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Tracer diffusion in a steady shear flow state is analyzed. A kinetic model incorporating a temperature 
dependence in the collision frequencies is used. This allows for the consideration of a general 
repulsive intermolecular interaction. A perturbative scheme is applied to get the shear rate 
dependence of the tracer diffusion tensor in terms of the mass ratio, the force constants ratio, and a 
parameter characterizing the interaction potential considered. In addition, the heat tlux arising from 
the concentration gradient of the tracer species is also evaluated. The results are illustrated for the 
two extreme cases of Maxwell molecules and hard spheres. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The irreversible thermodynamics description of systems 
in which different transport processes occur, is well under- 
stood in the linear regime. Within this regime and in the case 
of isotropic systems such as simple fluids, the tensorial na- 
ture of the transport processes determines the couplings be- 
tween thermodynamic forces appearing in the dissipative 
fluxes (Curie’s principle).’ An example of such a situation 
corresponds to a fluid mixture simultaneously subjected to 
both weak concentration and velocity gradients in which 
case the mass flux (vector quantity) is not affected by the 
action of the velocity gradient (second-rank tensorial quan- 
tityj. However, beyond the linear regime Curie’s principle is 
not necessarily satisfied. In particular, if the velocity gradient 
is not small, even if the concentration gradient is weak the 
mass flux can be modified by the presence of the velocity 
gradient. 

Recently, we have analyzed the problem of diffusion un- 
der shear flow using a kinetic theoretical approach. The stud- 
ies were carried out for a dilute binary mixture in which one 
of the components is present in tracer concentration. We con- 
sidered both the Boltzmann equation” and well-known ki- 
netic models3 as points of departure and the entire range of 
mass ratios between the molecules of the tracer component 
and those of the excess one was covered. A key motivation 
was to examine the interplay between mass ratio and shear 
rate in determining the behavior of the transport phenomena. 
For the sake of simplicity, we assumed that the molecules 
interacted through repulsive forces inversely proportional to 
the fifth power of the distance (Maxwell moleculesj. Never- 
theless, our results cannot be regarded as general, since the 
model of Maxwell molecules is not a very realistic represen- 
tation of intermolecular interactions except in some particu- 
lar conditions. For this reason, in this paper we extend our 
previous efforts by addressing the problem of tracer diffusion 
in shear flow for general repulsive intermolecular forces. The 
underlying motivation of such a study is twofold. On the one 
hand, we would like to assess to what extent the previous 
results derived for Maxwell molecules are indicative of what 

happens in more realistic models. On the other hand, it is 
also of interest to evaluate the effect of the interaction poten- 
tial on the transport properties in a situation where a direct 
comparison with computer simulations is more likely to oc- 
cur. 

The program outlined above cannot, unfortunately, be 
carried out analytically using the Boltzmann equation. There- 
fore, either one restores to numerical solutions or follows a 
route that has been proved to be very fruitful in other in- 
stances, namely to use a kinetic model. Here, we adopt the 
second approach by considering a generalization of the fa- 
miliar Gross-Krook (.GK) kinetic model4 for a binary mix- 
ture where the effective collision frequencies depend on the 
temperature of each species. 

The plan of the paper is as follows. In Sec. II, we intro- 
duce the kinetic model and state the transport problem to be 
analyzed. Due to our interest in making connection with 
computer simulations where a steady state is achieved, we 
also incorporate thermostat forces acting on each species. 
Further, a brief summary of relevant results concerning the 
uniform shear flow problem is included. Section III contains 
the main results of the paper. Starting from the kinetic equa- 
tion for the velocity distribution function of the tracer com- 
ponent, a perturbative scheme is introduced to explicitly get 
the shear rate dependence of the tracer diffusion tensor. In 
addition, we also compute the heat flux arising from the pres- 
ence of a concentration gradient. Finally, in Sec. IV we close 
the paper with some concluding remarks. 

