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A kinetic model for a binary mixture under uniform shear flow is exactly solved. The model
incorporates a temperature dependence of the collision frequencies that allows the consideration of
general repulsive interactions. The rheological properties of the mixture are obtained as functions of
the shear rate, the parameters of the mixture~particle masses, concentrations, and force constants!,
and a parameter characterizing the interaction considered. In addition, the velocity distribution
functions are explicitly obtained. While the transport coefficients are hardly sensitive to the
interaction potential, the distribution functions are clearly influenced by the interaction parameter. In
the tracer limit, a transition to an alternative state recently found in the context of Boltzmann
equation is exactly identified in the case of Maxwell molecules. For non-Maxwell molecules,
preliminary results suggest that this transition is also present although the phenomenon is less
significant. A comparison with previous results derived from the a Boltzmann equation for Maxwell
molecules is also carried out. ©1996 American Institute of Physics.@S1070-6631~96!01010-0#

I. INTRODUCTION

The analysis of transport phenomena occurring in a bi-
nary mixture far away from equilibrium is certainly a very
hard task since the transport coefficients are not only func-
tions of the nonequilibrium parameters~hydrodynamic gra-
dients, external forces,. . . ), butalso of parameters such as
masses, concentrations, and sizes. This complexity leads us
to consider tractable situations for which a complete descrip-
tion can be given. Perhaps, one of the most extensively stud-
ied cases corresponds to the so-called uniform shear flow
~USF!. In this state, the only nonzero gradient~which is a
constant! is ]ux /]y5a, whereu is the flow velocity. The
constant shear ratea measures the distance of the system
from equilibrium. The USF problem is a useful prototype for
evaluating transport properties under extreme conditions~far
away from equilibrium!. In ‘‘computer experiments’’ this
state is generated by applying Lees-Edwards periodic bound-
ary conditions.1 This type of boundary conditions do work
on the system so that the temperature increases with time. In
order to achieve a stationary situation, an artificial~micro-
scopic! force is usually introduced. Although the USF may
be experimentally unrealizable for large shear rates, the re-
sults derived in this~idealized! problem are of great value in
order to gain insight into the understanding of more realistic
flows.

In the USF state the most important transport properties
are related to the pressure tensorP, whose elements define
the nonlinear shear viscosityh and viscometric functions
C1,2. Recently, we have obtained these quantities for a bi-
nary mixture of Maxwell molecules (r25 repulsive intermo-
lecular force! from an exactsolution of the coupled set of
Boltzmann equations.2 The transport coefficientsh and
C1,2 are given as nonlinear functions of the shear rate and
the parameters of the mixture~mass ratio, concentration ra-
tio, and force constant ratios!. This work extends the well-
known Ikenberry-Truesdell solution3 for a singlecomponent
gas of Maxwell molecules.

Nevertheless, the above solution has two important limi-

tations. First, it cannot be regarded as general since the
model of Maxwell molecules is not a realistic example of
intermolecular interactions. As a consequence, the predic-
tions made in Ref. 2 cannotin principle be extrapolated to
other interaction potentials. Second, and due to the math-
ematical difficulties embodied in the Boltzmann collision op-
erators, no explicit expressions for the velocity distribution
functions are known, even for Maxwell molecules. A pos-
sible alternative to overcome analytically both limitations is
to use a kinetic model. The idea is to replace the Boltzmann
collision integrals~which contain a detailed description of
the two-body interactions! by simple collision terms which
retain the main physical properties of the true collision op-
erators. The usefulness of such an approach has been widely
demonstrated in the past with the Bhatnagar-Gross-Krook
~BGK! equation4 in the case of a monocomponent gas under
USF.5

The aim of this paper is to reexamine the USF problem
for a dilute binary mixture. The starting point is a generali-
zation of the well-known Gross-Krook~GK! kinetic model6

for a binary mixture where the effective collision frequencies
depend on the ‘‘temperature’’ of each species. This allows
for the consideration of general repulsive intermolecular
forces. Our motivation is twofold. On the one hand, we find
explicit expressions for the velocity moments and the veloc-
ity distribution functions in terms of the shear rate, the ratios
of mass, concentration, and force constants and a parameter
characterizing the intermolecular interaction considered. The
latter allows us to assess the influence of the interaction po-
tential on the main transport properties. In this sense, in this
paper we extend previous works about the USF problem in
the tracer limit.7,8 On the other hand, and as a test of valida-
tion of the kinetic model, we compare the shear-rate depen-
dence of the temperature ratio, the shear viscosity, and vis-
cometric functions with the one given from the exact
Boltzmann equation for Maxwell molecules. Such a com-
parison shows that the rheological properties of the mixture
derived from the GK and Boltzmann equations do not coin-
cide although they exhibit a qualitative agreement for not too
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large shear rates and/or not too large a disparity of the pa-
rameters of the mixture.

