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Abstract 

Two kinetic models are used to study the homogeneous color diffusion problem in a dilute binary 
mixture. Both kinetic models incorporate a temperature dependence in the collision frequencies, 
which allows for the consideration of a general repulsive molecular interaction. The main transport 
properties as well as the velocity distribution functions are explicitly obtained in terms of the field 
strength and the parameters characterizing the mixture. The results are illustrated for the two 
extreme cases of Maxwell molecules and hard spheres. A comparison between both models and 
with previous results derived from the Boltzmann equation for Maxwell molecules is carried out. 
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1. Introduct ion 

One of the major shortcomings in dealing with the Boltzmann equation is the intri- 
cacy of its collision term. This problem has made the search for explicit solutions in 
general nonequilibrium situations a formidable hard task. As a consequence, simpler 

kinetic models have been proposed for the Boltzmann collision kernel that preserve the 
main physical properties, such as the conservation laws. For a single gas, the so-called 
Bhatnagar-Gross-Krook (BGK) [ 1 ] kinetic equation has been shown to be very useful 

in the past for evaluating transport properties in far from equilibrium states. Specifically, 
in the case of the uniform shear flow, the elements of the pressure tensor (which char- 
acterize the rheological properties of the gas) given by the BGK equation [2] coincide 
with those obtained from the Boltzmann equation for Maxwell molecules [3] when 
one chooses the BGK-collision frequency to be a given eigenvalue of the iinearized 
Boltzmann collision operator. This fact shows the relevance of the BGK model for an- 
alyzing transport phenomena. Very recently, the exact fourth-degree moments [4] have 
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also been compared with the ones derived from the BGK model [5], showing a good 

agreement for not too large shear rates. 
For multicomponent systems, several models constructed within the same spirit as the 

BGK equation have been proposed. Nevertheless, the scarcity of exact solutions of the 

Boltzmann equation for dilute gas mixtures has not allowed to test the range of validity 
of the above kinetic models. Perhaps, one of the simplest problems where nonlinear 

transport takes place in a mixture is the so-called "color" conductivity problem [6]. 
In this problem, mutual diffusion is induced in the system in a spatially homogeneous 
state by the action of a constant external force. Recently, an exact solution of the two 

Boltzmann coupled equations for a binary mixture of mechanically different particles 
subjected to a color field has been found [7]. Explicit expressions for the mass and 

momentum fluxes were obtained as functions of the color field and the parameters of the 
mixture, namely the mass ratio, the molar fractions, and the interaction constant ratio. 

This solution has two limitations: first, it is restricted to the particular case of Maxwell 

molecules, and second, since the solution is constructed by means of the moment 
method, explicit expressions for the velocity distribution functions are not known. These 

limitations can be overcome analytically by using tractable model kinetic equations. 
The aim of this paper is to extend our previous solution [7] to general repulsive 

intermolecular forces by solving two different kinetic models. The reason for considering 

these two models is that one of them [8] seems to be more suitable for systems of like 

particles, while the other one [9] is presumably more adequate for disparate masses. 

Our motivation is twofold. On the one hand, we will examine the virtues of both 
models by carrying out a comparison with the exact results derived from the Boltzmann 
equations for Maxwell molecules. On the other hand, we want to assess to what extent 

the previous exact description for Maxwell molecules is indicative of what happens for 
general repulsive interactions. In particular, we are interested in evaluating the effect of 

the interaction potential on the main transport properties of the system. 

The plan of the paper is as follows. In Section 2 we describe the color conductivity 
problem in a binary mixture and give a brief summary of the results derived from the 
Boltzmann equation for Maxwell molecules. Section 3 is concerned with the results 

obtained from kinetic models. We derive explicit expressions for the velocity moments 
and for the velocity distribution functions in terms of the color field, the parameters of 

the mixture and the interaction model considered. In the case of Maxwell molecules, 
both models give the same expressions for the color conductivity coefficient and the 
partial temperature as those obtained from the Boltzmann equation. Apart from these 
properties, both models lead to different results. In Section 4 we compare the results 
obtained from both models with the ones derived from the Boltzmann equation. In this 
comparison we also include recent simulation results [ 10] obtained for the velocity 
distribution function in the cases of Maxwell molecules and hard spheres. Finally, we 
close the paper in Section 5 with some concluding remarks. 
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2. Homogeneous color conductivity problem 

237 

Let us consider a binary mixture constituted by particles which are mechanically 
distinguishable. Particles of different species have a different "color charge", so that 

both species can be distinguished even if they are mechanically equivalent. In the color 

conductivity problem, a constant external field is applied accelerating particles of each 

species along opposite directions [6]. The action of the color force Fr ( r  = 1,2) 
produces color diffusion in spite of the absence of concentration gradients. This force is 
given by 

F~ = - k a T ~ r  , (1)  

where ka is the Boltzmann constant, T is the temperature of the mixture, and ~, = 

e,3~ is a constant vector that mimics the role played by V Inn, in a typical diffusion 
problem. Since the color force does work on the system, an additional external force 
must be introduced to compensate for the increase of the temperature and so achieve a 

stationary state. The simplest choice, which may be derived from Gauss' Principle of 
Least Constraint [ 11 ], is a drag force of the form -OtmrV, where mr is the mass of 

a particle of species r and cr is a thermostat parameter identical for both species. This 

quantity is determined as a function of the parameters of the problem by consistency. 
This kind of thermostat force is usually employed in nonexluilibrium molecular dynamics 
simulation. 

