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ABSTRACT

Two different kinetic theories [J. Solsvik and E. Manger (SM), Phys. Fluids 33, 043321 (2021) and Garz�o et al. (GDH), Phys. Rev. E 76,
031303 (2007)] are considered to determine the shear viscosity g for a moderately dense granular binary mixture of smooth hard spheres.
The mixture is subjected to a simple shear flow and heated by the action of an external driving force (Gaussian thermostat) that exactly
compensates the energy dissipated in collisions. The set of Enskog kinetic equations is the starting point to obtain the dependence of g on
the control parameters of the mixture: solid fraction, concentration, mass and diameter ratios, and coefficients of normal restitution. While
the expression of g found in the SM-theory is based on the assumption of Maxwellian distributions for the velocity distribution functions of
each species, the GDH-theory solves the Enskog equation by means of the Chapman–Enskog method to first order in the shear rate. To
assess the accuracy of both kinetic theories, the Enskog equation is numerically solved by means of the direct simulation Monte Carlo
method. The simulation is carried out for a mixture under simple shear flow, using the thermostat to control the cooling effects. Given that
the SM-theory predicts a vanishing kinetic contribution to the shear viscosity, the comparison between theory and simulations is essentially
made at the level of the collisional contribution gc to the shear viscosity. The results clearly show that the GDH-theory compares with simula-
tions much better than the SM-theory over a wide range of values of the coefficients of restitution, the volume fraction, and the parameters
of the mixture (masses, diameters, and concentration).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134408

I. INTRODUCTION

The determination of the transport coefficients of polydisperse
granular mixtures (namely, mixtures constituted by smooth inelastic
hard spheres of different masses, diameters, and coefficients of restitu-
tion) is still a challenging objective. There are likely two main reasons
for which the above target is quite complex. First, there is a large num-
ber of parameters and transport coefficients involved in the descrip-
tion of granular mixtures. Second, there is a wide array of intricacies
and uncontrolled approximations arising in the derivation of the cor-
responding kinetic theories.

Therefore, due to the above difficulties, many of the previous
attempts for obtaining the Navier–Stokes transport coefficients of
granular mixtures1–4 consider mixtures constituted by nearly elastic
spheres. In this limit case, it is justified to assume the equipartition of

the total granular kinetic energy in the homogeneous cooling state
(HCS). This means that the zeroth-order contributions Tð0Þi to the par-
tial temperatures Ti of each species are equal to the (global) granular
temperature T.

However, as theoretical calculations,5,6 computer simulations,7–15

and real experiments16,17 have shown, the assumption of energy equi-
partition between mechanically different particles only occurs when
the collisions are perfectly elastic. A general conclusion of the above
works is that the departure of energy equipartition increases as inelas-
ticity increases and the mechanical differences between the particles of
each species become more significant (in particular when the masses
are more disparate).

Although the breakdown of energy equipartition in granular
mixtures was pointed out independently by Jenkins and Mancini18
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and Zamankhan19 (this author noted energy nonequipartition but
assumed equal partial temperatures for studying rheology in sheared
granular mixtures), to the best of our knowledge, the impact of energy
nonequipartition on transport properties in granular mixtures was
analyzed for the first time by Huilin et al.20,21 They proposed a two-
temperature kinetic theory where the one-particle velocity distribution
function of each species fiðr; v; tÞ is a Maxwellian distribution at the
partial temperature Tð0Þi , even for inhomogeneous states. Although
this approximation could provide acceptable estimates of the colli-
sional transfer contributions to the fluxes and the cooling rate, it pre-
dicts vanishing Navier–Stokes transport coefficients in the low-density
limit. This is an important drawback of these theories.22 Based on the
Maxwellian approximation for fi, Solsvik and Manger (SM)23,24 have
recently proposed a kinetic theory (hereafter referred to as the SM-
theory) where the distributions fi take into account not only the tem-
perature differences of the species but also the differences in the mean
flow velocities Ui of the species. Within this approach, the authors24

obtain corrections to the collisional contributions to the momentum
and heat fluxes, which are of the order jUi � Ujj2 and jUi � Ujj4.

A different approach for determining the Navier–Stokes trans-
port coefficients for moderately dense granular mixtures has been
developed by Garz�o, Dufty, and Hrenya (GDH).25,26 These authors
solve the Enskog kinetic equation by means of the Chapman–Enskog
method27 adapted to dissipative dynamics (hereafter, the theory pro-
posed by GDH will be referred to as the GDH-theory). In the first
order of spatial gradients, as for molecular mixtures,28 the transport
coefficients are defined in terms of the solutions of a set of coupled lin-
ear integral equations. These equations are approximately solved by
considering the leading terms in a Sonine polynomial expansion of the
first-order distribution functions. Thus, explicit expressions for the
transport coefficients and the cooling rate are obtained in terms of the
parameter space of the mixture (masses and diameters, concentrations,
solid volume fraction, and coefficients of restitution). These expres-
sions apply in principle to arbitrary values of the coefficients of restitu-
tion and are not limited to specific values of the remaining parameters
of the mixture. In fact, the GDH-theory reduces in the limit of
mechanically equivalent particles to well-established kinetic theory
models29,30 for monocomponent granular gases. In addition, the
GDH-theory compares, in general, very well with computer simulation
results obtained for the tracer diffusion coefficient31 and the shear vis-
cosity coefficient of a heated granular binary mixture.32

On the other hand, given that the SM-theory24 can be only reli-
able for obtaining the collisional contributions to the transport coeffi-
cients, an interesting problem is to assess the degree of accuracy of the
SM and GDH theories by comparing their predictions (for the colli-
sional coefficients) against computer simulations. Although the predic-
tions of the GDH-theory for the shear viscosity coefficient g were
already tested with simulations in Ref. 33, only simulation data for the
kinetic gk and global shear viscosity g were reported in this paper.
Thus, it could be convenient to perform new simulations where the
dependence of the collisional shear viscosity coefficient gc on the
parameter space of the mixture was widely analyzed. This would allow
us to assess the degree of accuracy of the SM and GDH theories for
dense granular mixtures. The objective of this paper is to carry out
new simulations for determining gc and compare them with those pre-
dicted by the SM and GDH theories. This will allow us to gauge the
strengths and weaknesses of both kinetic theories.

