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Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 29 March 1995; accepted 13 June 1995!

Energy and momentum transport in a strongly sheared dilute gas is analyzed in the context of the
nonlinear Boltzmann equation. Thermal transport is generated in the system by the action of a
nonconservative external force which tries to mimick the effects of a temperature gradient. By
performing a perturbation expansion in powers of the field strength, we obtain expressions for the
field susceptibility tensor and the shear viscosity coefficient up to second order in the force. They
are highly nonlinear functions of the shear rate. It is shown that the choice of the heat field used in
computer simulations yields a field susceptibility tensor different from the thermal conductivity
tensor. In order to get equivalent results, a new shear-rate dependent force is suggested. The
calculations presented here extend previous results derived from the Bhatnagar–Gross–Krook
approximation@J. Chem. Phys.101, 1423~1994!#. © 1995 American Institute of Physics.
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I. INTRODUCTION

The study of transport properties in steady states dri
out of equilibrium by the action of external forces is a su
ject of interest from a theoretical, as well as a compu
simulation, point of view. These forces try to mimick th
effects produced in the system by the presence of real hy
dynamic gradients. The corresponding transport coefficie
which measure the response of the system, are determine
extrapolating the ratio between the hydrodynamic fluxes
the field strengths to zero-field limit. They exhibit a goo
agreement with those obtained from computer simulations
using realistic boundary conditions. Some examples of n
equilibrium steady states generated by external forces are
color conductivity1,2 and the heat conductivity problems.3–5

This paper is concerned with the method proposed in
pendently by Evans3 and Gillan and Dixon4 to simulate the
heat flow. Since this method was developed in no
equilibrium molecular dynamics to measure the thermal c
ductivity coefficient in the linear regime, it does not workin
principle once nonlinear effects are present.6 For instance,
when the system is subjected to strong shear flows, it
been shown recently for a low-density gas that the so-ca
fictitious ‘‘field susceptibility’’ tensor~which is defined from
the heat flux vector! differs from the thermal conductivity
tensor obtained in the presence of a temperature gradi7

Although the agreement between both methods is reason
good for not too large shear rates, the discrepancies incr
significantly at finite shear rates. In order to get consist
results, an alternative external force was proposed. The
sults were derived from the Bhatnagar–Gross–Krook~BGK!
kinetic equation as a model of the Boltzmann equation.

Nevertheless, due to the fact that the BGK equation
simplified version of the exact Boltzmann equation, the
sults derived in Ref. 7 cannot be taken as conclusive.
instance, recent results8 obtained for the fourth-degree mo
ments in the uniform shear flow problem show that the BG
predictions are quite different to those given from the Bo
zmann equation, especially for large shear rates. For this
4626 J. Chem. Phys. 103 (11), 15 September 1995 0021-960Downloaded¬05¬Oct¬2007¬to¬158.49.20.67.¬Redistribution¬subject¬
en
-
r

ro-
ts,
by

nd

by
n-
the

e-

-
n-

as
ed

nt.
bly
ase
nt
re-

a
-
or

K
t-
ea-

son, and since those moments are involved in the evaluatio
of the field susceptibility, in this paper we extend our previ-
ous efforts by carrying out a similar study to that of Ref. 7
but now using the nonlinear Boltzmann equation. The pric
to be paid is to consider the particular case of Maxwell mol
ecules~repulsive potential of the formr24), for which an
exact solution of the Boltzmann equation in the pure shea
flow state is known.9,10 The underlying purpose of such a
study is twofold. On the one hand, we want to analyze th
coupling between the shear flow and the conventional he
field suggested in the Evans–Gillan method in order to as
sess to what extent the previous results derived from th
BGK approximation are indicative of what happens in a di-
lute gas. On the other hand, the study allows us again
propose a new shear-rate dependent heat force that leads
equivalent results as those found from the Boltzmann equ
tion in the thermal gradient problem.11