A complete description for the color conductivity problem can be given if one restricts 

oneself to a low-density binary mixture. In that case, the one-particle velocity distribution 
functions f ,  provide all the information on the properties of the system. They obey the 
set of two coupled Boltzmann equations [ 12]. When a steady homogeneous state has 

been reached, the Boltzmann equations corresponding to the color problem read 

kaT 3 3 
- --el 'O-Tvflml - oe~-~v • ( v f l )  = J l l [ f l , f l ]  + J l z [ f l , f 2 ]  , (2) 

kaT ? 3 
- - - ~ 2 "  ~-~v f2 - o r - - .  ( t ' f2)  = J22 [fz,  fz]  + Jzl [f2,  f l ]  , (3) 

m2 c3V 

where Jr.~ [ f~, fs  ] is the Boltzmann collision operator. Conservation of total momentum 
(taken to be zero) and energy yields, respectively, 

n l e l  + n2~2 = O, (4) 

'° ¢1 "Jl = ~ P  ~2 "J2 '  (5) 
3nml P2 3nm2Pl 

O ~  B 

where 
/ .  

n, = j c t v  f ,  (6) 

is the number density of species r, n = n~ +n2 is the total number density, p = pt +p2 = 
n~ml + n2m2 is the total mass density, and 
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Jr = prUr = f d v  mrVf r  ( 7 )  

is the mass flux of species r. Eq. (4) implies that the color forces acting on the two 
species are not independent, while Eq. (5) couples ot with the relevant fluxes of the 
problem. The mass flux Jr defines the nonlinear color conductivity coefficient tr through 
the law 

ml m2n 
Jr = - - t r n r ~ r  . (8) 

P 

In general, tr is a function of the field strength e and the parameters of the mixture. In 
accordance with the original spirit of the color field method, the color conductivity o- 
must reduce to the mutual diffusion coefficient D in the zero-field limit. This equivalence 
was the original motivation to introduce the color method in computer simulations. 
Furthermore, we define the pressure tensor of species r, 

Pr = / dv  mr(V - Ur) (v  Ur) f r ,  (9) 

which measures the contribution of each species to the total momentum flux. It is also 
interesting to introduce a partial temperature Tr for species r through l 

3nrkBT r = f d. } m r ( I  t -- U r ) 2 f r ,  ( 1 0 )  

which is related to the mean kinetic energy of each species. From these partial temper- 
atures, the temperature of the mixture T (which is the relevant one at a hydrodynamic 
level) is 

2 

.~ prUr 2 nkBT = ~-~(nrkBTr + • ( 11 ) 
l 

r=l 

A general solution, valid for arbitrary interaction potentials, to the set of Eqs. (2) 
and (3) can only be obtained from a perturbation expansion in powers of the field 
strength, although the corresponding expressions for the fluxes are generally not useful 
far from equilibrium. Nevertheless, the Boltzmann equations (2) and (3) can be exactly 

solved by the moment method if one considers the particular case of Maxwell molecules 
(particles interacting via the inverse fifth power force). For this interaction, the collision 
rate is independent of the relative velocity so that a moment of order k of the collision 
operator only involves moments of order less than or equal to k. As a consequence, 
all the velocity moments can be explicitly obtained in principle in a recursive way. In 
particular, explicit expressions for the mass and momentum fluxes for arbitrary values 
of the color field were derived in Ref. [7]. Writing the color conductivity coefficient in 
appropriate reduced units, this coefficient happens to be a nonlinear function independent 
of the parameters characterizing the mixture of the reduced field strength. This general 

1 Note that the definition of the partial temperature Tr given here differs from the one used in Ref. [7]. 
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character disappears for higher-order moments, such as the temperature of each species 
or the pressure tensor. Although the recursive scheme could be followed if one knew the 
corresponding collisional moments, it would be a very difficult task to get higher-order 
moments. 

The extension to other interaction models requires the use of simple kinetic equa- 
tions or simulation techniques. Here, we adopt the first approach by considering two 
appropriate kinetic models. This will be the goal of the next section. 

3. Kinetic models for the color conductivity problem 

The complex structure of the Boltzmann equations has motivated the search of several 
kinetic models that, while being mathematically simpler, keep the main physical features 
of the Boltzmann equation. Constructed in the same spirit as the BGK model [ 1 ] for 
a single gas, the general idea is to replace the exact collision integrals Jrs[f~,fs] by 
simple relaxation terms of the form 

J r s [ f r ,  f s ]  ~ - - P r s ( f r  -- f r s )  , (12) 

where vr,,. is a velocity-independent effective collision frequency verifying the general 
property nrVrs = nsVsr. The reference distribution function frs is determined by requiring 
that Eq. (12) preserves the relevant physical properties of Jrs. Its explicit form depends 
on the specific model considered. 