As a final point, it is interesting to investigate what hap-
pens in the tracer limit, i.e. when the molar fraction of one of
the species tends to zero. In this limit, a transition to an
alternative state has beenexactly identified from the Boltz-
mann solution.9 In this new state, the tracer species contrib-
ute significantly to the total properties of the mixture. In the
same way as in the Boltzmann equation, an exact analysis of
the tracer limit for Maxwell molecules shows that such a
transition is also present in the GK solution. For non-
Maxwell molecules, numerical results suggest that this phe-
nomenon also appears although it is much less important as
the interaction becomes harder.

The plan of the paper is as follows. In Sec. II we de-
scribe the problem we are interested in and introduce the
kinetic model. Section III is concerned with the calculation
of the steady transport properties and the corresponding
comparison with the Boltzmann results. The velocity distri-
bution functions are explicitly obtained in Sec. IV, while the
tracer limit is studied in Sec. V. Finally, some concluding
remarks close the paper in Sec. VI.

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute binary mixture. In terms of the
velocity distribution function f s(r ,v;t) of species s
(s[1,2), the number density and mean velocity of species
s are defined, respectively, as

ns5E dvf s , ~1!

us5
1

ns
E dvvf s . ~2!

These quantities define the total number densityn5n11n2
and the flow velocityu5(r1u11r2u2)/r, wherers5msns
is the mass density of speciess, ms is the mass of a particle
of speciess, andr5r11r2 is the total mass density. It is
usual to define a local ‘‘temperature’’ for each species
through

3

2
nskBTs5

ms

2 E dv~v2us!
2f s , ~3!

which is related to the mean kinetic energy of each species.
Here,kB is the Boltzmann constant. From these partial tem-
peratures, the temperature of the mixtureT ~which is the
relevant one at a hydrodynamic level! is

nkBT5(
s51

2 S nskBTs1 1

3
rs~us2u!2D . ~4!

The uniform shear flow~USF! state is characterized by a
linear profile of thex component of the flow velocities along
the y axis, constant densitiesns , and uniform temperatures
Ts :

us,i5ui5ai j r j ,ai j5ad ixd jy , ~5!

ns5const, ~6!

¹Ts50, ~7!

a being the constant shear rate. Since no mutual diffusion
appears in the system, the only nonequilibrium parameter
~which may be arbitrarily large! is the shear rate. As a con-
sequence, the relevant transport phenomenon is the momen-
tum transport which is measured by the pressure tensor

P5(
s51

2

msE dvVV f s , ~8!

whereV5v2u is the peculiar velocity. The elements of the
pressure define the main transport coefficients of the prob-
lem, namely, the shear viscosity,

h~a!52
Pxy

a
, ~9!

and the viscometric functions,

C1~a!5
Pyy2Pxx

a2
, ~10!

C2~a!5
Pzz2Pyy

a2
. ~11!

The USF is not stationary since the temperature increases in
time due to viscous heating. Thus, Eqs.~9!–~11! must be
understood in the long-time limit where the influence of the
initial conditions has disappeared.

The USF state becomes spatially homogeneous when the
velocities of the particles are referred to the Lagrangian
frame moving with the flow velocityu. In this new frame,
the distribution function adopts the form
f s(r ,v;t)[ f s(V;t). For this reason, the USF state have been
extensively studied in the past years, especially in the case of
a single gas. Recently,exactexpressions for the rheological
properties of a binary mixture of Maxwell molecules~par-
ticles interacting via a repulsiver25 force! under USF have
been obtained.2 To the best of our knowledge, this is the first
exact solution of the Boltzmann equation for a binary mix-
ture in an inhomogeneous state far from equilibrium. Beyond
the Maxwell interaction, it is a very difficult problem to get
explicit information about the shear-rate dependence of the
transport coefficients from the Boltzmann equation. Since we
are interested in offering a theory with a wider applicability
than just for Maxwell molecules, here we will consider a
kinetic model suitable for arbitrary repulsive forces. Specifi-
cally, for molecules interacting through a repulsive force
Frs5 r̂k rs /r

g (g55, . . . ,̀ ), the Boltzmann collision inte-
gralsJrs@ f r , f s# are replaced by relaxation terms of the form

2n rs~ f r2 f rs!, ~12!

where

f rs5nr S mr

2pkBTrs
D 3/2expF2

mr

2kBTrs
~v2urs!

2G , ~13!

urs5
mrur1msus
mr1ms

, ~14!

Trs5Tr12
mrms

~mr1ms!
2 F ~Ts2Tr !1

ms

6kB
~ur2us!

2G , ~15!
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and n rs is a velocity independent collision frequency given
by

n rs5A~b!nsS k rs

mr1ms

mrms
D ~12b!/2S 2kBTrmr

1
2kBTs
ms

D b/2

.

~16!

