done in the near
future.

From an analytical point of view, the present results can
be also applied to several interesting problems. One of them
refers to the study of thermal diffusion segregation where
the knowledge of the transport coefficients involved in the
mass flux will allow us to derive a segregation criterion.
Another interesting issue could be the incorporation of an
attractive term in the collisional model so that the hard-core
repulsion collision would enter in the Enskog collision term
while the long-range attraction would be considered via the
Vlasov term. Kinetic theory of the van der Waals gas has
been shown to be quite useful to understand the passage from
the Enskog-Vlasov equation to hydrodynamics [35,36]. More-
over, as for dry granular binary mixtures [91], the knowledge
of the Navier-Stokes transport coefficients will also allow us
to quantify the (possible) violation of the Onsager reciprocal
relations in granular suspensions.

It is evident that the theoretical results found in this pa-
per for the stability of the HSS should be compared against
computer simulations. Since the present results extend the
Boltzmann analysis [25,70] to high densities, comparisons
with molecular dynamics simulations become practical. As
occurs for dry granular gases [65–68], we expect that the
results obtained in this paper stimulate the performance of
simulations where the present theoretical predictions can be
assessed. Regarding simulations, another interesting problem
is the use of the transport coefficients to develop a lattice
Boltzmann method for studying the dynamics of granular
flows. We plan to work on this objective in the future.

ACKNOWLEDGMENTS

The authors acknowledge financial support from
Grant No. PID2020-112936GB-I00 funded by
MCIN/AEI/10.13039/501100011033, and from Grants No.
IB20079 and No. GR21014 funded by Junta de Extremadura
(Spain) and by ERDF “A way of making Europe.” The
research of R.G.G. also has been supported by the predoctoral
fellowship BES-2017-079725 from the Spanish Government.

APPENDIX A: DETERMINATION OF THE KINETIC
CONTRIBUTIONS TO THE HEAT FLUX

TRANSPORT COEFFICIENTS

In this Appendix, we provide some details on the deter-
mination of the kinetic coefficients κi, dq,i j , and κU

i . These
coefficients are defined by Eqs. (37)–(39), respectively.
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To compute the kinetic coefficient κ1, we multiply both sides of Eq. (76) of Ref. [51] by S1(V) and integrate over velocity.
After a long and tedious algebra, one gets{

ω11 + 3γ1 −
[

2
2∑

j=1

γ jx j

(
θ−1 + θ

∂τ j

∂θ

)
+ 1

2
ζ (0) + ζ (0)θ

∂ ln ζ ∗
0

∂θ

]}
κ1 + ω12κ2 = −d + 2

2

ρ

m1

[
2γ1(τ1 − θ−1)

+ τ1

(
�11 − x1τ1

x2τ2
�12

)]
DT

1 + d + 2

2

n1T

m1

(
τ 2

1 + τ1θ
∂τ1

∂θ

)
+ 1

dT

2∑
j=1

∫
dvS1 · K1 j

[
T

∂ f (0)
j

∂T

]
, (A1)

where f (0)
i is the zeroth-order distribution function and the integral operator Ki j[X ] is defined by Eq. (B5) of Ref. [51]. The

equation for the coefficient κ2 can be obtained from Eq. (A1) by making the change 1 ↔ 2 (note that DT
1 = −DT

2 ). In Eq. (A1),
we have introduced the collision frequencies

ωii = − 2

d (d + 2)

mi

niT
(0)3

i

(
2∑

j=1

∫
dv Si · J (0)

i j

[
fi,MSi, f (0)

j

] +
∫

dv Si · J (0)
ii

[
f (0)
i , fi,MSi

])
, (A2)

ωi j = − 2

d (d + 2)

mj

n jT
(0)3
j

∫
dv Si · J (0)

i j

[
f (0)
i , f j,MS j

]
(i �= j), (A3)

�ii = − 2

d (d + 2)

mi

niT
(0)2

i

(
2∑

j=1

∫
dv Si · J (0)

i j

[
fi,MV, f (0)

j

] +
∫

dv Si · J (0)
ii

[
f (0)
i , fi,MV

])
, (A4)

