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Coupling between energy and momentum transport in a dilute gas subject to uniform shear flow is 
analyzed. Heat flux is created in the system by the action of a nonconservative external force. The 
results are obtained by using the Bhatnagar-Gross-Krook kinetic model. The moments of the 
velocity distribution function are expressed in terms of a perturbation expansion in powers of the 
heat field strength, the coefficients being highly nonlinear functions of the shear rate. In particular, 
the thermal conductivity tensor and the shear viscosity coefficient up to second-order approximation 
are explicitly evaluated. It is shown that the usual choice of the heat field proposed in computer 
simulations leads to a thermal conductivity tensor different from’the one obtained in the thermal 
gradient problem, confirming previous results. In order to avoid this discrepancy, an alternative 
external force is proposed. 

I. INTRODUCTION 

Thermal conductivity is one of the most difficult trans- 
port coefficients to calculate. The appropriate laboratory con- 
ditions for measuring this coefficient correspond to a system 
enclosed between two parallel plates at different tempera- 
tures. For small temperature gradients, the Fourier law estab- 
lishes a linear relation between the heat flux and the thermal 
gradient through the thermal conductivity coefficient.’ Nev- 
ertheless, from a computational point of view, it is more 
efficient to evaluate this transport coefficient in a homoge- 
neous state where the heat flux is generated by the action of 
a jictitious external force. This method of simulating heat 
flux in the absence of temperature gradients was proposed 
independently by Evans2 and Gillan and Dixon.3 The tech- 
nique relies on the introduction of a hear field that mimics 
the macroscopic effect produced by a thermal gradient in a 
real experiment. The thermal conductivity coefficient is ob- 
tained by extrapolating the ratio between the heat flux and 
the field strength to zero-field limit. This coefficient agrees 
well with experimental data and with estimates based on 
alternative inhomogeneous simulation results.4 

An interesting physical problem is that of linear energy 
transport in strong shear flows. In this situation, nonlinear 
effects are important and the heat flux is disturbed by the 
shearing motion. The anisotropy induced by the shear flow 
makes the thermal conductivity coefficient become a shear- 
rate dependent nonsymmetric tensor. Very recently, we have 
obtained an explicit expression for the thermal conductivity 
tensor in a dilute gas under uniform shear flow and subject to 
a weak thermal gradient.” This tensor is a highly nonlinear 
function of the shear rate and its expression is not restricted 
to any specific interaction potential. Here, our aim is to ana- 
lyze a similar problem but when the energy flux is generated 
by a homogeneous external force. As a consequence, unlike 
real heat flow, no temperature or density gradients appear in 
the system. The motivation of this work is twofold. First, the 
analysis of nonequilibrium states induced by external forces 
is an interesting problem itself because such situations are 
desirable for practical purposes, especially in molecular dy- 
namics simulations. Second, one can establish the possible 

equivalence between the resulting transport properties and 
those driven by means of realistic boundary conditions. 

Due to the intricacy embodied in the Boltzmann colli- 
sion operator, we use again the Bhatnagar-Gross-Krook 
(BGK) kinetic equation6 as a model of the Boltzmann equa- 
tion. The reliance on the BGK model has been shown in the 
uniform shear flow problem since it leads to moment equa- 
tions similar to those derived from the exact Boltzmann 
equation.7 In this paper, we construct a perturbation solution 
of the BGK model around the uniform shear flow state by 
taking the field strength as the perturbation parameter. All the 
moments of the velocity distribution function are computed. 
They are nonlinear functions of the shear rate and depend on 
the external field considered. In particular, we focus on the 
explicit derivation of the linear thermal conductivity tensor 
(up to first-order approximation) and the shear viscosity co- 
efficient (up to second order). They are the most relevant 
transport coefficients of the problem. 

In absence of shear flow, the thermal conductivity coef- 
ficient obtained from the conventional Evans-Gillan2*3 
method coincides with the one calculated in the presence of 
a temperature gradient. However, for finite shear rate, we 
show that both methods lead to different expressions for the 
thermal conductivity tensor. This confirms the predictions 
made by Evans et al.’ on the modified Green-Kubo relations 
for mechanical transport coefficients. Thus, from a practical 
point of view, the usual choice of the external field used in 
the Evans-Gillan algorithm cannot be considered as ad- 
equate to compute the energy transport under strong shear 
fields. A similar problem happened in the color field 
method.’ In order to avoid the above discrepancy, a modified 
shear-rate dependent external field is proposed. Comparison 
between the transport coefficients obtained from the conven- 
tional heat field method2’3 and those derived using this new 
force is one of the main objectives of this paper. 