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute gas under uniform shear flow. A
a macroscopic level, this state is characterized by consta
densityn and temperatureT and a linear velocity field of the
form ux5ay, wherea is the constant shear rate. The shea
flow produces viscous heating, so that a thermostat extern
force is introduced to achieve a stationary state. According t
Gauss’ principle of least constraint, one selects the force

F52maV, ~1!

whereV5v2u is the peculiar velocity and the thermostat
parametera is determined by consistency. The uniform shea
flow is an adequate example for giving a range of validity o
the heat field method in the nonlinear regime. It has bee
extensively used to analyze rheological properties, such a
shear thinning and viscometric effects.12
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4627V. Garzó: Thermal transport in a sheared gas
We want to analyze a thermal transport problem gen
ated by an external force in a dilute gas under uniform sh
flow. Unlike real heat flow, no temperature or density grad
ents appear in the system. Consequently, two parame
measure the departure from equilibrium: the shear rate
the heat field strength. In the limit of small heat field, b
arbitrary shear rate, a field susceptibility tensor rather tha
scalar can be identified in the expression of the heat flux. T
derivation of such an expression for this tensor is the m
goal of this paper. In addition, it is also interesting to stu
the influence of the nonequilibrium parameters on the no
linear shear viscosity.

In the non-Newtonian regime, one expects that the h
field exhibits the anisotropy induced in the system by t
presence of the shear flow. In this way, the isotropic exter
force used in the conventional Evans–Gillan method can
be probably the most convenient choice. Here, to parallel
results derived from the BGK model,7 we assume that the
heat field is

F 52~ 1
2 mV22 3

2 kBT!V•e, ~2!

where the field strengthe plays the role of a temperature
gradient¹T/T, andV is a shear-rate dependent tensor to
determined. In the usual heat field method, one tak
V i j5d i j . For nonzero shear rates, the force~2! exhibits the
anisotropy of the problem since nowF ande are no longer
parallel.

Under the above conditions, the Boltzmann equati
reads

2
]

]Vi
S ai j Vj2

Fi1F i

m D f5J@ f , f #, ~3!

where f (V) is the one-particle distribution function an
J[ f , f ] is the Boltzmann collision operator, which in stan
dard notation reads13

J@ f , f #5E dv1E dn̂uv2v1us~ uv2v1u,u!~ f 8 f 182 f f 1!.

~4!

The parametera is a function of both the shear rate and th
field strength. Conservation of energy

E dVmV2J@ f , f #50 ~5!

imposes the constraint
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a52
1

3p
qiV i j e j2

1

3p
aPxy , ~6!

wherep5 1
3Pkk5nkBT is the hydrostatic pressure,Pxy is the

xy component of the pressure tensor

P5mE dVVV f , ~7!

and

q5
m

2 E dVV2V f , ~8!

is the heat flux. Equation~6! couplesa with the relevant
transport coefficients, namely, the so-called ‘‘field suscepti
bility’’ tensor

k i j52
1

T

qi
e j
, ~9!

and the shear viscosity coefficient

h52
Pxy

a
. ~10!

As shown in the BGK description,7 it is not possible to
get these coefficients for arbitrary values of the field strength
Anyway, in order to obtain the shear-rate dependent linea
field susceptibility, only terms up to first order ine need to
be retained. Therefore, we construct a solution of Eq.~3! by
expanding around the shear flow state, i.e.,

f5 f 01 f 11 f 21•••, ~11!

where f k is of orderk in e, but it retains all the hydrody-
namic orders ina. In the same way as in Eq.~11!,
a5a01a11a2••• and analogous expansions are consid
ered for the momentum and energy fluxes. By introducing
these expansions into Eq.~3!, one gets a hierarchy of equa-
tions for the successive approximationsf k .

At the zeroth-order stage, one gets

2
]

]Vi
~ai j Vj1a0Vi ! f 05J@ f 0 , f 0#, ~12!