As in the simulations performed in Ref. 33, we consider here a
particular hydrodynamic state: the so-called simple (or uniform) shear
flow (SSF) state. This state is characterized by constant partial densities
ni, uniform granular temperature T, and a linear velocity profile
U1;k ¼ U2;k ¼ akbrb, where akb ¼ adkxdby , a being the constant shear
rate. In the case of a molecular mixture (elastic collisions), unless a
thermostating mechanism is introduced, the temperature grows in
time due to the viscous heating term�aPxy (Pxy < 0 is the xy compo-
nent of the pressure tensor). A consequence of the viscous heating
effect is that the effective collision frequency for hard spheres �ðtÞ
[which is proportional to

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
] increases with time and so, the

reduced shear rate a�ðtÞ ¼ a=�ðtÞ tends to zero for times longer
than the (effective) mean free time ��1. Thus, for sufficiently long
times, the system achieves a regime described by linear hydrodynamics
and the Navier–Stokes shear viscosity coefficient g can be measured in
computer simulations. This procedure was followed many years ago
by Naitoh and Ono34 for getting g for molecular hard sphere gases. In
the case of granular gases, unfortunately, the relation between the tem-
perature and the shear viscosity is not as simple as for molecular gases
due to the presence of the collisional term arising from inelasticity in
collisions. However, if there is a thermostat that injects energy to the
system that compensates for the collisional energy loss, then the vis-
cous heating term heats the system (as for molecular gases) and one
can identify the shear viscosity in the limit a� ! 0. Here, as in Ref. 33,
we consider the Gaussian thermostat (external force proportional to
the particle velocity). In the absence of a shear field, this thermostat
(which is usually employed in nonequilibrium molecular dynamics
simulations35) has the advantage that it plays a neutral role in the
dynamics of the system.36

The plan of the paper is as follows. In Sec. II, the Enskog kinetic
equation in the SSF state is introduced. Expressions of the pressure
tensor and the cooling rate in the local Lagrangian frame where the
SSF is homogeneous are also displayed. Sections III and IV provide
the results obtained for the shear viscosity in the (driven) SSF from the
SM and GDH theories, respectively. Section V deals with the applica-
tion of the direct simulation Monte Carlo (DSMC) method37 (the
extension of this method to dense gases is usually referred to as the
ESMC method) to the SSF with thermostat. The theoretical results
obtained from the SM and GDH theories for the collisional shear vis-
cosity coefficient gc are compared in Sec. VI with computer simula-
tions. The results show that the GDH-theory compares with
simulations much better than the SM-theory. We close the paper in
Sec. VII with some concluding remarks.

II. ENSKOG KINETIC THEORY: SIMPLE SHEAR FLOW
STATE
A. Enskog equation for granular mixtures

We consider a granular binary mixture of inelastic hard disks
(d¼ 2) or spheres (d¼ 3) of masses m1 and m2 and diameters r1 and
r2. We assume that the spheres are completely smooth so that the
inelasticity of collisions among all pairs is characterized by three inde-
pendent constant (positive) coefficients of normal restitution a11, a22,
and a12 ¼ a21. Here, aij � 1 is the restitution coefficient for collisions
between particles of species i and j. The case aij ¼ 1 corresponds to
elastic collisions (molecular mixtures of hard spheres).

Due to the inelastic character of collisions, it is quite usual in
experiments to supply energy to the system to balance the collisional
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loss of energy. This can be done by driving the system through the
boundaries38 or alternatively by bulk driving, as in air-fluidized
beds.39,40 However, these ways of supplying energy produce, in many
cases, strong spatial gradients in the bulk domain, and so, the
Navier–Stokes description fails. For this reason, it is frequent in com-
puter simulations41–48 to heat the system homogenously by the action
of an external driving force. Borrowing a terminology used in non-
equilibrium molecular-dynamics simulations of ordinary (or molecu-
lar) fluids,35 these types of external forces are called thermostats. In the
present paper, for simplicity, we introduce the so-called Gaussian ther-
mostat, namely, a deterministic external force proportional to the
peculiar velocity V. This sort of thermostat has been frequently
employed in nonequilibrium molecular dynamics simulations of elas-
tic particles.35

Under the above conditions, the Enskog kinetic equation for the
one-particle velocity distribution function of species i (i¼ 1, 2) is given
by

@t þ v � rð Þfi þ
1
2
n
@

@v
� Vfið Þ ¼

X2
j¼1

JEij r; vj fiðtÞ; fjðtÞ
� �

; (1)

where the constant n is chosen to be the same for both species. Here,
V ¼ v � U,

U ¼
X2
i¼1

qi

q
Ui ¼ q�1

X2
i¼1

ð
dvmivfiðvÞ; (2)

is the mean flow velocity of the mixture, q ¼ q1 þ q2 is the total mass
density, qi ¼ mini, and

ni ¼
ð
dv fiðvÞ (3)

is the number density of species i. The second equality in Eq. (2)
defines the mean flow velocities Ui of species i. Apart from ni and U,
the other relevant hydrodynamic field is the granular temperature T. It
is defined as

T ¼ 1
dn

X2
i¼1

ð
dvmiV

2fiðvÞ; (4)

where n ¼ n1 þ n2 is the total number density.
In Eq. (1), the Enskog collision operator JEij ½fi; fj� is

49

JEij r; v1jfi; fj
� �

¼ rd�1
ij

ð
dv2

ð
dr̂ Hðr̂ � gÞðr̂ � gÞ

�
�
a�2ij vijðr; r� rijÞfiðr; v001 ; tÞfjðr� rij; v

00
2 ; tÞ

�vijðr; rþ rijÞfiðr; v1; tÞfjðrþ rij; v2; tÞ
�
: (5)

Here, rij ¼ rijr̂ with rij ¼ ðri þ rjÞ=2 and r̂ is a unit vector
directed along the line of centers from the sphere of species i to the
sphere of species j upon collision (i.e., at contact). In addition, H is
the Heaviside step function, and g ¼ v1 � v2 is the relative velocity
of the colliding pair. The double primes on the velocities denote
the initial values fv001 ; v002g that lead to fv1; v2g following a binary
collision:

v001 ¼ v1 � lji 1þ a�1ij

� �
ðr̂ � gÞr̂; (6)

v002 ¼ v2 þ lij 1þ a�1ij

� �
ðr̂ � gÞr̂; (7)

where lij ¼ mi=ðmi þmjÞ. Inversion of the collision rules (6) and (7)
provides the form of the so-called direct collisions, namely, collisions
where the pre-collisional velocities ðv1; v2Þ lead to the post-collisional
velocities ðv01; v02Þ:

v01 ¼ v1 � lji 1þ aijð Þðr̂ � gÞr̂; (8)

v02 ¼ v2 þ lij 1þ aijð Þðr̂ � gÞr̂: (9)

The quantity vij½r; rþ rijjfn‘g� is the equilibrium pair correla-
tion function of two hard spheres, one of the species i and the other of
species j, at contact, i.e., when the distance between their centers is rij.
In the original phenomenological kinetic theory of Enskog50 (which is
usually referred to as the standard Enskog theory), the vij are the same
functions of the densities fn‘g as in a fluid mixture in uniform equilib-
rium. On the other hand, this choice for vij leads to some inconsisten-
cies with irreversible thermodynamics. In order to fix this conceptual
problem, van Beijeren and Ernst51 proposed an alternative generaliza-
tion to the Enskog equation for mixtures, which is usually referred to
as the revised Enskog theory (RET). In the RET, the vij are the same
functionals of the densities fn‘g as in a fluid in nonuniform equilib-
rium. This fact increases considerably the technical difficulties
involved in the derivation of the general hydrodynamic equations
from the RET,28 unless the partial densities are uniform as occurs in
the SSF state.