The organization of the paper is as follows. The physical 
problem is described in Sec. II. In Sec. III we obtain the 
successive approximations to the velocity moments in terms 
of the external force considered. Section IV deals with the 
explicit calculation of the heat transport. By taking into ac- 
count the analogies with the usual thermal gradient problem, 
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a thermal conductivity tensor is identified. From this expres- 
sion, the modified external force is obtained. In Sec. V we 
study the behavior of the shear viscosity coefficient as a 
function of the heat field up to second-order approximation. 
Finally, Sec. VI offers a brief discussion of the results. 

We are interested in studying heat transport in a steady 
shear flow state. According to Curie’s principle,* in the linear 
regime, the heat flux cannot be affected by the shear field. 
Nevertheless, beyond the linear limit, the above principle 
breaks down and the shear field modifies (but does not gen- 
erate) the energy transport. In this problem a thermal con- 
ductivity tensor rather than a scalar can be identified. Previ- 
ous studies have dealt with this problem. In the context of 
dense gases, EvansI has obtained a Green-Kubo formula 
for the thermal conductivity of a strongly shearing fluid. Re- 
cently, this formula has been used to compute the linear ther- 
mal conductivity by computer simulations.‘4 In the low den- 
sity limit, an explicit expression for the shear-rate dependent 
thermal conductivity tensor has been found.5 The results 
have been derived from the BGK kinetic model and depend 
on the potential model considered. 

II. DESCRIPTION OF THE PROBLEM 

Let us consider a monatomic dilute gas in a steady uni- 
form shear flow state. This nonequilibrium state is character- 
ized by a linear velocity profile and constant density and 
temperature’O”l 

Ui’Uijrj, aij’ SixSjy , (1) 

n = const., (2) 

T= const., (3) 
where a is the constant shear rate. The number density n, the 
flow velocity u, and the temperature T are defined as mo- 
ments of the velocity distribution function f as follows: 

n= dvf, 
I (4) 

(5) 

nkBT= $ dv mV2f. 
I (6) 

Here, k, is the Boltzmann constant, m is the mass of a par- 
ticle and V=v-u is the peculiar velocity. The shearing mo- 
tion produces viscous heating, so that the temperature tends 
to increase in time. In order to maintain a steady state, an 
external drag force must be introduced 

F= - aV, (7) 
where the thermostat parameter LY must be adjusted by con- 
sistency. In the uniform shear flow state, the distribution 
function becomes homogeneous under the change v+V, i.e., 
f(r,v)-+f(V).” Due to this fact, this state has been exten- 
sively studied theoretically7*” as well as from molecular dy- 
namics simulations.” 

Since the Boltzmann equation is too difficult to solve far 
from equilibrium states, we start here from the kinetic model 
proposed by Bhatnagar, Gross, and Krook (BGK).6 In this 
model the Boltzmann collision term is substituted by a 
single-time relaxation towards the local equilibrium distribu- 
tion. All the details of the interaction potential are introduced 
in an effective way through a collision frequency Y, which in 
general depends on space and time through n and T. In spite 
of its simplicity, the BGK model yields equivalent results to 
the ones given by the Boltzmann equation in several non- 
equilibrium problems. In the case of uniform shear flow, the 
shear viscosity and the viscometric functions obtained from 
the BGK equation are the same as those derived from the 
exact Boltzmann equation for Maxwell molecules if one 
chooses v to be a particular eigenvalue of the Boltzmann 
operator.7”1 Furthermore, the BGK results present a good 
agreement with Monte Carlo simulations of the Boltzmann 
equation in the case of the hard sphere interaction.‘= 

