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The Burnett transport equations for a dense hard-sphere gas as given by the standard 
(SET) and revised (RET) Enskog theories are discussed. It is shown that beyond the 
Navier-Stokes approximation, the expressions for the collisional transfer contributions to the 
molecular fluxes are formally different in both theories. In contrast, by using the Chapman- 
Enskog method, the Burnett approximation to the single particle distribution function is 
found to be identical. The differences between the SET and the RET in this hydrodynamic 
order appear only through two linearized Burnett transport coefficients in the momentum 
flux. The numerical evaluation of these differences is explicitly carried out. 

1. Introduction 

In a memoir of 1922, Enskog [l] presented an approximate kinetic equation 
for a dense hard-sphere fluid as an extension of the Boltzmann equation to 
higher densities. The merits of Enskog’s theory (which is now called the 
standard Enskog theory (SET)) are discussed in the various existing mono- 
graphs, (e.g. [2]) in kinetic theory. They remained unchallenged until in 1973 
van Beijeren and Ernst [3], taking up earlier results of Garcia-Cohn, Barajas 
and Pifia [4], pointed out the inadequacies of the extensions of the SET to 
mixtures and produced a modified Enskog equation which in particular avoided 
the inconsistency of the SET with irreversible thermodynamics. The theory of 
van Beijeren and Ernst, usually called the revised Enskog theory (RET), was 
later shown to possess further nice properties [5]. 

In the case of multicomponent mixtures, van Beijeren and Ernst showed that 
the SET and the RET differed already at the Navier-Stokes level. This 
prompted a number of studies [6] geared at examining the nature and 
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magnitude of the differences, particularly in view of the fact that some 
experimental work kept being interpreted in terms of the SET [7]. On the 
other hand, for a monatomic dense gas of hard spheres the SET and the RET 
lead to the same results up to the Navier-Stokes approximation, but they 
would differ beyond. In particular, as Enskog himself realized and van 
Beijeren and Ernst also stressed, the SET may not in principle be used to 
derive (linear and nonlinear) Burnett and higher-order hydrodynamic equa- 
tions and corresponding transport coefficients. This is due to the fact that if 
there exists a strong density gradient in the gas or one has a strong external 
field, the collision frequency should depend on the gradients of the local 
density as well as on the local density itself, which was not accounted for in the 
SET. Nevertheless, recently Alves and Kremer [8] have used the linearized 
Burnett equations of the SET to study light scattering in a dense monatomic 
gas. 

A practical question then arises: To what extent do the linearized Burnett 
coefficients in the RET differ from those in the SET for a dense monatomic 
gas? In this paper we address this question by considering the Burnett 
hydrodynamic equations in both Enskog theories. In the same spirit that led to 
the assessment of the numerical differences between the Navier-Stokes trans- 
port coefficients of multicomponent mixtures [6] as given by the SET and the 
RET, we will explicitly determine below the corresponding differences in the 
case of the Burnett transport coefficients. 

The paper is organized as follows. In section 2, we derive the balance 
equations for the conserved densities of mass, momentum and energy both in 
the SET and the RET. Here we consider all terms in the collisional transfer 
that will contribute to the Burnett approximation. Section 3 is concerned with 
the Chapman-Enskog solution to the kinetic equations. The explicit difference 
between the SET and the RET transport coefficients, which manifests itself 
only in some linearized Burnett terms, is computed. Finally, in section 4 we 
present a brief discussion of our results and give some concluding remarks. 

2. The standard and revised Enskog theories for a dense monatomic 

hard-sphere gas 

Our starting point is the kinetic equation for a dense monatomic gas of hard 
spheres, 

( -$ + U’ ; + ; * $)f(r, u; t) = J(ffi) , (2.1) 



100 M. Lbpez de Hare, V. Garz6 I Burnett equations for hard-sphere gas 

where the collision operator is given by 

J( ffi) = I/ 0(t. g) (k - g)a2[x(r, r + din) f(r, u’; t) f(r + & vi; t) 

- ,y(r, r - a&t) f(r, u; t) f(r - cd, q; t)] dh du, . (2.2) 

Here, f(r, u; t) is the single particle distribution function and represents the 
average number of hard-sphere molecules (with diameter cr and mass m) at the 
position r with velocity u at time t. F is the outside force acting on the system, 
g = u, - u is the relative velocity of two spheres with velocities u1 and u, 
respectively, k is a unit vector directed along the line of centers from the 
sphere centered at r + oh to the sphere with center at r upon collision (i.e. at 
contact) and 8 is the Heaviside step function. Finally, u’ and vi are the 
velocities of the restituting collision, i.e. 