B. Simple shear flow

As mentioned in Sec. I, we want to solve the Enskog equation (1)
in the SSF state. At a macroscopic level, the SSF is characterized by
uniform partial densities ni and temperature T and a linear velocity
profile given by

U1 ¼ U2 ¼ U ¼ a � r; akb ¼ adkxdby; (10)

where a is the constant shear rate. In the SSF, the mass and heat fluxes
vanish for symmetry reasons and the only flux of the problem is the
(uniform) pressure tensor P. For moderate densities, P has kinetic
and collisional contributions. The only relevant hydrodynamic balance
equation is that for the temperature T(t). This equation can be
deduced by multiplying both sides of Eq. (1) by 1

2miv2, integrating
over v, and summing over i. It is given by

@tT þ
2
dn

aPxy ¼ � f� nð ÞT; (11)

where f is the cooling rate. This quantity provides the rate of kinetic
energy dissipated by inelastic collisions. The expressions of P and f in
the SSF will be displayed below.

It is worthwhile noting that if one chose n ¼ f in Eq. (11), then,
this macroscopic balance equation looks like the energy equation in
the SSF state for molecular mixtures. However, in the limit a� ! 0,
the corresponding expression of the shear viscosity coefficient differs
from the one obtained for a mixture of elastic collisions.

At a microscopic level, the SSF becomes a homogeneous state in
the local Lagrangian frame defined by the variables V ¼ v � a � r and
R ¼ r� a � rt (Ref. 52). In this frame, the velocity distribution func-
tions are uniform [fiðr; v; tÞ ¼ fiðV; tÞ] and the Enskog equation reads
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@t fi � aVy
@

@Vx
fi þ

1
2
n
@

@V
� Vfið Þ ¼

X2
j¼1

JEij VjfiðtÞ; fjðtÞ
� �

; (12)

where the operator JEij ½VjfiðtÞ; fjðtÞ� becomes33

JEij V1jfi; fj
� �

¼ rd�1
ij vij

ð
dV2

ð
dr̂ Hðr̂ � gÞðr̂ � gÞ

�
�
a�2ij fiðV01; tÞfjðV02 þ arijr̂yx̂; tÞ

�fiðV1; tÞfjðV2 � arijr̂y x̂; tÞ
�
: (13)

Note that the functions vij are uniform in the SSF problem. As said
before, the pressure tensor has kinetic and collisional transfer
contributions

P ¼ Pk þ Pc: (14)

The kinetic contribution Pk is

Pk ¼
X2
i¼1

ð
dVmiVVfiðVÞ; (15)

while the collisional transfer contribution Pc in the Lagrangian frame
is given by33

Pc ¼
X2
i¼1

X2
j¼1

mijvijr
d
ij

1þ aij
2

ð
dV1

ð
dV2

ð
dr̂

�Hðr̂ � gÞðr̂ � gÞ2r̂r̂fi V1 þ arijr̂y x̂; t
� �

fjðV2; tÞ; (16)

wheremij ¼ mimj=ðmi þmjÞ. The cooling rate f is33

f ¼ 1
2dnT

X2
i¼1

X2
j¼1

mijvijr
d�1
ij ð1� a2ijÞ

�
ð
dV1

ð
dV2

ð
dr̂ Hðr̂ � gÞðr̂ � gÞ3

� fi V1 þ arijr̂y x̂; t
� �

fjðV2; tÞ: (17)

Equations (14)–(17) provide the expressions of the pressure ten-
sor and the cooling rate in terms of the velocity distribution functions
fiðV; tÞ in the SSF state. Needless to say, it still remains to determine
fiðV; tÞ to compute the corresponding velocity integrals and get the
above quantities. Based on symmetry considerations, to first order in
the shear rate, the pressure tensor Pð1Þ is

Pð1Þkb ¼ �ga dkxdby þ dkydbx
� �

; (18)

where g is the shear viscosity coefficient g. In this paper, we consider
two different kinetic theories to determine g.

III. SM-KINETIC THEORY

The SM-theory24 is based on a simple approximation: the distri-
butions fiðV; tÞ are assumed to be Maxwellian distributions fi;MðV; tÞ:

fi;MðV; tÞ ¼ ni
mi

2pTð0Þi

	 
d=2
exp �miV2

2Tð0Þi

 !
; (19)

where Tð0Þi is the zeroth-order contribution to the partial temperature
of species i. Upon writing Eq. (19), we have made use of the fact that

the velocity differences jUi � Ujj vanish in the SSF. According to the
approximation (19), the kinetic contribution Pk ¼ 0 in the SM-theory
and the kinetic shear viscosity vanishes (gk ¼ 0). This is, of course, a
deficiency of the SM-theory which is not able to capture the kinetic
transfer contributions to the shear viscosity, which are different from
zero even for granular mixtures at low density.53,54 This means that
this theory can be only seen as a valuable approach for estimating the
collisional transfer contribution gc to g. According to Eqs. (41) and
(77) of Ref. 24 and Eq. (18), gc for hard spheres (d¼ 3) can be identi-
fied as24,55

gSMc ¼
ffiffiffiffiffi
2p
p

15

X2
i¼1

X2
j¼1

ninjr
4
ijvijm

2
ijð1þ aijÞ

�
	
Tð0Þi

mi
þ
Tð0Þj

mj


3=2	 1

Tð0Þi

þ 1

Tð0Þj



: (20)

It is interesting to note that the expression (20) slightly differs
from the one obtained by replacing fiðVÞ by fi;MðVÞ in Eq. (16) and
performing the corresponding integrals in velocity space. In the linear
order of the shear rate, after some algebra, one gets the following
expression for the collisional shear viscosity gc ’ gMc :

gMc ¼
ffiffiffi
2
p

pðd�1Þ=2

dðd þ 2ÞC d
2

	 
X2
i¼1

X2
j¼1

ninjr
dþ1
ij vijmijð1þ aijÞ

�
	
Tð0Þi

mi
þ
Tð0Þj

mj


1=2

: (21)

For elastic collisions (aij ¼ 1), Tð0Þ1 ¼ Tð0Þ2 ¼ T , and so, Eqs. (20) and
(21) agree for a three-dimensional (d¼ 3) system.

IV. GDH-KINETIC THEORY

In contrast to the SM-theory, the GDH-theory25 solves the
Enskog equation (12) by means of the Chapman–Enskog method.27

Since we want to get the shear viscosity coefficient in the driven case
when the collisional cooling is exactly compensated for by the energy
supplied to the mixture by the external driving force, then we take n
¼ f in Eq. (12). With this choice, according to Eq. (11), the tempera-
ture increases in time due to the viscous heating term�aPxy > 0. The
determination of g under these conditions was carried out years ago in
Ref. 33 for d¼ 3. The extension to d-dimensional mixtures follows
similar steps as those made in the above work (see Appendix B of Ref.
33 for specific technical details on this calculation). We offer here only
some partial results for the determination of g in the driven SSF.

