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Abstract 

The exact fourth-degree moments derived in the preceding paper from the Boltzmann equation 
for Maxwell molecules under uniform shear flow are compared with those obtained from the BGK 
and the Gaussian approximations. It is shown that the BGK results are closer to the exact ones 
than the Gaussian results. However, the deviations become significant as the shear rate increases. 

1. Introduct ion 

Although the Boltzmann equation provides the adequate framework for studying gen- 

eral nonequilibrium phenomena in dilute gases, the intricacy of its collision term has 

made the search for explicit solutions a formidable task. Nevertheless, there exist a few 

examples of non-homogeneous problems for which a solution in terms of the velocity 

moments is known for Maxwell molecules [2-5].  In the particular case of uniform shear 

flow (USF), the exact shear viscosity and viscometric functions are known as nonlin- 

ear functions of the shear rate [2,6]. On the other hand, the full velocity distribution 
function is not known. 

The mathematical difficulties embodied in the Boltzmann collision operator have 

stimulated the use of simplified kinetic models, such as the Bhatnagar-Gross-Kxook 

(BGK) kinetic equation [ 1 ]. In this model, it is assumed that the net effect of collisions 

is to make the distribution function tend to relax toward the local equilibrium distribution 

with a characteristic time equal to the mean free time. In the case of USE the elements 

of the pressure tensor coincide with those obtained from the Boltzmann equation for 

Maxwell molecules when one chooses conveniently the collision frequency [7]. This 
fact shows the relevance of the BGK model for computing transport properties far from 

equilibrium. In addition, the velocity distribution function of the BGK equation for USF 
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has been obtained [8]. An interesting question is whether such a distribution is a good 
representation of the "real" solution of the Boltzmann equation. Comparison with Monte 
Carlo simulations for hard spheres shows that the BGK solution describes fairly well 
the shape of the "real" distribution except in the high-velocity region [9]. Since the 
Monte Carlo method does not provide an explicit solution of the Boltzmann equation, 
it is interesting to carry out a detailed comparison between the BGK and Boltzmann 
solutions for moments of degree higher than 2. The objective of this paper is to perform 
such a comparison by using the exact expressions for the fourth-degree moments derived 
in the preceding paper [ 10]. This comparison allows one to infer the degree of reliability 
of the distribution function obtained from the BGK equation. 

The plan of the paper is as follows. In Section 2 we give a brief account of the solution 
of the BGK equation for USF. The Gaussian approximation consistent with the exact 
second-degree moments is introduced in Section 3. The comparison between the exact 
fourth-degree moments and those given by the BGK and the Gaussian approximations 
is carried out in Section 4. Finally, a few conclusions are presented in Section 5. 

2. BGK solution for USF 

According to the BGK model, the time evolution of the velocity distribution function 
f ( r ,  v, t) is given by 

a a 1 o 
~ f + v  . ~ r r f +  m~vv" ( F f )  = - p ( f -  fLE)  , l) 

where m is the mass of a particle, F is an external force, and 

( m ) 3 / 2 (  m [ v - U ( r ' t ) ] 2  ) 
fLE(r, v, t) = n(r,  t) 2¢rkBT-(r, t) exp 2k~T(r, t) (2) 

is the local equilibrium distribution function. Here, n, U, and T are the local density, 
velocity, and temperature, respectively. In Eq. (1), ~,(r,t) is a velocity-independent 
collision frequency that depends on position and time through the density and the 
temperature. All the influence of the interaction model enters into the BGK equation via 
the collision frequency. 

In the USF state, U/ = ay~ix, n is constant, and T is spatially homogeneous. Con- 
sequently, the collision frequency is constant for Maxwell molecules and also for any 
interaction potential when a thermostat force is introduced to compensate for viscous 
heating. In either case, the explicit shear-rate dependence of the moments in the long- 
time limit is known [ 8]. Let us define the following moments: 

1 / dVVf~V;2Vzk3 f Mkl,k2,k3 = n 

= < v) l  Vy 2 Vz 3 > , 
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where V = v - U is the peculiar velocity. Due to the symmetry of the problem, the 

nonvanishing moments correspond to kl + k2 = even and k3 = even. In that case, the 
result is 

kl 

Mkl,k2,k3 = ~ - ~ . ( - - a ) q [  1 + (kl + k2 n t- k 3 ) a ] - ( q + l )  k l !  LZ q=O ( kl - q) ! Mkl-q'k2+q'k3 ' 
(4) 

where 

----. .iq.-3/z F _ _  

if kl,  k2, and k3 are even, being zero otherwise. In Eq. (4),  a = 2 sinh2[ ~ cosh-I ( 1 + 
9a 2) ] and we have taken v -1 as the unit of time. Up to first order in the shear rate 

(Navier-Stokes order), the moments behave as 

LE LE 
Mkl,kz,k3 = Mkl,k2,k3 -- k lMkj_l ,k2+l,k3a q- . . . .  (6) 

Since the Chapman-Enskog solutions to the BGK and Boltzmann equations for Ma,xwell 

molecules coincide at the level of Navier-Stokes, it is evident that Eq. (6) is exact. 