In the context of the models of type (12), the kinetic equation (2) for f j  becomes 

kBT O 3 
- - - e l  f l - - a - - ' ( V f l ) + V l f l = ~ l ,  (13) 

ml ~ aV 

where qbj ~ vl l f l l  + vl2fl2, and vl = vii + v12 is the total collision frequency for 
particles of species 1. In the following, we will focus on the transport properties of 
species I. The properties of species 2 can be obtained by changing adequately the 
indices. In order to get information about the transport properties, let us introduce the 
dimensionless velocity moments Mk~,k2,~3 as 

1 ( m ~ ) U 2 / d v . . k , . . k z . . k , ~  . 

= - -  % % vz JI , ( 1 4 )  mk, ,k2,k3 t/l 

k - kl + k2 + k3 being the degree of Mt,,k2,k3. Taking velocity moments in Eq. (13), 
one gets 

(kBT/2ml) l/2 el kl Mr, -l,t2.k~ + ( vl + ak) Mk, ,~2,t3 = Nk, ,t2,k3 , ( 15 ) 

where 

nil (m~ ~ k / 2 /  _kt.k2,k3,.h. 
• - -  U x U y  ~d Z "*'1 nk,,l<2,t<, = \ 2-~BT } dv (16) 
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is a known function of al and the parameters of the mixture. The solution of Eq. (15) 
can be cast into the form 

Mkl,k2,k3 i 

\ 2m! ] q=O 

kl[ ( - a l ) q  
(kl - q) [ q gkl-q,k2,k3 " I~p__O[Vl + ot(k - p)]  

(17) 

Eq. (17) provides all the physical information about the partial contribution to the total 
transport properties due to species 1. This expression is general since it is not restricted 
to any specific form of ~l .  In order to get the explicit dependence of Mk,,k2.k3 on the field 
strength and the parameters of the system, particular forms of q~l must be considered. 

The general description of the color conductivity problem requires the knowledge 
of the velocity distribution functions. While in the case of the Boltzmann equation 
information about the distribution functions is obtained only indirectly through the 
knowledge of a finite number of moments, the use of the simplified collision term (12) 
allows one to explicitly get f l .  In the steady state, a formal solution to Eq. (13) 
compatible with the moments (17) can be written as 

f , ( v )  = [v, _ 3 ~ _  kBT 0 0 ]  -1 
ml el -~uS -- o[V . ~ 41 ( P) 

oo 

= ds e-(~l-3~)Sexp / els=-- + asv .  ~ l ( v )  (18) 
\ ml aVx -~v " 

0 

The explicit expression for f l  can be obtained when one takes into account the action 
of the exponential operator (see the appendix) in Eq. (18), 

exp ( kBT 0 O )  
\ ml elSav---~x + a s v .  ~v ~I (Ux 'Uy 'Uz)  

= ~l (e~S(vx - akBTEls)mi + 

where 

a = e - ' ~ s ( 1 + 1 )  asl . 

keT as as 
ml els, e Vy, e Vzj , (19) 

(20) 

By substituting Eq. (19) into Eq. (18), one derives the corresponding expression for 
f l  in terms of the parameters of the problem. 

As stated above, so far the results are general. In order to get the explicit dependence 
on ej, particular forms for vrs and frs must be considered. Here, we will take two 
well-known choices. 

3.1. Results from the Gross-Krook (GK) model 

In the GK model, the reference function frs is defined as [9] 
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f rs=nr ( mr ,~3/2 _ mr (V_Urs)2) (21) 
2d'ffBTrs ) exp ( 2kBTrs 

The quantities Urs and Tr, are defined by imposing that the total momentum and energy 
are conserved and that the first five collisional moments as computed with Eqs. (12) 

and (21) be the same as those computed with the exact Jrs[fr, f~]. Since the last 
requirement can only be exactly evaluated for Maxwell molecules, one may intro- 
duce approximate forms for the above collisional moments in the case of non-Maxwell 

molecules and hence derive the corresponding expressions for Ur, and Trs. Therefore, for 
molecules interacting via a repulsive force law -~'rs = K r , r - ~  (Y = 5 . . . . .  ~ ) ,  it can be 
proved that Urs and Tr~ have the same expressions as those obtained in the conventional 
GK model for Maxwell molecules (y  = 5), i.e. [9], 

mrUr + msgs 
Ur.~. - , (22) 

mr + ms 

mrms [ ms 1 T~,.=Tr+2(mr+ms)2 (Ts-Tr)+-~a(Ur-Us)2 , (23) 

but vrs is identified as 

Vrs=A(fl)ns(KrsmZ+ms~(l-'e)/2( mrms / mr +2kaTs)~e/2ms / . (24) 

Here, /3 - (y  - 5 ) / ( y  - 1) and A(/3) is a constant for a given interparticle potential 

that is tabulated in Ref. [ 12]. The kinetic model defined by Eqs. (21) - (24)  can be 

seen as an extension of the conventional GK model to inverse power laws. Recently, 

this model has been used to study tracer diffusion under shear flow [ 13]. 
Once c/'l has been defined, one may evaluate the integral (16) and obtain the velocity 

moments (17) of the GK model. The only nonvanishing moments correspond to even 

values of k2 and k3, in which case one gets 

k, kl-q (kaT~ q/2 

<,,=o g=o 
ki +q+£=even 

kl! i . ( k l - q T ' q " l ) l _ , ( ~ )  1 - , ( ~ _ )  
× (kl - q -  g)! 

