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Generalized transport coefficients in a gas with large shear rate
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We get a solution of the Bhatnagar-Gross—Krook (BGK) model kinetic
equation by means of a perturbative expansion of a temperature gradient to
study the transport properties in a gas with large shear rate. The irreversible
fluxes are evaluated exactly to first order in the expansion for Maxwell mol-
ecules. The transport coefficients obtained are highly nonlinear functions of the
shear rate. This dependence on shear rate is analysed and compared with
previous results for several transport coefficients. Finally, we have found a
solution for a simple model of constant collision frequency for which a large
shear rate coexists with an arbitrary temperature gradient.

1. Introduction

The transport properties of a dilute gas are usually described by the well-known
Boltzmann equation (BE) [1]. However, because of the complex structure of the
Boltzmann’s collision term, is very difficult to find an explicit solution. Studies have
been restricted to very simple physical situations, and simplified collision models
have been considered [2]. This problem stimulates the search for kinetic equations
mathematically simpler than BE, but preserving the most important physical
properties of the BE. One of the best known is the Bhatnagar-Gross—Krook (BGK)
equation [3].

The BGK equation has been resolved by Zwanzig [4], in the study of a system
in uniform shear flow (USF) for potentials of the form r~*. The USF is character-
ized by constant density », constant shear rate a = du, /0y and uniform temperature
T(t). Because of the viscous heating, the temperature of the system monotonically
increases in time. In the particular case of Maxwell molecules (x = 4), both the BE
and the BGK equation yield the same results for the nonlinear shear viscosity
[2, 4]. Recently a self-consistent solution of the BGK equation for a stationary heat
flux has been found [5].

The coupling between the transport of momentum and energy has been treated
previously by kinetic theory [6] and by fluctuating hydrodynamics [7]. In these
papers, under adequate boundary conditions, steady state analyses are described.

The aim of the present paper is the study of the coupling between a velocity
gradient and a temperature gradient in a non-stationary state. The physical situ-
ation corresponds to a gas subjected to a large shear rate and a weak temperature
gradient. In this situation it seems natural to assume that the system is essentially
described by the distribution function corresponding to USF. This state has there-
fore been taken as the reference one and we have perturbed around it, considering
the temperature gradient as a small perturbation [8]. In our analysis, we compute
the irreversible fluxes to first order in the temperature gradient. The proposed



422 V. Garzoé

solution is similar to that obtained from conventional expansions of the Chapman—
Enskog or Hilbert [1]. ’

However, in our expansion the transport coefficients obtained are highly nonlin-
ear functions of a, since they retain the full nonlinear dependence on this gradient.
Due to the complexity of the problem, it has been possible only to consider Maxwell
molecules. The reason of this choice is that the BGK equation has been solved
exactly [4] in the USF for this interaction model.

According to the proposed expansion, a very simple case is that which corre-
sponds to a constant collision frequency model. In this case, the USF coexists with a
constant temperature gradient in all the hydrodynamics orders of temperature gra-
dient [9]. So, every term of the expansion can be evaluated exactly. While the
pressure tensor does not depend explicitly on temperature gradient, the heat flux is a
linear function of the temperature gradient. In this way, we have obtained a gener-
alized Fourier’s law with a thermal conductivity tensor that depends on the shear
rate.

The paper is organized as follows. In § 2, we present a short description of the
BGK’s solution in the USF for Maxwell molecules. In §3, we introduce the pro-
posed perturbative expansion. Furthermore, we obtain explicitly the Navier-Stokes
generalized transport equations (first order in the expansion) to analyse their depen-
dence on the shear rate. In §4, we study the constant collision frequency model, for
which the solution is exact. Finally, in the § 5, we give a brief summary of the results
obtained.