II. DESCRIPTION OF THE PROBLEM 

We consider a dilute binary gas mixture. If f,(r,v;t) de- 
notes the one-particle velocity distribution function of spe- 
cies T (r=1,2), in the presence of external forces F,, the 
following system of two coupled Boltzmann equations is sat- 
isfied: 

& fl+v.Vf,+; * f 1 Zfl =Jll[fl,fll+J12[fl,f21, 
(1) 
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(2) 
where m, is the molecular mass of particles of species r and 
J,,[f, ,f,] are the nonlinear Boltzmann collision operators. 
The terms appearing on the right-hand sides of Eqs. (l!-(2) 
represent the self- and cross-collisions, respectively. They 
conserve the number of particles of each species, the total 
momentum, and the total kinetic energy. The local number 
density and mean velocity of species Y are defined as 

(3) 

n,u,= 
s 

dv vfr . (4) 

We also define a “local temperature” T, for each species 
through 

3 
5 n,k,T,=: I- dviv-u,)‘f,. , 

. (5) 

with kB the Boltzmann constant. The solution to Eqs. (l)-(2j 
is in general a very difficult task due to the complex structure 
of .the collision operators. This is specially so for a general 
interaction law between the particles. Therefore, many at- 
tempts have been made to construct kinetic models that, 
while being mathematically simpler, preserve the main 
physical features of the Boltzmann equation. Perhaps the 
most successful is the one proposed by Gross and Krook 
(GK model)” in which case the collision operators J,, we 
replaced by simple relaxation terms of the form 

- zdfr-frs), (6) 

where v,., is an effective collision frequency verifying the 
general property n,v,,= n,v,, and f,, is a reference distribu- 
tion function given by 

frsznr( 2TyrT ) 3’2expi - & (v-urs)2). B 7s c7) 

The parameters u,, and T,, are such that the total mo- 
mentum and energy of the mixture are conserved. In addi- 
tion, since the above requirements are not sufficient to ex- 
plicitly determine them, one further imposes that the first five 
collisional moments as computed with Eq. (6) be the same as 
those computed with the exact J,, . However, this can only 
be exactly achieved in the case of Maxwell molecules which 
clearly restricts the usefulness of the GK model. In the case 
of non-Maxwell molecules, one may introduce approximate 
forms for the above collisional moments and hence derive 
the corresponding expressions for u, and T,, . For instance, 
for molecules interacting via a repulsive force law 
Frs=K,irY (y=5 ,...,m) and under adequate approximations 
it can be proved that u,, and T,, have the same expressions 
as those obtained in the conventional GK model for Maxwell 
molecules (~=5),~ i.e., 

m,u,+ m,u, 
ur5 = m,+m, ’ (8) 

mrms 
Trs=Tr+2 (m,+m,j” ( CT,- ir,) + 2 OV--U,)~ 

(9) 

but now the effective collision frequency v,.~ can be identi- 
fied as 

Here, P=(r-5 j/(y- 1) and A (/?) is a constant for a given 
interparticle potential. The kinetic model defined by Eqs. 
(6j-(10) can be seen as an extension of the usual GK model 
for inverse power laws. It incorporates a temperature depen- 
dence of the collision frequency. Obviously, for y=5, v,., 
becomes independent of the temperature and one recovers 
the usual GK model for the Maxwell interaction. Here, we 
will consider the general form of v,, given by Eq. (10) in 
order to offer a theory with wider applicability than just for 
Maxwell molecules. 

We describe now the problem we are interested in. We 
consider a dilute binary mixture in which the masses of both 
species are arbitrary. Our aim is to analyze a diffusion prob- 
lem in a far from equilibrium steady state. Nevertheless, due 
to the complexity of the general problem we choose a par- 
ticular case that shares the simplicity of the description given 
for the single gas and yet introduces the ingredient of the 
mass ratio in the dynamics of the problem. This case corre- 
sponds to the so-called tracer limit in which one of the com- 
ponents, say 1, is present in tracer concentration, i.e., 
nI/n2+l. This choice is motivated by the recent results de- 
rived in this limit for Maxwell molecules taking indepen- 
dently the Boltzmann equation2 as well as kinetic models.3 In 
the tracer limit, it is expected that the excess component 2 is 
not appreciably disturbed by the collisions with particles of 
species 1 so that the velocity distribution fi verifies a closed 
equation. Moreover, in this case such equation turns out to be 
the well-known BGK equation for a single gas6 as follows 
from Eq. (2). Further, the molar fraction of the tracer species 
1 is so small that one may neglect their mutual interactions. 
On the other hand, our description applies in principle for 
arbitrary values of the mass and intermolecular force con- 
stants ratios. 

