Uniform shear flow in a binary mixture with general repulsive interactions
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A kinetic model for a binary mixture under uniform shear flow is exactly solved. The model
incorporates a temperature dependence of the collision frequencies that allows the consideration of
general repulsive interactions. The rheological properties of the mixture are obtained as functions of
the shear rate, the parameters of the mixtpagticle masses, concentrations, and force congtants
and a parameter characterizing the interaction considered. In addition, the velocity distribution
functions are explicitly obtained. While the transport coefficients are hardly sensitive to the
interaction potential, the distribution functions are clearly influenced by the interaction parameter. In
the tracer limit, a transition to an alternative state recently found in the context of Boltzmann
equation is exactly identified in the case of Maxwell molecules. For non-Maxwell molecules,
preliminary results suggest that this transition is also present although the phenomenon is less
significant. A comparison with previous results derived from the a Boltzmann equation for Maxwell
molecules is also carried out. @996 American Institute of Physids$$1070-663(96)01010-0

I. INTRODUCTION tations. First, it cannot be regarded as general since the
model of Maxwell molecules is not a realistic example of
The analysis of transport phenomena occurring in a biintermolecular interactions. As a consequence, the predic-
nary mixture far away from equilibrium is certainly a very tions made in Ref. 2 canndn principle be extrapolated to
hard task since the transport coefficients are not only funcether interaction potentials. Second, and due to the math-
tions of the nonequilibrium parametefisydrodynamic gra- ematical difficulties embodied in the Boltzmann collision op-
dients, external forces, . .), butalso of parameters such as erators, no explicit expressions for the velocity distribution
masses, concentrations, and sizes. This complexity leads @isnctions are known, even for Maxwell molecules. A pos-
to consider tractable situations for which a complete descripsible alternative to overcome analytically both limitations is
tion can be given. Perhaps, one of the most extensively stude use a kinetic model. The idea is to replace the Boltzmann
ied cases corresponds to the so-called uniform shear flowollision integrals(which contain a detailed description of
(USB. In this state, the only nonzero gradigmthich is a  the two-body interactionsby simple collision terms which
constank is du,/dy=a, whereu is the flow velocity. The retain the main physical properties of the true collision op-
constant shear rate measures the distance of the systemerators. The usefulness of such an approach has been widely
from equilibrium. The USF problem is a useful prototype for demonstrated in the past with the Bhatnagar-Gross-Krook
evaluating transport properties under extreme condititars  (BGK) equatio# in the case of a monocomponent gas under
away from equilibriun. In “computer experiments” this USF?
state is generated by applying Lees-Edwards periodic bound- The aim of this paper is to reexamine the USF problem
ary conditions: This type of boundary conditions do work for a dilute binary mixture. The starting point is a generali-
on the system so that the temperature increases with time. ration of the well-known Gross-KroolGK) kinetic modef
order to achieve a stationary situation, an artifi¢imicro-  for a binary mixture where the effective collision frequencies
scopig force is usually introduced. Although the USF may depend on the “temperature” of each species. This allows
be experimentally unrealizable for large shear rates, the rdor the consideration of general repulsive intermolecular
sults derived in thigidealized problem are of great value in forces. Our mativation is twofold. On the one hand, we find
order to gain insight into the understanding of more realisticexplicit expressions for the velocity moments and the veloc-
flows. ity distribution functions in terms of the shear rate, the ratios
In the USF state the most important transport propertie®f mass, concentration, and force constants and a parameter
are related to the pressure tenggrwhose elements define characterizing the intermolecular interaction considered. The
the nonlinear shear viscosity and viscometric functions latter allows us to assess the influence of the interaction po-
¥, ,. Recently, we have obtained these quantities for a bitential on the main transport properties. In this sense, in this
nary mixture of Maxwell moleculesr(° repulsive intermo- paper we extend previous works about the USF problem in
lecular forcé from an exactsolution of the coupled set of the tracer limit”® On the other hand, and as a test of valida-
Boltzmann equation. The transport coefficients; and  tion of the kinetic model, we compare the shear-rate depen-
¥, , are given as nonlinear functions of the shear rate andence of the temperature ratio, the shear viscosity, and vis-
the parameters of the mixtufenass ratio, concentration ra- cometric functions with the one given from the exact
tio, and force constant ratipsThis work extends the well- Boltzmann equation for Maxwell molecules. Such a com-
known Ikenberry-Truesdell solutidrior a singlecomponent  parison shows that the rheological properties of the mixture
gas of Maxwell molecules. derived from the GK and Boltzmann equations do not coin-
Nevertheless, the above solution has two important limicide although they exhibit a qualitative agreement for not too
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large shear rates and/or not too large a disparity of the paa being the constant shear rate. Since no mutual diffusion
rameters of the mixture. appears in the system, the only nonequilibrium parameter
As a final point, it is interesting to investigate what hap- (which may be arbitrarily largeis the shear rate. As a con-
pens in the tracer limit, i.e. when the molar fraction of one ofsequence, the relevant transport phenomenon is the momen-
the species tends to zero. In this limit, a transition to anum transport which is measured by the pressure tensor
alternative state has beexactlyidentified from the Boltz-
mann solutior?. In this new state, the tracer species contrib-
ute significantly to the total properties of the mixture. In the