This equation describes the pure shear flow state. Its solutio
is necessary to obtain the coefficients~9! and ~10!. In gen-
eral, Eq.~12! can only be solved by means of the Chapman–
Enskog method,13 namely, a perturbation expansion around
the state of local equilibrium. However, in the special case o
Maxwell molecules~repulsiver24 potential!, Eq.~12! can be
exactly solved by the moment method. In particular, one has9
o. 11, 15 September 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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4628 V. Garzó: Thermal transport in a sheared gas
a05
2
3sinh

2@ 1
6cosh

21~119a2!#, ~13!

P0,xx5p
116a0

112a0
, ~14!

P0,yy5P0,zz5p
1

112a0
, ~15!

P0,xy5P0,yx52p
a

~112a0!
2 . ~16!

Here, we have chosenn51, n being a convenient collision
frequency so thata0 anda are now dimensionless quantitie
Equations~13!–~16! are the same as those derived from t
BGK approximation. The next nontrivial moments in th
uniform shear flow problem are the fourth-degree mome
Recently, explicit expressions for these moments have b
obtained.10 In contrast to what happens for the pressure t
sor, the Boltzmann and BGK equations give quite differe
results for the above moments.8 Consequently, the predic
tions made previously in Ref. 7 for the field susceptibil
and the shear viscosity must be reexamined.

III. FIELD SUSCEPTIBILITY AND SHEAR VISCOSITY

In this section we will get the shear-rate dependence
k i j and h. Concerning the first-order, the correspondi
Boltzmann equation is

2
]

]Vi
~ai j Vj1a0Vi ! f 12a1

]

]Vi
Vi f 02

1

m

]

]Vi
Sm2 V2

2
3

2
kBTDV i j e j f 05J@ f 0 , f 1#1J@ f 1 , f 0#, ~17!

where according to Eq.~6!, a152(a/3p)P1, xy asq050 in
the pure shear flow state. From Eq.~17! it is easy to show
that the pressure tensor is zero in this approximation so
a150. The first nontrivial moment is the heat flux
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m

2 E dVV2V f 1 , ~18!

which is related to the third-degree moments off 1 . For the
sake of convenience, we choose the following dimensionle
moments9

$N2u i ,N0u i jk%

5
1

n S m

2kBT
D 3/2E dV$Y2u i~V!,Y0u i jk~V!% f 1 , ~19!

where

Y2u i~V!5V2Vi , ~20!

Y0u i jk~V!5ViVjVk2
1
5V

2~Vid jk1Vjd ik1Vkd i j !. ~21!

In the particular case of Maxwell molecules, the correspond
ing collisional moments are given by

1

n S m

2kBT
D 3/2E dV$Y2u i ,Y0u i jk%~J@ f 0 , f 1#1J@ f 1 , f 0# !

52$ 2
3N2u i ,

3
2N0u i jk%. ~22!

Let us consider now the set of ten independent momen

$N2ux ,N2uy ,N2uz ,N0uxxy ,N0uxxz,N0uxyy ,

N0uyyz,N0uxzz,N0uyzz,N0uxyz% ~23!

Multiplying Eq. ~17! by the polynomials~20! and ~21! and
integrating overV, one gets the following matrix equation
for the third-degree moments~23!:

Mss8N s85Asex*1Bsey*1C sez* , s51,...,10
~24!

where,N is the column matrix defined by the set~23!, and
M51
c1

7
5a 0 2a 0 0 0 0 0 0

2
5a c1 0 0 0 2a 0 0 0 0

0 0 c1 0 0 0 0 0 0 2a

8
25a 0 0 c2 0 8

5a 0 0 0 0

0 0 0 0 c2 0 0 0 0 8
5a

0 8
25a 0 2 7

5a 0 c2 0 0 2a 0

0 0 0 0 0 0 c2 0 0 2 2
5a

0 2 2
25a 0 2 2

5a 0 0 0 c2 a 0

2 2
25a 0 0 0 0 2 2

5a 0 0 c2 0

0 0 1
5a 0 0 0 a 0 0 c2

2 . ~25!
o. 11, 15 September 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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4629V. Garzó: Thermal transport in a sheared gas
Here, c1[
2
313a0 , c2[

3
213a0 , and

ei*5(2kBT/m)
1/2V i j e j . The column matrixA is

A51
R1021R1201R300

R0121R0301R210

R0031R0211R201

1
5~4R2102R0122R030!

