Thermal transport generated by an external force in a sheared dilute gas
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Energy and momentum transport in a strongly sheared dilute gas is analyzed in the context of the
nonlinear Boltzmann equation. Thermal transport is generated in the system by the action of a
nonconservative external force which tries to mimick the effects of a temperature gradient. By
performing a perturbation expansion in powers of the field strength, we obtain expressions for the
field susceptibility tensor and the shear viscosity coefficient up to second order in the force. They
are highly nonlinear functions of the shear rate. It is shown that the choice of the heat field used in
computer simulations yields a field susceptibility tensor different from the thermal conductivity
tensor. In order to get equivalent results, a new shear-rate dependent force is suggested. The
calculations presented here extend previous results derived from the Bhatnagar—Gross—Krook
approximationJ. Chem. Phys101, 1423(1994]. © 1995 American Institute of Physics.

I. INTRODUCTION son, and since those moments are involved in the evaluation
of the field susceptibility, in this paper we extend our previ-
The study of transport properties in steady states driveous efforts by carrying out a similar study to that of Ref. 7
out of equilibrium by the action of external forces is a sub-but now using the nonlinear Boltzmann equation. The price
ject of interest from a theoretical, as well as a computeto be paid is to consider the particular case of Maxwell mol-
simulation, point of view. These forces try to mimick the ecules(repulsive potential of the fornn~#), for which an
effects produced in the system by the presence of real hydr@xact solution of the Boltzmann equation in the pure shear
dynamic gradients. The corresponding transport coefficientdlow state is knowr?:'° The underlying purpose of such a
which measure the response of the system, are determined btudy is twofold. On the one hand, we want to analyze the
extrapolating the ratio between the hydrodynamic fluxes andgoupling between the shear flow and the conventional heat
the field strengths to zero-field limit. They exhibit a good field suggested in the Evans—Gillan method in order to as-
agreement with those obtained from computer simulations bgess to what extent the previous results derived from the
using realistic boundary conditions. Some examples of nonBGK approximation are indicative of what happens in a di-
equilibrium steady states generated by external forces are thiéte gas. On the other hand, the study allows us again to
color conductivity? and the heat conductivity probleis. ~ propose a new shear-rate dependent heat force that leads to
This paper is concerned with the method proposed indeequivalent results as those found from the Boltzmann equa-
pendently by Evarfsand Gillan and Dixofto simulate the tion in the thermal gradient problehh.
heat flow. Since this method was developed in non-
equilibrium molecular dynamics to measure the thermal con-
ductivity coefficient in the linear regime, it does not wark
principle once nonlinear effects are presérfor instance,
when the system is subjected to strong shear flows, it ha$ pESCRIPTION OF THE PROBLEM
been shown recently for a low-density gas that the so-called
fictitious “field susceptibility” tensor(which is defined from Let us consider a dilute gas under uniform shear flow. At
the heat flux vectordiffers from the thermal conductivity a macroscopic level, this state is characterized by constant
tensor obtained in the presence of a temperature gradientlensityn and temperatur& and a linear velocity field of the
Although the agreement between both methods is reasonablgrm u,=ay, wherea is the constant shear rate. The shear
good for not too large shear rates, the discrepancies increaflew produces viscous heating, so that a thermostat external
significantly at finite shear rates. In order to get consistenforce is introduced to achieve a stationary state. According to
results, an alternative external force was proposed. The résauss’ principle of least constraint, one selects the force
sults were derived from the Bhatnagar—Gross—Kr®&K)
kinetic equation as a model of the Boltzmann equation. F=—-maV, (1)
Nevertheless, due to the fact that the BGK equation is a
simplified version of the exact Boltzmann equation, the rewhereV=v—u is the peculiar velocity and the thermostat
sults derived in Ref. 7 cannot be taken as conclusive. Foparametew is determined by consistency. The uniform shear
instance, recent resuftebtained for the fourth-degree mo- flow is an adequate example for giving a range of validity of
ments in the uniform shear flow problem show that the BGKthe heat field method in the nonlinear regime. It has been
predictions are quite different to those given from the Bolt-extensively used to analyze rheological properties, such as
zmann equation, especially for large shear rates. For this reahear thinning and viscometric effedts.
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We want to analyze a thermal transport problem gener- 1
ated by an external force in a dilute gas under uniform shear = — % qidjje— @ aPyy, (6)
flow. Unlike real heat flow, no temperature or density gradi-
ents appear in the system. Consequently, two parameters . ] ] ]
measure the departure from equilibrium: the shear rate an§fherep=3P=nkgT is the hydrostatic pressurB,, is the
the heat field strength. In the limit of small heat field, butXY component of the pressure tensor
arbitrary shear rate, a field susceptibility tensor rather than a
scalar can be identified in the expression of the heat flux. The
derivation of such an expression for this tensor is the main P=mJ dVVV T, Y
goal of this paper. In addition, it is also interesting to study
the influence of the nonequilibrium parameters on the non-
linear shear viscosity. and