�i j = − 2

d (d + 2)

mi

niT
(0)2

i

∫
dv Si · J (0)

i j

[
f (0)
i , f j,MV

]
(i �= j). (A5)

Explicit forms of these collision frequencies have been obtained in previous papers [54,92] when f (0)
i is replaced by its

Maxwellian form fi,M. These expressions are provided in Appendix B for the sake of completeness. Moreover, the collision
integral appearing in Eq. (A1) involving the operator Ki j can be written as∫

dvSi · Ki j

[
T

∂ f (0)
j

∂T

]
= −

(
1 + θ

τ j
	θ, j

)∫
dvSi · Ki j

[
1

2

∂

∂V
· (V f (0)

j

)]
, (A6)

where use has been made of the results

T ∂T f (0)
i = −1

2

∂

∂V
· (V f (0)

i

) + niv
−d
th θ

∂ϕi

∂θ
, niv

−d
th θ

∂ϕi

∂θ
= − θ

τi
	θ,i

1

2

∂

∂V
· (V f (0)

i

)
. (A7)

Here, ϕi = n−1
i vd

th f (0)
i and 	θ,i ≡ ∂τi/∂θ . This derivative has been evaluated in Ref. [51]. The corresponding collision integral

appearing in Eq. (A6) is given by [54]∫
dv Si · Ki j

[
1

2

∂

∂V
· (V f (0)

j

)] = − πd/2

2�
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)
μ2

ji

] + 6
τ j

m j
μ2

ji(1 + αi j )
2

}
. (A8)

Upon obtaining Eq. (A8), f (0)
i has been approximated by the Maxwellian distribution fi,M.

The procedure for determining the kinetic coefficients dq,i j and κU
i follows similar mathematical steps as those made in the

case of κi. The algebraic equations defining those coefficients are

2∑
�=1

(
ωi� + 3γiδi�

)
dq,� j = −d + 2

2

ρ j

ρT

2∑
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2
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mi
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n�τ�

�i�
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D� j + d + 2
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mi

∂τi
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dT 2
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�=1

∫
dv Si ·

{
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[
n j

∂ f (0)
�

∂n j

]
+ 1

2
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(0)
i�
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Ki�

[
f (0)
�

]}
, (A9)

(3γ1 + ω11)κU
1 + ω12κ

U
2 = −d + 2

2

T

m1

[
2γ1(τ1 − θ−1) + τ1

(
�11 − x1τ1

x2τ2
�12

)]
DU

1 . (A10)
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As before, the coefficient κU
2 can be easily inferred from Eq. (A10) by changing 1 ↔ 2. In the case γ1 = γ2, DU

1 = DU
2 = 0 and

so, according to (A10), κU
1 = κU

2 = 0. The collision integrals involving the operator Ki j in Eq. (A9) can be written as∫
dv Si · Ki�

[
n j

∂ f (0)
�

∂n j

]
= δ j�

∫
dvSi · Ki�

[
f (0)
�

] − n j
∂ ln τ�

∂n j

∫
dvSi · Ki�

[
1

2

∂
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· (V f (0)

�

)]
, (A11)

where use has been made of the identity

n j
∂ f (0)

�

∂n j
= δ j� f (0)

� − n j
∂ ln τ�

∂n j

1

2

∂
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· (V f (0)

�

)
. (A12)

The first term on the right-hand side of Eq. (A11) can be explicitly computed by making the replacement f (0)
i (V) → fi,M(V).

The result is [54]∫
dv Si · Ki j

[
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] = πd/2
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. (A13)

APPENDIX B: EXPRESSIONS OF THE COLLISION FREQUENCIES

The explicit expressions of the collision frequencies �ii, �i j , βii, and βi j are provided in this Appendix when the zeroth-order
distributions f (0)

i (V) are approximated by their Maxwellian distributions fi,M(V). They are given by [54,92]
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In Eqs. (B1)–(B4), we have introduced the dimensionless quantities

A = (d + 2)(2β12 + β2) + μ21(β1 + β2)
{
(d + 2)(1 − α12) − [(11 + d )α12 − 5d − 7]β12β
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F = 2μ2
21β
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The corresponding expressions of �22, �21, β22, and β21 can be easily obtained from Eqs. (B1)–(B8) by changing 1 ↔ 2.
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