Energy production rates in two-dimensional granular gases: The interplay between polydispersity, inelasticity, and roughness

Andrés Santos

Universidad de Extremadura, Badajoz, Spain

What is a granular gas?

- It is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the grains collide.
- If the granular material is driven or shaken, such that contacts between the grains become highly infrequent, the material enters a gaseous state.

Minimal model of a granular gas: A gas of identical smooth inelastic hard spheres

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

This minimal model ignores ...

Polydispersity

http://www.cmt.york.ac.uk/~ajm143/nuts.html

Simple model of a granular gas: A collection of inelastic rough hard particles

This model unveils an inherent breakdown of energy equipartition in granular fluids, even in homogeneous and isotropic states

Several circles (Kandinsky, 1926)

Galatea of the Spheres (Dalí, 1952)

A motivation

PHYSICAL REVIEW LETTERS

week ending 12 MAY 2017

Ş

Velocity Distribution of a Homogeneously Driven Two-Dimensional Granular Gas

Christian Scholz and Thorsten Pöschel

Vibrot

Flowing Matter 2018, 05-09 February 2018, Lisbon

Material parameters:

- Masses m_i
- Diameters σ_i
- Moments of inertia I_i
- Coefficients of normal restitution α_{ii}
- Coefficients of tangential restitution β_{ii}
- $\alpha_{ij} = 1$ for perfectly elastic particles
- β_{ij} =-1 for perfectly smooth particles
- β_{ij} =+1 for perfectly rough particles

Collision rules

Cons. linear momentum: $\overline{m_i \mathbf{v}_i' + m_j} \mathbf{v}_j' = \overline{m_i \mathbf{v}_i} + \overline{m_j \mathbf{v}_j}$ Cons. angular momentum: $I_{i}_{j}\omega_{i}^{\prime}\pmrac{1}{2}m_{i}\sigma_{i}_{j}\left(\mathbf{v}_{i}^{\prime}\cdot\widehat{\boldsymbol{\sigma}}_{\perp}
ight)$ $=I_{i}\omega_{i}_{j}\pm\frac{1}{2}m_{i}\sigma_{i}_{j}\left(\mathbf{v}_{i}_{j}\cdot\widehat{\boldsymbol{\sigma}}_{\perp}\right)$ Relative velocity of the points of the spheres at contact:

$$\mathbf{w}_{ij} = \mathbf{v}_{ij} - \left(rac{\sigma_i}{2}\omega_i + rac{\sigma_j}{2}\omega_j
ight)\widehat{oldsymbol{\sigma}}_{oldsymbol{\square}}$$

Energy collisional loss

$$E_{ij} = \frac{1}{2}m_iv_i^2 + \frac{1}{2}m_jv_j^2 + \frac{1}{2}I_i\omega_i^2 + \frac{1}{2}I_j\omega_j^2$$

$$E'_{ij} - E_{ij} = -(1 - \alpha_{ij}^2) \times \cdots$$
$$-(1 - \beta_{ij}^2) \times \cdots$$

Energy is conserved only if the spheres are

• elastic ($\alpha_{ii}=1$) and

• either

- perfectly smooth (eta_{ij} =-1) or
- perfectly rough (β_{ij} =+1)

Partial (granular) temperatures

Translational temperatures: $T_i^{\text{tr}} = \frac{m_i}{2} \langle (\mathbf{v}_i - \mathbf{u})^2 \rangle$ Rotational temperatures: $T_i^{\text{rot}} = I_i \langle \omega_i^2 \rangle$

Total temperature: $T = \sum_{i} \frac{n_i}{3n} \left(2T_i^{\text{tr}} + T_i^{\text{rot}}\right)$

Collisional rates of change for temperatures

Energy production rates:

$$\xi_{i}^{\mathrm{tr}} = -\frac{1}{T_{i}^{\mathrm{tr}}} \left(\frac{\partial T_{i}^{\mathrm{tr}}}{\partial t}\right)_{\mathrm{coll}}, \quad \xi_{i}^{\mathrm{tr}} = \sum_{j} \xi_{ij}^{\mathrm{tr}}$$
Binary collisions
$$\xi_{i}^{\mathrm{rot}} = -\frac{1}{T_{i}^{\mathrm{rot}}} \left(\frac{\partial T_{i}^{\mathrm{rot}}}{\partial t}\right)_{\mathrm{coll}}, \quad \xi_{i}^{\mathrm{rot}} = \sum_{j} \xi_{ij}^{\mathrm{rot}}$$

Net cooling rate: $\zeta = -\frac{1}{T} \left(\frac{\partial T}{\partial t} \right)_{\text{coll}}, \quad \zeta = \sum_{i} \frac{n_i}{3nT} \left(2\xi_i^{\text{tr}} T_i^{\text{tr}} + \xi_i^{\text{rot}} T_i^{\text{rot}} \right)$

Methodology: Kinetic Theory

Ansatz on the precollisional two-body velocity distribution function:

$$f_{ij}(\mathbf{v}_{i},\omega_{i};\mathbf{v}_{j},\omega_{j}) \rightarrow n_{i}n_{j}\frac{m_{i}m_{j}}{4\pi^{2}T_{i}^{\mathrm{tr}}T_{j}^{\mathrm{tr}}}e^{-m_{i}\frac{(\mathbf{v}_{i}-\mathbf{u})^{2}}{2T_{i}^{\mathrm{tr}}}-m_{j}\frac{(\mathbf{v}_{j}-\mathbf{u})^{2}}{2T_{j}^{\mathrm{tr}}}}$$
$$\times f_{i}^{\mathrm{rot}}(\omega_{i})f_{j}^{\mathrm{rot}}(\omega_{j})$$

Molecular chaos+Maxwellian approx. for translational distribution

Results

$$\xi_{ij}^{\text{tr}} \& \xi_{ij}^{\text{rot}} = \text{functions of} \begin{cases} m_i, m_j, I_i, I_j, \sigma_i, \sigma_j \\ \alpha_{ij}, \beta_{ij}, \\ n_i, \quad n_j, \\ \hline T_i^{\text{tr}}, T_j^{\text{tr}}, T_i^{\text{rot}}, T_j^{\text{rot}} \end{cases}$$

Application to the Homogeneous Cooling State. *Monodisperse* system

Application to the Homogeneous Cooling State. *Bidisperse* system

Application to the Homogeneous Cooling State. Bidisperse system

Application to the Homogeneous Cooling State. *Bidisperse* system

Conditions for *mimicry*

The smaller spheres must have a larger solid density than the biggest spheres

$$\frac{m_1}{m_2} \approx \frac{1}{3} \left(1 + 2\frac{\sigma_1}{\sigma_2} \right)$$

Conclusions and outlook

- A very rich interplay between polydispersity, inelasticity, and roughness exists.
- An intruder component can "disguise" as the host monocomponent gas (from the point of view of mean kinetic energies): Mimicry effect.
- Extensions to steady states (e.g., white-noise thermostat) are straightforward.
- Comparison with computer simulations are planned.
- Next step for monocomponent gases: Derivation of the Navier-Stokes hydrodynamic equations.

What people think about during your conference talk