The aim of this paper is to analyze energy transport pro- 
duced by an external force in a dilute gas under uniform 
shear flow. In the heat field problem, “heat current” is cre- 
ated by the action of an external force in the absence of a 
temperature gradient. The ratio between the heat current and 
the field strength in the limit of zero-field strength defines the 
relevant transport coefficient of the problem. For vanishing 
shear rate, this coefficient coincides with the usual thermal 
conductivity coefficient measured in a system in the presence 
of a thermal gradient. This equivalence allows one to get the 
thermal conductivity coefficient from the conventional heat 
field method proposed by Evans-Gillan.2’3 However, in the 
non-Newtonian regime, one expects that the heat field exhib- 
its the anisotropy induced in the system by the presence of 
the shear flow. In this sense, the conventional force used in 
the Evans-Gillan algorithm does not seem to be the most 
adequate for calculating nonlinear transport properties. In or- 
der to get equivalent results for the thermal conductivity, we 
assume that each particle in the system is subject to a non- 
conservative force F 

03) 

where the field strength e plays the role of a thermal gradient 
VT/T. The tensor a is a dimensionless function of the shear 
rate to be determined. In the usual heat field method, Cn is 
replaced by the unity tensor. For finite shear rate, Eq. (8) 
takes into account the anisotropy of the problem as 9and e 
are no longer parallel. The total force acting on each particle 
is the sum of F, Eq. (7), and F, Eq. (8). 

Under these conditions, the velocity distribution function 
f(V) verifies the steady BGK equation 

where 

Fi+Yi 
y-- f = - Y(f-fLE), (9) 

fLEWl=n( &)“’ ev( -& V2) (10) 

being the local equilibrium distribution. Conservation of to- 
tal energy imposes the condition 
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a= -m qi”ij~j-m aPxy . 
3P 3P 

(11) 

Here, p = fP kk = nksT is the pressure, P,, is the xy element 
of the pressure tensor P, where 

P= dV mVVf, 
I 

02) 

and 

q= 
I 

dV ;V2Vf (13) 

is the heat flux. Equation (11) couples a with the main trans- 
port coefficients of the problem, namely, the thermal conduc- 
tivity tensor K and the shear viscosity coefficient p They are 
defined, respectively, by 

qi= - KiiTEj, (14) 

&2 
a ’ (15) 

Notice that Eq. (14) has been written taking into account the 
analogy of this problem with the usual energy gradient prob- 
lem. In order to evaluate these quantities, we define the di- 
mensionless velocity moments Mk, ,k, ,k3 of f(V) as 

&,,kZ,*,=; (&)‘*‘+““*““I dVc,ef3f(V). 

(16) 
The task now is to get these moments in terms of the 

shear rate and the field strength. Both parameters measure 
the departure from equilibrium. This dependence will be ana- 
lyzed in Sec. III. 

III. VELOCITY MOMENTS 

By taking moments in the BGK Eq. (9), one gets the 
following hierarchy for the moments Mk, ,k2,k3 : 

a*h’+fk,-l.k2+,.k3 +[I +~*(k,+kz+k3)1~k,,kz,k3 

LE 

M;;,kz .k3 = = 
-3/2r( +( !$+( y) 

(17) 

(18) 

R(l) 
k, ,k2,k3=Af-;) k EX*+B~~~~~,k3Ey*+C~~~~~,k3EL* I’ 2’ 3 

-(k,+k,+kdC “:Mf,&, (27) 
r=l 

if k, , k2, and k3 are even, being zero otherwise, and 

Nk, ,k,.k,=&, ‘k2,k3Ex*4Bk,,k2,k3Ey*+Ch,.k2,k3EZ* 

A --5 
k, .k,,k,- 2 (“k,+,,k,,k3+Mk,-l,kz+2,k3 

+“kl-l,kp,k3+2 - ;“k,-l,k2,k3)r 

B --y k,.k2,k3- k2 (M k,+2,k2-l,k,+Mk,,k2+I,k3 

-+~k,,k,-~,kg+z--?. .3Mk, ,k2- ,,k$ 

(19) 

for ~‘3 1. The parameters a,* can be determined from the 
relation (11). Equation (25) provides an explicit expression 
for the velocity moments off in terms of the reduced shear 
rate a* and the reduced field strength 8. It is not restricted 
to any specific form of (II. This expression represents the 
major result of this paper. 