Under the above conditions, we assume that the excess 
component 2 is in a steady shear flow state. From a macro- 
scopic point of view, this state is characterized by a constant 
density n2 and temperature T,, and a linear profile of the x 
component of the flow velocity along the y direction, i.e., 

U2,i= aijrj (11) 

with aij=a &8jiy, a being the constant shear rate. This state 
is not stationary since the temperature increases in time due 
to viscous heating. For practical purposes, it would be desir- 
able to compute the transport properties in a steady state. 
Consequently, an external force must be included to remove 
this heating effect and so achieve a steady state. The simplest 
choice, which may be derived from Gauss’ Principle of Least 
Constraint,7 is a nonconservative force proportional to the 
peculiar velocity Vi’Ui--aijrj 
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F2= -mzaV, (12) 

where a plays the role of a thermostat parameter to be de- 
termined as a function of the shear rate from the condition 
that the temperature T, remains constant. This kind of force 
is usually employed in nonequilibrium molecular dynamics 
simu1ations.s Furthermore, the thermostating mechanism 
must be completely specified in far from equilibrium states 
since it does not play a neutral role in the transport properties 
of the system.g 

The uniform shear flow state is one of the few inhomo- 
geneous states for which an exact description can be given 
far from equilibrium, both using the full Boltzmann equation 
(Maxwell molecules) and kinetic models. This state becomes 
spatially homogeneous when the velocities of particles are 
referred to a Lagrangian frame moving with the flow velocity 
u(r). In this new frame, the distribution function has the 
form fa(r>v)-fa(V). For this reason, the uniform shear flow 
has been extensively studied theoreticallyr’ and also by 
means of computer simulations.7 

According to Eq. (10) the collision frequency v, is a 
constant in the steady shear flow state. This simplicity allows 
us to explicitly obtain the reduced velocity moments 
Mkl ,k2,k3 of the velocity distribution fz. They are defined by 

X 
I 

dV @ecf2. (13) 

The only nonvanishing moments correspond to k, + kz and 
k, even, in which case one get8 

I M I k, - go ‘-““Yg$jy Sk2 .k3 - 
q+kl=even 

X[1+a*(k,+k,+k3)]-‘4+1)Akl-4,k2+4,k3, 
(14) 

where a * = al vZ2, cx* = cuf y,, and 

A -++(!?g+(!g). (15) k,&,k,-- 

The thermostat parameter LY* can be determined from the . . consistency condmon Mao0 +Mozo + Mooa =3/2. This rela- 
tion yields a cubic equation for (Y* whose real solution is 

2 
(Y*= 5 sinh’ $ cash-“(1+9&) 

In addition, and in contrast to what happens in the Bolt- 
zmann description, the use of the BGK kinetic ‘model allows 
one to explicitly obtain the velocity distribution function f2. 
For that purpose, it is convenient to take into account the 
exact equivalence between the uniform shear flow solutions 
with and without a thermostat.g Thus, in terms of the reduced 
velocity &=(2k,T,lm2)-1i2V, the reduced velocity distribu- 
tion function gz=(l/n2)(2kBT2/m2)3/2f2 happens to be iden- 

tical to the one obtained in the uniform shear flow problem in 
the absence of a thermostat force in the particular case of 
Maxwell molecules.g Its expression is” 

g&yz*)=Tr-3'2 m I ds exp[-(l-3cr*)s] 
0 

X exp[ - e2a*sc@.a, (17) 

where & is the matrix of elements 

CLij” Sii+U*2s26iy~jjy+U*s(Si~Sj~+ ~Z~Sjx). (18) 

Since the distribution function f2 is known, our goal now is 
to compute the main transport properties of the tracer com- 
ponent when diffusion takes place. This will be done in the 
next section. 

111. TRACER DIFFUSION UNDER SHEAR FLOW 

As stated above, in the tracer limit the state of particles 
of species 1 is mainly governed by the collisions with par- 
ticles of species 2, so that the self-collisions between par- 
ticles 1 can be neglected. Under these conditions, the steady 
kinetic equation governing the evolution of the velocity dis- 
tribution function fr becomes 

-UijVj ~ fl+ (Vi+aijrj) f fl+ ~ 
t 1 I i i 

F~ fl 
1 

= - bz(f1 -f12). (19) 

Here, F, is the adequate thermostat force to keep the tem- 
perature T, of the tracer species constant. Once again, ac- 
cording to the Gauss’ Principle of Least Constraint, this force 
has an expression similar to that of Eq. (12), namely 

Fr= -mraV, (20) 

where a is the thermostat parameter defined by Eq. (16). 
This form has also been used for the self-diffusion 
problem.12 

We are interested in studying the effect of the shear flow 
on the diffusion of tracer particles in terms of the shear rate, 
the mass, and intermolecular force constants ratios. Of 
course, for zero shear rate the usual Fick’s law, implying a 
linear relationship between the flux of tracer particles and the 
concentration gradient, is obeyed. This law defines the diffu- 
sion coefficient. For finite shear rate, one expects that a gen- 
eralized Fick’s law holds but now a diffusion tensor rather 
than a scalar should arise. Our aim here is to generalize 
previous expressions”‘3 derived for this tensor to the case of a 
general repulsive interaction law in order to analyze the in- 
fluence of the intermolecular potential on this transport prob- 
lem. 