The Chapman–Enskog method27 provides the normal (or hydro-
dynamic) solution to the Enskog equation (12) as an expansion in
powers of the shear rate a:

fi ¼ f ð0Þi þ f ð1Þi þ � � � ; (22)

where f ðkÞi is of order k in a. As usual, the time derivatives @t , the
Enskog collision operator JEij ½fi; fj�, and the pressure tensor P are also
expanded as

@t ¼ @ð0Þt þ @
ð1Þ
t þ � � � ; JEij ¼ Jð0Þij þ Jð1Þij þ � � � ; (23)

P ¼ Pð0Þ þ Pð1Þ þ � � � : (24)
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As n ¼ f at any order in the shear rate, then, @ð0Þt T ¼ 0 and

@
ð1Þ
t T ¼ � 2

dn
aPð0Þxy : (25)

A. Zeroth-order approximation

To zeroth-order in a, the Enskog equation (12) reads33

1
2
fð0Þ

@

@V
� Vf ð0Þi

� �
¼
X2
j¼1

Jð0Þij f ð0Þi ; f ð0Þj

h i
; (26)

where fð0Þ is given by Eq. (17) with the replacements
fi ! f ð0Þi ; fj ! f ð0Þj , and

Jð0Þij f ð0Þi ; f ð0Þj

h i
¼ vijr

d�1
ij

ð
dV2

ð
dr̂ Hðr̂ � gÞðr̂ � gÞ

� a�2ij f ð0Þi ðV01Þf
ð0Þ
j ðV02Þ� f ð0Þi ðV1Þf ð0Þj ðV2Þ

h i
:

(27)

Equation (28) turns out to be formally identical to the one
obtained in the HCS (i.e., in the unforced case with n¼ 0) (Refs. 6 and
49). Thus, when one properly scales the velocities v with the thermal
speed vth /

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
, there is an exact equivalence between the results

derived in the HCS and those obtained when the mixture is driven by
the Gaussian thermostat. This is one of the advantages of using this
thermostat. On the other hand, this equivalence fails for inhomoge-
neous situations and the external force does not play a neutral role in
the evaluation of the transport properties.52

Since the distributions f ð0Þi ðVÞ are isotropic inV, then, the pressure
tensor is diagonal: Pð0Þkb ¼ pdkb, where the hydrostatic pressure p is

49

p
X2
i¼1

niT
ð0Þ
i þ

pd=2

dC
d
2

	 
X2
i¼1

X2
j¼1

rd
ijvijninjljið1þ aijÞTð0Þi : (28)

Since Pð0Þ is a diagonal tensor, then, @ð1Þt T ¼ 0 in accordance with Eq.
(25).

Note that the partial temperatures have the constraint

nT ¼ n1T
ð0Þ
1 þ n2T

ð0Þ
2 : (29)

For elastic collisions (aij ¼ 1), Tð0Þ1 ¼ Tð0Þ2 ¼ T , and so, the total
kinetic energy is equally distributed between the two species of the
mixture. However, for inelastic collisions (aij < 1), the partial temper-
atures Tð0Þi are, in general, different from the (global) granular temper-
ature T, and so, energy equipartition is broken down.

It still remains to get the dependence of the temperature ratio

c � Tð0Þ1 =Tð0Þ2 on the parameter space of the mixture. The expression
of c will also be used later in both the SM-theory and GDH-theory to
determine gc in terms of the parameters of the mixture. The condition

for determining the ratio Tð0Þ1 =Tð0Þ2 is6

fð0Þ1 ¼ fð0Þ2 ¼ fð0Þ; (30)

where the partial cooling rates fð0Þi are associated with the partial tem-
peratures Tð0Þi . Here,

fð0Þ ¼ 1
nT

X2
i¼1

niT
ð0Þ
i fð0Þi : (31)

The partial cooling rates fð0Þi are defined as

fð0Þi ¼
1

2dniT
ð0Þ
i

X2
j¼1

mijvijr
d�1
ij ð1� a2ijÞ

�
ð
dV1

ð
dV2

ð
dr̂ Hðr̂ � gÞðr̂ � gÞ3

� f ð0Þi V1; tð Þf ð0Þj ðV2; tÞ: (32)

A good estimate of fð0Þi can be obtained by considering the
Maxwellian approximation (19) for the zeroth-order distributions
f ð0Þi ðVÞ. In this case, the partial cooling rates are6,49

fð0Þi ¼
4pðd�1Þ=2

dC
d
2

	 
 X2
j¼1

njljir
d�1
ij vij

	
2Tð0Þi

mi
þ
2Tð0Þj

mj


1=2

�ð1þ aijÞ 1�
lji

2
ð1þ aijÞ 1þ

miT
ð0Þ
j

mjT
ð0Þ
i

0
@

1
A

2
4

3
5: (33)

It must be remarked that the theoretical results for the temperature
ratio obtained by using the Maxwellian approximation (33) for the
partial cooling rates show, in general, an excellent agreement with
Monte Carlo simulations.7,8,56

B. First-order approximation: Shear viscosity
coefficient

The analysis to first order in the shear rate is large and tedious.
As said before, as expected the GDH-theory yields a nonzero kinetic
contribution gk to g, even for dilute systems.53,54 The expression of g
is

gGDH ¼ gGDHk þ gGDHc ; (34)

where

gGDHk ¼
X2
i¼1

gki ; gki ¼ �
mi

a

ð
dVVxVyf

ð1Þ
i ðVÞ; (35)

and57

gGDHc ¼ 2pd=2

dðd þ 2ÞC d
2

	 
X2
i¼1

X2
j¼1

nir
d
ijvijlijð1þ aijÞ

�
�
gkj þ njmjrij

	
miT

ð0Þ
j þmjT

ð0Þ
i

2pmimj


1=2�
: (36)

As in the case of fð0Þi , upon obtaining Eq. (36), we have approxi-

mated f ð0Þi ðVÞ by the Maxwellian distribution fi;MðVÞ. So far, the

expression (35) for gki is exact. However, the distributions f ð0Þ1 and

f ð0Þ2 obey a set of coupled linear integral equations which exact
solution is not known to date. Therefore, as usual in molecular
mixtures,27 we take the low-order truncation of the series expan-
sion of those distributions in Sonine polynomials. The leading

Sonine approximation to f ð1Þi ðVÞ is
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f ð1Þi ðVÞ ! �a
migki
niT

ð0Þ2
i

VxVyfi;MðVÞ: (37)