In the zeroth-order approximation, we reobtain the re- 
(20) sults of the steady uniform shear flow.16 In particular, the 

nonzero components of the reduced pressure tensor P,;(O) 
= Piy’lp are given by - 

(21) (28) 
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c k, --;(M A2 .k3 - k,+2,k,,k3-lfMk,,k,+2,k3-1 

+ Mk, ,k2 ,k3+ 1 - y 3h’fk, ,k2,k3- 1). (22) 

Further, we have introduced the reduced quantities a*=alv, 
a*fd(mv), and 

(23) 

It must be noticed that in Eq. (17) it is assumed that M is 
zero if any of its indices is negative. For arbitrary values of 
8, the hierarchy (17) is not closed and cannot be solved. 
However, in order to obtain the linear thermal conductivity 
only small values of 8 need to be retained. On the other 
hand, it has been shown that the applicability of the heat field 
method is restricted to small values of field strength since 
finite values of f leads to an unphysical behavior of the 
nonlinear thermal conductivity in the homogeneous case.15 
Therefore, we expand the moments in the form 

M k, A2 A3 - -M~~),kZ,k3+M~:).k2,k3+“’ ’ (24) 

where the successive approximations Miy,k2 ,k3 are of order I 
in @ but they are nonlinear functions of the reduced shear 
rate a*. In the same way, one must carry out an analogous 
expansion for a*, i.e., a* = CY$ + ~7 + * ** Substituting 
these expansions into Eq. (17), one obtains a set of hierar- 
chies that can be recursively solved. The solution can be 
written as 

kl 

Mf;,k2 ,k, =z (-a*)q[I+a$(kl+k2+k3)]-(qf’) 
q=o 

k,! 
R(l)- x(k,-q)! k, q&+q&v (25) 

with 
$8 

k, A, .k3 = MkL;.k2 ,k3 ’ (26) 

and 

= Mk, ,k2 ,k3 + Nk, .k2 vkj ’ 

where 
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1 
p*(O)=p$O)=- 

YY 1+2a$ ’ 

p*(O)= p,*,(O)= - 
a* 

XY (1+2&z * 

Here, a$ is the real root of the cubic equation 

3a,*(1+2ao*)*=a*‘. (31) 

The first and second approximations will be analyzed in 
Sets. IV and V to get the shear-rate dependence of the linear 
thermal conductivity tensor and the shear viscosity coeffi- 
cient. 

IV. LINEAR THERMAL CONDUCTIVITY TENSOR 

In the first-order approximation, the relation (11) reads 

4 a*’ 
+-- 

3 (1+2a,*>3 QT, (32) 

which implies that a)i * = 0. The heat flux q(i) across the sys- 
tem can be evaluated from Eq. (25) for I = 1. After some 
algebra, qt’) can be recast into the form (14) where the so- 
called linear thermal conductivity tensor K is 

(33) 

Aik being a highly nonlinear function of the shear rate. The 
expressions of the nonzero elements of the tensor A are 
given in the Appendix. Equation (33) gives the thermal con- 
ductivity of a dilute gas under arbitrary shear flow in the 
limit of zero heat field. In order to analyze its shear-rate 
dependence specific forms for R must be adopted. 

The simplest choice corresponds to the one proposed in 
the Evans-Gillan method,2’3 in which case fi is replaced by 
the unity tensor. With this choice, A is the thermal conduc- 
tivity tensor reduced with respect to its equilibrium value. 
For a*=O, A,= aij, and one recovers the well-known ex- 
pression for the thermal conductivity coefficient given by the 
BGK model.t5 In this sense, the Evans-Gillan algorithm ap- 
plied on molecular dynamics simulations is an efficient alter- 
native to simulation methods based on the Green-Kubo for- 
mula for measuring the thermal conductivity coefficient. 
Some elements of A are plotted in Fig. 1 as functions of a*. 
We observe that the qualitative shear-rate dependence of the 
diagonal elements A,, and Ayy is very similar. They present 
a maximum for a *= 1.86 in the case of A,, while for A,,y the 
maximum is located at a*= 1.02. The element A,, exhibits a 
similar behavior. The xy and yx elements are negative and 
decrease as the shear rate increases. This dependence on the 
shear rate is more noticeable in the case of the xy element. 