To this end we must first solve Eq. (19). Following a 
similar approach as in our previous work, we shall use a 
perturbative expansion around a nonequilibrium state with 
arbitrary shear rate. In this scheme, the uniformity parameter 
of the expansion will be the gradient of concentration of the 
tracer particles. We therefore look for solutions of the form 

fl=f’lD’+fil’+--* ) cw 
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where the superindex refers to the order in the expansion 
parameter considered. Note that the successive approxima- 
tions to f r are nonlinear functions of the shear rate. Since we 
are interested in deriving an explicit expression for the tracer 
diffusion tensor, our calculations will go up to first order in 
the concentration gradient Vn, . To get the main transport 
properties of the tracer particles it is convenient to define the 
reduced velocity moments hrt!k2 ,k, corresponding to the ap- 
proximation fi) as 

-(lR)W,+k,+k,) 

x 
I 

dV ~rI$aI<“fip). (22) 

N(O) _ kl,L2,k3= 2 i-Udq ckk’6J, 
q=o 1 . 

(27) 

Notice that in Eqs. (25) and (27) we assume that R(O) is 
identically zero when any of its indices is negative. On the 
other hand, the expression (27) depends on the interaction 
model considered through the ratio v22/vr2. In the particular 
case of repulsive potentials of the form rBY, this ratio can be 
written as 

Now we are ready to examine the first two approximations. 
%=,B-l( 2-jli2( L&y 

v12 
(2% 

A. Zeroth-order approximation 

This approximation concerns with a situation where no 
diffusion of the tracer particles takes place. In this case, f’p’ 
verifies the kinetic equation 

with w=(Ic~~/K~~) . r” This parameter can be interpreted as a 
measure of the size ratio CT~JU~~ when one assigns an effec- 
tive diameter orS to the interaction between particles of spe- 
ties r and s. In this sense, it is interesting to point out that 
the same kinetic equations corresponding to the tracer limit 
would be obtained for a mixture where the size of species 2 

a -u.V -f1 
lj j avi 

‘“‘-~~(vif~~~)+v,~~~‘=v*~~“z’, 
is much bigger than that of species 1 even for comparable 
number densities of both components. 

I 
(23) 

To close the problem at this stage of approximation, it 
still remains to determine the function x. It can be obtained 

where 
from the requirement (3/2)x=(N$& + NIP,), + N&z). This re- 
lation yields 

““-~~(2~~~T,2)3’2exP( - & v2)- 
Taking velocity moments in Eq. (23) and after some manipu- 
lations, one gets 

(29) 

The solution of this equation gives x as a function of a *, p, 

uoklN~~~~,k2+,,k3+[1+‘Yg(kl+k2fk3)1N~~),kl,k3 
W, and p. Nevertheless, as a0 and cro are nonlinear functions 
of x, Eq. (29) must be solved in general numerically. On the 

=R’O) _ _ k, .X2.+ ’ (25) other hand, according to the results derived in Ref. 3 and 
taking into account the equivalence between the formulations 
with and without a thermostat in a homogeneous state, there 

where may be combinations of the shear rate and the mass ratio for 
which the temperature of the tracer species does not reach a 

R~~~k,,k3=[(1-2M)X+2M]112(k1+kZ+k3)Akl,kZ.k3 stationary value (cf. Fig. 2 in Ref. 3). Such combinations 

(26) lead to unphysical solutions to Eq. (29) that obviously will 
not be considered here. 

for (kl,kz,k3) even, being zero otherwise. Furthermore, we 
have introduced the mass ratio ,u=m2/ml, the temperature 
ratio x=Tl/T2, and the dimensionless quantities 

Despite the generally complex nature of Eq. (29) there 
are some limiting cases for which the behavior of ,y can be 
ascertained analytically. For instance, for small shear rates 

M=#uJ(l+& a~=(v~~/v~~)a*, and cu,=(v.&~,~)a*. In 
particular, the introduction of a temperature ratio is related to 1 2 
the fact that the system is in a nonequilibrium steady state so x=1+- - 
that the mean kinetic energy per particle may turn out to be i 3M 1+/U 