u’=u+(g.k)f, (2.3) 

u;=q-(g4)h, (2.4) 

and x is the radial distribution function of two hard spheres at contact, namely, 
when the distance between their centers is cr. In the SET [l], x is the same 
function of the number density n as in fluid in uniform equilibrium with n 
evaluated at the point of contact. On the other hand, in the RET [3] the radial 
distribution function is the same functional of n as in a fluid in nonuniform 
equilibrium. Hence, 

X SET = XSET(r, r’ln) = 1 + n( 1(r + r’)) j- V(r, r’1r3) dr, 

and 

+ $ n2(&+ r’)) I I V(r, r’lr3r4) dr, dr, + - - * , 

(2.5) 

X 
RET ~ 

X RET(r, r’ln) = 1 + I n(r3) V(r, r’(r3) dr, 

where r’ = r 2 ak In eqs. (2.5) and (2.6) the number density rz is defined by 

n(r; t) = f(r, u; t) du , (2.7) 
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and we have introduced the usual Husimi V-functions of the virial expansion of 
the pair distribution function [9]. 

In order to assess the differences between both descriptions, it is necessary 
to explicitly derive the hydrodynamic equations beyond the Navier-Stokes 
order. This will be achieved below by means of the Chapman-Enskog method 
[lo]. Notice that, by taking into account the difference in position of two hard 
spheres at collision, the collision operator J(ffi) is nonlocal. On the other 
hand, the hydrodynamic equations are local so that some manipulations are 
required. By performing a Taylor expansion of J( ffi) around r keeping terms 
up to third order, subsequently multiplying the resulting kinetic equation with 
m, mu and &mu*, respectively, and finally integrating over u, one obtains the 
conservation equations. The mathematical details are presented in the appen- 
dix and the final forms are the following: 

g+$(pu)=o, 

$ (WI + $ - (P+puu)=nF) 

(2.8) 

(2.9) 

-&u2+$2k,T)+-&*[q+(fpu2+$2ksT)u+P~u]=nF~u, 

(2.10) 

where p = mn is the mass density, the local velocity u is defined by 

p(r; t) u(r; t) = 
I 

f(r, u; t) mu du , (2.11) 

and the local temperature T is defined by 

sn(r; t) ksT(r; t) = f(r, u; t) imV2(r; t) du , (2.12) 

with V= u - u the peculiar velocity. 
The pressure tensor P is given by 

P(r; t) = PK(r; t) + P”(r; t) . (2.13) 

where the kinetic part is 

PK(r; t) = j- J%ZW du , (2.14) 

and the potential part differs depending on whether the SET or the RET is 
considered. In the first case, 
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P” SET(r; t) = $mcr3 @ * d 

x(~~g)(v’-v)~{*c[ffi(l+ $A.-$ogf, 

+~~2~~:(f~~~~+~*~~i-2~~)] 

+ &,(T~& ; $ (xffi)} d% du du, , 

while in the RET one gets 

(2.15) 

P+ RET(r; t) = P+ SET(r; t) - &na5 
111 G * g) 

x (t . g)(V’ - V)t g kk: +r $ ffl dk du du, . 

Similarly, the heat flux vector q is given by 

4(? t) = qK(‘; 0 + 4%; t) 7 

where 

qK(r; t) = f $mV2V du , 

(2.16) 

(2.17) 

(2.18) 

and again the potential parts are different in the SET and in the RET: 

4 4 SET(r; t) = $.& 
111 

e(f * g) (is g)(V” - V’)i 

x & ffl 1+&_& 
H ( 

f ; log - 
fi 1 

+&T2a: f;;fi+fi;; 
( 

f-2$ $)I 

+ &r’&: $ -$ (&fi)} dgdu du, , 

and 

(2.19) 

4 ’ RET(r; t) = q+ SET(r; t) - &ma5 

x (V2 - V’)ii $ &: z b: ; $ ffl dk du du, . 
(2.20) 



M. Lbpez de Hare, V. Garzb I Burnett equations for hard-sphere gas 103 

In eqs. (2.15), (2.16), (2.19) and (2.20), x, is the equilibrium value of the 
pair correlation function for two spheres at contact with the equilibrium density 
replaced by the local equilibrium density at the point r. 

The kinetic fluxes PK and qK arise from the translational transfer of 
momentum and energy, respectively, while their potential counterparts contain 
contributions from the instantaneous transfer of momentum and energy at 
collision between two spheres, via the interparticle potential field, over the 
distance (T between their centers. Such a transport mechanism, which does not 
appear in a dilute gas, is much faster and more effective than translational 
transfer and therefore dominant in dense gases. We remark that the differences 
in collisional transfer in the RET and the SET, which is the main result of this 
section, contrast with what occurs when only terms up to second order in the 
Taylor expansion of the collision operator are retained (Navier-Stokes regime) 
[3]. In this latter regime the collisional transport is identical in both theories. 