(--'l)q [Pll I~Ik-q)/2 ( mlui ~,/2 
X 1 lp=O[/-' I ] - f q  + a ( k - p ) ]  \2keTlJ 

( 'n'u'~ ~';~1 ,~.(k-q)/2 (25) 
+/"12 /tl2 \2kBTIzJ  J ' 

where XI =- TI/T and XI2 = TI2/T. Note that the expression (25) is not closed since 
Mkt,k2.k3 is given in terms of the first nontrivial moments of f l ,  namely Jl and Tt. These 
moments can be consistently determined from the requirements 

Mloo = nlul (26) 
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and 
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M2oo + Mo2o + Moo2 = 3 nlkBTl + nlu 2 • (27) 
ml 

Nevertheless, as the collision frequencies are nonlinear functions of the partial tempera- 
tures, the corresponding equations for Jr and Tr must be solved in general numerically. 

In order to study the nonlinear transport properties of the system, it is convenient to 
introduce dimensionless quantities. To parallel the results derived from the Boltzmann 
equation [7], we introduce the reduced field strength 

(2kBTmlm2n~2)l/2 
e* =_ r2pn e l ,  (28) 

where 

A ( a )  K(1-•)/2 (...mlm2 )1/2 
7" =-- t-" 12 \ ml + m2 ( 2kBT)~/2 " (29) 

In terms of these units, it is a matter of algebra to write the right-hand side of (25) in 
dimensionless form. In particular, in the zero-field limit, o" _= D = (ksT/rn),  D being 
the mutual diffusion coefficient of a binary mixture with general repulsive intermolecular 
forces [ 12]. 

Despite the general mathematical complexity of Eq. (25), there is a particular inter- 
action model for which the conditions (26) and (27) for Jl and Tl reduce to simple 
linear algebraic equations. This corresponds to Maxwell molecules (/3 = 0), for which 
/Jrs is a constant independent of Tr and Ts. In this case, the reduced color conductivity 
coefficient o-* = o'/D can be written as 

or*(e*) = £*-2[(1 + 2e'2) V2 -- 1] . (30) 

This expression is the same as the one derived from the exact Boltzmann equation [7]. 
In terms of e*, o'* adopts a general form, independent of the parameters of the mixture. 
From the knowledge of o-*, the reduced partial temperature X1 can be obtained. In the 
same way as o-*, its expression is identical to that of the Boltzmann equation [7], i.e., 

XI = ( 1 + B) 4#6  + 2( 1 +/z)o '*e  .2 - 2#o"2~ .2 - ( 1 + tz) o-*3E .4 
4/z~(1 + S )  + 2 ( 1  +/~)6(1  +/xa)o-*e .2 ' (31) 

where/z = ml/m2 is the mass ratio and ~ ~ nl/n2 is the concentration ratio. Eq. (31) 
clearly shows that Xl is a function of e* that depends on /z and 8 although it is 
independent of the force constant ratio. In terms of o'* and Xl, higher-order moments 
can be easily obtained from Eq. (25), their expressions being different from those 
obtained with the Boltzmann equation. 

When /3 4: 0, o-* and X1 cannot be ascertained analytically except in some limiting 
cases. Thus, for small field strengths one gets 

[/3 $3/23 - S212(2/z + 1) - 6/x(/x + 2) + 1 ½]e*2 
o-* ~ 1 - 4-8~(~~ i')~---+ ~ + , (32) 
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[ 1 (1 +/2) (1  + /23) ]  e .2 (33) 
XI ~ 1 -  2~/2 2 / 2 ( 1 + 3 )  ' 

whereas for large field strengths, 

,/51e*l-', (34) 

2 ] (35)  
XI ~ ~ ( I  + 3) 3( i  + /2)  ( ]  _i_/23) • 

This means that in the limit of e* going to infinity, @12 = (v2/ for each species, so that 
the velocity distribution functions become 3-distributions. This conclusion was already 
obtained in the case of the Maxwell interaction [7]. The fact that Js and Tl reach 
the same saturation values for all the interaction models is not surprising, since in the 
limit of very large fields the system behaves as a collisionless gas. With respect to the 
behavior for small values of e*, Eq. (32) indicates that o-* is not a universal function of 
e*, while Eq. (33) shows that the dependence of X1 on/3 appears beyond the "Burnett" 
approximation (second order in E*). Furthermore, Eqs. (32) and (33) also show that 
o-* and XI do not present a monotonic behavior. Only in the case of Maxwell molecules, 
o-* always decreases as e* increases. For ,8 #: 0, there exist combinations of/2 and 3 
for which o-* increases with the field strength, reaches a maximum, and then decreases. 
This behavior agrees qualitatively with recent molecular dynamics simulations [6,14]. 