,(P-IW- 1 u*2, 
i 

(30) 

different in each species. 
The solution to Eq. (25) can be cast into the form (see whereas if one takes w=l, the behavior of x in the case of 

the Appendix) similar masses &U--I) is governed by 
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x-=1-2a*” 
(ioa*+3j(p-11 

2~*“[2~(5a*-t1)+4(2a*fl)]+3(2a*+1)2[2~a*+8(2a*2+3a*+1)]’ (31) 

Also, there is a particular interaction model for which 
(29) reduces to a simple linear algebraic equation. It corre- 
sponds to Maxwell molecules i/3=0), in which case aa and 
CQ are independent of x. The solution is then 

x”= 2M 
2M-l+R,’ 

where 

h&f= 
1+2aa, - 

l+$[a~,l(l+2~aMj11 

(32) 

(33) 

and qyoM and aOM follow from Eq. (28) with /?=O. Inserting 
Eq. (33) into Eq. (271, one gets explicitly the dependence of 
the velocity moments on the shear rate, the mass ratio, and 
the force constants ratio. We note that these moments are 
identical to the ones obtained in the absence of thermostat 
forces.3 

In order to gain insight into the effect of the intermolecu- 
lar potential on the form of x, in Fig. 1, we plot this quantity 
as a function of a* for the two extreme cases of Maxwell 
molecules @=O) and hard spheres (p= 1). We have included 
two values of p and for simplicity we have set w= 1. As 
clearly seen in this figure, the general shear rate dependence 
of the temperature ratio is not greatly affected by the power 
of the repulsive law. Also, for both potentials there are com- 
binations of ,U and a * for which x= 1. For small shear rates, 
x is insensitive to the interaction potential considered, while 
specially for large p the differences become more noticeable 
as a* increases. In addition, for a fixed value of the shear 
rate beyond the linear regime, the numerical value of x de- 
creases with increasing @ if p=O.l, whereas the opposite 
happens for p=lO. 

1.4 

13 

1.2 

1.1 

1.0 

0.9 

0.0 

0.7 

0.6 -- 
0 1 2 3 4 

a' 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 1. Shear rate dependence of the ratio T,/T, for o= 1 and two values of 
the mass ratio m,/m, . The solid line refers to Maxwell molecules and the 

FIG. 2. Reduced velocity distribution function cp($) for a*=l, o= 1, and 
m,lm, =O.l. The solid line refers to Maxwell molecules and the dashed lie 

dashed line refers to hard spheres. refers to hard spheres, 

Once x has been determined, in order to close our analy- 
sis of the zeroth-order approximation, it remains to look into 
the velocity distribution function f(O). As a matter of fact, 
this function represents the reference state around which we 
construct the perturbation expansion. From a formal point of 
view, Eq. (23) is the same as the closed BGK equation for f2 
if one makes the changes f,-+f(‘), f,,-A”,‘, and ZJ~~-+V~~. 
Therefore, the reduced distribution function 
~,=(lla,)(2kn~21m,)3’zf~o) can be written at once as 

I 

m 
gl(~=,rr-3/2 ds exp[-(l-3crojs][(l-2M)x 

0 

+2M]-3’2Xexp - 
i 

pas 

(l-2M)x+2M 

x@+2t 6 a x Y 0 s+&z2s2) 
1 yo, 2 

where ~=(m,/2kBT2j’“V. Equation (34) gives the distribu- 
tion of the tracer species when the concentration gradient 
does not yet play a role and the only nonuniformity param- 
eter is the velocity gradient. For the sake of illustration, we 
have considered it convenient to introduce the reduced dis- 
tribution C&S&) in the form 

+m 
d ty,> = ~9'~ exp(@ d4-z gl(s). (3.5) --m 

The behavior of cp($) with $, is plotted in Figs. 2 and 3 for 
a”=l, w= 1, and for two values of ,u. We consider again the 
Maxwell molecules and hard sphere cases. A distortion from 
local equilibrium is clearly observed in both interaction mod- 
els. For p=O.l, the numerical value of cp for Maxwell mol- 
ecules is smaller than the one corresponding to hard spheres 
in the region of small velocities. This tendency becomes op- 

,~I(~IIII~I~(I’~~(‘~I~~I’I~II’II’IIII~~~ 

1.03 - - . 