In the non-Newtonian regime, one expects that the heat
field exhibits the anisotropy induced in the system by the m )
presence of the shear flow. In this way, the isotropic external 9= 2 J dVVAVT, ®)
force used in the conventional Evans—Gillan method cannot
be probably the most convenient choice. Here, to parallel the

results derived from the BGK modélwe assume that the 'S the heat flux. Equation6) couplesa with the relevant
transport coefficients, namely, the so-called “field suscepti-

heat field is e
bility” tensor
F=—(mVP- 1kgT)Q- @ __1a
. (2 2 KB €, Kij__$_x (9)
€j

where the field strengtle plays the role of a temperature and the shear viscosity coefficient
gradientVT/T, and(} is a shear-rate dependent tensor to be

determined. In the usual heat field method, one takes P,y
Qj;=&;; . For nonzero shear rates, the fo(@ exhibits the == (10
anisotropy of the problem since now and e are no longer
parallel.

Under the above conditions, the Boltzmann equation As shown in the BGK descriptiohit is not possible to
reads get these coefficients for arbitrary values of the field strength.

Anyway, in order to obtain the shear-rate dependent linear
field susceptibility, only terms up to first order &need to
be retained. Therefore, we construct a solution of Byby

P 7
— v @iV~ #)f;][ f.f1, (3)  expanding around the shear flow state, i.e.,
i
f:f0+fl+f2+"', (11)

where f(V) is the one-particle distribution function and

J[ f,f ] is the Boltzmann collision operator, which in stan- wheref, is of orderk in €, but it retains all the hydrody-

dard notation read3 namic orders ina. In the same way as in Eq(ll),
a=ag+ a;+a,--- and analogous expansions are consid-
ered for the momentum and energy fluxes. By introducing
these expansions into E(B), one gets a hierarchy of equa-

J[ f.f ]=f dvlf dnlv—vy|o(|v—v,|,0) (' f1—ff). tions for the successive approximatiohs

(4) At the zeroth-order stage, one gets
J
The parametew is a function of both the shear rate and the (9_\/i(aiiVi”L agVi)fo=J[ fo.fol, (12

field strength. Conservation of energy

This equation describes the pure shear flow state. Its solution
is necessary to obtain the coefficie® and(10). In gen-

J dvm\2J[ f,f ]=0 (5) eral, Eq.(12) can only be solved by means of the Chapman—
Enskog method® namely, a perturbation expansion around
the state of local equilibrium. However, in the special case of
Maxwell moleculegrepulsiver ~# potentia), Eq.(12) can be

imposes the constraint exactly solved by the moment method. In particular, oné has
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= 2¢i 1-6gh ! 2 m
ao= 2sin[ tcosh 1(1+9a?)], (13 msz dVV2Vf,, (18)
Poxc=P 1+6a (14) which is related to the third-degree momentsf of For the

xx 1+2aq’ sake of convenience, we choose the following dimensionless

moments
1

PO, = PO, :p A (15)

Y T 14209 N2}, Nojiji}

a 1/ m \32

Po,xy_ PO,yX_ -p (1+2a0)_2 . (16) = ﬁ(m) J' dV{Yz\i(V)yYohjk(V)}fla (19)