The kinetic coefficients gki can be computed from the Enskog kinetic
equation for f ð1Þi ðVÞ by using the approximation (37). After some alge-
bra, one gets the expressions

gk1 ¼
s22 � fð0Þ
� �

A1 � s12A2

fð0Þ2 � fð0Þ s11 þ s22ð Þ þ s11s22 � s12s21
; (38)

gk2 ¼
s11 � fð0Þ
� �

A2 � s21A1

fð0Þ2 � fð0Þ s11 þ s22ð Þ þ s11s22 � s12s21
; (39)

where

Ai ¼ niT
ð0Þ
i þ

pd=2

dðd þ 2ÞC d
2

	 
X2
j¼1

ninjr
d
ijmijvijð1þ aijÞ

� lji 3aij � 1ð Þ
Tð0Þi

mi
þ
Tð0Þj

mj

 !
� 4

Tð0Þi � Tð0Þj

mi þmj

" #
; (40)

s11 ¼
2pðd�1Þ=2

dðd þ 2ÞC d
2

	 
 vth



n1r

d�1
1 v11ð2h1Þ�1=2ð3þ 2d � 3a11Þ

� ð1þ a11Þ þ 2n2v12l21ð1þ a12Þh3=21 h�1=22

�
�
ðd þ 3Þðl12h2 � l21h1Þh�21 ðh1 þ h2Þ�1=2

þ 3þ 2d � 3a12
2

l21h
�2
1 ðh1 þ h2Þ1=2

þ 2dðd þ 1Þ � 4
2ðd � 1Þ h�11 ðh1 þ h2Þ�1=2

��
; (41)

s12 ¼
4pðd�1Þ=2

dðd þ 2ÞC d
2

	 
 vthn1r
d�1
12 v12l12h

�1=2
1 h3=22 ð1þ a12Þ

�
�
ðd þ 3Þðl12h2 � l21h1Þh�22 ðh1 þ h2Þ�1=2

þ 3þ 2d � 3a12
2

l21h
�2
2 ðh1 þ h2Þ1=2

� 2dðd þ 1Þ � 4
2ðd � 1Þ h�12 ðh1 þ h2Þ�1=2

�
: (42)

Here, vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=m12

p
is a thermal speed, h1 ¼ T=ðl21T

ð0Þ
1 Þ, and

h2 ¼ T=ðl12T
ð0Þ
2 Þ. The forms of s22 and s21 can be easily obtained

from Eqs. (41) and (42) by interchanging 1$ 2.
For elastic collisions (aij ¼ 1) and hard spheres (d¼ 3), the

expression of gGDH given by Eqs. (34)–(36) agrees with the results
derived many years ago from the Enskog kinetic theory for molecular
mixtures of hard spheres.58 However, the expression (20) of gSMc pro-
vided by the SM-theory is inconsistent with the results for molecular
mixtures.58 Regarding the comparison between the SM-theory and
GDH-theory for the collisional coefficient gc, we see that both theories
lead to different expressions even for elastic collisions. In this limit
case (aij ¼ 1), Eqs. (20) and (36) are equivalent only when the kinetic
coefficients gki are neglected in the GDH-theory.

V. MONTE CARLO SIMULATION OF A GRANULAR
BINARY MIXTURE UNDER SSF

To assess the degree of accuracy of the SM and GDH theories,
one has to resort to computer simulations. More specifically, in this
paper, we have numerically solved the Enskog equation by means of
the extension of the well-known DSMC method37 to dense gases. The
method is usually referred to as the ESMC method.59,60 In the simula-
tions carried out in this paper, the method has been slightly modified
to determine the shear viscosity coefficient of a granular binary mix-
ture for moderate densities. One important advantage of using the
ESMC method instead of molecular dynamics simulations is that the
simulation method is easy to implement from a computational point
of view due to the fact that the SSF state becomes spatially homoge-
neous in the local Lagrangian frame defined by the position R and the
peculiar velocityV.

As said in Sec. I, in the absence of a thermostating force (n¼ 0), a
granular fluid in the SSF reaches a steady state where the viscous heat-
ing effect is exactly compensated for by the collisional cooling. In this
case, the SSF is inherently a non-Newtonian state.61 Thus, to allow
that the granular temperature grows in time due to the viscous heating
effect (as in the case of elastic collisions), we excite the granular mix-
ture by means of the Gaussian force,

Fthi ¼
1
2
minV: (43)

According to Eq. (11), if n ¼ f, then the Gaussian force exactly balan-
ces the energy lost by collisions. In this situation, since the collision fre-
quency �ðtÞ for hard spheres is proportional to

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
, then the

relevant uniformity parameter a� ¼ a=�ðtÞ (reduced shear rate)
monotonically decreases in time, and so, the mixture asymptotically
reaches a Navier–Stokes regime where the reduced shear viscosity,

g� ¼ � lim
t!1

P�xy
a�
; (44)

can be measured in the simulations. Here, P�xy ¼ Pxy=nT ,

g� ¼ �

nT
g; (45)

and

�ðTðtÞÞ ¼
ffiffiffi
p
p

nrd�1
12 vthðTðtÞÞ; (46)

is an effective collision frequency for hard spheres. In the case of
molecular mixtures (where f ¼ n ¼ 0), Eq. (44) was employed by
Naitoh and Ono34 to measure the Navier–Stokes shear viscosity g of a
hard-sphere gas. The same procedure can be followed for granular
mixtures when the system is heated by the Gaussian thermostat. In
this case, g has also been measured in heated granular mixtures of
low62 and moderate33 densities. Here, since we are mainly interested
in assessing the SM and GDH theories at the level of the collisional
coefficient gc, our simulations will consider moderately dense mixtures
where the Enskog equation applies.

The application of the ESMC method to the SSF state was made
years ago by Montanero and Santos.59,60 It will be briefly presented
herein for the physical case d¼ 3; the interested reader is referred to
Refs. 33 and 62 for a more complete description on the application of
this simulation method to sheared granular mixtures. As usual in the
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ESMCmethod, the velocity distribution function of the species i is rep-
resented by the peculiar velocities fVkg of Ni “simulated” particles:

fiðV; tÞ ! ni
1
Ni

XNi

k¼1
dðV� VkðtÞÞ: (47)

Although the number of particles Ni of the species i is arbitrary, the
relation N1=N2 ¼ n1=n2 must be considered. For the sake of simplic-
ity, one assigns initially velocities to the particles drawn from the
Maxwell–Boltzmann probability distribution:

fiMðV; 0Þ ¼ ni p
�3=2 V�30i ð0Þ exp �V2=V2

0ið0Þ
� �

; (48)

where V2
0ið0Þ ¼ 2Tð0Þ=mi and T(0) is the initial temperature. To

enforce a vanishing initial total momentum, the velocity of every parti-
cle is subsequently subtracted by the amount N�1i

P
k Vkð0Þ.

The free motion and the collisions are uncoupled over a time
step Dt; this time is small compared with both the mean free time and
the inverse shear rate. Since the reduced shear rate a� decreases mono-
tonically in time, the value of Dt must be updated in the course of the
simulations. Since the SSF state is homogeneous in the local
Lagrangian frame moving with the peculiar velocity V, particles of
each species (i¼ 1, 2) are subjected to the action of a non-conservative
inertial force,

Fi;k ¼ �mi akbVb: (49)

Consequently, the free motion stage consists of making the change

Vk ! Vk � a � VkDt: (50)

In the collision stage, binary interactions between particles of spe-
cies i and jmust be considered. Then, a sample of

1
2
Nix

ðijÞ
maxDt (51)

pairs is chosen at random with equiprobability to simulate the colli-
sions between particles of species i with j. In Eq. (51), xðijÞmax is an upper
bound estimate of the probability that a particle of the species i collides
with a particle of the species j. Let us consider a pair ðk; ‘Þ belonging
to this sample (k denotes a particle of species i and ‘ a particle of spe-
cies j). For each pair ðk; ‘Þ with velocities ðVk;V‘Þ, the following steps
are taken:

1. A given direction r̂k‘ is chosen at random with equiprobability.
2. The collision between particles k and ‘ is accepted with a proba-

bility equal to Hðgk‘ � r̂k‘ÞxðijÞk‘ =x
ðijÞ
max, where xðijÞk‘ ¼ 4pr2

ijnjjgk‘ �
r̂k‘j and gk‘ ¼ Vk � V‘ � rija � r̂k‘ is the relative velocity of the
colliding pair in the Lagrangian frame.