2. Uniform shear flow

The uniform shear flow is a state characterized by uniform density and pressure
and a velocity field given by

u(r; ) = ayr;, a;=ad;d;, (1

where the shear rate a is constant. This state can be maintained in the system
provided that the hydrostatic pressure p increases in time (viscous heating) accord-
ing to the equation

ij

9
5 = kP, @

where P;; is the pressure tensor. This flow is simple enough to allow for a complete
description when the BGK model kinetic equation is used. This equation can be
written as

a LE
<a—t+V-V)f= —{f =) 3

where {(r; t) is the collision frequency, f(r, v; t) the one-particle distribution function
and fY5(r, v; ¢) the local equilibrium distribution function defined as,

372
fLE = n( 2nkmB T> exp [— 2k':T v — u)l]. @)

Here, kg is the Boltzmann constant, m is the mass of a particle, and n(r; ¢), u(r; ¢)
and T(r; t) are the local density, velocity and temperature, respectively. In terms of
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the distribution function, they are given by

n(r; t) = ~[dv S, v; 1), (5)
n(r; u(r; t) = jdv v flr,v;t), 6)
n(r; kg T(r; 1) = 223 J avlv — u(r; 1)1° f(r, v; o). ()

The details of the particle interactions are modelled through the density and tem-

perature dependence of the collision frequency {. For repulsive potentials of the
formr™# it is

{acnT® 8

with o =4 — 2/u.

The BGK equation is a model for the BE in which collisions are treated in a
statistical way. Also, this model preserves the most important properties of the BE,
such as the conservation laws and the irreversible tendency to equilibrium. By
taking moments in velocity space, the BGK equation leads to familiar transport
equations,

on
— .Vn= —nV.u, 9
8t+u n n (Gl
Ou;
mn E'}‘ u. Vui = _VJPU’ (].O)
6_p+u Vp=—-3V.J -1P(Viu;+V.u)—pV.u 1y
at « VP = —3V. AV U jWi)—PpvY -\,

where we have introduced the pressure tensor and the heat flux given respectively
by

Ji=Jdv%V2Vif, (13)
with
0 Py
Van_r'j’ V,=v;—u; and p=—3—=nkBT.

It is adequate to consider the pseudo-galilean transformation V; = v; — a;;7; so
that the distribution function can be written as f(r, v; t) = g(r, V; ¢t). In this descrip-
tion, the USF is then described by a homogeneous distribution function go(V; ¢t)

that is even in V. Then, equation (3) becomes [10]

0 0
(5 —ab, a_V,>g° = —{o (90 — 955), (14)
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where

m 32 myv?
9 (V3 1) = "°<2nkB To(r)> exp [" 2% To(r)]' @3)

For Maxwell molecules (1 = 4), the collision frequency {, depends on the density
ny, and so, is a constant in the USF. From now on we shall restrict ourselves to
Maxwell molecules. For this interaction, the USF has a clearer meaning as an
arbitrary far from equilibrium state. In this case, after the initial transient has
slowed down, the solution of equation (14) is

go(V; 1) = r ds exp (—{o8)o exp [asVy aiV]g%E(V; t—s). (16)
0 X,

We shall call g, the uniform-shear-flow (USF) distribution function. In addition,
from the equation (14) we obtain the relations [4]

Pl =1 +313)/(1 +48), (17
PE,, = P§,.=1/(1 + 43), (18)
ngy = ngx = _%A'g/a*’ (19)

where P§;; = Py,;/p,, is a dimensionless form of the préssure tensor, a* = a/(, is a
dimensionless shear rate and A%(a*) = % sinh? [ich (1 + 9a*?)].
The relations (17)-(19) will be used below.

3. Description of the perturbative expansion. Navier—Stokes order

We assume that the system is slightly perturbed from the USF by the intro-
duction of a weak temperature gradient. In general, the existence of a temperature
gradient induces the presence of a density gradient, and consequently the tem-
perature and the density are not uniform.

