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The Hilbert method is applied to the steady-state Bhatnagar, Gross, Krook (BGK) equation and the Navier-Stokes steady- 
state hydrodynamic equations derived. The viscosity and thermal conductivity coefftcients that appear in the equations are sim- 
ilar to the transport coefficients in the Chapman-Enskog expansion of the BGK equation. 

The Chapman-Enskog solution [ 1 ] to the Boltzmann equation provides a useful way of obtaining transport 
coefficients for a low-density gas. These are the coefficients in an expansion of the average fluxes of energy, 
momentum, etc., in powers of appropriate uniformity parameters (temperature gradient, velocity gradient, 
etc.). When the relationships between fluxes and gradients are known, the hydrodynamic equations for the 
density n, velocity u and temperature T may be obtained. In this way, the Euler, Navier-Stokes, Burnett, . . . 
transport equations can be derived by successive approximations. 

Historically, the Chapman-Enskog method was preceded by an expansion due to Hilbert [ 21. In this method, 
the conserved hydrodynamic variables n, u and Tare expanded in powers of an auxiliary parameter instead of 
expanding the transport equations as in the Chapman-Enskog solution. This is the essential difference between 
the two perturbative expansions. Although the Hilbert method predated the Chapman-Enskog method, the 
latter has proven to be more popular in recent years. This may be due to the fact that the Chapman-Enskog 
expansion gives the transport coefficients in a more systematic way. The only author we are aware of who has 
used the Hilbert expansion for solving the Boltzmann equation is Delale [ 31. In this work, we use Hilbert’s 
method to obtain the Navier-Stokes steady-state hydrodynamic equations and expressions for the thermal con- 
ductivity and viscosity are shown to be precisely the same as those given by the Chapman-Enskog method. 

Unfortunately, because of the complex structure of the Boltzmann collision term, it is difficult to find explicit 
expressions for the transport coefficients from either the Chapman-Enskog or the Hilbert expansion. This prob- 
lem has stimulated the search for kinetic equations that are mathematically simpler than the Boltzmann equa- 
tion. One of the best known is the model equation suggested by Bhatnagar, Gross and Krook [ 41 (BGK). The 
Chapman-Enskog expansion has also been applied to the BGK equation [ 51 and the pressure tensor and the 
heat flux vector have been evaluated to the super-Burnett hydrodynamic order (third order). The purpose of 
this Letter is to solve the BGK equation by means of the Hilbert expansion. Our study is centered on the 
Navier-Stokes order in the same way as in Delale’s work [ 31. 

Let us write the BGK equation in the form 

(fMt+u,V,)f= -E-‘(Cf-&) ) (1) 

where E is an auxiliary parameter which may be set equal to unity at the end of the calculations. In eq. (1) , f is 
the one-particle distribution function, & is the local-equilibrium distribution function and [ is an average 
velocity-independent collision frequency that depends on space and time through its dependence on the density 
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and temperature. 
In the Hilbert expansion, we construct a normal solution for the distribution functionfassuming that it does 

not explicitly depend on the coordinates r and time t. Thusfis given by 

f=f’“’ + Ef(‘) + eZf(2) + . . . . (2) 

In a similar way, the density, velocity and temperature can be expanded according to 

n=n’O’ +en (I) +t2n(2) +... , (3) 

u,=up+EUj’)+~2Uj2)+... , (4) 

T=T’“‘+ET”)+c2T(2)+.... (5) 

Obviously, every function that depends on n, u and T can be expanded in a similar way. In order to evaluate 
the terms that appear in expressions (3)-( 5), we consider the corresponding expansion for the conservation 
equations and collect terms of the same power in E. The transport equations are given by 

dnldt= -nV,u, , (6) 

mn du,ldt= -V,P,, , (7) 

jnkBdTldt=-V,J,-$P,(V,u,+V,u,) , (8) 

where P,, and J, are the components of the pressure tensor and the heat flux vector, defined respectively by 

P*,= dvm(v,-u,)(v,-u,)f(r,v; t), s (9) 

J,= dv~m(v-u)2(v,-u,)f(r,v;t). 
s (10) 

