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Analysis of the Evans and Baranyai Variational Principle in Dilute Gases
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A variational principle for thermostated nonequilibrium steady states recently proposed by Evans
and Baranyai [Phys. Rev. Lett. 67, 2597 (1991)] is analyzed by means of a model kinetic equation
for dilute gases. It is shown that the principle does not apply exactly, although deviations from it
are small, especially when the gradients are not very large.
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Far from equilibrium systems have turned out very dif-
ficult to study, and there is not a general theory for them.
Recently, Evans and Baranyai (EB) [1] have proposed a
variational principle that generalizes the well-established
principle of minimum entropy production for near equi-
librium situations [2]. The EB principle states that the
rate of decrease of the volume of phase space, subject to
the externally imposed constraints, is a local minimum.
Although restricted to thermostated steady states, the
hypothesis has important physical implications, since it
provides a criterion to characterize far from equilibrium
steady states in physical systems. On the other hand,
there is no reason to expect that similar principles hold
for other nonequilibrium states. Evans and Baranyai do
not give any proof of their generalization, but they com-
pare its predictions with molecular dynamics simulation
of a dense fluid under uniform shear flow. In the range of
shear rates considered, they get a remarkable agreement
[1].

The purpose here is to investigate the validity of the
EB principle using kinetic theory methods. This requires
being able to get explicit expressions for the proper-
ties of a system that is far from equilibrium, which is a
formidable problem, except in some limiting cases. One
such limit is a low density simple gas, for which all the
physically relevant information is contained in the one-
particle distribution function f(r,v;t). As in Ref. [1],
we consider the gas in uniform shear flow. This state is
characterized by uniform temperature T (defined as pro-
portional to the mean kinetic energy) and density n, and
a local velocity field given by u;(r) = a;7;,a:; = ab;z6,y,
where a is the constant shear rate. Besides, each parti-
cle in the system is subject to a nonconservative external
force F with components

Fim—aVi— BV} (i=2,u,2), )

where V = v — u is the peculiar velocity of the particle.
The first term on the right-hand side of Eq. (1) plays the
role of a “drag” force and is introduced to control viscous
heating. Thus, the parameter « is adjusted to maintain
the stationarity of the state (constant temperature). As
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in Ref. [1], the second term (which is absent in the case
of the unconstrained shear flow) is introduced to explore
the verification of the EB principle. The parameter
is adjusted to obtain a prescribed value of the fourth
moment

Ky = / AV(VE+ Ve + V| @)

Therefore, both a and 3 are functions of a and Kj4. Al-
ternatively, one can consider a(a, ) and Ky(a, ), and
this is the point of view adopted in this Letter.

The EB variational principle refers to the average of
the phase-space compression factor A [3] that for our sys-
tem is given by

AaB) = — (a + 3’“3%) . (3)

m

We have omitted a constant factor that is irrelevant for
our discussion. According to the principle, A must have
a maximum in absence of constraints on Ky, i.e., at 8 =
0. Therefore, the mathematical expression for the EB
principle is

Aa) = — =0. (4)

This is equivalent to saying that in the thermostated
steady state, with given values of T, n, and a, A is a
local maximum with respect to variations in K4. The
principle is formulated in a more general way, including
the variation of all the endogeneous variables of the sys-
tem, but we restrict ourselves to K4, as is done in Ref.
[1].

Our aim in the following is to calculate A(a) for a di-
lute gas. As long as A(a) # 0, the EB principle is not
exactly verified. Thus, A can be physically interpreted as
a measure of the degree of validity of the principle. Since
the Boltzmann equation is too difficult to solve in far
from equilibrium situations, we consider instead the ki-
netic equation proposed by Bhatnagar, Gross, and Krook
(BGK) [4] as a model of the Boltzmann equation. The
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reliability of the BGK equation has been shown in the
last few years, since it leads to moment solutions of the
same structure as those obtained from the Boltzmann
equation in several nonequilibrium states [5]. In the case
of (unconstrained) uniform shear flow, the shear viscos-
ity and the viscometric functions obtained from the BGK
equation coincide exactly with those obtained from the
Boltzmann equation for Maxwell molecules to every or-
der in the shear rate. For hard spheres, the BGK results
agree extremely well with Monte Carlo simulations of the
Boltzmann equation for large shear rates [6]. The steady

0 1 9

e = = Vit BV2) £ = (S ~ fin) , (5)
where frg is the local equilibrium distribution function
and ¢ is an average collision frequency independent of
velocity, but generally is a functional of f through the
density and the temperature. Hereafter, we choose units
sothat ( =1, n =1, m = 1, and 2kgT = 1. We
introduce the moments

—aVy

M, ks ks =/dVVzk1Vyk2‘/zkaf’ (6)

BGK equation for the problem reads [7] | and obtain from Eq. (5) the following hierarchy:

= M, kg ks + MEEy, by = ak1 My, 1y 41,65 + (k1 + k2 + k3) M, ks ks
+B(k1 Mie, +2,k5 ks + k2 Mk, ky+2,ks + k3 My ks ks +2) 5 (7)

- ki +1 k2 +1 ks +1
Mkaka,kﬁ“B/zF( 3 >F<22 >F<32 ) ®

if k1, k2, and k3 are even, being zero otherwise. In Eq. (7) it is assumed that M is identically zero when any of its
indices is negative. For arbitrary (, the above hierarchy is not closed and cannot be solved. However, in order to
evaluate A, only small values of 3 need to be considered. Consequently, we carry out an expansion in powers of 3 by
writing o = ag+ 018+ and M, k, ks = M,g?,)k%ks + M,gll’)kz‘ksﬁ + - - -, where the coefficients are nonlinear functions
of the shear rate a. Inserting these expansions into Eq. (7) one gets a set of hierarchies that can be recursively solved.
The result is

where

k1
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Mkl,k2,k3 = z(:)(_a)q[O‘O(kl + k2 + k3) + 1] (a+1) (k1 — q)gNk1—q,k2+q,ka 9)
gq=
. 0
with N1£1?k2,ks = M’%f’kz,ks and
2
2 2—1 2-1) (£-1) (e—2')