Under these conditions, we propose the following perturbative expansion for the
hydrodynamics fields

n(r; £) = no(r) + ny(r; ) + ..., (20)
p(r; ) = por; ) + po(r; ) + ..., @1
ufr; t) = agry +ug(r; ) + ..., (22)

where the subindex 0, 1, 2, ..., means that the corresponding quantity is of order 0,
1,2,...,in Vn, used as perturbative parameter. The USF is equivalent to taking n,
constant. We define, consistently with equation (2), the pressure as

po(r; 1) = ny(Nkg To(r) exp [AZ(o(ne], (23)

where ngy(r)kg To(r) = const., and so Vny/n, = —VT,/T,. This relation shows that
either Vn, or VT, can be chosen as a perturbation parameter.

In the same way we have defined the hydrodynamics fields, so that the distribu-
tion function g(r, V; ) can be written in the following way

g(ra v! t) = go(f, v? t) + gl(r’ v’ t) + g2(r, va t) + AR (24)

where the zeroth order function g, corresponds to the USF distribution function
given in (16), but introducing the local dependence-on ngy(r), po(r; t) and {(r). Thus,
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the reference function g, plays an analogous role to that of the local equilibrium
function in the conventional perturbative expansions (Chapman—Enskog, Hilbert).
But, g, is now a highly nonlinear function of the gradient a since it retains all the
hydrodynamics orders from it. Thus, each of the successive approximations g, will
be composed by terms which will retain the full nonlinear dependence on a and will
be of order k in Vny (or VT,). The derived transport equations will be a gener-
alization of the Navier-Stokes, Burnett . . . equations since, in spite of their charac-
teristic of retaining all the orders in the velocity gradient, they will be of first, second
. .. order in the gradients of the remaining thermodynamic forces. This is the main
characteristic of the proposed expansion. )

The solution given in (24) shows some similarities with Hilbert’s expansion [11].
In fact, when we consider the expansion of the fields in the equations (20)}22) we
are pre-fixing the space-temporal dependence of the parameters which define the
reference function g, . Thus, the formal expressions of the irreversible fluxes will be
given in powers of the gradients of the variables which characterize the expansion of
the fields and they are not in powers of the full density, velocity and temperature
gradients as in the Chapman—Enskog’s solution.

The functions g(r, V; t) are even (odd) functions of V if k is an even (odd)
integer. This symmetry justifies the parity of the terms in the proposed expansion

given in (20)+22). So, according with this symmetry, the momentum and heat fluxes
can be written respectively by

Pifr; )= Poi{r; 1) + Pyyfe; ) + ..., (29)
J, ) =J 0+ I 0+ .., (26)

Let us use the hydrodynamic balance equations (9)}-(11) in order to get informa-
tion about the terms appearing in equations (20}22). For that, we must consider in
equations (9)(11) the expansions given in (20}22) and (25)(26) and collect the
terms of equal power in Vn, together. Thus, a self-consistent solution of the BGK
equation is ensured since g(r, V; t) reproduces the five hydrodynamic moments n,
nu and p, for each approximation.

According to the transport equations (9)(11), it is obvious that at the zeroth
order the USF equations are verified, thus

on,
0_-0 27
o O @7
V,;Pgy; =0, (28)
p
5 =~ Posy, (29)

which correspond to a generalization of the Euler equations [11].

In this paper, we restrict our study to first order of the expansion (Navier—
Stokes). The study in higher orders is very complex although a priori it seems
possible to obtain the fluxes from the proposed expansion. However, our purpose
will be to find the constitutive relations between fluxes and gradients in the case of
coupling between a velocity gradient (considering all their orders) and other gra-
dients considered small enough that only their linear contributions need to be
retained.
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At the Navier—Stokes order, the transport equations are given by

ano x
20
=0, (30)
Ouy;
mn0|: o +u” u] —VjPOij, 31
0po
—=0. 32
I (32)

Equations (30) and (32) imply that Vn, (and VT) are orthogonal to the unperturbed
velocity field a;;7;. The general solution of equation (31) is