(P(G) 
1.01 

1 

~-Qtt~=o.l i 

\ 
'. 
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posite as 5’ increases. In the case of ,~u=l.O, the opposite 
effect occurs as the number of particles with small velocities 
decreases as /3 decreases. Anyway, for this value of the shear 
rate, the influence of the repulsive interaction on the velocity 
distribution is more noticeable in the case of small mass 
ratios. This concludes our discussion of the zeroth-order 
stage where it is clear that no diffusion is considered. 

B. First-order approximation 

We assume now that we perturb the above state (zeroth- 
order approximation) by introducing a weak concentration 
gradient Vn,. At this level of description we are mainly in- 
terested in obtaining the shear rate dependence of the diffu- 
sion tensor of the tracer species for a general repulsive power 
law. For that, we collect all the terms of first order in Vn, in 
Eq. (19) to arrive at the following equation for f I” : 

(Vi+aijYj) g fi”‘- Y& (UijVj+ aVi)~‘+ VI&l’ 
1 

= wf\y > (36) 

where 

f’,:‘=‘“‘- 1 v.jp, 
nlk$-12 l+P 

and we have introduced the flux of tracer particles 

j:'!= dV Vf\l’ . (38) 

The mass conservation equation associated to Eq. (36) im- 
plies that dnr/dx=O. It means that the concentration gradient 
must be orthogonal to the shear flow to maintain the station- 
arity of the state. In the following we will restrict ourselves 
to this geometry. 

Taking velocity moments in Eq. (36), one gets the fol- 
lowing hierarchy for the reduced moments A$rJk k : 1’ 2’ 3 

aOW4:h,kzfLk3 +[1+ao(kl+kz+k3)l~~~~k2,k3 

=R&,,k,, (39) 
where now 

R(l) 
kl,k2,k3= & [cl -2M)X 

+R~~),k,+l,kaN~~b+R~~),k,,k,+lN~~~) ” 

-z (N~~~k?+l,k3Ey+N~~),k2,ks+1~=), (40) 

and we have introduced the dimensionless concentration gra- 
dient 

li2 1 d 
=--- In IZ,, 
V22 drj 

ti$‘, k,= s (-aO>’ kl! , , 
q=O h-q)! 

(42) 
Equation (42) is the major result of this paper since it 

provides an explicit expression for the velocity moments of 
the tracer species in a thermostated system of particles inter- 
acting via a general repulsive force and simultaneously sub- 
jected to an arbitrary shear rate and a weak concentration 
gradient. In particular, one may manipulate Eq. (42) to get 
explicitly the result for Jo ‘(l). This turns out to yield a gener- 
alized Fick’s law of the form 

where the reduced tracer diffusion tensor D is a highly non- 
linear function of the shear rate, the mass ratio, and the force i 
constants ratio. Since no concentration gradient exists along 
the x direction, the relevant components in this problem are 
D D,, , and D,, . YY’ Explicitly, they are given by 

Dyy=Dzl=~ [(l-2M)x+2M] 

1 1 

x1+2cuo ~o+r/-d(l+p)]' 

a0 

Dxy= - ao+[p/(l+pj] DYY* 

Note that this model yields the equality D,, = D,, also 
present when one deals with the exact Boltzmann equation 
for Maxwell molecules.” Whether this is a consequence of 
the GK model for other intermolecular potentials remains at 
this stage to be confirmed, specially in view of the results 
reported in Ref. 13. For a*=O, Dij=DoSij) with Do 
= g&JPl)( pu) the mutual diffusion coefficient 
for the tracer species in the linear regime.’ For small shear 
rates, these components behave as 

m-I71”‘, 1  I, a?,,, (, ,,, , , , 

1.85 

d&)1.60 

In the same way as Eq. (25), Eq. (39) admits the solution FIG. 3. The same as in Fig. 2 but for +,/ml =lO. 

0.0 0.2 0.4 0.6 0.8 1.0 

(41) 
Ev 
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(46: 
DYY-1 ~w(~+,Lc)~ 

m  p-1 
D-VT-------W X))--- a*. 