Here,b[(g25)/(g21) andA(b) is a constant for a given
interparticle potential.10 The quantitiesurs , Trs , andn rs are
determined by imposing that the total momentum and energy
are conserved and that the first five collisional moments as
computed with Eq.~13! be the same as those computed with
the exactJrs@ f r , f s#. In order to evaluate the last requirement
for non-Maxwell molecules, one needs to introduce approxi-
mate forms for the above collisional moments.11 The kinetic
model defined by Eqs.~12!–~16! can be seen as a generali-
zation of the Gross-Krook~GK! model6 ~which was origi-
nally introduced for Maxwell molecules, i.e.b50) to gen-
eral repulsive interactions. All the details of the interaction
potential are taken into account throughn rs , which depend
on temperaturesTr and Ts . This model has been recently
used to study tracer diffusion in uniform shear flow.8

Under the conditions of the USF state, the velocity dis-
tribution function f 1 verifies the kinetic equation

] f 1
]t

2
]

]Vi
ai j Vj f 152n11~ f 12 f 11!2n12~ f 12 f 12!, ~17!

and a similar equation holds forf 2. It is interesting to note
that Eq.~17! admits a scaling property in the special case of
Maxwell molecules. Let us introduce the scaled quantities

V5e2atV, ~18!

f̄ s~V,t !5e3at f s~V,t !, ~19!

where a is an arbitrary constant. For Maxwell molecules
(b50), n̄ rs5n rs so that Eq.~17! reduces to

] f̄ 1
]t

2
]

]V̄i

~ai j V̄j1aV̄i ! f̄ 152 n̄11~ f̄ 12 f̄ 11!2 n̄12~ f̄ 12 f̄ 12!.

~20!

This equation can be seen as the one corresponding to the
USF in the presence of a nonconservative external force
F152m1aV. Consequently, there is an exact equivalence
between the description with and without the drag forces
Fs ~with arbitrarya). From a computational point of view, it
is desirable to measure the transport coefficients in a steady
state. For this reason, it is usual in molecular dynamics
simulations1 to choosea as a function of the shear rate by
the condition that the temperature reaches a constant value in
the long time limit. In this sense,Fs plays the role of a
thermostat force. Here, we also adopt this point of view and
will incorporate thermostat forces to achieve a steady state.
Nevertheless, it must be remarked that for non-Maxwell mol-
ecules this type of force does not play a neutral role in the
transport properties of the system.12

Now, we will start from Eq.~20! with ] f̄ 1 /]t50 and
will determinea by consistency. Further, for simplicity, we
will drop the bars in Eq.~20!.

III. TRANSPORT PROPERTIES

Let us assume that, after a transient period, the system
has reached a steady state. In this situation, our goal is to
evaluate the main transport properties of the mixture. To this
end, it is useful to define the reduced velocity moments
Mk,l ,m

(s) corresponding to speciess as

Mk,l ,m
~s! 5

1

ns
S 2kBTms

D 2~1/2!~k1l 1m!E dVVx
kVy

l Vz
mf s~V!.

~21!

In the following we will focus on the properties of species
1. Multiplying both sides of Eq.~20! ~with ] f 1 /]t50) by
Vx
kVy

l Vz
m and integrating over the velocity space, one gets

akMk21,l 11,m
~1! 1@n11a~k1l 1m!#Mk,l ,m

~1! 5Nk,l ,m
~1! ,

~22!

wheren15n111n12, and

Nk,l ,m
~1! 5p23/2CkCl Cm@n11x1

~k1l 1m!/2

1n12x12
~k1l 1m!/2#, ~23!

whereCk5G((k11)/2) if k5 even, being zero otherwise.
Here, we have introduced the temperature ratiosx15T1 /T
andx125T12/T.

In order to study the nonlinear transport properties of the
system, it is convenient to introduce dimensionless quanti-
ties. In general, the collision frequenciesn rs depend on the
shear rate through their dependence on the temperaturesTr
and Ts . In the absence of shear field,Tr5Ts5T and one
recovers the expressions of the equilibrium collision frequen-
cies,

n rs
~0!5A~b!nsk rs

~12b!/2Smr1ms

mrms
D 1/2~2kBT!b/2. ~24!

Since our description applies for arbitrary mass, concentra-
tion, and size ratios, we choose for simplicity an effective
collision frequencyz5(n/n2)n12

(0) and takez21 as the time
unit. Thus, we will use the dimensionless quantities
a*5a/z,a*5a/z, and

n11* 5
n11
z

5
d

11d
w11

~12b!/2S 2

11m D 1/2x1
b/2, ~25!

n12* 5
n12
z

5
1

11d S x1

11m
1

m

11m
x12D b/2

, ~26!

wherem[m1 /m2 is the mass ratio,d[n1 /n2 is the concen-
tration ratio, andw11[k11/k12. For the sake of brevity,
henceforth we will omit the asterisks.

In terms of the above reduced quantities, the solution to
Eq. ~22! can be written as8

Mk,l ,m
~1! 5 (

q50

k
k!

~k2q!!
~2a!q@n11~k1l

1m!a#2~11q!Nk2q,l 1q,m
~1! , ~27!

whereN(1) is assumed to be identically zero when any of its
indices is negative. Equation~27! is still a formal expression
as we do not know the shear-rate dependence of the thermo-
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stat parametera and the temperature ratiosx1 andx2. These
quantities must be consistently determined from the require-
ments

3
2x15M200

~1! 1M020
~1! 1M002

~1! , ~28!