D P P
uy(r; 1) = exp (— 5o r)m—,‘;o[<6,-, lﬁ)vk( “) + 1*22‘0 4 w*co)]

1 P P
— a* N . ij 0jk 0jk u *
X (5ij au CO t) n() (51_] l*)v"(l* Co) no /1*250 Vk('1 CO) (33)

In this equation, we have taken u,(r; 0) = 0, and so u; = 0 when a* = 0. In any
case, at finite a*, the first term contribution in (33) (initial term) is negligible for long
times and the two remainder terms are the leading ones of u,(r; t) behaviour.
Therefore, the contribution of the initial term when considering long times won'’t be
considered henceforth.

In order to obtain the functions g,(r, V; t), the BGK equation can be written in
general as

3} 3} 3}
[5 —a;V, 3 + (V. + a”rj) } = —{[g — g"%]. (34)

By inserting the expressions (201+22) and (24) into the BGK equation (34) and
taking into account only first order terms, we get for the function g,(r, V; ) the
equation,

0 0
[a 6V + Co:|91 —V . Vg, + {0955, (35)

where we have considered the following relations
g, V; )= g% r, V; ) + gy, V; o) + ...
mn(r) ) 7 I: mno(r)Vz][ mno(r) ]
= ne(r exp] —— ||t +——=V.u,(r; )+ ... |
° )<2npo(r o) L o0 )L herg ¥ Y
(36)

{r; =L+ L)+ (37



Generalized transport coefficients 427

The solution of the equation (35) is given by

g.r, V;t)= f ds exp (—{o s){o exp (asVy _6_)
0 an

oo

X [ghB(r, V;t —s) — sV . Vg5&r, V; t — )] + (V. Vo) '[ ds

0
] s? LE
x exp (—{,s) exp aSVya—V“ COE—S g (r, Vit —s), (38)

where again we have neglected the initial term.
At this order, the only nontrivial flux is the heat flux J,;. Taking into account
the perturbation u, at stationary velocity, J,;is given by

Jli:jli_%pouli_uleOij’ (39
where we have introduced the quantity

s m

J1i=5JdVV2Vig1(r, V;t). (40)

The evaluation of J,; is not straighforward and is shown in the Appendix. So,
according to the obtained results for J,;, the heat flux J,; can be expressed finally in
the compact form,

Jii=—=4;V; Ty —0,V;po . a, 41)

J vy

where the coefficients 4;;, 6;; are also defined in the Appendix. They are functions of
the dimensionless shear rate a*. Obviously, in the limit a* — 0, Fourier’s linear law
is obtained again with an expression for the Navier—Stokes thermal conductivity
given by

5 no ki To

l:
T2 mg,

(42)

From now on, for simpler calculations, we shall restrict ourselves to the particular
case of parallel gradients. We define the dimensionless scalar functions,

M¥a*) = mno—’f()Co lyy(a*), (43)
9¥(a*) = Mo Co 0,,(a*). (44)
Po

A* can then be interpreted as a generalized thermal conductivity coefficient,
while 6* is a generalization of a Burnett coefficient [12]. Marchetti and Dufty [8]
studied the dependence on a* for coefficients analogous to A* and @*. They used
Boltzmann equation’s nonequilibrium time correlation functions for a low-density
gas of Maxwell molecules. In the figure, we have plotted the functions A*(a*) and
0*(a*), obtained from the results of [8] (dot-dash lines) and the one from our
solution of the BGK equation (solid lines). It can be observed that the results
obtained by both models are qualitatively in agreement, particularly for large
dimensionless shear rate a*.
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Dimensionless shear rate dependence of A*(a*) and 6*(a*). The solid lines correspond to the
BGK solutions and the dot-dash lines correspond to the Boltzmann solutions. The
latter curves have been taken from [8].