same way as in the Boltzmann equation, an exact analysis of ] . )
the tracer limit for Maxwell molecules shows that such awhereV=v—uis the peculiar velocity. The elements of the
transition is also present in the GK solution. For non-Pressure define the main transport coefficients of the prob-
Maxwell molecules, numerical results suggest that this phelem, namely, the shear viscosity,
nomenon also appears although it is much less important as
. : Pxy
the interaction becomes harder. n(a)=——, 9
The plan of the paper is as follows. In Sec. Il we de- a
scribe the problem we are interested in and introduce th@nd the viscometric functions,
kinetic model. Section IIl is concerned with the calculation

2
P=> msf dvwVfq, (8)
s=1

of the steady transport properties and the corresponding ()= Pyy = Pxx (10

comparison with the Boltzmann results. The velocity distri- ! a®

bution functions are explicitly obtained in Sec. IV, while the

tracer limit is studied in Sec. V. Finally, some concluding W ,(a)= P2z Pyy_ (11)
a?

remarks close the paper in Sec. VI.

The USF is not stationary since the temperature increases in
Il. DESCRIPTION OF THE PROBLEM time due to viscous heating. Thus, Eq9)—(11) must be

Let us consider a dilute binary mixture. In terms of the understood in the long-time limit where the influence of the
velocity distribution function f4(r,v;t) of species s initial conditions has disappeared.
(s=1,2), the number density and mean velocity of species The USF state becomes spatially homogeneous when the

s are defined, respectively, as velocities of the particles are referred to the Lagrangian
frame moving with the flow velocity. In this new frame,
ne= f dvfs, (1) the  distribution  function  adopts the  form

fs(r,v;t)=f4(V;t). For this reason, the USF state have been

extensively studied in the past years, especially in the case of
Us=—| dwvfs. (2)  asingle gas. Recentlgxactexpressions for the rheological
properties of a binary mixture of Maxwell moleculgsar-
These quantities define the total number densityn,+n, ticles interacting via a repulsive ® force) under USF have
and the flow velocityu= (piu; + poU,)/p, Whereps=mgNs  peen obtained.To the best of our knowledge, this is the first
is the mass density of specigsms is the mass of a particle exact solution of the Boltzmann equation for a binary mix-
of speciess, andp=p;+p, is the total mass density. It is ture in an inhomogeneous state far from equilibrium. Beyond
usual to define a local “temperature” for each speciesthe Maxwell interaction, it is a very difficult problem to get

through explicit information about the shear-rate dependence of the
3 me transport coefficients from the Boltzmann equation. Since we
EnSkBTS=7J dv(v—ug)?fs, (3 are interested in offering a theory with a wider applicability

than just for Maxwell molecules, here we will consider a
which is related to the mean kinetic energy of each speciekinetic model suitable for arbitrary repulsive forces. Specifi-
Here, kg is the Boltzmann constant. From these partial tem-cally, for molecules interacting through a repulsive force