EC 
(47) 

In Figs. 4-6 we have plotted the relevant components of the 
tensor ~~jFL)ijlD, for o=l and two values of the mass 
ratio. We have considered again the cases of Maxwell mol- 
ecules and hard-sphere interaction. In general, it is shown 
that the influence of the interaction law on the diffusion ten- 
sor is less sensitive in the case of small mass ratio. For large 
,x, given a fixed value of the shear rate, the numerical values 
of the 9& and --9x, components increase as the interaction 
parameter p decreases. The diagonal component SyY de- 
creases as the shear rate increases so that the mass transport 
along the y direction is inhibited by the presence of the shear 
flow. This effect becomes more significant as the mass ratio 
decreases. The component L&, is a measure of the anisot- 
ropy induced in the mass transport due to the presence of the 
shear flow. We find that for @ l, the absolute value of this 
component increases as the shear rate increases whatever the 
interaction model considered is. On the other hand, for ~(1 
there is a small region of shear rates (~~~0.40) for which 
--9iY also increases with the-shear rate while the opposite 
happens for larger values of a *. 

Recently, Sarman, Evans, and Baranyai13 have per- 
formed molecular dynamics simulations in a Lennard-Jones 
fluid to analyze the shear rate dependence of the mutual dif- 
fusion tensor. Although the Lennard-Jones fluid is not gov- 
erned by a purely repulsive power law, to our knowledge this 
is the only system for which mutual diffusion under shear 
tlow has been analyzed. It is interesting to point out that the 
conclusions in this paper concerning the shear rate depen- 
dence of D,, , and D, a g ree, at least at a qualitative level, 
with our results since they observe that the yy component 
decreases with the shear rate while -D, increases as a* 

increases. A comparison of components D, and D,, is not 
feasible since in our case the stationarity condition 
(an ,/ax =0) precludes the proper identification of these corn- 
ponents. On the other hand, as pointed above, in the simula- 
tions D,fD, in contrast with Eq. (44), but D,, also de- 
creases with the shear rate. 

Once the flux of tracer particles has been determined, all 
the velocity moments in the first-order approximation can be 
explicitly obtained. In particular, an interesting moment cor- 
responds to the cross contribution to the heat flux of the 
tracer particles due to the gradient of concentration. It is 
defined by 

&‘= dV !$ V2Vf’11). 

1.2 ~1r’r’1iI’r-rr”‘II”““I’, 

f), I .o 

0.6 

-%, 

0.0 0.5 1.0 1.5 

a' 

2.0 

FIG. 4. Shear rate dependence of 9Cy,, for w= 1 and two values of the mass 
ratio m,lml . The solid line refers to Maxwell molecules and the dashed line 
refers to hard spheres. 

From Eq. (42) the heat flux can be easily computed. It can be 
written as 

(1) 5 kZ 
91 - 2 ml%.2 

v”z fi &lZ.V, 
P 

17 (49) 

where the dimensionless tensor 2 is a nonlinear function of 
the parameters of the problem. Its explicit form is not very 
illuminating and hence will be omitted. In Figs. 7 and 8 we 

(:; 1, , , ( , , , , :I’:\r--:: 
I , 

0.0 0.5 1 .o 1.5 

a’ 

'2.0 

FIG. 5. Shear rate dependence of -9? for w=l and mz/m, =O.l. The solid 
line refers to Maxwell moIecules and the dashed line refers to hard spheres. 
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FIG. 6. The same as in Fig. 5 but for tndm, = 10. 

plot XY,, as a function of a  * for the same cases as in previous 
figures. ,4gain the numerical value of Zyy increases with the 
interaction parameter p. Furthermore, the influence of the 
potential model on the heat transport happens to be more 
important than it was for the lower degree moments in the 
range of values of shear rate studied. For instance, in the case 
of ,u=IO, the relative difference between the Maxwell mol- 
ecules and hard-sphere result is around 16% at a*=2 while 
in the case of ,~c=O.l this difference is around 22% at 
a  “aO.4. According to this pattern, one would expect that the 
effect of the interaction potential will be more significant as 
the degree of moments considered increases. 

IV. CONCLUDING REMARKS 

In this paper we have addressed the problem of diffusion 
in a binary mixture under shear flow. The physical situation 
is such that a linear profile of the x component of the hydro- 
dynamic velocity field along the >r direction coexists with a 
weak concentration gradient. The shear rate is arbitrary so 
that the mass flux can be modified by the presence of the 
shear flow. The main transport property in this case is the 
mutual diffusion tensor whose shear rate dependence we 

1.5 ‘P -2 12-1 r,,IIrIrr- -- 

1.3 

1.0 

0.8 

0.5 

0.3 
m2/mI=0.1 

0.0 0.5 1.0 1.5 2.0 

a 

FIG. 7. Shear rate dependence of xyv for o=l and m,/m,=0.1. The solid 
line refers to Maxwell  molecules and the dashed line refers to hard spheres. 