Here, we have chosen=1, v being a convenient collision \yhare
frequency so thaty anda are now dimensionless quantities.
Equations(13)—(16) are the same as those derived from the
BGK approximation. The next nontrivial moments in the
uniform shear flow problem are the fourth-degree moments.
Recently, explicit expressions for these moments have been Yoiijk(V) = ViV Vy— 2y, S+ VSt Vidij). (2D
obtained'® In contrast to what happens for the pressure ten- ]

sor, the Boltzmann and BGK equations give quite different_'” the p_a_rtlcular case of Maxvx{ell molecules, the correspond-
results for the above momerftsConsequently, the predic- NG collisional moments are given by

tions made previously in Ref. 7 for the field susceptibility

and the shear viscosity must be reexamined. 1 ( m

2KgT

Yoi(V)=V2V,, (20)

32
n ) jdV{an Yolij (I fo, fal+3I[ f1,fo])

IIl. FIELD SUSCEPTIBILITY AND SHEAR VISCOSITY = —{3Nz, Nogjiju}- (22)

In this section we will get the shear-rate dependence of | et us consider now the set of ten independent moments
kjj and 7. Concerning the first-order, the corresponding

Boltzmann equation is
{N2|x1N2\yaN2|zvNO\xxnyO\xvaO\xyya

_ _(aijvj + aOVi)fl_ ali Vifo_ i i T V2 NO\yyz-N0|XZZ1N0|yzz-N0|xyz} (23)
Vi Vi m dVil 2 Multiplying Eg. (17) by the polynomials20) and (21) and
3 integrating overV, one gets the following matrix equation
—5 keT | Qijeifo=J[ fo,f1]+I[ f1.%o], (17 for the third-degree moment&3):

where according to E(6), a;=—(a/3p)Py 4y asqp=01in

= 4 B+ T e -
the pure shear flow state. From H47) it is easy to show Mog N g1 = Aoy T D€y T 0 o€, 0=1...10

that the pressure tensor is zero in this approximation so that (24)
a1=0. The first nontrivial moment is the heat flux where,. /" is the column matrix defined by the s@3), and

Cq ta 0O 2a O 0 0O 0 O 0

2a Cq 0 0 0O 22 0 0 O 0

0 Cq 0 0 0 0O 0 O A

59 0 O ¢, 0O & 0 0O 0 O

0 0 0 0O ¢, O 0O 0 O %a
7=l 0 %a 0 - 0 ¢ 0 0 -a 0 29

0 0 0 0 0 0 c, 0 0 -2z

0 —-2a 0 -2 0 0 O0¢c a O

—%a O 0O 0O 0 -2 0 0 ¢c, O

0 0O 24 0 O O a 0 0 ¢
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Here, c;=2%+3ay, C,=3+3aqy, and

€' =(2kgT/m)¥Q);;¢;. The column matrixZ is

Ri02+ R120t Raoo
Ro12 Rozot Ro1o
Roozt Ro21t Roor

5(4R216— Ro12— Rozo)
5(4R201— Roos— Roz1)
5(4R126— R102— Raoo)
5(4Ro21~ Rooz— Rao1)
5(4R102~ Ri20~ Raoo)
5(4Ro12~ Rozo— Ra10)

Rlll

(26)

with

Ky
Riy ko kg™ = 5 (Mi 1k, kg Mg —1k+ 2K

(27)

3
T My~ 1k, kg+ 27 2M K, -1k, kg)

and

M = —1 P — e VAT YA YAS
Kikaks™ n| 2kgT x Ty 'z 0
(28

are the moments of the shear flow distributiign The col-

umn matrices?%,, and Z , are given by expressions similar to

Eq. (26) but with R «, «, replaced, respectively, by

2

Sk, ky kg™ K+ 1 Ry, + 1k, —1kgr (29)
ks

Th, ky kg™ ke T kit ko kg1 (30)

4629

the external field2) of a dilute gas under uniform shear flow,
being a nonlinear function of the shear rate. Taking into ac-
count the symmetry ofl Ky Ky kg (the only nonvanishing mo-
ments correspond o, + k, andks even, the components of