In principle, the heat field method must be distinguished 
from the familiar heat transport problem. In the latter, energy 
transport is produced by a temperature gradient instead of an 
external field. When the system is subject to uniform shear 
flow, a reduced thermal conductivity tensor Xii can be de- 
fined from a generalized Fourier’s law. Very recently, we 
have obtained an expression of Xij from a perturbation solu- 
tion of the BGK model.5 Comparing the exact results derived 

V. Garz6: Heat flux induced by an external force 

a 

FIG. 1. Shear-rate dependence of some elements of the tensor Aij: 
(a)-&, , (b) Ax,, , (c) A,, . 

here and in Ref. 5, we conclude that the tensors A, and Xii 
are different. Furthermore, for nonzero shear rates, both ten- 
sors have different qualitative features. While the geometry 
of the heat field problem is arbitrary, the analysis made in 
Ref. 5 shows that the thermal gradient must be orthogonal to 
the direction of the flow velocity (x direction) to achieve a 
steady state. Consequently, the only relevant elements of the 
thermal conductivity tensor are kyY , X,, , and AX,, . On the 
other hand, Xij depends on the potential model considered 
while in our description A, is a universal function indepen- 
dent of the interaction potential. All these considerations 
show the inadequacy of the conventional Evans-Gillan algo- 
rithm to evaluate the linear thermal conductivity tensor under 
strong shear fields and confirm the general results derived by 
Evans ef aL8 for mechanical transport coefficients. Identical 
conclusions were obtained in the case of the so-called color 
field method.’ 

In order to avoid this discrepancy, a different form for &2 
must be suggested. By comparing Eq. (33) with Eqs. (16) 
and (18) of Ref. 5, it is easy to show that the adequate choice 
is 

~ij=(A-‘)ikXkj, (34) 

where again we have identified the temperature gradient 
V in T with the field strength c. From this novel external 
force, the thermal conductivity obtained from the heat field 
method exactly coincides with the one derived in presence of 
a temperature gradient. In absence of shear, Eq. (34) reduces 
to the one proposed in the conventional heat field method. 
However, for finite shear rate, fi captures the anisotropy 
induced by the shear flow. To illustrate the shear-rate depen- 
dence of this tensor one needs to know the temperature de- 
pendence of the collision frequency. For instance, for rep 
potentials one has pTYml with y= 112-211.~ since p is con- 
stant in the energy gradient problem. Figure 2 shows fin,, vs 
a* for three values of 3/: y=O (Maxwell gas), r=& (hard 
sphere gas), and y= 1 [very-hard-particle (VI-P) interaction]. 
We see that the dependence of Sz,,, with a* is similar for the 
three interaction models considered, as it monotonically de- 
creases as the shear rate increases. For a given value of a*, 
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a* 

FE. 2. Plot of R,“, ( as a function of the shear rate for three interaction 
models: hard-sphere interaction (-), Maxwell interaction (---), and VHP 

interaction (---). 

Q.vy increases as the interaction parameter y increases. The 
anistropy of the external force 9 is measured by the off- 
diagonal element K&. It is plotted in Fig. 3. For small shear 
rates, -&, increases with a* while for large shear rates it 
decreases as a* increases. 

To close this section, it is interesting to perform a more 
detailed comparison between the thermal conductivity ten- 
sors A and X. Specifically, we address our attention to the yy 
element for which we define the function 

(35) 

Here, A,, refers to the one obtained for the VHP model 
where v is also a constant in the thermal gradient problem. 
This comparison is in the same spirit as the one carried out 
recently between the color conductivity and self-diffusion 
tensors.’ The function AyY is plotted in Fig. 4. It is shown 
that for shear rates not too large, the results derived from 
both choices of heat field agree qualitatively well. For in- 

0.30 ~“““““““““““““““““““’ 

-nry 0.25 /-‘, 
: / \ \ 

/ ‘. 
------ 

0.0 0.5 1.0 1.5 2.0 

a- 

FIG. 3. The same as in Fig. 2, but for -C& . 

stance, for shear rates up to a*=0.25, for which the shear 
viscosity in the pure shear flow problem is about 8% smaller 
than its equilibrium value, the relative difference AYyy is 
smaller than 7%. For larger values of shear rates, the discrep- 
ancies become more significant so that the appropriate exter- 
nal force is the one proposed in Eq. (34). 