3
2x25M200

~2! 1M020
~2! 1M002

~2! , ~29!

x2511d~12x1!, ~30!

which follow from Eqs.~3! and~4!. In Eq.~29!, the moments
Mk,l ,m

(2) of the distributionf 2 can be easily obtained from Eq.
~27! by the adequate changes:
m↔m21,d↔d21,w11↔w22. Except in the particular case
of Maxwell molecules (b50), the collision frequencies are
nonlinear functions of the partial temperatures, so that it is
not possible to get a closed equation fora or x1. Thus, one
must solve numerically the following coupled set of nonlin-
ear algebraic equations:

~A123!~A223!2B1B250 , ~31!

x1

11d~12x1!
5
32A2

B2
, ~32!

where

A15
n111n12~122M !

n112a F31
2a2

~n112a!2G , ~33!

B15
2Mn12
n112a F31

2a2

~n112a!2G , ~34!

and the remaining coefficients are obtained by the adequate
changes.

Nevertheless, there are some limit cases for which Eqs.
~31! and~32! can be solved analytically. For instance, in the
case of mechanically equivalent particles
(m51,k115k225k12), one gets thatx15x2 anda verifies
the cubic equation

3a~112a!25a2, ~35!

whose real~physical! root isa(a)5 1
2F(a) with

F~a!5 4
3sinh

2@ 1
6cosh

21~119a2!#. ~36!

In this case, all the results are independent of the potential
model considered. In addition, the elements of the pressure
tensor coincide with the ones obtained from the Boltzmann
equation for Maxwell molecules when one adjusts conve-
niently the collision frequency.5 This fact shows the rel-
evance of the kinetic model for evaluating transport proper-
ties. On the other hand, in the case of dissimilar particles and
for small shear rates,a'a0a

2 andx1'11x10a
2 where

a05
1

3~d11! S d

n1
~0! 1

1

n2
~0!D , ~37!

x105
1

3M ~d11! S 1

n2
~0! 2

1

n1
~0!D , ~38!

beingM5m/(11m)2. Notice that all the dependence onb
appears implicitly throughn r

(0) For large shear rates, the
behaviors for Maxwell molecules are

a'
n1

~0!

12
a2/3, ~39!

x1'
2Md1~n1

~0!2n2
~0!!~d11!

d~2M1n1
~0!2n2

~0!!
. ~40!

Since in the special case of Maxwell moleculesn rs is
independent of the temperature ratio, Eq.~31! reduces to a
sixth-degree equation ina. The solution of this equation
givesa as a function ofa, m, d, w11, andw12. Obviously,
this solution must also be obtained numerically. In Fig. 1, we
plot the largest roota(a) ~which is the physical solution! as
a function of the shear rate given from the GK model and
from the Boltzmann equation ford55 and two values of
m. To make such a comparison, we have taken for the con-
stantA appearing in Eq.~24! the value that gives the same
results between the GK and Boltzmann equations in the case
of identical particles. We observe a good agreement between
both descriptions. In terms ofa, the explicit expression for
x1 is

x15F11
3a~n112a!22a2n1

Mn12~d11!@3~n112a!212a2#G
21

. ~41!

For non-Maxwell molecules (b Þ 0), a and x1 are
coupled throughn rs and they do not obey closed equations.
In order to analyze the effect of the intermolecular interac-
tion on these quantities, we have considered the extreme case
of hard spheres (b51). According to Fig. 1, the curves cor-
responding to Maxwell molecules and hard spheres for
a(a) are practically indistinguishable. This means that most
of the influence of the potential has been scaled out by the
choice of the reduced quantities. The temperature ratio
x15T1 /T is plotted as a function of the shear rate in Fig. 2
for the same cases as those considered in Fig. 1. We observe
that the qualitative trends predicted by the Boltzmann equa-

FIG. 1. Shear-rate dependence of the thermostat parametera for
w115w2251, d55, and two values of the mass ratiom. The solid and
dashed lines refer to the GK results for Maxwell molecules and hard
spheres, respectively, while the dotted line corresponds to the Boltzmann
results for Maxwell molecules.
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tion are retained by the GK model sinceT1 /T does not
present a monotonic behavior. In particular,T15T25T at a
certain value of the shear rate which depends on the param-
eters of the mixture. At a quantitative level, the discrepancies
between the exact results and those from the model are more
significant when the mass of the excess component is smaller
than that of the defect component. With respect to the influ-
ence of the interaction potential, we see again thatT1 /T is
insensitive to the interaction potential in the region of small
shear rates. Asa increases, the influence of the potential
becomes apparent for both values of the mass ratio.

Oncea andx1 are determined, all the velocity moments
of f 1 are explicitly known. The most important quantity of
the USF problem is the nonlinear shear viscosityh defined
in Eq. ~9!. Its expression can be obtained from Eq.~27! and
its counterpart forM (2). It is given by

h~a!5
1

11d Fd n11x11n12x12

~n112a!2
1

n22x21n21x21

~n212a!2 Gpz , ~42!

p5nkBT being the hydrostatic pressure. This equation pro-
vides the expression of the shear viscosity of a binary mix-
ture with general repulsive interactions and subjected to an
arbitrarily large shear rate. It is a highly nonlinear function of
a and the parameters of the mixture. For vanishing shear
rate, one gets the Navier-Stokes shear viscosity coefficient
h0:

h05
1

11d S d

n1
~0! 1

1

n2
~0!D pz . ~43!