3. In the case that the collision is accepted, postcollisional velocities
are assigned to both particles according to the scattering rules
(8) and (9)

Vk ! Vk � ljið1þ aijÞðgk‘ � r̂k‘Þr̂k‘; (52)

V‘ ! V‘ þ lijð1þ aijÞðgk‘ � r̂k‘Þr̂k‘: (53)

If in a collision xðijÞk‘ > xðijÞmax, the estimate of xðijÞmax is updated as

xðijÞmax ¼ xðijÞk‘ .

The procedure described above is performed for i¼ 1, 2 and j¼ 1,
2. The granular temperature is calculated before and after the collision

stage, and thus, the instantaneous value of the cooling rate f is
obtained. After the collisions have been calculated, the thermostat
Gaussian force (43) is considered by making the change,

Vk ! Vk þ
1
2
fVkDt: (54)

The kinetic and collisional transfer contributions to the pressure
tensor are evaluated along the course of the simulations. They are
given as

Pk ¼
X2
i¼1

mini
Ni

XNi

k¼1
VkVk; (55)

Pc ¼ n
2NDt

X†

k‘

lijmjrijð1þ aijÞðgk‘ � r̂k‘Þr̂k‘r̂k‘; (56)

where the dagger means that the summation is restricted to the
accepted collisions and subscripts i and j refer to the type of specie.
Moreover, we recall that, in Eqs. (55) and (56), the subscript k
refers to a particle of species i, while the subscript ‘ refers to a par-
ticle of species j.

As mentioned before, in our ESMC simulations, the velocities of
the particles are changed in each time step due to two uncoupled
mechanisms: the free streaming stage [where all particle velocities are
updated due to the shear rate and the Gaussian thermostat force fol-
lowing Eqs. (50) and (54), respectively] and the collision stage [where
only a selected sample of particles changes its velocities following Eqs.
(52) and (53)]. This allows us to estimate separately the collisional and
kinetic contributions to the pressure tensor in each time step. The for-
mer is obtained by summing only the contributions given by Eq. (56)
of the selected collision pairs at the end of the collision stage once all
collisions were performed. The kinetic contribution is computed by
taking into account all the velocities of the particles independently if
they have collided at the end of each time step once free streaming was
applied to all particles. The kinetic and collisional contributions to the
pressure tensor are averaged over an specific number of replicas N .
The pressure tensor is obtained from Eq. (14), while the (reduced)
shear viscosity g is obtained from Eq. (45).

One of the most determining steps for DSMC calculations is the
use of an efficient pseudo-random numbers generator (PRNG). It is
well known that PRNGs create a long but finite sequence of pseudo-
random numbers. The period of the sequence may play a major role
in the quality of this generator as the amount of required random
numbers grows up. In our simulations, use has been made of a larger
number of particles, time steps and replicas than in the simulations
carried out in the previous works.33,62 For this reason, we have imple-
mented the Mersienne Twister algorithm (MT19937), which is based
on Mersienne prime numbers, developed by Matsumoto and
Nishimura.63 The algorithm provides a set of uniform distributed
pseudo-random numbers with an extremely massive period of
219937 � 1 and 623-dimensional equidistribution up to 32-bit accuracy,
while using a working area of only 624 words. In addition, the initial
Maxwellian distributions were generated using the Marsaglia polar
method64 for the Box–Muller transform.65

Moreover, to improve the statistics, as said before, the results
have been averaged over a number N of independent realizations or
replicas. PRNG was iniciated in each replica with a different seed in
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order to ensure the use of different pseudo-random number sequen-
ces. In our simulations, we have typically taken a total number of par-
ticles N ¼ N1 þ N2 ¼ 5� 105, a number of replicas N ¼ 20, and a
time step Dt ¼ 5� 10�3k11=V01ð0Þ. Here, k11 ¼ ð

ffiffiffi
2
p

pn1r2
11Þ
�1 is

the mean free path for collisions 1–1 when d¼ 3.
Before studying the dependence of g� on the parameter space of the

mixture, it is convenient to gauge the reliability of the simulation method.
In other words, for given values of the mass and diameter ratios, the coef-
ficients of restitution, the concentration, and the density, the (reduced)
shear viscosity g� must achieve a value independent of the initial condi-
tions for long times (which is equivalent to the limit a� ! 0). To illustrate
this behavior, Fig. 1 plots the ratio g�ða�Þ=g�E for three different choices
of the initial shear rate a�0 ¼ a=�ðTð0ÞÞ: 0.2, 0.3, and 0.4. Here, g�ða�Þ
refers to the value of the (reduced) shear viscosity measured in the simula-
tions, while g�E corresponds to the theoretical Navier–Stokes value pre-
dicted by the GDH-theory. Here, we consider a three-dimensional
mixture with x1 ¼ 1

2 ; r1=r2 ¼ 2; m1=m2 ¼ 4; / ¼ 0:1, and a com-
mon coefficient of restitution a11 ¼ a22 ¼ a12 ¼ 0:8. Figure 1 highlights
the collapse of the three curves (corresponding to a three different initial
conditions) to a common value after a transient period of a few mean free
times. Consequently, a hydrodynamic regime independent of the initial
preparation of the system is reached for sufficiently long times. As a by-
product, we also observe that there is a time window (which corresponds
to the region of very small values of a�2) where the ratio g�ða�Þ=g�E fluc-
tuates around 1. This means that the shear viscosity coefficient measured
in the simulations when the (reduced) shear rate is small agrees very well
with the one obtained from the Enskog equation by the GDH-theory.
Similar behaviors have been found for other different mixtures. As
remarked in Ref. 33, note that the strict limit a� ! 0 is not attainable in
the simulations since it requires an infinite amount of time.

VI. COMPARISON BETWEEN KINETIC THEORIES
AND COMPUTER SIMULATIONS

Once the consistency of the simulation method to measure the
shear viscosity in a heated granular mixture has been tested, we want

to analyze the dependence of g on the parameters of the mixture.
More specifically, since the SM-theory is focused essentially in the col-
lisional contribution gc to g, we compare in this section the predictions
of both kinetic theories (the SM- and GDH-theories) for gc with the
results obtained from the ESMC method. On the other hand, since a
complete presentation of the results is complex due to the high num-
ber of parameters involved in the problem, henceforth, we will assume
a three-dimensional (d¼ 3) mixture for gc with a concentration of
x1 ¼ 1

2 and constituted by spheres made of the same material
a11 ¼ a22 ¼ a12 � a. This reduces the number of parameters to four
quantities: r1=r2;m1=m2;/; af g. In the case of hard spheres (d¼ 3),
a good approximation for the pair correlation functions vij is

66

vij ¼
1

1� /
þ 3
2

/

ð1� /Þ2
rirjM2

rijM3
þ 1
2

/2

ð1� /Þ3
	

rirjM2

rijM3


2

; (57)

whereMs ¼
P

i xir
s
i .