Eq. (4) can be particularized to get the expressions for the second-degree moments. 
They are 

kBT 1 + 6 a  
M2,0,0 = m 1 + 2a  (7) 

k z T  1 
Mo,2, 0 = Mo,o, 2 - , (8") 

m l + 2 c e  

kBT a 
Ml k0 = (91) 

' m ( 1  + 2 r e )  2 ' 

Eqs. ( 7 ) - ( 9 )  define the most important transport properties of the problem, namely 

the nonlinear shear viscosity and viscometric functions. It is remarkable that the above 
moments coincide exactly with those obtained from the Boltzmann equation for Maxwell 
molecules [ 10]. This agreement, however, does not extend to higher-degree moments. 
An exception is the relation 

k/2 

Z ( - 1 ) q ( k q )  M o , 2 q , k - 2 q = O ,  
q--O 

(lO) 

which holds in both cases [ 10]. 
Before closing this section, it must be emphasized that the solution to the BGK 

equation reaches in the long-time limit a form ("normal" solution) that is independent 
of  the initial conditions. This contrasts with the results derived from the Boltzmann 

equation for Maxwell molecules, where a singularity arises at a certain critical value of 
the shear rate [ 11 ]. 
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3. Gaussian approximation 

429 

In order to put the comparison between the Boltzmann and the BGK equations in 
an appropriate context, it is convenient to consider the Gaussian approximation for the 
velocity distribution function consistent with the second-degree moments. This approxi- 
mation is 

f ( V )  = n~r-3/2(det Q)1/2 e x p ( - Q  : VV) , ( 11 ) 

where Q = ½mnP -l, P being the prescribed pressure tensor. From this expression one 
can easily get all the velocity moments. In our case, by using Eqs. (7 ) - (9 ) ,  their explicit 
form is 

(kl+k2-t-k3)/21 k~(  1 +-2aa) q Mkl,k2,k3 = ( 1 + 2a)  E ( 1 + 3a) (kl-q)/2 q=0 
kl ! ML E x q!(kl - q) ! k~-q,k2+q,k3 " ( l 2) 

Since the second-degree moments are common in the Boltzmann and BGK equations, the 
Gaussian approximation (12) is also the same in both descriptions. In addition the exact 
relation (10) is maintained by this approximation. Further, the Gaussian approximation 
is exact up to first order in the shear rate (Navier-Stokes order). 

4. Comparison of  the fourth-degree moments  

The explicit shear-rate dependence obtained in Ref. [ 10] for the fourth-degree mo- 
ments allows one to carry out a detailed comparison with the corresponding moments 
given by the BGK equation and the Gaussian approximation. Due to the symmetry of 
the problem there are in principle 9 independent non-zero moments. However, Eq. (10) 
with k = 4 restricts to 8 the number of relevant moments. Of course, there are many 
possible choices for the set of independent moments. Here, we take the following set: 

{(V4), (V2V)), (V2V)2), (VJ), (V)4), (V2VxVy), (V3Vy), (VxVy3)}. ( ]3)  

The first five moments of the set are even functions of the shear rate, while the remaining 
three moments are odd functions. The relationship between these moments and the ones 
considered in Ref. [10] is 

(g4) / / i = _ 

( v 2 )  (Vy 4) \ 

0 0 0 0  / 

1 0 0 0  

0 1 0 0  • 

6 0 4 4  

0 6 1 0  

M41o / 

M21xx 
M21yy 

go[yyyy 
Molzzzz 

(14) 
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Fig. 1. Shear-rate dependence of  (V 4) relative to its equilibrium value, according to the Boltzmaan equation 
( - - ) ,  the BGK equation ( -  - - ) ,  and the Gaussian approximation (- - -).  

_ X 

1.o 1 

< 0 .9  . < . . . . . . . .  

0.7 - . .  

13.6 } . 

0 . 5  , I  I I  l l l L  I , ,  , , , ~ J ~ s ,  

0.0 0.2 0.4 0.6 0.8 .0 

Fig. 2. Same as in Fig. 1, but for (Vy4). c~/~., 
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As discussed in Ref. [ 10], the fourth-degree moments do not reach stationary values, 

when scaled with respect to the temperature, for shear rates beyond a critical value a< ~- 
6.845. Nevertheless, nonlinear effects are still quite important in the region a < ac. For 
instance, the generalized shear viscosity for a = 1 is about half the Navier-Stokes v~due. 
The shear-rate dependence of the moments (13) in the region 0 < a < 1 is shown 
in Figs. 1-8. The exact results obtained from the Boltzmann equation are compared 
with those obtained from the BGK equation and from the Gaussian approximation. 
Each moment is normalized with respect to the corresponding first nonzero term in the 
Chapman-Enskog expansion, which is denoted by (-. ")0. 