Except in the case of mechanically equivalent particles, this
expression differs from the one derived from the Boltzmann
equation for Maxwell molecules.2 Before considering nonlin-
ear effects in the momentum transport, it is illustrative to
compare the results obtained from the GK and Boltzmann
equations forh0. In Fig. 3 we plot the ratioh0

GK/h0
B as a

function of the mass ratio for several values of the concen-

tration ratio in the special case of Maxwell molecules. Here,
h0
GK andh0

B denote the Navier-Stokes shear viscosities of the
GK and Boltzmann equations, respectively. For simplicity,
we have setw115w2251. We observe that the discrepancies
between both equations increase significantly as the disparity
of the masses increases. In fact, these discrepancies tend to
disappear as the mass ratio approaches unity~system of like
particles!. Beyond the linear regime, the interesting problem
is to analyze the shear-rate dependence of the nonlinear shear
viscosityh relative to its Navier-Stokes valueh0. Figure 4
showsh/h0 for d55 and two values ofm for the cases of

FIG. 2. Shear-rate dependence of the temperature ratioT1 /T for
w115w2251, d55, and two values of the mass ratiom. The symbols are
the same as those used in the previous figure.

FIG. 3. Plot of the ratio between the Navier-Stokes shear viscosities of the
GK and Boltzmann equations,h0

GK/h0
B as a function of the mass ratio for

w115w22 and d52 ~solid line!, d50.5 ~dashed line!, and d50.2 ~dotted
line!.

FIG. 4. Shear-rate dependence of the reduced shear viscosity for
w115w2251, d55, and two values of the mass ratiom. The solid and
dashed lines refer to the GK results for Maxwell molecules and hard
spheres, respectively, while the dotted line corresponds to the Boltzmann
results for Maxwell molecules.
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Maxwell molecules and hard spheres. In the same way as the
Boltzmann results for Maxwell molecules, the GK solution
predicts thath(a) decreases asa increases~shear thinning!
whatever the interaction potential considered. The inhibition
of momentum transport is more noticeable when the defect
particles are lighter than the excess particles. The compari-
son with the exact results shows again a better agreement
when the mass of the excess component is larger than that of
the defect component. We also observe that, according to the
GK model, the general shape of the relative viscosity is
rather insensitive to the details of the interaction potential.
This ‘‘universal’’ character has been recently also observed
in the case of a single component gas under shear flow.13 The
extrapolation of this character to binary mixtures, as the GK
model suggests, remains at this stage to be confirmed.

From a rheological point of view, the normal stresses are
also important. They are measured by the viscometric func-
tionsC1 andC2, defined in Eqs.~10! and~11!, respectively.
From the expressions of the velocity moments, one gets that
Pyy5Pzz. Consequently, the second viscometric function is
zero whatever the values ofa, m, d, w11, w22, andb. This
result is exact for Maxwell molecules,2 although forb Þ 0
one expects thatC2 Þ 0 as happens in the single component
gas.14 This drawback of the model may be related to the fact
that the generalized GK model gives what Chapman and
Cowling10 call the first approximation of the transport coef-
ficients. The first viscometric function is given by

C1~a!522F d

d11
~n112a!23~n11x11n12x12!

1
1

11d
~n212a!23~n22x21n21x21!G p

a2z2
.

~44!

In the limit a→0, one gets

C1~0!52
2

11d S d

n1
~0!2 1

1

n2
~0!2D p

z2
, ~45!

which is a Burnett coefficient. This coefficient does not co-
incide with the one obtained from the Boltzmann equation.2

In Fig. 5 we show the dependence ofC1(a)/C1(0) with the
shear rate for the same cases as those considered in Fig. 4.
We see thatC1(a) is a decreasing function and its depen-
dence on the parameters of the mixture is similar to that of
the shear viscosity. We note again a weak influence of the
interaction potential onC1(a).

IV. VELOCITY DISTRIBUTION FUNCTIONS

The general description of transport processes in the
mixture requires the knowledge of the velocity distribution
functions f s . Even in the case of Maxwell molecules, an
explicit solution to the Boltzmann equation in the USF state
is not known and the information aboutf s is obtained only
indirectly through the knowledge of the first hydrodynamic
moments. This is one of the main reasons to use a kinetic
model since its simplicity allows one to get the distribution
functions. In the case of a single component gas under USF,
the velocity distribution function obtained from the BGK

equation presents a good qualitative agreement with Monte
Carlo simulations13,14 except in the high-velocity region.
This fact shows the reliability of kinetic models for describ-
ing the ‘‘real’’ distribution at least in the region of thermal
velocities.

In the steady state, a formal solution to Eq.~20! compat-
ible with the moments~27! can be written as

f 1~V!5Fn123a2ai j Vj

]

]Vi
2aV•

]

]VG21

F1~V!