aimed at determining. For the sake of deriving analytical 
results, we considered a situation where the concentration of 
one of the components is much smaller than the concentra- 
tion of the other one (tracer limit). In this limit only a model 
of Maxwell molecules allows one to obtain explicit results 
from the Boltzmann equation.’ Since we are interested in 
analyzing the above problem for more realistic intermolecu- 
lar interactions, we decided to use a kinetic model instead. 
Specifically, we took a generalization of the kinetic model 
proposed by Gross and Krook‘t for repulsive law interactions. 
In this model all the details of the interaction potential are 
incorporated into the collision frequencies which may be 
temperature dependent. In this sense, this description extends 
our previous work on Maxwell molecules.3 Further, taking as 
a motivation that computer simulations are mainly performed 
under steady state conditions, we also introduced drag exter- 
nal forces for each species to remove viscous heating. 

Although we have derived results which are valid for 
general repulsive potentials, to illustrate the main features we 
concentrated on the two extremes of Maxwell molecules and 
hard spheres. Concerning the results for such systems, dis- 
cussed at length in Sec. III, the following conclusions may 
be drawn. The qualitative behavior of the shear rate depen- 
dent tracer diffusion tensor is not greatly affected by the 
power in the assumed interaction law. It is interesting to note 
that a similar conclusion applies in the case of the shear 
viscosity of a  simple gas under uniform shear flow.14 The net 
consequence of the presence of the shear flow on the mass 
transport is to inhibit the diffusion of the tracer species. As 
far as the quantitative effects are concerned, we observe that 
they are more significant for mass ratios larger than one and 
the inhibition of diffusion increases as the intermolecular re- 
pulsion becomes softer. The numerical differences in the val- 
ues of C,, corresponding to Maxwell molecules and hard 
spheres suggest that as one goes up in the degree of moments 
the influence of the potential law becomes greater. 

It should be clear that our results may be of relevance in 
connection with computer simulations. We  have already 
mentioned the scarcity of simulation data for mutual diffu- 
sion under shear flow specially for low density. As an alter- 
native to overcome the difficulties associated to molecular 

=w 1.00 

0.95 

0.90 

FIG. 8. The same as in Fig. 7 but for m,/ml =lO. 
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dynamics simulations in this regime, one could perhaps use 
the direct Monte Carlo simulation method.15 On the other 
hand, we are fully aware that the tracer limit is certainly a 
restriction that one would like to get rid of. In this sense we 
expect that using the same kinetic model we will be able to 
analyze the more general situation of diffusion in shear flow 
when the molar fractions of both components are arbitrary. 
Work along this line is already in progress. 
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APPENDIX: SOLUTION OF THE MOMENT EQUATIONS 

Let us consider the equation 

~o~l~k*-L,k,+l,k?l+C~+~o~~l+~2+~3~l~k~,k*,k, 2, 

=RkI,k2,kgs (AU 

which is similar to Eqs. (25) and (39) appearing in the text. 
To solve this equation we introduce the operators L, and L, 
acting on functions ‘4’ depending upon the indices 
(k, ,k,,k,) in the form 

Ll~(kltkz,k3)=W(kl-l,kz,k3), (Aa 

Lz?Ir(kl,k,,k,)=W(k,,kz+l,k3).. (A3 

In this way, Eq. (Al) can be rewritten as 

~~0~1~1~2+~O~~l+~2+~3~+~1~k~,k~,k~=~k~,k~,k~~ 

(A4) 

Its formal solution is 

Nkl,k2,k3=r~OklL1L2+aO(~cl+k2fk3)+ll-1 

In order to evaluate this formal expression one may use the 
identity 

L,L,[a,(k,+k,+k,)+l]=~,(k,+k,+k,)+l, (A6) 

which leads to the solution 

1 
N 

kl~k29k3= 1 +cro(k,+k,fk3) 

aokl -1 

l+ao(k,+k2+k,) L&2 Rkl ,k, A3 

m 

=x (-ao)~[1+cxO(k1+k2+k&j-(4+1! 
q=o 

In this equation it is easy to prove that 
kI! 

(klL1L2)qRkl,k,,k,= (k,-q)! Rk1-q,k2+q,k3 

if qSk, , being zero otherwise. Therefore, one gets 

N kI,kz,k3= 2 t-so)’ ck;16,1 
q=o 

(A7) 

648) 

X[1+~o(k~+kz+k3)1-‘q+1)Rilkl-q,k,+q,k3 

w> 
which is the result we have used to arrive at Eqs. (27) and 
(42). 
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