peratures, the temperature of the mixtire(which is the F=r«, /r” (y=5,... ), the Boltzmann collision inte-
relevant one at a hydrodynamic leyés gralsJ,{ f,,fs] are replaced by relaxation terms of the form
2
1 —v(fr—"15), 12
nkgT=2, (nSkBTs+ 3Ps(Us—Ww?. @ (e 2
s=1 where
The uniform shear flowWUSH state is characterized by a m 312 m
linear profile of thex component of the flow velocities along f = m(#) exr{ — o " (v—u)?, (13)
they axis, constant densitias;, and uniform temperatures 7Kg Trs BTrs
Ts: L + MgUs 14
Us,i=Uj=a;jI'j,ajj=adixJjy , ©) Tomtmg
fs=const © ot PIRLLUL I [(T T+ o (u-u)?, (19
=T+ =T+ == (U, —ug)*|,
V=0, @ T omeamg?[te U ekg
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and v,¢ is a velocity independent collision frequency given lll. TRANSPORT PROPERTIES

b
y Let us assume that, after a transient period, the system

m,+mg| A2 2k T, 2kgT| A2 has reached a steady state. In this situation, our goal is to
—) (—+ —) : evaluate the main transport properties of the mixture. To this
(16)  end, it is useful to define the reduced velocity moments
_ _ M), | corresponding to speciesas

Here,B=(y—5)/(y—1) andA(B) is a constant for a given o
interparticle potential® The quantitiesy,s, T,s, andv,s are M) 1 f AVVAVAVTE (V)
determined by imposing that the total momentum and energy KAm g mg Ty st

are conserved and that the first five collisional moments as (21
computed with Eq(13) be the same as those compu_ted WlthIn the following we will focus on the properties of species
the exact[ f, ,f<]. In order to evaluate the last requirement ; Multiplying both sides of Eq(20) (with of/dt=0) by

for non-Maxwell molecules, one needs to introduce approxivkv/vm : ; ;
v T et and integrating over the velocity space, one gets
mate forms for the above collisional momehtshe kinetic Xty "z 9 9 y sp 9

model defined by Eq412)—(16) can be seen as a generali-  akM®; .1 +[vi+a(k+/+mIME =N
zation of the Gross-KrookGK) modef (which was origi- (22
nally introduced for Maxwell molecules, i.8=0) to gen-
eral repulsive interactions. All the details of the interaction

Vrs:A(B)ns< Kys

m, mg m, m

2kBT) —(U2)(k+/+m)

wherev,=v;+ v, and

potential are taken into account through, which depend N =7 3%C,C, Col vy ™"
on temperatured, and T5. This model has been recently (Kt /+m)/2
used to study tracer diffusion in uniform shear fldw. T riXi2 it (23
Under the conditions of the USF state, the velocity dis-yhere C,=T'((k+1)/2) if k= even, being zero otherwise.
tribution functionf, verifies the kinetic equation Here, we have introduced the temperature rajigs T, /T
O')fl J and)(12= T12/T. ] )
— — —aVifi= —vp(fi—f) —vi(f1— 1), (17) In order to study the nonlinear transport properties of the
gt IV system, it is convenient to introduce dimensionless quanti-

and a similar equation holds fde. It is interesting to note  ti€S- In general, the collision frequencies depend on the

that Eq.(17) admits a scaling property in the special case ofshear rate through their dependence on the temperafires

Maxwell molecules. Let us introduce the scaled quantities 21d Ts. In the absence of shear field, =T;=T and one
recovers the expressions of the equilibrium collision frequen-

V=e oy, (18)  cies,

TV, =3 (V,1), (19) WO = A(B)ngi!L A2

m, +mg
rs

1/2
2kgT)P2, 24
— ) (2KT) (24)
where « is an arbitrary constant. For Maxwell molecules

(B=0). 7= v, S0 that Eq(17) reduces to Since our description applies for arbitrary mass, concentra-
- » YrsT Prs .

tion, and size ratios, we choose for simplicity an effective
collision frequencyZ=(n/ny) yg‘;) and take/ ! as the time

of, 9 _ - - = _— —
_1___(aijvj+avi)fl=_Vll(fl_fll)_yﬂ(fl—flz)_ unit. Thus, we will use the dimensionless quantities
ot oV * — * —
i a*=all,a*=al{, and
(20)