5E
0

`

dte2~n123a!texpFatVy

]

]Vx
1atV

•

]

]VGF1~V!, ~46!

where F15n11f 111n12f 12. The explicit expression of
f 1(V) can be derived when one takes into account the action
of the exponential operator:

expFatVy

]

]Vx
1atV•

]

]VGF1~Vx ,Vy ,Vz!

5F1~e
at~Vx1atVy!,e

atVy ,e
atVz!. ~47!

To get f 1(V) in a compact form, it is convenient to introduce
the dimensionless quantities~25! and~26! and also define the
reduced velocityj5(2kBT/m1)

21/2V. In terms of these
quantities and using the identity~47!, f 1(j) can be written as

f 1~V!5n1S m1

2kBT
D 3/2g1~j!, ~48!

where the reduced distributiong1(j) is

FIG. 5. The same as in Fig. 4, but for the first viscometric function.
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g1~j!5p23/2E
0

`

dte2~n123a!t@n11x1
23/2

3exp~2x1
21e2atj•Gt•j!1n12x12

23/2

3exp~2x12
21e2atj•Gt•j!#, ~49!

andGt is the matrix,

Gt5S 1 at 0

at 11a2t2 0

0 0 1
D . ~50!

The distributiong1 happens to be a highly nonlinear
function of the shear rate and the parameters of the mixture.
The dependence ofg1 on a appears explicitly and also
through the functionsa(a), x1(a), n11(a), andn12(a). By
making use of Eqs.~37! and ~38!, the first few terms of the
Chapman-Enskog expansion10 of the distribution function
can easily obtained. Up to Burnett hydrodynamic order, one
has

g1~j!5g1
~0!~j!1ag1

~1!~j!1a2g1
~2!~j!1q~a3!, ~51!

where

g1
~0!~j!5p23/2e2j2, ~52!

g1
~1!~j!522

jxjy
n1

~0! g1
~0!~j!, ~53!

g1
~2!~j!5H a0

n1
~0! ~322j2!2

5

2n1
~0! Fn11

~0!

1
122md1m2

~11m!2
n12

~0!Gx10

2
2

n1
~0!2 jy

2~122jx
2!J g1~0!~j!. ~54!

Notice that, up to the Burnett approximation, the interaction
parameter only appears implicitly through the quantities
n rs
(0) andx10. This means that the influence of the potential
law on the distribution function can only be significant at
large shear rates. According to Eq.~49!, note thatg1 di-
verges to infinity atj50 whenn1<3a. This singularity was
already found in the monocomponent gas case.15 The origin
of this divergence at vanishing velocity is related to the vis-
cous heating effect inherent to the USF. For the sake of
clarity, let us consider the Maxwell interaction for which
n1 is independent of the shear rate. Two exponential terms
compete in Eq.~49!: on the one hand, exp(2n1t) gives the
fraction of particles of species 1 that have not collided after
t effective collision times; on the other hand, exp(3at) is a
consequence of the presence of the thermostat~viscous heat-
ing!. For small shear rates@a(a),n1/3#, the viscous heating
is not sufficiently large to exceed the effect of collisions and
g1 is finite at j50. However, if a(a)>n1/3 the opposite
occurs and there exists a ‘‘condensation’’ of particles of spe-
cies 1 aroundj50.

Sinceg1(j) depends on the three components ofj, it is
useful to define some marginal distribution functions:

g1,x~jx ;a![E
0

`

djyE
2`

`

djz g1~j!, ~55!

g1,y~jy ;a![E
0

`

djxE
2`

`

djz g1~j!. ~56!

From Eq.~49! it is a simple matter of algebra to get these
functions. They are given by

g1,x~jx ;a!5
1

2Ap
E
0

`

dt
e2~n12a!t

~11a2t2!1/2H n11x1
21/2

3expF2
e2at

x1

jx
2

11a2t2G
3erfcF eat

x1
1/2

at

~11a2t2!1/2
jxG

1n12x12
21/2expF2

e2at

x12

jx
2

11a2t2G
3erfcF eat

x12
21/2

at

~11a2t2!1/2
jxG J , ~57!

g1,y~jy ;a!5
1

2Ap
E
0

`

dte2~n12a!t$n11x1
21/2

3exp~2x1
21e2atjy

2!erfc@x1
21/2atjye

at#

1n12x12
21/2exp~2x12

21e2atjy
2!

3erfc@x12
21/2atjye

at#%, ~58!