4. Generalized thermal conductivity for a constant collision frequency model

The equations describing the USF for Maxwell molecules, equations (16)~(19),
are characterized by a constant collision frequency {,. However when there is a
temperature (or density) gradient, {, is not uniform, as we saw in the previous
section, and this gives rise to a perturbation in the local velocity field. However, if
we consider a very simplified collision model with constant {,, the coexistence of a
constant velocity gradient and a constant orthogonal temperature gradient becomes

possible.
We consider the hydrodynamics fields,
n(r; 1) = ny(r), (45)
p(r; 1) = pol®), (46)
ulr; t) = a;r;. @7

This macroscopic state corresponds to ignoring higher than zeroth order terms in
the expansion given by the equations (20)—(22). In these conditions, it is straightfor-
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ward to verify that the USF coexists with a constant temperature gradient, VT

retaining all the hydrodynamics orders from it. In fact, in order to be g,r, V; t)
functions consistent with the proposed state (45)+47) it must be necessarily fulfilled

JdVl//“(V)gk =0, (k=1) (48)

where y*(V) = {1, mV, (m/2)V?} are the so-called collisional invariants. If VT, is
constant, the g, functions are given by

0t V5 0 = Lo j " ds exp (—Los) = ) (asV i)(v VYghE(r, Vs £ — )

0 av,
k(v VT )k Po[t

_ 5] ] /2
=L J:) kg (2“k3>

d 0 my?
(dT(,) T2t — s] exp (asV 6V> exp |:— m} 49)

It is easy to show that the first moments of the functions g, are zeroth [9]. Specifi-
cally, conditions (48) are verified and in addition

)

P.;=0. (50)

The pressure tensor is not affected explicitly by the temperature gradient VT;,. The
first nonzeroth moment corresponds to the heat flux J;. It is exactly a linear func-
tion of the temperature gradient. Therefore,

J=—A.VT,, (51)
where A is a generalized thermal conductivity tensor defined by
5 a*? a** a* a*? 0
+ 60 + 360 ~14 -2
(1 + 2327 1+ 2i3* (1 +2ig° L+ 2237 T+ 2438
kKT, * *3 5 a*? 0 A 52
Agr) = 220 et L _ 418 — (52)
2m{, (1 + 243 (1 + 243 (1 + 243) (1+213)
0 0 5 a*?

+6
(1 +243%° (1+2i9*

If we consider {, constant, this result coincides with that obtained in (41). However,
while (41) is valid only to first order in VT, the expression (52) is exact for arbi-
trarily large VT, . According to (52), we have obtained a generalization of Fourier’s
linear law. Although the imposed temperature gradient may be very large, the
system always follows a linear law for the heat conduction but with a thermal
conductivity tensor which depends nonlinearly on a*.

5. Summary

In this paper we propose a perturbative expansion, formally analogous to
Hilbert’s expansion, for the study of the transport properties in a gas subject to
large shear rate and to other types of gradients (temperature, pressure . . .). We use
the BGK equation and we consider the simple case of Maxwell molecules. The
zeroth order expansion corresponds to the USF distribution function that contains
all the hydrodynamics orders on the shear rate a. The irreversible fluxes are evalu-
ated exactly to first order. The transport equations obtained are a generalization of
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the usual Navier—Stokes hydrodynamic equations, but the transport coefficients
depend now on the dimensionless shear rate a* in a highly nonlinear manner. The
dependence on shear rate for several transport coefficients is examined and com-
pared with previous results obtained by the correlation function formalism of the
Boltzmann equation.

There is a particular case for which the result is exact. This corresponds to the
constant collision frequency model. For this model, the pressure tensor does not
depend on the temperature gradient VT and the heat flux is linear with VT;,. Then,
we obtain a generalized Fourier’s law with a generalized thermal conductivity tensor
that is function of the reduced gradient a*.