Figure 2 shows the dependence of the ratio g�c ðaÞ=g�c ð1Þ on the
coefficient of restitution a for a binary mixture with r1=r2 ¼ 1

2 ;
/ ¼ 0:2, and two different values of the mass ratio m1=m2. Here,
g�c ð1Þ refers to the value of the collisional shear vicosity for elastic colli-
sions. Although the SM-theory reproduces qualitatively well the a-
dependence of g�c (this coefficient decreases with increasing inelastic-
ity), significant quantitative discrepancies with simulations appear, in
particular, for strong dissipation. On the other hand, the comparison
between the GDH-theory and computer simulations shows a much
better agreement than the one found for the SM-theory. In fact, the
results obtained from the GDH-theory (which we recall have been
derived by considering the first-Sonine approximation) compare, in
general, very well with simulation data. The differences between this

FIG. 1. Plot of the ratio g�ða�Þ=g�E vs a�2 for a three-dimensional mixture with
x1 ¼ 1

2 ; r1=r2 ¼ 2; m1=m2 ¼ 4; and/ ¼ 0:1, and a common coefficient of res-
titution a11 ¼ a22 ¼ a12 ¼ 0:8. Three different values of the initial shear rate a�0
are considered: a�0 ¼ 0.2 (a), a�0 ¼ 0.3 (b), and a�0 ¼ 0.4 (c). Here, g�E refers to the
value of the Navier–Stokes shear viscosity provided by the GDH-theory by solving
the Enskog equation in the heated SSF state.

FIG. 2. Dependence of g�c ðaÞ=g�c ð1Þ on the (common) coefficient of restitution a
for d¼ 3, x1 ¼ 1

2 ; r1=r2 ¼ 1
2 ; and/ ¼ 0:2, and two different values of the mass

ratio: m1=m2 ¼ 10 [lines (a) and (c) and squares] and m1=m2 ¼ 2 [lines (b) and
(d) and triangles]. The solid lines correspond to the GDH-theory, whereas the
dashed lines refer to the SM-theory. Here, g�c ð1Þ corresponds to the (dimension-
less) collisional contribution to g� for elastic collisions.
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theory and ESMC results tend to increase slightly as the coefficient of
restitution decreases. We also observe that the first-Sonine solution to
g� overestimates the results obtained from computer simulations. In
this context and based on the previous results derived for the tracer
diffusion coefficient31 (see Figs. 6.4 and 6.5 of Ref. 49), we expect that
the discrepancies between the first-Sonine approximation and simula-
tions can be, in part, mitigated by considering the second-Sonine
approximation to g�. We plan to perform this quite long and tedious
calculation in the near future.

More significant discrepancies between the SM and GDH kinetic
theories appear when one considers the dependence of the ratio
g�c ða;/Þ=g�c ð1;/Þ on the total solid volume fraction /. This is shown
in Fig. 3 where g�c ða;/Þ=g�c ð1;/Þ is plotted vs / for a mixture with
r1=r2 ¼ 2; m1=m2 ¼ 10, and two values of a. As already remarked
in Ref. 55, while the SM-theory shows a very weak density dependence
of the above ratio for any value of a, the GDH-theory clearly shows a
significant decreasing of g�c ða;/Þ=g�c ð1;/Þ as density increases,
regardless of the value of the coefficient of restitution. With respect to
the comparison withMonte Carlo simulations, we observe an excellent
agreement between the theoretical predictions of the GDH-theory and
the simulation data over the entire range of values of the solid volume
fraction considered.

The tiny dependence of the ratio g�SMc ða;/Þ=g�SMc ð1;/Þ on / at
a given value of a in the SM-theory can be explained by the fact that
the only dependence of this ratio on / in this theory is via the partial
temperatures Tð0Þi , whose dependence on / is very small. However,
the dependence of g�GDHc ða;/Þ=g�GDHc ð1;/Þ on / in the GDH-theory
is not only through Tð0Þi but also through the kinetic coefficients gki .

To show it in a more clean way, it is quite instructive to consider the
limiting case of mechanically equivalent particles (m1¼m2, r1 ¼ r2,
and aij ¼ a). In this limit case,

g�SMc ða;/Þ
g�SMc ð1;/Þ ¼

1þ a
2

; (58)

while

g�GDHc ða;/Þ
g�GDHc ð1;/Þ ¼

1þ a
2

Að/; aÞ; (59)

where the function Að/; aÞ has a complex dependence on both / and
a. For the sake of illustration, for d¼ 3, Að/; aÞ is given by

Að/; aÞ ¼ 1þ Bð/; aÞ
1þ Cð/Þ ; (60)

where

Bð/; aÞ ¼ 5p
16/v

1� 2
5
ð1þ aÞð1� 3aÞ/v

ð1þ aÞð2þ aÞ ; (61)

Cð/Þ ¼ 5p
96/v

1þ 8
5
/v

	 

: (62)

To complement Fig. 3, Fig. 4 shows the / dependence of the
(dimensionless) collisional shear viscosity g�c for m1=m2 ¼ 4;
r1=r2 ¼ 1, and three different values of the coefficient of restitution a.
As for Fig. 3, the good agreement between the GDH-theory and
Monte Carlo simulations indicates again that the collisional transfer
contributions to the shear viscosity are provided accurately by Eq.
(36). Important discrepancies between the expression (20) of the

FIG. 3. Plot of g�c ða;/Þ=g�c ð1;/Þ vs the volume fraction / for d¼ 3, x1 ¼ 1
2 ;

r1=r2 ¼ 2; andm1=m2 ¼ 10, and two values of a: a ¼ 0:5 [the solid line (a) is
for the GDH-theory and the dashed line (c) is for the SM-theory] and a ¼ 0:8 [the
solid line (b) is for the GDH-theory and the dashed line (d) is for the SM-theory].
The symbols correspond to the ESMC results: triangles for a ¼ 0:5 and squares
for a ¼ 0:8.

FIG. 4. Plot of the (dimensionless) collisional shear viscosity g�c as a function of the
solid volume fraction / for m1=m2 ¼ 4; r1=r2 ¼ 1, and three different values of
the coefficient of restitution a: a ¼ 0:9 (solid lines and triangles), a ¼ 0:8 (dashed
lines and squares), and a ¼ 0:7 (dotted lines and circles). The black lines corre-
spond to the GDH-theory, while the red lines are for the SM-theory. The symbols
refer to the results obtained from the ESMC method.
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SM-theory and computer simulations are again observed, in particular,
for high densities.