1
5~4R2012R0032R021!

1
5~4R1202R1022R300!

1
5~4R0212R0032R201!

1
5~4R1022R1202R300!

1
5~4R0122R0302R210!

R111

2 , ~26!

with

Rk1 ,k2 ,k3
52

k1
2

~Mk111,k2 , k3
1Mk121,k212,k3

1Mk121,k2 ,k3122
3
2Mk121,k2 ,k3

!, ~27!

and

Mk1 ,k2 ,k3
5
1

n S m

2kBT
D ~k11k21k3!/2E dVVx

k1Vy
k2Vz

k3f 0

~28!

are the moments of the shear flow distributionf 0 . The col-
umn matricesBs andC s are given by expressions similar t
Eq. ~26! but with Rk1 ,k2 ,k3

replaced, respectively, by

Sk1 ,k2 ,k35
k2

k111
Rk111,k221,k3

, ~29!

Tk1 ,k2 ,k35
k3

k111
Rk111,k2 ,k321 , ~30!

According to Eqs.~26!–~28! it is clear that only moments of
f 0 up to the fourth degree need to be known. The expli
expressions of these moments can be found in Ref. 10.
right-hand side of the matrix equation~24! also holds for the
BGK model equation,7 although the shear-rate dependence
the fourth-degree moments clearly differs from the Bolt
mann ones.8 The solution to Eq.~24! is

N s5~M21!ss8~As8ex*1Bs8ey*1C s8ez* !. ~31!

The heat flux across the system is determined from
first three terms ofN s , namely,N2ux ,N2uy , andN2uz . They
define the components of the field susceptibility tensork i j .
According to Eq.~9!, one gets

k i j5
15

4

nkB
2T

m
L ikVk j , ~32!

where the nonzero components of the tensorL can be ex-
pressed in terms of the matricesAs , Bs , andC s . The
transport coefficientL ik(a) measures thelinear response to
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Oct¬2007¬to¬158.49.20.67.¬Redistribution¬subject¬
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being a nonlinear function of the shear rate. Taking into ac
count the symmetry ofMk1 ,k2 ,k3

~the only nonvanishing mo-
ments correspond tok11k2 andk3 even!, the components of
L can be written in the formLxx[F(A), Lxy[F(B),
Lyx[G(A), Lyy[G(B), andLzz[H(C ), where

F~A!52
8

15

1

27a0
2146a0112

F35~216a0
21151a0130!A1

2
27

5
~24a017!aA2

14
108a0

2123a026

112a0
aA4112~54a0119!a0A6

18
54a0119

112a0
a0aA9G , ~33!

G~A!52
8

15

1

27a0
2146a0112F2

54

5
aA11

3

5
~216a0

2

1151a0130!A2224a0~119a0!A4

212
9a012

112a0
aA6224a0~9a012!A9G , ~34!

H~C !52
8

15

1

23a016 F35~8a0115!C 3124a0C 7

212
a

112a0
C 10G . ~35!

Equations ~32!–~35! provide all the information on the
physical mechanisms involved in the thermal transport pro
duced by an external force in a strongly sheared dilute ga
Although these expressions hold in the limit of zero hea
field, they have the full nonlinear dependence on the she
rate. In particular, for small shear rates,Lxx'1159.4a2,
Lxy'22.90a, Lyx'21.40a, Lyy'113.05a2, and
Lzz'110.72a2.