V. SHEAR VISCOSITY COEFFICIENT 

The other relevant physical quantity involved in this 
problem is the shear viscosity coefficient 7, which is defined 
from Eq. (15). We are interested in exploring the effects of 
the heat field upon the shear viscosity. For the sake of clarity 
we restrict our calculations to the second order approxima- 
tion and we take e parallel to the gradient of the flow veloc- 
ity, i.e., E,= cc= 0. By collecting terms up to 4, it is a 
simple matter to get the first few terms in the expansion of 7. 
In dimensionless units, the result is 

8” = d(PlV) = 70 
53 k,T 

*+- - ?jg 6 mu 

with 

(37) 

15 1 2a*Ayy[a*+2(1+2ao*)(1+3cuo*)]-3A,,(1+2ao*)3 
G=-z;;j- 2a*3-2a*2(l+2ao*)-3(1+2ao*)4 % (38) 

I 

Equation (36) indicates that the deviation of the shear vis- 
cosity coefficient from its pure shear flow 77; is at least of 
second order in the heat field. In the spirit of the Chapman- 
Enskog method it would correspond to the Burnett hydrody- 
namic order. The coefficient 77; is again a highly nonlinear 
function of the shear rate. For a*=O, Eq. (36) becomes 

53 kBT 
“*=1+6&y&. (39) 

since for a * =O, slyY = 1. In Fig. 5 we have plotted 77; for the 
same choices of fiyu as in Sec. IV. We see that both coeffi- 
cients exhibit different behaviors. In the case of the modified 
force (34), 72 in general monotonically decreases as a* in- 
creases while for the conventional Evans-Gillan choice 7~; 
presents a maximum around a*==0.48. According to these 
results one could expect that the successive transport coeffi- 
cients of the problem will be noticeably different when con- 
sidering both choices of the external force. 
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FIG. 4. Plot of the relative difference between Ay, and Ayy vs the shear rate. 
Here, A,,, corresponds to the VHP model. 

VI. DISCUSSION 

In this paper we have analyzed the coupling between 
heat and momentum transport in a dilute gas described by 
the BGK kinetic model. The system is in a steady inhomo- 
geneous state (the so-called uniform shear flow) character- 
ized by a constant density and temperature and a local ve- 
locity along the x direction with a constant gradient a along 
the y direction. Further, a nonconservative external force acts 
on the system producing a heat current in spite of the ab- 
sence of a thermal gradient. A drag force is also included to 
preserve the stationarity of the state. Therefore, the system is 
driven out of equilibrium by the shearing motion as well as 
by the heat field. This method of generating heat flux has 
been proposed in molecular dynamics simulations2*3 as a 
means to evaluate the thermal conductivity coefficient in the 
zero-field limit. 

By assuming that the heat field is weak, the hierarchy of 
moment equations is solved by means of a perturbation ex- 
pansion around the uniform shear flow state. Consequently, 
the different approximations are highly nonlinear functions 
of the shear rate. All the velocity moments can be obtained in 
a recursive way. In particular, explicit expressions for the 
linear thermal conductivity tensor Kii and the shear viscosity 
coefficient 7~ up to second-order approximation are derived. 
These quantities are related, respectively, to the transport of 
energy and momentum and they are the relevant transport 
coefficients of the problem. 

In absence of shear field (a =0), the thermal conductivity 
coefficient K reduces to the usual thermal conductivity X ob- 
tained in the thermal gradient problem. This coefficient is 
defined from the familiar Fourier law and can be evaluated 
from a Green-Kubo relation. From the computer simulation 
point of view, the Evans-Gillan algorithm permits a much 
more efficient calculation of the Navier-Stokes thermal con- 
ductivity than a direct calculation of this coefficient from the 
Green-Kubo formula itself. Unfortunately, and as has been 
proved recently,* this equivalence is not maintained when the 
system is in a far from equilibrium situation (such as the 
uniform shear flow state). The exact results derived here and 
in Ref. 5 for a dilute gas confirm that both thermal conduc- 
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a* 

PIG. 5. Shear-rate dependence of the second-order coefficient $ for two 
choices of slyy : C&,=1 (solid line) and R,,=(A-‘),+Xky for the VHP 
interaction (dashed line). 

tivity tensors are clearly different for finite values of the 
shear rates. Nevertheless, for not too large values of 
a*(a*-0.25), the agreement between both methods is rea- 
sonably good. 