Although the main goal of the present paper is to asses the reli-
ability of the SM-theory and GDH-theory at the level of the collisional
coefficient g�c , it is also interesting to gauge the accuracy of the GDH-
theory for the total shear viscosity g� ¼ g�k þ g�c . Given that the SM-
theory predicts g�k ¼ 0, we have not considered appropriate to include
the SM-theory in this comparison. Figure 5 shows g� vs the mass ratio
m1=m2 for r1=r2 ¼ 1; / ¼ 0:1, and three different values of a. We
observe first that the agreement between the GDH-theory and com-
puter simulations is, in general, very good although the differences
between the theoretical and ESMC results tend to increase as inelastic-
ity increases. As noted in Ref. 33, at a given value of a, we observe that
g� exhibits a non-monotonic dependence on the mass ratio.

VII. CONCLUDING REMARKS

The main objective of this paper has been to assess the accuracy
of two different kinetic theories for granular mixtures: the SM-theory24

and the GDH-theory.25,26 While the SM-theory is based on the
assumption of Maxwellian distributions at different temperatures Ti
and velocities Ui for the true distribution functions fiðr; v; tÞ, the
GDH-theory solves the Enskog kinetic equation by means of the appli-
cation of the Chapman–Enskog method to first order in spatial gra-
dients. Due to the Maxwellian approximation of the SM-theory, it
yields vanishing Navier–Stokes transport coefficients for dilute granu-
lar mixtures.53,54 This is an important limitation of this theory. Thus,
one expects that the SM-theory provides at least acceptable estimates
for the collisional contributions to the transport coefficients.

A previous comparison55 between both kinetic theories has
shown important differences between them at the level of the

collisional shear viscosity gc, in particular, for strong inelasticity. To
assess the reliability of each one of the theories, we have compared, in
this paper, their theoretical predictions with those obtained by means
of Monte Carlo simulations. More specifically, we have performed
new simulations of moderately dense granular binary mixtures under
SSF. As in previous works,33,62 we have introduced in the simulations
an external thermostat force (proportional to the particle velocity) that
supplies energy to the system to exactly compensate for the energy lost
in collisions. In this way, the shearing work still heats the mixture so
that the reduced shear rate a�ðtÞ ¼ a=�ðtÞ tends to zero in the long-
time limit. Under these conditions, the system reaches a linear hydro-
dynamic regime where the Navier–Stokes shear viscosity of a heated
granular binary mixture can be identified and measured in the
simulations.

To reduce the number of independent parameters involved in
the problem, the simulations have been carried for three-dimensional
mixtures (d¼ 3), with a mole fraction x1 ¼ 1

2 and a (common) coeffi-
cient of normal restitution a � ars. This reduces the number of rele-
vant parameters to four (r1=r2; m1=m2; /, and a). As expected, the
comparison with computer simulations for gc has shown that the
GDH-theory exhibits a much more better agreement with the ESMC
results than the SM-theory. This is clearly shown in Fig. 3 where the
scaled coefficient g�c ða;/Þ=g�c ð1;/Þ is plotted vs the density / for two
different values of a. While the SM-theory predicts a tiny influence of
/ on this coefficient, the GDH-theory shows that g�c ða;/Þ=g�c ð1;/Þ
decreases significantly with increasing density at a given value of the
coefficient of restitution. On the other hand, in spite of the deficiencies
of the SM-theory, it captures at least the a-dependence of
g�c ða;/Þ=g�c ð1;/Þ for given values of density (see Fig. 2).

As mentioned in Sec. VI, the differences between the first-Sonine
approximation to g� and computer simulations could be in principle
diminished by considering the second-Sonine correction to the first-
order distribution function. Although we do not have an evidence on
the convergence of the second-Sonine approximation to the ESMC
results in the SSF problem, the previous works31 on the tracer diffusion
coefficient seem to indicate that this approximation could mitigate the
(small) discrepancies observed in this paper between the GDH-theory
and simulations. Since the determination of the second-Sonine
approximation to the shear viscosity involves a significant work, we
expect to provide a support of the above assertion in a next work.

It is quite apparent that the accuracy of the SM and GDH theo-
ries has been assessed through a comparison with an “exact” numeri-
cal solution of the Enskog equation in the SSF obtained from the
ESMCmethod.59,60 This method (which is an extension to dense gases
of the well-known DSMC method37) is based on the same assump-
tions as the Enskog kinetic equation: (i) molecular motion and colli-
sions are decoupled and (ii) absence of velocity correlations between
the particles which are about to collide (molecular chaos hypothesis).
A much more stringent assessment of the above kinetic theories could
be made via a comparison with the results obtained from molecular
dynamics simulations (which do not rely on any of the above assump-
tions). In this context, it is remarkable to note that the GDH-theory
has also been tested with molecular dynamics simulations in a rela-
tively complex problem: hydrodynamic instabilities in a polydisperse
granular system at moderate density with significant inelasticity lev-
els.67 The comparison between the theoretical predictions of the
GDH-theory for the critical length scale Lc (which expression involves

FIG. 5. Plot of the (dimensionless) shear viscosity g� ¼ g�k þ g�c as a function of
the mass ratio m1=m2, for r1=r2 ¼ 1; / ¼ 0:1, and three different values of a.
The lines are the theoretical predictions of the GDH-theory and the symbols corre-
spond to the results obtained from the ESMC method.
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the shear viscosity coefficient) and molecular dynamics results shows,
in general, an excellent agreement in flows of strong dissipation
(aij 	 0:7) and moderate solid volume fractions (/ � 0:2). This good
agreement between molecular dynamics and linear hydrodynamics
(with the Navier–Stokes transport coefficients derived from the GDH-
theory in the first-Sonine approximation) for the onset of velocity vor-
tices must be considered a nontrivial test of the reliability of kinetic
theory for describing granular polydisperse flows even for strong
inelasticity, finite density, and particle dissimilarity.

One of the main limitations of the present study is its restriction
to the shear viscosity coefficient. This coefficient has been identified in
computer simulations thanks to the simplicity of the SSF: a nonequi-
librium state that becomes homogeneous in the Lagrangian frame
moving with the velocities of particles. This fact allows us to measure
in a clean way the dependence of the Navier–Stokes shear viscosity
coefficient on the parameter space of the system. As said before, the
reliability of the GDH-theory has been also assessed in the computa-
tion of the critical length Lc for the onset of instabilities in the homoge-
neous cooling state.67 Needless to say, the assessment of other relevant
transport coefficients of granular mixtures is still an open challenging
issue. Among them, the thermal conductivity coefficient (whose colli-
sional transfer contribution is different from zero at moderate densi-
ties) can be the next coefficient to be measured in computer
simulations. However, its determination in the Navier–Stokes domain
is a quite difficult problem due essentially to the coupling present in
steady states for granular gases between spatial gradients and colli-
sional cooling.49 In principle, two different strategies can be followed
to get this coefficient. The first option would be the use of
Green–Kubo relations.68,69 However, before carrying on simulations,
one should first derive theoretically these relations for granular mix-
tures. As a second option and based on previous results obtained for
dilute monocomponent granular gases,70 one could apply a homoge-
neous, anisotropic velocity-dependent external force which produces
heat flux in the absence of gradients. On the other hand, although this
second option seems to be more reachable than the first one (since the
transport coefficient is measured in homogeneous conditions), its fine
tuning for dense granular mixtures still requires a significant addi-
tional work which goes beyond the objective of the present paper. We
plan to work on the last line in the near future.
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