When we substitute expansions (2) and (3)-( 5) in the BGK equation (1) and separate the terms order-by- 
order, we obtain the equations 

f(O) =fgI , 

f”‘=ft’2-(llr’“‘)(alat+v,v,)f’o’ , 

f’Z’=f@ -(ll~‘O’)(dldt+v,V,)f”‘-(~“‘lg’O’)Cf”’-f~~) ) 

k-l 

ffk’=fyg - (ll~(O))(alat+v,V,)f<k-" -(l/i’O’)~~~i”‘Cf<k-” -A%-‘)) . (11) 

Whereas the Boltzmann equation leads to sets of integral equations [ 31, the equations given by (11) are 
algebraic and may be solved sequentially. From now on, in order to avoid having to specify the initial condi- 
tions, let us restrict ourselves to the steady state. In this event the partial time derivates will disappear. 

At zeroth order, the distribution function corresponds to the local equilibrium function defined by means of 
the variables n(O), U(O) and T(O), 

f(O) =f# =n(“)(m/2xkBT(o))3’2 exp[ - (m/2kBTco)) IV--U(~) I’] , 

from which we obtain the Euler steady-state transport equations, 

(12) 
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V,(n’O’ UjO)) =o ) (13) 

pp Vi@) = __v,p , 

#jO) V,T’O) = - jT’0’ vrp , (15) 

where we have introduced the density p(O) = mn co) and the pressure p(O) = n (0)kr,T(O). 
The next approximation corresponds to the Navier-Stokes order. According to eq. (1 1 ), after some manip- 

ulation, the functionf(‘) may be written as 

+&J vy v!O’ -f( Y’“‘)26,,]v,uIo’ 
1 

9 (16) 

where T/I”’ =Vi-Uu,(O). 
In order to obtain the corresponding hydrodynamic equations we need to compute the pressure tensor and 

the heat flux in that order. Taking into account only first-order terms, we obtain 

Pjj) = du rnV!O) Vj’)f(‘) =p(‘)Brj-rl(V,uio) +V,u,“) - $BI,Vr~!‘)) , (17) 

dvfm( y("))21/10)f(1)_~P(0)U1(1)=_~v,T(~) , (18) 

wherep(L)=n(‘)kgT(o)+n(o)k~T(L) , and we have introduced the dynamic viscosity rl= nco)kBT’o)/<‘o’ and the 
thermal conductivity 1= sn(“)ki Tco’/mc (O). These expressions are similar to those obtained using the Chap- 
man-Enskog expansion [ 5 1. If we introduce expressions (17) and (18 ) into the transport equations (6)~( 8), 
we finally obtain the Navier-Stokes equations which are given by 

V,(n(O)uj’) +n”‘U;O’) =o, (19) 

v,[p(“)uy%p +p’“‘u,‘o’uj” +p”‘u,‘“‘ujo’ +p’%,-q(VJp SV,ujO’-$6, v,u$“‘)] =o ) 

tn ‘O’kB[UjO) ViT(‘)+u, (1) V,T’O’]=Vi(lV,T’O’)-p(o’ V,uj” _n’“‘,&,T’l’ V,u;O’ 

(20) 

+Y/(V,ujO’ V,#I’O’ +v,u,‘O’ V,u,(O)) - ~~(vru~o))2 . (21) 

These equations are the same as those obtained from the Boltzmann equation [ 31. The steady-state equations 
(19)-(21)arelinearinn”),u(‘) and T(l) and can be solved from the solutions to the Euler equations. 

In summary, we have applied the perturbative Hilbert expansion to the BGK equation. The Navier-Stokes 
hydrodynamic equations are the same as those obtained from the Boltzmann equation. Additionally the expres- 
sions for the dynamic viscosity and thermal conductivity coefficients are similar to those obtained from the 
Chapman-Enskog expansion. The proposed method can be similarly used to obtain higher-order hydrody- 
namic equations (Burnett, super-Burnett, . . . ) and the transport coefficients obtained will be directly compara- 
ble with those from the Chapman-Enskog theory. Work along these lines is in progress. 
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