where erfc(x) is the complementary error function.16 For the
sake of illustration, we plot the ratioswx(jx)[g1,x(jx ;a)/
g1,x(j;0) and wy(jy)[g1,y(jy ;a)/g1,y(j;0) for w1151,
d55, m50.1,1 and 10 in the cases of Maxwell molecules
and hard spheres. In Figs. 6 and 7 we show the shape of
these ratios fora51. For this not too large a shear rate, the
distributions for Maxwell molecules and hard spheres agree
rather well. In general, the distortion from local equilibrium
(wx,y51) is significant for all the mass ratios considered.
The dependence ofwx with m depends if thex component of
the thermal velocity is positive or negative, namely, it in-
creases~decreases! with m if jx,0 (jx.0). According to
the predictions forwy , we observe that while the high-
velocity population of the solvent increases as its mass is
lighter than that of the solute, the opposite happens in the
region of very small velocities. In order to analyze the influ-
ence of the repulsion law on the distribution function in far
from equilibrium states, we have considereda58 in Figs. 8
and 9 for the same cases as in the two previous figures. Since
a58 is larger than the threshold values of these systems, the
functions diverge in the vicinity ofjx50 and jy50. The
qualitative differences between Maxwell molecules and hard
spheres are now quite evident, especially in the region of
high velocities. In this region, the population increases as the
potential becomes harder. These discrepancies are more sig-
nificant when the mass of the defect particles is smaller than
that of the excess component. Nevertheless, despite these
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discrepancies among the velocity distribution functions for
thermal velocities, the rheological properties are practically
independent of the potential considered.

V. TRACER LIMIT

The results presented in previous sections apply for ar-
bitrary values of masses, concentrations, and force constants.
An interesting physical limit corresponds to the so-called
tracer limit, namely,n1!n2. In this situation, one usually
assumes that the excess component is not disturbed by the
presence of the tracer particles and, in addition, one neglects
the effect on the state of the tracer component of collisions
among tracer particles themselves. As a consequence, one
expects that the tracer particles do not contribute signifi-

cantly to the total properties of the mixture. Nevertheless,
and quite surprisingly, recent results derived from the
Boltzmann equation for Maxwell molecules9 show a transi-
tion to a new state in which the relative contribution of the
tracer species to the properties of the mixture does not tend
to zero asd→0 when the mixture is sufficiently far from
equilibrium. Now we are going to analyze the tracer limit in
the context of the GK equation.

For the sake of simplicity, let us consider first the special
case of Maxwell molecules, for which the thermostat param-
etera verifies the closed equation~31!. Taking carefully the
limit d→0, Eq. ~31! factorizes into two cubic equations:

3a~n2212a!25n22a
2, ~59!

3~a1M !~112a!25~122M !a2. ~60!

FIG. 6. Reduced distribution functionwx(jx) versus jx for a51,
w115w2251, d55, and three values of the mass ratiom. The solid lines
refer to Maxwell molecules while the dashed lines refer to hard spheres.

FIG. 7. The same as Fig. 6, but forwy(jy) as a function ofjy .

FIG. 8. The same as Fig. 6, but fora58.

FIG. 9. The same as Fig. 7, but fora58.
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Equation ~59! is associated with the time evolution of the
excess component, while Eq.~60! gives the transient behav-
ior of the tracer species. The real roots~which give the domi-
nant behavior in the long-time limit! of both equations are,
respectively,

a5
n22
2
FS a

n22
D , ~61!

a85S 122M DFS a

122M D2M , ~62!

whereF(x) is defined in Eq.~36!. According to the analysis
carried out in Ref. 9, the adequate thermostat to achieve
steady values forT1 andT2 is amax5max(a,a8). As long as
d Þ 0, the difference between the two largest roots of the

sixth-degree equation~31! does not vanish for any value of
the shear rate and the parameters of the mixture. In the same
way as in the Boltzmann description, for a given choice of
the force constants, it turns out thatamax5a if m is larger
than a certain threshold valuem0, which is the solution of
2M1n2251. On the other hand, ifm,m0, thenamax5a8
for shear rates larger than a critical valueac(m). The main
physical consequence of the existence ofac(m) is that the
tracer species have a finite contribution to the total properties
of the mixture whena.ac(m) andm,m0. For instance, let
us consider the ratiop1 /p, where p15n1kBT1. This ratio
represents the relative contribution of the tracer particles to
the total energy of the system. From Eq.~41!, one gets that in
the tracer limitp1 /p'0 if a,ac(m) and

p1
p

5
4a83~l12M21!112a82Ml1a8l@12l12M ~21l!#1Ml

@4a8218a8M12M ~11l!2l#~M1a8!~l21!
, ~63!

if a.ac(m). Here, l[@2mw22/(11m)#1/2. Although the
molar fraction of the tracer particles is negligible, their con-
tribution to the total energy may be relevant for sufficiently
large shear rates. Obviously, identical conclusions can be
obtained for other transport properties of the mixture. Pos-
sible physical implications of the singularity have been dis-
cussed in Ref. 9.

A natural question is whether the above phenomenon
can be extended to other interaction potentials. Since for
non-Maxwell molecules no explicit closed equation fora
can be obtained, it is a complex problem to analyze with
detail the tracer limit. One possibility is to numerically solve
the coupled equations fora andx1 for very small values of
the concentration ratio. For illustrative purposes, Fig. 10
showsp1 /p2n1 /n versusa for m50.1 andd51024 in the
casew115w2251. We have consideredr2g repulsive forces,
with g55,7,9,13, and̀ . We have also included the exact
tracer limit (d50) for Maxwell molecules (g55), which is
indistinguishable from the one corresponds tod51024. For
this interaction potential,ac(0.1).3.906. According to Fig.
10, it is evident thatp1 /p is only negligible fora<ac . This
indicates the different qualitative behavior of the system de-
pending on whethera is larger or not than a certain critical
valueac , which might be a weak function of the interaction
parameter. The curves also show that the contribution of the
tracer species to the total energy of the mixture decreases as
g increases. In fact,p1 /p'0 in the limit of hard spheres
(g→`) for the range of shear rates considered. Neverthe-
less, these conclusions must be taken with caution since they
require an accurate analysis of the tracer limit for general
repulsive potentials. We plan to address this study in the near
future.