Once the conservation laws have been derived, the explicit expressions for 
the fluxes (and hence for the transport coefficients) can be obtained with the 
aid of the Chapman-Enskog method. This will be done in the next section up 
to Burnett hydrodynamic order. 

3. The Burnett hydrodynamic equations 

Following the standard Chapman-Enskog procedure [lo], we now assume 
that the single particle distribution function f depends on r and t only through 
the space and time dependence of n, u and T. Thus, we look for a normal 
solution of the form 

(3.1) 

where p is the relative variation of the locally conserved densities over a mean 
free path, and hence proportional to the gradients of these quantities in the 
system. It is only used as a uniformity parameter to select terms of equal order 
of magnitude and is eventually set equal to one at the end of the calculations. 
Similar p-expansions are carried out for all operators appearing in the Enskog 
kinetic equation (2.1). When one collects the coefficients of equal powers in ~1 
on both sides of the expanded equation, a set of integral equations for the 
different approximations fck) is obtained. These integral equations are then 
solved iteratively. 

The solution up to the Navier-Stokes order (linear transport theory) is 
well-known and identical in both the SET and the RET [2,3]. Therefore, we 
will not rederive it here. Rather, we will concentrate on the second order 
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(Burnett) transport constitutive relations for the momentum and heat fluxes. 
Since our main concern is to elucidate the discrepancies between the RET and 
the SET and as shown in the appendix, the integral equations for f (*) are equal 
in both theories (and hence also the kinetic contribution to the fluxes), we only 
have to deal with the collisional transfer contributions. More specifically, we 
are interested in the magnitude of the second terms appearing on the right- 
hand sides of eqs. (2.16) and (2.20) respectively, when one restricts to the 
Burnett approximation. We then find that 

p$ (2) RET = p; (2) SET _ ; p*nk,T % 
a2n 

2V2nSij+ - 
> ari arj ’ (3.2) 

4 
0 (2) RET _ 4 (2) SET 

-Q Y (3.3) 

where we have introduced the reduced density p* = $=cr3n. 
It must be emphasized that up to this order onZy the pressure tensor differs 

in the SET and the RET and that the difference will solely affect some of the 
linearized Burnett coefficients. Therefore, our task is reduced to evaluating the 
numerical differences in these coefficients. 

Recently, the linearized Burnett equations in the SET (in the first Enskog 
approximation) have been used by Alves and Kremer [S] to study light 
scattering from density fluctuations. It is straightforward to see from eqs. (3.2) 
and (3.3) that the linearized Burnett equations in the RET have the same 
structure as those given by the SET (cf. eqs. (10) and (11) of ref. [8]) and may 
be obtained directly from the latter by replacing the coefficients aSET (cf. eq. 
(15) of ref. [S]) and aiET (cf. eq. (17), same reference) by 

RET SET 
a1 =a1 

and 

RET SET 
a3 =a3 

(3.4) 

(3.5) 

where 77 = (5/16a2)(kBTm/m)“* is the first Enskog approximation to the shear 
viscosity of a low density hard-sphere gas [lo]. 

In order to evaluate numerically the differences between a RET and aSET 
(i = 1,3), an explicit expression for x, is required. We will consider the 
Camahan-Starling approximation [ll] which in terms of p* reads 

xc = 8 
p*-8 

(p* -4)3 . 
(3.6) 
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0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 1. Reduced density dependence of the relative differences between the linearized Burnett 
transport coefficients a1 and (I~ as given by the SET and RET. The solid line corresponds to the 
absolute value of A,(p*) while the dashed line refers to A&J*). 

For the sake of illustration of such numerical differences, in fig. 1 we show 
-A,(p*) and AJp*), where 

RET SET 

A&I*)= *’ ;fi (i = 1,3) . 
ai 

(3.7) 

We remark that in the limit of small p*, -A, = O&p* and A, = O.l2p*‘. This is 
suggestive of why the relative difference is much more important in the case of 
a1 than for a3 as can be clearly observed in the figure. As a matter of fact, for 

P * eO.5, -A, ~36% and A, is less than 1% whereas for p* = 1, -A, ~80% 
and A,== 8%, so that for moderate densities the relative difference in aj is 
practically negligible. 