Let us now determine the velocity distribution function f l  (v). Its explicit form can 
be directly obtained from the general expressions (18)-(20).  In order to write f l  in a 
compact form, we introduce the effective collision frequency s r ~_ [ (ml + m2)/rnl m2 ] m" 
and we define the dimensionless quantities u~ =- v l / ( ,  v~l =- P l I / ~ ,  v~2 = Vl2/6", 
and c~* - c~/~r. Henceforth, we will omit the asterisks of these quantities. In addition, 
we also introduce the reduced velocity ~ - (2ksT /ml )J /2v .  Thus, in terms of these 
quantities, the velocity distribution function f l  (v) can be written as 

( m ,  ~3/2 
f . ( v )  =nl \2ksTJ ~'I(~:)' (36) 

where the reduced distribution ~Pl (~) is a function of the field strength e* and the 
parameters of the mixture, namely, the mass ratio/~, the concentration ratio 6, the force 
constant ratio Kll/Kl2 and the interaction parameter ~. Its expression is 

o o  

f as { ,,XV3/ exp ] 
0 

+vl2X13/2exp  [-X,-2I (~  - u12)2] } , (37) 

where we have introduced the quantities 

~. =__ eaS~ i _ OE* ( 1 -- e ~')  3ix, (38) 
Ol 

I+/23 
0 - ½ ( 1 + / 2 )  -t  3Ni-+--~) j , (39) 
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u l - - - 1 1 3  1+8 ]1/2o..~ , 
L 8(1 + ' (40) 

uJ2 ~ 1 + ~ ( I  - ~)Ul. (41) 

Eq. (37) gives the explicit expression for the velocity distribution function of species 
1 representing the solution to the GK model for molecules interacting through general 
repulsive forces and subjected to an external color field. This function presents a highly 
nonlinear dependence on the field strength as well as the parameters of the mixture. 
For non-Maxwell molecules, the dependence on E* appears even through the collision 
frequencies t'll and t'12. 

3.2. Results from the Garz6-Santos-Brey (GSB) model 

Although the GK model has been widely used in the past, especially in the case of 
disparate-mass mixtures, it has the following shortcoming: when one considers the case 

of mechanically equivalent particles (ml = m2, Kll = K22 = tq2), f = f l  + f2 does 
not obey a closed equation (BGK model), in contrast to what happens with the exact 
Boltzmann equation. This is due to the highly nonlinear character of frs in Eq. (21). 
The above drawback is not relevant as long as disparate masses are considered. In order 
to avoid this problem, Garz6, Santos and Brey (GSB) [8] proposed a model of type 
(12) but now fis is given by 

( m r ) 3 / 2  ( mv2~[ l+ars+Brs . v+Crsv2] ,  (42) frs = nr ~ exp \ 2kBT ] 

with 

Ars = -3(kBT/mr)Crs, (43) 

Brs = ( mr/ knT)urs , (44) 

mr (Tr T mr 2"~ 
Cr"-2k•T . 7 + 3-~'~BTUr=) ' (45) 

where Urs and Trs are defined by Eqs. (22) and (23) and we have assumed that the 
flow velocity of the mixture is zero. Furthermore, and according to the spirit of the GSB 
model, the collision frequencies yr, depend on the temperature of the mixture T instead 
of the partial temperature Tr, i.e., 

Afa~n K (1-#)/2 [(mr + m,)lmrms] 1/2 (2kBT)#/2. (46) 

Although the GSB model is not restricted to any range of mass ratio, the collision term 
defined through Eq. (42) suggests that it is more suitable for systems of like particles. 
In this sense, the GK and GSB models can complement each other in the analysis of 
transport phenomena in mixtures where no restriction on the mass ratio is considered. 
The GSB model has been recently used to analyze from a kinetic theory point of view 
the problem of gas flows condensing on a plane condensed phase [ 15]. 
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According to Eq. (46), Urs is a constant in the color conductivity problem. Conse- 

quently, the results derived from the GSB model are the same for all the interaction 

models when one takes the appropriate reduced units defined in Eqs. (28) and (29). 
Thus, from Eqs. (42 ) - (45 )  it is straightforward to show that the velocity moments are 
now given by 

kl (NBT~q/2 kl[ ( - , 1 )  q 

Mk"k2'k3=7"r-3/2Z~~mlJ (k,-q)[Hq=o[~q + a ( k - p ) ]  
q=O 
~,(ll) , .,(12) ) (47) X (1]ll~Vkl_q,kz,k3 "5- P121Vkl_q,k2,k 3 , 

where 

g(rs, [ ( mr ) 1/2 k ( T £ ~  mr U2~ ] 
k,k,k~=Kk2Kk3 Kk,+2Kk,+l  ~ Urs+'~Kk, + 3kBT r s j j  , 

(48) 

and K,, = F(n) if n = odd, being zero otherwise. In contrast to what happens in the GK 
model, now all the moments can be obtained analytically. In particular, it is easy to see 

that the expressions of o-* and ,gl are identical to those given by the GK model and 
the Boitzmann equation in the case of Maxwell molecules. Beyond these moments, both 

kinetic models predict different results. These discrepancies will be analyzed in the next 

section along with a comparison with Boltzmann results. 
Finally, the velocity distribution can be obtained in a similar way as in the GK model. 