Fig. 1 shows that the BGK equation reproduces quite well the exact behavior of 
(V 4) over the range of shear rates considered. It is interesting to note that the deviation 
from equilibrium is slightly overestimated by the BGK model for shear rates smaller 
than about 0.8. On the other hand, the Gaussian approximation, according to which 
(V 4) = 3(V~) 2, systematically underestimates the exact value. These conclusions cannot 
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Fig. 3. Same as in Fig. l, but for (V2V2>. 
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be extended to the remaining fourth-degree moments. Thus, we see in Fig. 2 that the 
predictions for (Vy 4> obtained from the BGK and the Gaussian approximations clearly 
deviate from the Boltzmann result. It seems paradoxical that the Gaussian approximation 
gives a larger deviation from equilibrium for (V~ 4) than the exact value. This only means 
that, as happened for (V4), <gy 4> is larger than 3(gy2> 2. Consequently, the tail of the 
actual velocity distribution function is expected to decay more slowly than predicted by 
the Gaussian approximation. 

The remaining three even moments considered are plotted in Figs. 3-5. They provide 
information about the correlations induced by the shear flow among the components 
of the velocity. We observe that the moment (V2Vx z> behaves in a similar way as the 
moment (V4). In particular, the behavior predicted by the BGK model is quite good 
for shear rates smaller than about 0.6. However, the agreement is very poor in the 
case of (VZVx2). Quite surprisingly, the Boltzrnann equation shows that this moment is 
practically insensitive to the value of the shear rate in the range 0 < a < 1. Some of 
the main effects observed in the previous figures are present again in Fig. 5. Although 
the BGK approximation is remarkably better than the Gaussian approximation, both fail 
to describe well the population of high-velocity particles. 
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Fig. 7. Same as in Fig. 6, but for (V3Vy). 

Finally, the three odd moments are shown in Figs. 6-8 .  Although they are negative, 

what is plotted in the figures is their values relative to the Navier-Stokes approximation, 

so that the ratio is positive. Figs. 6 and 7 exhibit a feature similar to the one observed 

in Figs. 1 and 3, namely the BGK equation overestimates the exact (absolute) value for 

small shear rates but it underestimates that value for large shear rates. In all the cases, 

the Gaussian approximation underestimates the corresponding exact value. The BGK 
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Fig. 8. Same as in Fig. 6, but for (VxVy3). 

prediction for (VxVy 3) is worse than in the two previous cases. As a matter of fact, this 

is the only moment for which the Ganssian approximation is better than the BGK one. 

5. Concluding remarks 

One of the main advantages of the knowledge of exact solutions for specific situations 
is the possibility of testing approximations. For a dilute gas, the BGK model is frequently 
used as an approximation of the Boltzmann equation. In the case of the uniform shear 

flow state, the Ikenberry-Truesdell [2] solution of the Boltzmann equation for Maxwell 
molecules provides the explicit expressions of the rheological properties over the whole 
range of shear rates. These transport properties happen to coincide exactly with those 

obtained from the BGK model for the same problem [7]. Consequently, it is necessary 

to go beyond the level of hydrodynamic quantities (i.e. second-degree moments) in 
order to elucidate the degree of reliability of the BGK model. The recent derivation of 

explicit expressions for the fourth-degree moments from the Boltzmann equation [10] 
gives the possibility of carrying out the comparison with the BGK results. This has been 
the main objective addressed in this paper. 

Such a comparison is illustrated by Figs. 1-8. In addition, the Gaussian approximation 
is also considered. We observe that, in general, the BGK predictions are reasonably 
good for not too large shear rates (say a < 0.2), especially for moments in which the 
component V~ is the most relevant one. In particular, the BGK approximation is exact 
up to first order in the shear rate (Navier-Stokes order). However, it does not give, in 

general, good estimates for the Burnett (second order) and super-Burnett (third order) 
coefficients. For instance, the Burnett coefficient of IV2V2x) is estimated with a deviation 
of about 1.7%, while for (V2V 2) this coefficient does not have the same sign as the 
exact one. Anyway, the results predicted by the BGK model are closer to the exact ones 
than those obtained from the Gaussian approximation. 

It is evident that the comparison between the Boltzmann and the BGK equations 
at the level of fourth-degree moments is not sufficient to assess the "quality" of the 
velocity distribution function obtained from the BGK approximation. Nevertheless, the 
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exact agreement for the second-degree moments suggests that the BGK distribution 

reproduces well the behavior in the region of thermal velocities. Further, since the 

fourth-degree moments obtained from the BGK approximation are generally smaller 

than the exact ones, the high-velocity population is possibly underestimated by the 

BGK approximation. These expectations have been recently confirmed by computer 

simulations [ 9,12]. 

In summary, we conclude that, in general, the BGK model is a good approximation 

of the Boltzmann equation at the level of transport properties, which are related to the 

lower-degree velocity moments, although it becomes less reliable as the degree of the 

moments increases. 
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