Although in general, the model has been only studied to first order we think that
it is possible to resolve the proposed transport equations in higher orders. The
transport equations obtained in this way are generalizations of the Burnett, super-
Burnett . . . hydrodynamic equations, and the transport coefficients retain all the
hydrodynamics orders in the linear velocity gradient.

Appendix

In order to evaluate the quantity J,; that appears in equation (40), we need the
results

d 3/2

JdVVZK exp I:be W}V’ exp (—cV2)=n—4—c_7’2AiJ(b), AD
d 3/2

JdVVZVV exp |:bV a—V—] exp (—cV?) = T ¢~ 2B, {b), (A2)

where we have introduced the tensors A and B, whose components are given by

Ayfb) = (5 + 3b9)8,; — 2b%5,.5,, — b(T + 3b)5,, 6

x0jy — 208,06, (A3)

Bij(b) (5 + 10b2 + 3b4)51x Jx + (5 + 3b2)5zy iy + (5 + bz)élz iz
— b7+ 353310 5y + 0545y (A4)
In this way, J,; can be expressed formally by
fli:‘f(lli)+‘f(l.2i)+ﬂ13i) (A5)
where
~ 1(®
JE = 3 J ds exp (—{o8)o Polt — sTuy;{t — s1A4;1as) (A6)
o
o plt — 5]
J@=- m f ds exp (—{o s)osB;fas)V; o—no_ A7
J(3) =5 (V o) J ds exp (—{o5)3L0 8> — s)p3lt — s]B;as). (A8)

To compute these expressions, it is necessary to take into account the temporal
dependence of the hydrostatic pressure (equation (23)) and the velocity u, (equation
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(33)). We obtain straightforwardly

T Polt] i _polt] Pl . a,k * 6/?,7
Jll 2 ul.fAlJ 2mn0 Co '10 Co 6 l('1 CO) 623 > (A 9)

7 1 palt]\(0B;\ | polt]l (9*By
{2) _ J *
=, Vj( no )(az*) " dmno 2 (az*l) #4580 (A 10)
2 B 2R
73 _ _Polt]l 61) (a B, )
Jii = 4mng 3 [(623 +3 Jre (Vo) (A1l1)

In these expressions, we define

/'fij( & a*)= J do exp [—oll + 248)]A;{xa*)
0

1 a*? 4g*?
=—4|5+6 ———— |0;; — ————= 5,,6;
(1 + 2}.3) {|: + (1 + 2}.3)2] Y (1 + 213)2 iz 612
Ta* a*? 2a*
B [(1 v 213‘)3]5"‘ T 5""}’ A1)

Bi,(zg, a*) = j do exp [—o(1 + 2A8)]1B;{xa*)
(1]

%2

R T | R . cn—2 s s
(142 A+243 " T+t
6a*? 2a*?
5+—% s 5 +]5+—2 5.5
+[ T +213>2] » ”+[ T +2za=>2] 0

Ta* 18a*3
- + % A13
[(1 +228 1+ 21 ]( 0y + Oix ,y)} (A13)
where their derivatives with respect to 4§ can be easily obtained.

If we write J,; in the compact form given in (41), we can obtain the transport
coefficients

2 25

- _ _ de P*.

& mny Ty o {16 0Ax? ,1* ac (45%0) D) i Oik
ak\( 0P¥; “Lapx.  P:\ P%af
O == L2 - (A% 2oy foyy , Zoyfu
" [( . l*>< a9 (l O s )t

aiy 04\ A (94

5., — & P8y G2\ 2o i A L4
’ < ¢ 3‘> 4 \ais) ~a \ams2)ff (A14)

po[t] Iaik 3 POI akl 1 aBl
9., = —— 25, — P _oy 5 - J X Al
ij mn, C(Z) a* {( 2 2 ik Oik kl T /l* 2 alg ( 5)

All the quantities that appear in these expressions are known. The highly nonlinear
dependence of these coefficients on the dimensionless shear rate is apparent.
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