A can be written in the formA,,=F(.7), A, =F(%),

Ay =G(.7), Ayy=G(%), andA,=H(?), where

1 3
, , |
. /) I + n ///
F(A)=-1¢5 2702+ 460+ 12 £(216aG+ 15109 +30). 74
27 |
—5 (240t T)a 2,
1085+ 23a—6 /
T 1424, & 7aT1A54a0t19 a0 7
Bdagt19 N
1+—2a0 apd g |, ( )
" = > (2162
+ 1510+ 30). Z,— 24ag(1+9ag). 7,
122902 o 2hag(8agt2). 7, (34
_ 1+2a0 atg— O( 010+ )./;9 , ( )
M=o |2 (Bap+ 1575+ 24ay?
(;)_ 1523a0+6 5( ao )‘)3 0”7
IRy 10} (35

Equations (32)—(35) provide all the information on the
physical mechanisms involved in the thermal transport pro-
duced by an external force in a strongly sheared dilute gas.
Although these expressions hold in the limit of zero heat
field, they have the full nonlinear dependence on the shear
rate. In particular, for small shear rate§,,~1+59.4,
Ayy~—290, Ay,~—140, A,~1+3.08% and
A,~1+0.722.

In order to get the explicit shear-rate dependence of the

According to Eqs(26)—(29) it is clear that only moments of field susceptibility_ tensor, one n_eeds to consider specific
fo up to the fourth degree need to be known. The expliciforms of Q. The simplest choice is the one assumed in the
expressions of these moments can be found in Ref. 10. Theonventional Evans—Gillan methdd,namely Q;;=§;;. In

right-hand side of the matrix equati¢®4) also holds for the

this case,A is the field susceptibility tensor reduced with

BGK model equatiod,although the shear-rate dependence ofrespect to its Navier—Stokes value since far=0,
the fourth-degree moments clearly differs from the Boltz-Ajj= d;; . In this sense, the Evans—Gillan method represents

mann one&.The solution to Eq(24) is

N o= (M o (A g €5+ D€+ € y1€7). (3D

The heat flux across the system is determined from th

first three terms of/ ", namely,Ny,,Nyy, andN,,. They
define the components of the field susceptibility tensgr
According to Eqg.(9), one gets

15 nkgT

=7 A (32

Kij
where the nonzero components of the tendocan be ex-
pressed in terms of the matriceg,, .%,, and 7. The
transport coefficient\; (a) measures thénear response to

an efficient alternative to methods based on the Green—Kubo
formula in the limit of vanishing shear rates. Far# 0,
such an equivalence no longer holds and the predictions
gased on the conventional heat field method differ from the
ones derived from the familiar heat transport probfehin

the latter case, thermal transport is produced by the presence
of a temperature gradient instead of by the action of an ex-
ternal force. A shear-rate-dependent thermal conductivity
tensorA(a) can be identified from a generalized Fourier’s
law. Very recently, we have derived expressions forxe

yy, andxy components ok from an exact solution of the
Boltzmann equation for Maxwell moleculés Comparison

of A and\ shows again that both tensors are different. In
order to assess such discrepancies, in Fig. 1 we/pjptand
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FIG. 1. Shear-rate dependence of some components of the t&psota) FIG. 2. Plot of some elements of the tenger (a) Q,y, (b) —Q,,. The
—A,y, (b) Ay, . The dashed lines refer to their corresponding counterpartsdashed lines refer to the BGK results.
in the thermal gradient problem.

by comparing Eq(32) with Eq. (38) of Ref. 11, it is easy to
show that the adequate choice is
— A,y and their corresponding counterpakg, and —A\,,

for 0<a=1. We see that each couple of coefficients exhibits i} = (A7 DN (36)

a qualitative good agreement. As a matter of facf, and  This relation also applies for the BGK modellthough the

Ayy increase with the shear rate so that the shear flow ershear-rate dependence &f and \ clearly differs from the
hances the transport of energy along the direction of the graBoltzmann one. It is evident that now the ten§brcaptures
dient of the flow velocity ¥ axig). With respect to thexy  the anisotropy induced by the shear field. For 0, it re-
component, it is negative and its magnitude increases as thfices to the one suggested in the Evans-Gillan method. In
shear rate increases. At a quantitative level, it is clear that theig. 2, we plotQy, and -, versusa. In general, they
differences between both methods increase with the sheaihibit a highly nonlinear dependence on the shear rate.
rate. For instance, foa~1 (where the shear viscosity is \While Q,, monotonically decreases as the shear rate in-
about twice smaller than its zero shear rate valtlee rela- creases; Qxy has a maximum foa=0.6. Furthermore, we

tive difference between thgy components is about 58% see that the BGK predictions cannot be considered as reli-
while it is about 25% for thexy component. These discrep- able, especially at finite shear rates.