After some algebra, the reduced distribution ~1 (~) is given by 

o.o 

g'i (~;)=7r-31' S ds e -(''-3",s {/.PII [I + 2~'xU" I -J-(~'2_ 3)(,)(1-l-J-2~-2)3 
0 

+ p , 2 [ l + 2 ~x "ff , 2 + ( ~2 - 3 ) ( X , 2 -1+ 2 "ff , 2 ) ] } e - ~ , (49, 

where all the quantities and notation are as previously defined. 

4. Comparison between the Boltzmann and kinetic model equations for the color 
conductivity problem 

The explicit results derived in the above section allows one to carry out a detailed 
comparison with the corresponding transport properties given by the Boltzmann equation. 
We focus our attention on the reduced color conductivity coefficient o-* (which is the 
most relevant transport coefficient of the problem), the partial temperature ratio Aq = 
Ti/T, the reduced normal element of the pressure t enso r  Pl*,yy =" PI,yy/nl kBT, and the 
distribution function. In order to illustrate the main features we have concentrated on 
the two extreme cases of Maxwell molecules (/3 = 0) and hard spheres (/3 = 1 ). 
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Fig. I. Plot of the reduced color conductivity coefficient tr* (e*) for the concentration ratio 8 = 2 and for two 
values of the mass ratio: (a) g = 2, (b) /z = 0.5. The solid line corresponds to Maxwell molecules and the 
dashed lines refer to hard spheres. 

Fig. 1 shows o-* as a function of e* for 6 = 2 and several values of/.t.  In the case 
of Maxwell molecules, the exact expression of o'* coincides with the one given by 
both kinetic models. This coefficient is a function of the reduced field strength that is 
independent of the parameters of the mixture. This independence disappears when one 
considers other interaction potentials in the case of the GK model, while in the GSB 
model o-*(e*) is universal, i.e., independent of the potential law. As clearly seen in this 
figure, the general dependence of o'* on the color field predicted by the GK model is 
not greatly affected by the power of the repulsive law. The effect of the potential model 
becomes more noticeable as e* increases, specially when the particles of the excess 
species are lighter than the particles of the defect species. In addition, for a given value 
of e*, o-* increases as fl increases. 

The partial temperature ratio Xl is plotted in Fig. 2 for the same values as in the 
previous figure. As happened with o-*, both kinetic models give the same expression of 
XJ as the one derived from the Boltzmann equation for Maxwell molecules. In general, 
XJ is not a monotonic function of the field strength although for the cases considered here 
it decreases as e* increases. With respect to the influence of the interaction potential, we 
observe again that it is more significant, for a concentration ratio larger (smaller) than 
1, when the mass ratio is smaller (larger) than 1. In the region of small field strengths, 
gl is practically the same for both potentials, while it decreases with increasing fl as 
the field strength increases. Anyway, and according to the behavior given by (32) and 
(33), the effect of the potential on the temperature ratio is less significant than for the 
color conductivity coefficient. 
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Fig. 2. Plot of  the reduced p~rtiM temperature XI -- TI/T as a function of  ~* for ~ = 2 and for two values of  
the mass ratio: ( a ) / z  = 2, (b)  p, = 0.5. The solid lines refer to Maxwel l  molecules and the dashed lines refer 
to hard spheres. 

The first velocity moment that is different in both models, even in the particular 
case of Maxwell molecules, is the pressure tensor. Its expression also differs from the 

exact one. In Fig. 3 we plot Pl~,yy for a = 2 and /.t = 2. Since P~yv depends on the 

force constant ratio, for simplicity we have chosen here Kll = K 2 2  = K12. In the case of 
Maxwell molecules, the deviation from equilibrium is slightly overestimated by the GK 

model and slightly underestimated by the GSB model. For not too large field strengths, 
the predictions of both models are reasonably good although the discrepancies increase 

as e* increases. For instance, for ~* ~ 1.5 (where the color conductivity coefficient is 

about twice smaller than its zero-field value) and for the case considered in the figure, the 
relative difference between the GK model and the Boltzmann value is around 7% while 
it is around 6.7% in the GSB model. These conclusions can be qualitatively extended to 
other choices of 8 and/.t. We also observe that, in general, P*l.yy monotonically decreases 
as the field strength increases whatever the interaction model considered is. However, 
at a given value of the concentration ratio, there may be mass ratios for which Pj* vy 

has a maximum in the region of small field strengths. Concerning the potential model 
considered, we note that the inhibition of the momentum transport along an orthogonal 
direction to the external field decreases as the intermolecular repulsion becomes softer. 
According to the comparison made for or*, Xl, a n d  P~,yy, one can conclude in summary 
that both kinetic models can be seen as good approximations to the first moments of 
the Boltzmann equation in the color conductivity problem. 