4. Discussion 

In this paper we have examined the differences between two versions of the 
Enskog theory, the SET and the RET, through the consideration of the 
Burnett hydrodynamic equations for a dense monatomic hard-sphere gas. 
These versions, in which the collision frequency of the Boltzmann equation is 
increased by a factor x and which take into account the correlations between 
the positions of two colliding spheres and the sizes of the molecules, differ in 
the form assumed for the density dependence of x. It had been previously 
shown that up to the Navier-Stokes approximation, both descriptions lead to 
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the same results [3]. Here, we have shown that beyond the Navier-Stokes 
order, the expressions for the collisional transfer contributions to the fluxes of 
momentum and energy are in general different in the SET and the RET. This 
result is important in the context of transport in dense fluids since it is 
well-known that collisional transfer is dominant in such systems. Besides, by 
using the Chapman-Enskog method, we explicitly computed the differences 
between the Burnett transport coefficients as given from both theories and 
found that they only concerned two linearized Burnett coefficients. 

Our results deserve some further comments. While the RET is clearly a 
cleaner and conceptually more attractive theory, in terms of the Burnett 
transport coefficients it is indeed remarkable that the only significant numerical 
difference between both theories shows through CQ (cf. eq. (3.4) and fig. 1). 
Moreover, the fact that f(*) verifies the same integral equation in the SET and 
the RET indicates that the discrepancies in Burnett order associated to the 
different choices in x are subtler than might have been anticipated. Therefore, 
given the fact that the SET is mathematically simpler than the RET, one might 
conclude that the overall performance of the SET up to the Burnett approxi- 
mation in a dense monatomic gas is not too bad. In this sense, the calculations 
performed by Alves and Kremer [8] would retain some of their value. 
However, we must point out that for the particular situation that they 
examined, we found that the contributions to the structure factor arising from 
the linearized Burnett terms are completely negligible when compared with the 
ones coming from the Navier-Stokes terms. 

As a final point, we want to mention that the effort carried out here will be 
extended in the near future to the case of multicomponent fluid mixtures. 
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Appendix 

This appendix is concerned with the derivation of the conservation equations 
(2.8)-(2.10) and the integral equation for f’? Let us start from the nonlinear 
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Enskog kinetic equation 

( ;+u$+$; f(r,u;t)=J(ff,), 
> 64.1) 

where the collision operator J( ff,) is defined by eq. (2.2). We expand J( ff,) in 
a Taylor series around r and, in order to cater for all the contributions to 
Burnett hydrodynamic order, retain terms up to third order in the spatial 
gradients. Carrying out such expansions, one gets 

where the Ji( fiI) (i = 0, . . . ,3) are given in the SET and RET by 

J,SET (ff*) = JFml) 

= XC e(k - g)(k - g)c?( f’f; - ffi) da de, , (-4.3) 

64.4) 

(A.9 

(A-6) 
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64.7) 

x (f’fl +X4)} didv, 7 (A4 

where f = f(r, u; t), fi = f(r, u,; t), f’ = f( r, u’; t) and f; = f(r, u;; t). In deriv- 
ing eqs. (A.3)-(A.8) we have made use of the following expansions around r: 

A a 
f(r’, u; t) = f(r, u; t) f ak. - f( ar r,u;t)+ $ ik: -_j!j -& f(r,u;t) 

a3 ....A 
* 7 kkki $ ar ar a a a f(r, u; t) + . * * , (A.9) 

3 
+ak& a a a 

48 $ ; $ xc + ’ * . 3 (A.lO) 
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with r’ = r + crk and 

a a 
---?I 
ar ar 

.)(e.Z)(a.$)+..., (A.ll) 

= 1 + n(r) 
I 

n”(r) 
V(r, r’1r3) dr, + 21 . II 

V(r, r’lr3r4) dr, dr, + * * - . 
(A.12) 

Furthermore, in order to express xRET and the gradients of xc in terms of the 

gradients of the number density, the following relations are required: 

ax, 
- = an I H(r, r’, r3) dr, , 

a’x, 
s= II W, r’, r3, r4) dr, dr, , 

a’x, 
-L&T= 111 Ur, r’, r3, r,, r5) dr, dr, dr, , 

where 

(A.13) 

(A. 14) 

(A. 15) 

H(r, r’, r,ln(r)) = V(r, r’(r3) + n(r) I 
V(r, r’(r3r4) dr, 

; n’(r) 
2! II 

V(r, r’(r3r4r5) dr, dr, + * * - , (A.16) 

K(r, r’, r3, r,ln(r)) = V(r, r’(r3r4) + n(r) 1 V(r, r’(r3r4r5) dr, 

I n’(r) 
2! II 

V(r, r’ (r3r4r5r6) dr, dr, + . . . (A. 17) 

and 

L(r, r’, r3, r4, r51n(r)) = V(r, r’lr,r,r,) + n(r) I V(r, r’/r,r,r,r,) dr, 

n”(r) + 
2! 