In order to get the explicit shear-rate dependence of th
field susceptibility tensor, one needs to consider specifi
forms ofV. The simplest choice is the one assumed in th
conventional Evans–Gillan method,3,4 namelyV i j5d i j . In
this case,L is the field susceptibility tensor reduced with
respect to its Navier–Stokes value since fora50,
L i j5d i j . In this sense, the Evans–Gillan method represen
an efficient alternative to methods based on the Green–Kub
formula in the limit of vanishing shear rates. Fora Þ 0,
such an equivalence no longer holds and the prediction
based on the conventional heat field method differ from th
ones derived from the familiar heat transport problem.6,7 In
the latter case, thermal transport is produced by the presen
of a temperature gradient instead of by the action of an ex
ternal force. A shear-rate-dependent thermal conductivit
tensorl(a) can be identified from a generalized Fourier’s
law. Very recently, we have derived expressions for thexy,
yy, andxy components ofl from an exact solution of the
Boltzmann equation for Maxwell molecules.11 Comparison
of L and l shows again that both tensors are different. In
order to assess such discrepancies, in Fig. 1 we plotLyy and
o. 11, 15 September 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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4630 V. Garzó: Thermal transport in a sheared gas
2Lxy and their corresponding counterpartslyy and 2lxy

for 0<a<1. We see that each couple of coefficients exhib
a qualitative good agreement. As a matter of fact,Lyy and
lyy increase with the shear rate so that the shear flow
hances the transport of energy along the direction of the g
dient of the flow velocity (y axis!. With respect to thexy
component, it is negative and its magnitude increases as
shear rate increases. At a quantitative level, it is clear that
differences between both methods increase with the sh
rate. For instance, fora'1 ~where the shear viscosity is
about twice smaller than its zero shear rate value!, the rela-
tive difference between theyy components is about 58%
while it is about 25% for thexy component. These discrep
ancies become more significant for thezzcomponent as both
methods predict different behaviors. Similar conclusio
were obtained in the case of the color-conductivity method14

As said in the Introduction, it is not surprising that th
conventional choice forV does not lead to consistent resul
when non-Newtonian effects are taken into account. In fa
this prediction was already stated by the ‘‘inventors’’ of th
Evans–Gillan method. Nevertheless, the knowledge of
actual thermal conductivity tensor allows one to elimina
the above discrepancies by introducing a convenient sh
rate-dependent external field. By identifying¹ lnTwith e and

P2,xy52
15

4
p
kBT

m

2a@DVyy~116a0!22EVxy#23~11

4a213~112a0!

where

D5LyxVxy1LyyVyy , ~38!

E5LxxVxy1LxyVyy . ~39!

Taking into account Eqs.~10!, ~16!, and~37!, the shear vis-
cosity coefficient can be identified as a function of both t

FIG. 1. Shear-rate dependence of some components of the tensorL i j : ~a!
2Lxy , ~b! Lyy . The dashed lines refer to their corresponding counterpa
in the thermal gradient problem.
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by comparing Eq.~32! with Eq. ~38! of Ref. 11, it is easy to
show that the adequate choice is

V i j5~L21! iklk j. ~36!

This relation also applies for the BGK model7 although the
shear-rate dependence ofL and l clearly differs from the
Boltzmann one. It is evident that now the tensorV captures
the anisotropy induced by the shear field. Fora50, it re-
duces to the one suggested in the Evans-Gillan method.
Fig. 2, we plotVyy and2Vxy versusa. In general, they
exhibit a highly nonlinear dependence on the shear ra
While Vyy monotonically decreases as the shear rate i
creases,2Vxy has a maximum fora'0.6. Furthermore, we
see that the BGK predictions cannot be considered as re
able, especially at finite shear rates.