Let us now investigate whether the above conclusion can be extended to the velocity 
distribution function. Since no explicit expression for this quantity is known in the 



248 C. Marfn et al./Physica A 225 (1996) 235-253 

F 
o.g 1 

r < ,' 

\ \ "  1 

\-,  
o. 6 ";.'. L. 

0.4 

0.2 

" " L - X  

X 

i . _ _  i 

0"000 0.5 1 0  1.5 

Fig. 3. Plot of  Pl*yy for ~ = 2 and /I, = 2. The curves are: Boltzmann equation for Maxwell molecules 
( ); GK equation for Maxwell molecules ( - -  - - ) ;  GK equation for hard spheres ( . . . .  ); and GSB 
equation ( . . . . .  ). 

context of the Boltzmann equation, we have considered convenient to numerically solve 
that equation [ 10] by using the direct simulation Monte Carlo method [ 16]. This method 

has been shown to be an important tool to study transport phenomena in rarefied gas 
dynamics. For the sake of illustration, we have introduced the reduced distribution 

+ ~  +oo 

l/2 '~ / d,y f d,zq~l(~). (50) ~o(scx) = 7r e 

- -oo --oo 

The behavior of ~o(~:x) with ~:x is plotted in Figs. 4 and 5 for e* = 1, 8 = 4,/x = 1/3 and 
for Maxwell molecules and hard spheres, respectively. To compare the results obtained 
from Maxwell and hard spheres, the force constant ratios for the Maxwell interaction 
and the diameter ratios for hard spheres have been chosen to give the same equilibrium 
collision frequencies. In general, a distortion from local equilibrium (~o(~¢x) = 1) is 
clearly observed in both interaction models. In the case of Maxwell molecules, we see 
that the GK and GSB distributions reproduce satisfactorily the general behavior of the 
Boltzmann distribution (obtained from the simulation). However, it is evident that there 
exist important discrepancies in the region of high velocities and near the maximum, 
specially in the GK model. In particular, we note that the distributions of both models 
predict well the location of the maximum although not its value. In the case of hard 
spheres, we observe that the GK distribution describes now much better the behavior 
of the Boltzmann distribution. In fact, the discrepancies with the simulation data are 
smaller than the ones given in the case of Maxwell molecules. The comparison between 
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Fig. 4. Reduced distribution function ~o({x) for 8 = 4, ~ = 1/3, KI2/Kll = 16, KXZ/KJt = 81/16 and 6"=1 
in the case of  Maxwell molecules, as obtained from simulation results ( ), the GK model ( - - )  and 
the GSB model ( . . . .  ). 
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Fig. 5. The same as in Fig. 4, but for hard spheres. 
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the Boltzmann results for Maxwell molecules and hard spheres clearly shows that the 
velocity distribution function seems to be rather sensitive to the interaction potential in 
a far from equilibrium situation. This influence is approximately well predicted by the 
complicated collision term of the GK model but not by the (universal) GSB model. 

5. Concluding remarks 

In this paper, we have addressed the color conductivity problem in a binary mixture of 
mechanically different particles in the low-density regime. The physical situation is such 
that the system is driven to a nonequilibrium homogeneous steady state by the action of 
an external "color" field. This field produces mutual diffusion in the absence of concen- 
tration gradients. The color conductivity coefficient is the main transport coefficient of 
the problem. It is defined as the ratio between the mass flux and the color field strength. 
Recently this problem has been studied in the particular case of Maxwell molecules, 
and explicit expressions for the mass and momentum fluxes have been derived [7]. 
These fluxes are nonlinear functions of the field strength and the parameters of the 
mixture. Here, we have extended our previous efforts by addressing the same problem 
for general repulsive intermolecular forces. Although the problem can be considered as 
a rather academic one, our results can be taken as a first step toward the understanding 
of nonlinear electrical conductivity in a coulombic system at low density. 

Two different kinetic models (GK and GSB) have been used to get the main transport 
properties as well as the velocity distribution functions. In these models, the details of 
the interaction potential are incorporated through effective collision frequencies Yrs. In 
the GK model [9] Vrs depends on the temperatures of each species Tr and Ts, while 
/-~rs is a function of the temperature of the mixture T in the GSB model [8]. Since 
in the color problem a drag force maintains the temperature T constant, the results 
derived from the GSB model are the same for all the interaction potentials. In addition, 
the GSB model gives analytical expressions, while the predictions of the GK model 
are obtained numerically. Starting from both models, we have computed the velocity 
moments as well as the velocity distribution functions of each species. In the particular 
case of Maxwell molecules, we find that, in terms of a convenient reduced field strength, 
the expressions of the reduced color conductivity coefficient o-* and the reduced partial 
temperature Xr are the same as those obtained from the exact Boltzmann equation. 
This equivalence shows the degree of reliability of both models for computing transport 
properties in the color conductivity problem. For other properties, the results derived 
from both approximate models as well as from the Boltzmann equation are different, 
even in the particular case of Maxwell molecules. Nevertheless, the comparison carried 
out for the normal element of the pressure tensor shows that the approximate results agree 
quantitatively well (specially the GK model) with the exact ones when one considers 
not too large field strengths (say e* < 0.5). Concerning the influence of the potential 
model the results indicate that, in general, the effect of the power law on the transport 
properties is not very strong when one uses adequately scaled quantities. In addition, 
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the GK equation predicts that o-* is neither a universal function of e* nor a monotonic 
function of e* when one considers non-Maxwell molecules. These conclusions contrast 
with the ones previously obtained from the Boltzmann equation for Maxwell molecules. 
Recent computer simulations [ 10] confirm the above predictions. 