The above discrepancies can be eliminated by an ad- 
equate choice of the external force. By identifying the ther- 
mal gradient V In T with the field strength e, we have pro- 
posed a shear-rate dependent heat field that yields identical 
expressions for the thermal conductivity tensor. This altema- 
tive field takes into account the presence of nonequilibrium 
normal and shear stresses. Further, its explicit expression de- 
pends on the potential model considered through the tem- 
perature dependence of the collision frequency. 

The use of fictitious fields may prove to be relevant for 
computing more efficiently linear transport coefficients in 
computer simulations. In this context, the novel external 
force suggested in this paper for evaluating the linear thermal 
conductivity tensor is a nontrivial extension of the conven- 
tional Evans-Gillan method and thus represents a step for- 
ward. On the other hand, although the results presented here 
have been obtained from the BGK model, we expect that 
similar conclusions could be drawn out from the exact Bolt- 
zmann equation. Work is in progress along this line. 
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APPENDIX: EXPLldlT EXPRESSION OF THE TENSOR 
A 

Here we give the list of the nonzero elements of the 
tensor A,. They cm be written in the form 

A =Ao+A,a*2+A2a*4, xx 641) 
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;1,,=A3a*+A4a*3+A5a*5, 

,4,,=A6a*+A7a*3, 

A .=A,,+A8a*2+Aga*4 S? 7 

642) A =Ao+A,~a*2+Alla*4, zz 645) 

(A3) 
Aj being nonlinear functions of CY~ . These quantities are 

(A4) given by 

l-cYo* 

A’=(1+4aS)(1+3~,*)(1+2~~) ’ 

A,=- 
4560&+3504a o*“- 740a, *3- 1377c~$~-432a$-43 

5( 1+4ao*)3( 1+3cyo*)3( 1+2c+3 , 

18 10 Al=- 106a$2+65a*+ 0 
5 (1+4a$)5( 1+3q93 ’ 

A3= 
116a~3-6a~2-51a~-ll 

5(1+4cro*)2(1+3L&2(1+2cr~)2’ 

A4= 
21456a$6+13512a*5-14348~ 0 ;4-17858cr$3-7257a);2-1318a$-91 

5(1+4&4(1+3a,*)4(1+2(r;)3 

54 
AS= 58c~$~+34a;+5 -- 5 (1+4a$)5( 1+3c&4 ’ 

A6=: 
38c~$“+2a;~- 13a$-3 

5 (1+4#( 1+3a$)2( 1+2# ’ 

A,= -6 
13a,*+4 

5 (1+4ao*)4( 1+3ap ’ 

1632c~*~+368a *4- 
A*= - 0 0 1604az3- 1233a;2-332a$-31 5( 1+4@)3( 1 f3ao*)3(1+2a,*)3 

, 

18 
Ag=- 5 58a$‘+34a$+5 ’ (1+4&5( 1 f3a,*)3 

1 A,o=- 184a~“+440a~4-872a~3-725~~2-200cy~- 19 

5( 1+4a,*)3( 1+3ao*)3( 1+2&3 

6 106a$‘+65a$+ 10 
A,,=- 

5 (1+4#( 1+3&3 . 

(‘46) 

(A7) 

w3) 

(-49) 

(AlO) 

(All) 

6412) 

(A13) 

(A14) 

(A15) 

(‘416) 

(A17) 

The behavior of a$ for small and large shear rates is, 
respectively, 

ao*c Jp*2 , 641% 

a$&(;)1/3a*2/3. (Al9) 

According to this behavior, for small shear rates one has that 
A ..=l+ ~a*2,AXy~-~aa*,hy*FT-~a*,Aysf: I+ ga**, 

and A,, = If &a*". On the other hand, for large shear rates 
one gets A,,-?$, Axy=-$$)1'3a*1'3, II,,--~(~)~'~ 
.*-l/3 , A,,,,=$$, and A,,-$$ 
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