. . . x_ P11 o (1-p)I2 2 |\ BI2
This equation can be seen as the one corresponding to the V11=?= mwn m X1 (29
USF in the presence of a nonconservative external force
Fi=—maV. Consgqyently, there is'an exact equivalence . V12 1 X1 m B2
between the description with and without the drag forces V1227= 1+6\ 1+ + 1+MX12 ; (26)

F. (with arbitrary«). From a computational point of view, it

is desirable to measure the transport coefficients in a steadyherepx=m; /m, is the mass ratiog=n, /n, is the concen-
state. For this reason, it is usual in molecular dynamicdration ratio, andwy;=«i;1/k1,. For the sake of brevity,
simulations to choosea as a function of the shear rate by henceforth we will omit the asterisks.

the condition that the temperature reaches a constant value in In terms of the above reduced quantities, the solution to
the long time limit. In this sensef plays the role of a Ed. (22 can be written ds

thermostat force. Here, we also adopt this point of view and K Kl

will incorporate thermostat forces to achieve a steady state. ML = ﬁ(_a)q[,jﬁ(kJr/
Nevertheless, it must be remarked that for non-Maxwell mol- g=0 (k—=q)!

ecules this type of force does not play a neutral role in the —(1+q (D)

transport properties of the systéf. tmja] Ni=q,/+q.m @7

Now, we will start from Eq.(20) with af_llﬁt=0 and whereN® is assumed to be identically zero when any of its
will determine « by consistency. Further, for simplicity, we indices is negative. Equatid27) is still a formal expression
will drop the bars in Eq(20). as we do not know the shear-rate dependence of the thermo-
2758 Phys. Fluids, Vol. 8, No. 10, October 1996 C. Marin and V. Garzo
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stat parametew and the temperature ratiqg andy,. These
guantities must be consistently determined from the require-
ments

2X1= Moot MozoT Mooy, (28)
3x2= Moot MGzoT Mooy, (29
X2=1+8(1=xa), (30

which follow from Egs.(3) and(4). In Eq.(29), the moments
M(kz}m of the distributionf, can be easily obtained from Eg.
(27 by the adequate changes:
weu 86 1wy w,y,. Except in the particular case
of Maxwell molecules f=0), the collision frequencies are
nonlinear functions of the partial temperatures, so that it is
not possible to get a closed equation foor y;. Thus, one
must solve numerically the following coupled set of nonlin-
ear algebraic equations: @

(A1—3)(A2—3) —B:B,=0, (3D) FIG. 1. Shear-rate dependence of the thermostat parametefor
3—A Wy=Wy=1, §=5, and two values of the mass ratio. The solid and
X1 — 2 (32) dashed lines refer to the GK results for Maxwell molecules and hard
1+ 5(1—)(1) B, ' spheres, respectively, while the dotted line corresponds to the Boltzmann
results for Maxwell molecules.
where
2
V11+ V12( 1-2M ) 2a (33) V(O)
= , 1
1 v+ 2a (v1+2a)? awﬁazm, (39
2Mv 2a?
B,= 2 5, (34) 2M 5+ (V¥ — v (6+1)
v1+2a (v1+2a) X1~ (40)

s2M+ v — )
and the remaining coefficients are obtained by the adequate , i )
changes. Since in the special case of Maxwell molecules is

Nevertheless, there are some limit cases for which Eqddependent of the temperature ratio, E81) reduces to a

(31) and(32) can be solved analytically. For instance, in the SIXth-degree equation ia. The solution of this equation
case of  mechanically  equivalent  particles 9VeS@ as a function of, u, &, Wy, andwy,. Obviously,
(w=1,k11= Kpp=K15), ONE gets thaj, = x, and « verifies this solution must also be obtained numerically. In Fig. 1, we
the cu,bilcl eqlf;tionl ' oA plot the largest rootr(a) (which is the physical solutioras

a function of the shear rate given from the GK model and

3a(1+2a)?=2a% (385  from the Boltzmann equation fof=5 and two values of
whose realohvsical root is a(a) = ¥ (a) with m. To make sqch a comparison, we have ta_ken for the con-
(physica) a(a)=2F(a) stantA appearing in Eq(24) the value that gives the same
F(a)= 2sintf[ fcosh 1(1+9a?)]. (36)  results between the GK and Boltzmann equations in the case

of identical particles. We observe a good agreement between

In this case, all the results are independent of the potentig{gth descriptions. In terms af, the explicit expression for
model considered. In addition, the elements of the pressurg, js

tensor coincide with the ones obtained from the Boltzmann
equation for Maxwell molecules when one adjusts conve-
niently the collision frequency.This fact shows the rel-
evance of the kinetic model for evaluating transport proper-
ties. On the other hand, in the case of dissimilar particles an
for small shear ratesy~ aya? and y;~1+ x;0a> Where