Apart from obtaining the field susceptibility, it is also
interesting to get the nonlinear shear viscosity. We are inte
ested in analyzing the influence of the heat field on the she
viscosity in the limit of weak strength fields. In the same wa
as in Ref. 7, for the sake of clarity we will takeex5ez50
and we will restrict ourselves to the second order approx
mation. By following similar mathematical steps as thos
made in the first order approximation, it is a simple matter o
algebra to get the second order contribution to the shear v
cosityh. This can be obtained from thexy component of the
pressure tensor, whose expression is

a0!
2~DVxy1EVyy!

ey
2 , ~37!

e

~arbitrary! shear rate and the field strength~up to second
order!.15 For a50, h/p5h0 /p51113.375(kBT/m)ey

2

in the Evans–Gillan choice while h0 /p
51120.875(kBT/m)ey

2 for the choice~36!. In Fig. 3, we
plot h*[h/h0 for ey50.1(m/kBT)

1/2. We observe that the
net consequence of the action of the shear rate and

ts
FIG. 2. Plot of some elements of the tensorV: ~a! Vyy , ~b! 2Vxy . The
dashed lines refer to the BGK results.
o. 11, 15 September 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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4631V. Garzó: Thermal transport in a sheared gas
heat field is to produce an inhibition of the momentum tra
port ~shear thinning effect!. This inhibition is more signifi-
cant in the case of the modified force~36!.

IV. CONCLUDING REMARKS

Coupling between heat and momentum transport in
dilute gas under uniform shear flow has been analyzed.
system is driven out of equilibrium by the presence of
shear field as well as by the action of a nonconservat
external force. The force produces a heat flux in spite of
absence of a temperature gradient. This way of genera
energy transport was proposed years ago by Evans3 and
Gillan and Dixon4 as an efficient tool to study thermal bul
properties. In the limit of weak heat fields, but arbitrary she
rates, the energy transport is modified by the shearing m
tion. This effect is characterized through a shear-ra
dependent field susceptibility tensork, whose expression we
aimed at determining. The derivation of such an express
is interesting by itself and also for establishing the possi
equivalence with the transport properties obtained by app
ing more realistic boundary conditions.

A previous study of this problem was already carrie
out7 by using the BGK kinetic model. Nevertheless, rece
results11,16have shown the inadequacies of the BGK appro
mation to analyze the influence of the shear flow on t
thermal conductivityl in a system subjected to a weak the
mal gradient. As a consequence, the conclusions obtaine
Ref. 7 should be taken with caution, especially at finite sh
rates. For this reason, we have analyzed again the same p
lem but now starting from the nonlinear Boltzmann equati
in the particular case of Maxwell molecules. In this sens
the results presented here areexactto all orders in the shear
rate.

According to the results derived in this paper fork and
in Ref. 11 for l, we conclude again that both tensors a
different when one uses the conventional choice of the h
field proposed in the Evans-Gillan method. This confirms t
predictions made by Evanset al.6 on the modified Green-

FIG. 3. Shear-rate dependence of the dimensionless shear visc
h*[h/h0 for ey50.1(m/kBT)

1/2 and for two choices ofV i j : V i j5d i j

~—–! andV i j5(L21) iklk j ~– – –!.
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Kubo relations for mechanical transport coefficients. Wh
the shear-rate dependence of theyy andxy components ex-
hibit a qualitative agreement, thezz component has a very
different behavior. As a matter of fact, for small shear rat
one finds that Lyy'113.05a2, Lxy'22.90a, and
Lzz'110.72a2, but lyy'113.04a2, lxy'23.90a, and
lzz'121.18a2. With respect to the quantitative discrepa
cies, they become important for shear rates such asa.1.

All these discrepancies between both methods can
avoided by using a convenient heat field. This alternat
force is explicitly determined as a function of the shear ra
when one identifies the field strengthe with the thermal gra-
dient ¹T/T. The form of the new external field takes int
account the anisotropy induced in the system by the action
the shear field. The only obstacle of this new method is t
one needs to determine the real thermal conductivity ten
l, for which anexactexpression is only known for Maxwel
molecules. Nevertheless, beyond this interaction mode
may be expected that the shear-rate dependence ofl is very
similar to that of Maxwell molecules.16 In this context, and
from a practical point of view, one could speculate that t
heat field algorithm based on the use of the force defined
Eq. ~36! could lead to reasonably consistent results for t
thermal conductivity even for dense gases. It would be v
interesting to perform computer simulations to check t
above conjecture.
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