N’El),kzyka = _kle(l1+2?k2,ka - k2M151,k2+2,k3 - k3Mk1,k2,k3+2 — (k1 + k2 + ks) Z o Mk;,kg,ka , £21. (10)

=1

The expression for the zeroth order moments M(® has already been derived previously by using a different method
[8]. Now, the coefficients oy can be obtained from the consistency condition Magg + Mozo + Mooz = ?’2- that implies
Még% + Még()) + Még% = 2 and Mz(é)o + Mé% + Még)z = 0 for £ > 1. Finally, substitution of the 8 expansion into the
definition of A, Eq. (3), yields

A=—og+A3—axB’+-, (11)
where oy is the real root of the cubic equation

3ap(1 + 2a)? = a?, (12)

and

AE*(O!I—}—

3) — 302 172803 + 2128 + 166403 + 92002 + 272a + 31
2/ — =70 (14 6a)(1 + 4ap)® ‘

We have also obtained the explicit expression for asg, but it is omitted here. Equation (13) shows that A is not zero
in our description. However, for small shear rates, ap &~ 3a?, so that A =~ 3la* and, consequently, A has a maximum
at B = 0 when only terms up to third order in the shear rate (super-Burnett order) are retained. Equation (11) can
be used to get an estimate of the value 5 at which A has a maximum. In the limit ¢ — 0, a2 = 6 and one gets
E = A/202 = g—éa“. The value of B turns out to be small also for moderate shear rates. For instance, § ~ 0.01 at
a=1.

It is interesting to study the behavior of the shear viscosity 7 as a function of 8. The shear viscosity is the
most relevant physical quantity and is related to the momentum flux existing in the system. Using the definition
n = —2Mj10/a and the above results, it is a simple matter to obtain the first few terms in the expansion 7 =
no +mB +n2B%+ - --. One gets

(13)

mo = (14 2a0)7?, (14)
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_2(1+40p)%[2A(1 + 4ap)? + 3ao(3 + 10a)] — 27 (1 + 2a9)*

m

(1 4+ 4a0)*(1 + 20)3

(15)

The explicit expression of 75 is omitted here. Their |
small shear rate behavior is 7o =~ 1, 71 ~ —3a?, and
ne =~ 3. It follows that # has a minimum at § = 0
up to first order in the shear rate (Navier-Stokes order).
Therefore, it could also be considered as a candidate for
an approximate variational principle. Nevertheless, the
failure of 7 to be stationary at § = 0 for a # 0 is more
evident than that of A, since n; ~ a2, while A ~ a%. On
the other hand, the dependence of the shear viscosity on
B is very small. Let us consider the relative difference
An/no = (mB + m26%)/no between the unconstrained
shear viscosity and the one corresponding to the value
B = . In the limit of small shear rates, An/ng = —%aﬁ,
while An/ne < 0.007 for a < 1.

In Fig. 1 we show A and 7; as functions of the shear
rate. While A monotonically increases with a, 7; presents
a minimum around a ~ 0.2. For shear rates up to a ~
0.25, for which the shear viscosity is about 8% smaller
than its limiting zero shear rate value, A is smaller than
0.03. Therefore, the EB principle can be considered as a
quite accurate approximation in this region. For larger
values of a, the discrepancies are more noticeable. Figure
2 shows the shear rate dependence of both K §°) and the
ratio —K, il) /Kio). It is seen that Kﬁ") monotonically
increases with a, while Evans and Baranyai [1] observed
a monotonic decay in their simulation. This difference is
probably due to high density effects, which are negligible
in the regime of dilute gases. On the other hand, K, 21) is
always negative and, therefore, K4 decreases with 3 at a
given shear rate, which is in agreement with the results
of Ref. [1].

The dependence of the approximate phase-space com-
pression factor A = —ag + A8 — o 32 on both a and g3 is
shown in Fig. 3. Although the value 8 at which A has a
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FIG. 1. Shear rate dependence of the first order coefficients
A (solid line) and m1 (dashed line).
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maximum is always close to 8 = 0, for a > 0.5 it is clearly
located at a value 8 > 0. Let us point out that the range
of shear rates considered in Figs. 1-3 is comparable to
the one considered in Ref. [1].

In summary, we have analyzed the EB variational prin-
ciple for the phase-space compression factor in the con-
text of the nonlinear BGK equation for dilute gases. Our
results indicate that the principle is not exactly verified,
although it can be considered as a good approximation,
especially for not too large shear rates. More specifically,
it becomes exact when only terms up to third order in
the shear rate (super-Burnett order) need to be retained.
Since the results presented here have been derived from
the BGK model, it could be that the disagreement with
the EB principle is due to inadequacies of the model.
Nevertheless, we expect that similar conclusions could
be drawn out from the Boltzmann equation. This con-
jecture is supported by recent results [5,6].

The search for a variational principle characterizing
far from equilibrium steady states, as the principle of
maximum entropy does with equilibrium states and the
principle of minimum entropy production does with near
equilibrium states, is a fundamental and long standing
problem in statistical mechanics. In this context, we con-
clude that the EB principle for thermostated states is a
nontrivial extension of the principle of minimum entropy
production and thus represents a significant step forward.
Finally, we expect that analysis based on kinetic theory
will stimulate careful simulations in order to progress in
the characterization of nonequilibrium states.
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FIG. 3. The phase-space compression factor A as a function of both a and 3.
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