VI. CONCLUDING REMARKS

In this paper we have considered a binary mixture with
repulsive intermolecular interactions under uniform shear

flow. The macroscopic state is characterized by uniform den-
sity and temperature and a linear profile of thex component
of the flow velocity along they direction. In principle, this
state is not stationary since the temperature increases in time
due to viscous heating. To prevent this effect, and in the
same way as in computer simulations, a drag external force
is introduced. The only nonequilibrium parameter is the con-
stant shear ratea, which measures the deviation from equi-
librium. The main transport property is in this case the mo-
mentum transport, which is related to the pressure tensor. On
the other hand, the transport coefficients also depend on the
parameters of the mixture, namely the mass, concentration,

FIG. 10. Shear-rate dependence ofp1 /p2n1 /n for w2251, m50.1, and
d51024 for severalr2g repulsive forces:~a! g55, ~b! g57, ~c! g59, ~d!
g513, and~e! g5`. We have also included the cased50 for Maxwell
molecules~dashed line!. The arrow indicates the location of the critical
valueac for Maxwell molecules.
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and size of each species. In this situation, only the special
case of Maxwell molecules allows one to obtain explicit re-
sults for the rheological properties within the framework of
the Boltzmann equation.2 In order to analyze the problem for
more realistic intermolecular potentials, one needs to resort
to a kinetic model. In the model considered here all the de-
tails of the interaction potential are introduced through effec-
tive collision frequenciesn rs , which depend on the tempera-
tures of each species. Furthermore, and due to the simplicity
of the model, explicit expressions for the velocity distribu-
tion functions can be derived.

All the velocity moments are obtained as nonlinear func-
tions of the shear rate, the ratios of mass, concentration, and
force constants and a parameter characterizing the interaction
potential. The expressions of such moments are given in
terms of the thermostat parametera and the temperature
ratios xs , which are in general coupled. The rheological
properties~namely the non-Newtonian shear viscosityh and
the viscometric functionC1) decrease as the shear rate in-
creases, whatever the parameters of the mixture and the in-
teraction potential considered are. Another interesting prop-
erty is the temperature ratio, which is a measure of the
distribution of the kinetic energy between both species. This
ratio does not present a monotonic behavior with the shear
rate, since it has a maximum or minimum depending on the
parameters of the mixture. Concerning the influence of the
interaction potential considered, the results for the main
transport properties show that, by a convenient scaling of the
physical quantities, the reduced transport coefficients are
rather insensitive to the choice of the power law. This influ-
ence is more significant in the case of the temperature ratio.
A comparison with related results derived from the Boltz-
mann equation for Maxwell molecules2 indicate a reasonably
good agreement for not too large shear rates, especially for
systems of like particles.

Another interesting aspect addressed in this paper is the
analysis of the dependence of the velocity distribution func-
tions on the parameters of the problem as well as on the
interaction potential. With respect to the first point, we ob-
serve that these distributions are strongly distorted from their
equilibrium values. This fact could be in principle antici-
pated on the basis of the highly nonlinear dependence of the
transport coefficients on the shear rate and the parameters of
the mixture. On the other hand, other nonlinear effects that
are not present in the velocity moments, such as the diver-
gence of the distribution function at zero velocity, emerge
for large shear rates. With respect to the effect of the repul-
sive intermolecular law, and in contrast to the weak influence
of the interaction model on the transport properties, we con-
clude that the shape of the distribution function is affected by
the hardness of the interaction very far from equilibrium.
This influence becomes more noticeable in the domain of
high speeds, especially when the excess component is
heavier than that of the defect component.

In the tracer limit, it is worthwhile to remark that the GK
model also predicts a transition to a new state. This transition
had been previously identified from the Boltzmann solution
in the case of Maxwell molecules.2,9 The numerical calcula-
tions reported in this paper suggest that this phenomenon

also appears for non-Maxwell molecules, although it is less
strong as the potential becomes harder. As a matter of fact, it
might disappear in the limit of hard spheres. We plan to
present a more detailed analysis of the tracer limit in the
context of the GK model in order to support the above ex-
pectations.

The analysis carried out refers to a binary mixture in the
low-density regime. The extrapolation of the conclusions
drawn out here to dense fluids must be taken with caution
since the dominant mechanism of collisional transfer is ab-
sent in the dilute gas regime. Nevertheless, qualitative fea-
tures in appropriate scaled variables may still be useful for
interpretation of simulation results in fluids.5 In the particular
case of the uniform shear flow, one could obtain a qualitative
agreement with the shear thinning observed in simulations at
liquid densities whether one scales the shear viscosity to a
convenient dimensionless form.
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