ancies become more significant for thecomponent as both Apart from obtaining the field susceptibility, it is also
methods predict different behaviors. Similar conclusionsinteresting to get the nonlinear shear viscosity. We are inter-
were obtained in the case of the color-conductivity metHod. ested in analyzing the influence of the heat field on the shear

As said in the Introduction, it is not surprising that the viscosity in the limit of weak strength fields. In the same way
conventional choice fof) does not lead to consistent results as in Ref. 7, for the sake of clarity we will takg=e,=0
when non-Newtonian effects are taken into account. In factand we will restrict ourselves to the second order approxi-
this prediction was already stated by the “inventors” of the mation. By following similar mathematical steps as those
Evans—Gillan method. Nevertheless, the knowledge of thenade in the first order approximation, it is a simple matter of
actual thermal conductivity tensor allows one to eliminatealgebra to get the second order contribution to the shear vis-
the above discrepancies by introducing a convenient sheagosity 7. This can be obtained from they component of the
rate-dependent external field. By identifyiNgnT with e and  pressure tensor, whose expression is

15 kgT 2a[DQyy(1+6ag) — 2EQ,y]—3(1+2ag)*(DQ,y+EQ,,)

_ 2
Poy="7 P m 4a%+3(1+2ay)® €y .
|
where (arbitrary shear rate and the field strengthp to second
15 _ - — 2
D= Ayt AyyQyy, (39) prdeb. For a=0, 7_;/p— 770/p—_1+ 13.375_(<BT/m)ey
in the Evans—Gillan choice while  7o/p
E:Axexy+Anyyy- (39 =1+20.875((BT/m)E§ for the choice(36). In Fig. 3, we

Taking into account Eqg10), (16), and (37), the shear vis- Plot 7* = #/7, for €,=0.1(m/ KBT)llz- We observe that the
cosity coefficient can be identified as a function of both thenet consequence of the action of the shear rate and the
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Kubo relations for mechanical transport coefficients. While

. 1'05 "' the shear-rate dependence of theandxy components ex-
T ook ] hibit a qualitative agreement, trez component has a very
E 3 different behavior. As a matter of fact, for small shear rates,
08 F ] one finds that Ay,~1+3.0%% A, ~—2.90, and
: ] A, ~1+0.722% but Ayy~1+3.04% \,~—3.908, and
07 ¢ B N,~1—1.182. With respect to the quantitative discrepan-
06 L J cies, they become important for shear rates such-as.
I ] All these discrepancies between both methods can be
o5 b ] avoided by using a convenient heat field. This alternative
. ] force is explicitly determined as a function of the shear rate
0.4 Dol b e n bonni when one identifies the field streng¢twith the thermal gra-
0.0 0.2 0.4 0.6 0.8 1.0 dient VT/T. The form of the new external field takes into

account the anisotropy induced in the system by the action of
the shear field. The only obstacle of this new method is that
FIG. 3. Shearrate dependence of the dimensionless shear viscosi@€ Needs to determine the real thermal conductivity tensor
7*=1nln, for €,=0.1(m/kgT)*? and for two choices of);;: Q;=4; \, for which anexactexpression is only known for Maxwell
(—) and Q= (A" Yjhyg (= = . molecules. Nevertheless, beyond this interaction model, it
may be expected that the shear-rate dependengefery
similar to that of Maxwell molecule¥ In this context, and
Srom a practical point of view, one could speculate that the
heat field algorithm based on the use of the force defined by
Eq. (36) could lead to reasonably consistent results for the
thermal conductivity even for dense gases. It would be very
interesting to perform computer simulations to check the
Coupling between heat and momentum transport in @bove conjecture.
dilute gas under uniform shear flow has been analyzed. The
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IV. CONCLUDING REMARKS
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