V(r, r’lr3r4r5r6r7) dr, dr, + * * * . 
(A.18) 
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It must be remarked that in writing J,?“‘(ff;.) in terms of JsET(fll) we have 
taken into account that H(r, , r2, r3), K(r, , r2, r3, r4) and L(r, , r2, r3, r4, r5) 

depend only on relative distances and are symmetric under the interchange of 
labels 1 and 2, whereby it follows that 

H(rl, r2, r3) r31 dr, = $r2i Wrl, r2, r3) dr, , (A. 19) 

I WI, r2, r3) r31r31 dr3 = I I K(r,, r2, r3, r4) r31r31 dr, dr, = 0 , (A.201 

I ff(r,, r2, r3) r31r31r31 dr3 = - br21r21r21 I WI, r2, r3) dr, , (A.21) 

If K(rl, r2, r3, r4) r31r41 dr3 dr4 = $r21r21 WI, r2, r3, r4) dr3 dr4 

(A.22) 

and 

ill L(r,, r2, r3, r4, r5) r31r41r51 dr, dr4 dr, 

= ir21r21r21 111 L( rlT r2, r3, r4, r5> dr, dr, dr, , (A.23) 

where rij = rj - ri. 

In order to get the conservation equations, one multiplies both sides of eq. 
(A.l) with the collisional invariants $ and integrates over u. Using the above 
results and standard manipulations such as interchanging the roles of molecules 
or of the direct and restituting collisions, one gets 

where the collisional transfer of + is given by 

52’SET(r;f)= $u3//[O(k, g)(k.g)(+‘- Jl)i 

I[ ( 
8 f 

x & ffi l+flTi’arlOg- 
fi ) 

(A.24) 

(A.25) 



M. Lbpez de Hare, V. Garzd I Burnett equations for hard-sphere gas 111 

and 

$3” RET(r; t) = 9t @ - g) @ ’ s)(+’ - I1)R 

x z&i: +r $ j&ddhdv,dv. (A.26) 

Letting I,+ be in turn m, mu and $rnd in eq. (A.24) and using eqs. (A.25) and 
(A.26), after the standard manipulations of the left-hand side of eq. (A.24) one 
directly arrives at the conservation equations (2.8)-(2.10)“. 

For the derivation of the Burnett equations one uses the Chapman-Enskog 
method. The terms of order 6(p”) and CT(p) are well known and may be 
found for instance in the book by Chapman and Cowling [lo]. As for the terms 
of 0’( pz) required here, the method leads to the following integral equation for 
the distribution function f(‘) = f(‘)qi(‘): 

n2qqq = !$ f(l) + 2 f(O) 

- xc I I e(R. g)(R. g)u2( frcl)f;(‘) - f”‘fi”) di du, 

+ x, If 
O(k. g) (i. g)a3&. (f’(O) ; f;(l) +fr(l) ; f;(O) 

+f ar 
(0) a fy’+f (l) $ f I”‘) d& du, 

1 
+ z xc 

-f”‘h k f;“‘)dkdu, 

1 
+T! II 

@. g) (&. g)v3&. !$ (f q;(*) 

+ f;(o)f4) +f(‘)fl’)+flO)f(‘))d~du, 

1 

+z 

dkdu, , (A.27) 

*I As a matter of fact, as remarked in ref. [lO], the same form of the balance equations holds if 
instead of u one takes the peculiar velocity V= u - u where u is evaluated at the special point r 
under consideration, and so, does not vary with the position of the molecule. 
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where the operators &,/at and a,/at have their usual meaning in the Chapman- 
Enskog method [lo] and Z(@@‘) is defined as 

- @i”‘) d&du, . (A.28) 

It must be emphasized that, although Jy( ff,) and JiET( ffi) are different, 
eq. (A.27) holds for both the SET and RET due to the fact that f’(‘)f;(‘) = 
f’“‘f’,“‘. Therefore, the Burnett distribution function happens to be identical in 
both formulations. On the other hand, it is also important to point out that, 
similarly to what occurs in the case of dilute gases [lo], in order to obtain the 
kinetic contributions to the transport fluxes it is not necessary to explicitly solve 
the integral equation (A.27). Moreover, the part that involves Qp(‘) in the 
collisional contributions can also be cast into a form that involves a factor times 
the kinetic contributions. The calculations of these kinetic contributions (not 
reported here since they are not relevant in our discussion) follow very nearly 
those methods of chapter 15 of ref. [lo]. 
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