A much more difficult problem is to get the velocity distribution functions in far from 
equilibrium situations. In particular, no exact solution to the Boltzmann equation at this 
level is known in the color conductivity problem, even for Maxwell molecules. For this 
reason, and as a complementary information, we have solved numerically the Boltzmann 
equation by means of the direct simulation Monte Carlo method in the cases of Maxwell 
molecules and hard spheres [ 10]. The comparison between the simulation and kinetic 
models results shows that, for Maxwell molecules, the models (particularly the GSB) 
reproduce well the behavior of the actual distribution in the regime of thermal velocities 
(the latter being slightly better), but significant discrepancies appear in the regime of 
high velocities. This disagreement is not surprising since the behavior of the velocity 
distribution function in the kinetic models is governed by the first few moments, namely 
the mass flux and the partial temperature. In this sense, both models can be considered 
as good approximations for low-degree moments of the exact distribution function but 
fail for high-degree moments. This is consistent with the results derived from the BGK 
model for a single gas [5,17]. In the case of hard spheres, the comparison with the GK 
solution indicates a good general agreement. Furthermore, the simulation data for both 
interaction models also show that the velocity distribution function is clearly affected 
by the interaction considered. 

The knowledge of exact solutions to the Boltzmann equation, such as the one derived 
in Ref. [7], are important not only as means to understand the physical mechanisms 
involved in nonequilibrium situations but as tests of approximation methods. In this 
context, the GSB model as well as the GK model can be seen as good approximations 
of the Boltzmann equation at the level of transport properties. This agreement confirms 
the usefulness of the kinetic models since the complicated structure of the Boltzmann 
collision operator (which takes into account the large amount of detail of the two-body 
interactions) can be replaced by simple relaxation terms which retain the qualitative 
and average properties of the true collision operator. This replacement is expected to 
be reliable for the low-degree velocity moments (related to the transport properties), 
although it becomes less reliable as the degree of the moments increases (as the com- 
parison for the velocity distribution function suggests). Therefore, we expect that the 
results presented in this paper will stimulate the use of kinetic models as an alternative 
tool to analyze transport properties in binary mixtures. Finally, and as happens in other 
nonequilibrium states [ 17,18 ], it is interesting to remark that the nonlinear transport co- 
efficients are hardly sensitive to the interaction potential so that the general conclusions 
obtained from the exact Boltzmann equation for Maxwell molecules can be extended to 
other interaction potentials. 
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Appendix A 

Let us consider the operators A = aVxa/aOx and B = ba/aVx, where a and b are 
constants. The commutator [A, B] = AB - BA is given by 

( 0 2 0 O-~x) - a b o - ~ x = - - a B  (A.1) [ A , B ]  = a b  VXOv 2 ~xVX = 

Our goal is to evaluate the action of the operator e A+B on a given function g(Vx). To 
this end, we define the function 

F ( y ) = erA e'/B e -~'~ A+B) . (A.2) 

By derivating with respect to y, one gets 

d F ( y )  = e~,A[ A,e~,B]e_~,~A+B ) . (A.3) 
dy  

In order to integrate Eq. (A.3), we will use the following two well-known properties 

[19]: 
(i) If B commutes with [A ,B] ,  then 

[ A , B " ]  = nB n - l [  a , B ]  . (A.4) 

(ii) If the operators A and B satisfy the condition [A,B] - -aB,  a being a constant, 
then 

eaBe -a  = e a B .  (A.5) 

Therefore, by taking into account (A.4), one has 

O O  

[A ,e~ 'B]=~- '~ - - v . [a ,Bn]=yZ~- -1 .  B n [ a , B ] = - y a B e ; ' 8 ,  (A.6) 
n--0 n=0 

so that 

d E ( y )  
dy  

- -  = - -TaerABe-rAF(T)  

= - y a e - r a B F ( y )  , (A.7) 



where in the last 

yields 

F(y) = exp 

where we have 

ea+ag(Cx) 
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step use has been made of the identity (A.5). Integration of Eq. (A.7) 

taken into account that F(0)  = 1. By setting y = 1, one finally gets 

= e-aBeaeng(vx) 

=g[ea(vx - ,~b) + b], (A.9) 

where 

a 

and we have used the identities 

exp ~ g(vx) -- g(vx + b), 

exp(avxo@x)g(Vx)=g(e~Vx). 

Eq. (19) can be easily obtained from the relation (A.9). 

(A.10) 

( A . l l )  

(A.12) 
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