N 3a(v;+2a)?—a’y, -1
Mry,(8+1)[3(vy+2a)?+2a%]
For non-Maxwell moleculesg # 0), a« and y, are

goupled throughv,s and they do not obey closed equations.
In order to analyze the effect of the intermolecular interac-

x1=|1 (41)

1 S 1 tion on these quantities, we have considered the extreme case
=g | o o] (37 of hard spheresg=1). According to Fig. 1, the curves cor-
3(6+1)\ vy’ v >
responding to Maxwell molecules and hard spheres for
1 1 1 a(a) are practically indistinguishable. This means that most
X10= a7 s A | 20~ 0| (39 of the influence of the potential has been scaled out by the
3M(6+1) 12) 12)

beingM = u/(1+ w)?. Notice that all the dependence gn

appears implicitly throughv{?) For large shear rates, the

behaviors for Maxwell molecules are

Phys. Fluids, Vol. 8, No. 10, October 1996

choice of the reduced quantities. The temperature ratio
x1=T1/T is plotted as a function of the shear rate in Fig. 2
for the same cases as those considered in Fig. 1. We observe
that the qualitative trends predicted by the Boltzmann equa-
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FIG. 2. Shear-rate dependence of the temperature r&giéT for
Wy;=W,,=1, §=5, and two values of the mass rajia The symbols are
the same as those used in the previous figure.

-3
7o

OK
7o

1.0

FIG. 3. Plot of the ratio between the Navier-Stokes shear viscosities of the
GK and Boltzmann equationg;SK/ 5E as a function of the mass ratio for
W11=W,, and §=2 (solid line), §=0.5 (dashed ling and §=0.2 (dotted

line).

tion are retained by the GK model sindg /T does not _ o _
present a monotonic behavior. In particul@;=T,=T ata tration ratio in the special case of Maxwell molecules. Here,
certain value of the shear rate which depends on the param®s . andzg denote the Navier-Stokes shear viscosities of the
eters of the mixture. At a quantitative level, the discrepancie$K and Boltzmann equations, respectively. For simplicity,
between the exact results and those from the model are mo¥¢e have sew;;=w,=1. We observe that the discrepancies
significant when the mass of the excess component is small®etween both equations increase significantly as the disparity
than that of the defect component. With respect to the influof the masses increases. In fact, these discrepancies tend to
ence of the interaction potential, we see again ThafT is  disappear as the mass ratio approaches usjtytem of like
insensitive to the interaction potential in the region of smallparticles. Beyond the linear regime, the interesting problem
shear rates. As increases, the influence of the potential iS to analyze the shear-rate dependence of the nonlinear shear
becomes apparent for both values of the mass ratio. viscosity 7 relative to its Navier-Stokes valug,. Figure 4
Oncea andy; are determined, all the velocity moments Shows 7/ 7, for 6=5 and two values of. for the cases of
of f, are explicitly known. The most important quantity of
the USF problem is the nonlinear shear viscosijtylefined
in Eq. (9). Its expression can be obtained from E27) and
its counterpart foM ). It is given by

VooX2 VaiX21|P
(vo+2a)? |’

p=nkgT being the hydrostatic pressure. This equation pro-

vides the expression of the shear viscosity of a binary mix-

ture with general repulsive interactions and subjected to an

arbitrarily large shear rate. It is a highly nonlinear function of

a and the parameters of the mixture. For vanishing shear

rate, one gets the Navier-Stokes shear viscosity coefficient
p

7o-
)%

Except in the case of mechanically equivalent particles, this
expression differs from the one derived from the Boltzmann
equation for Maxwell moleculesBefore considering nonlin-
ear effects in the momentum transport, it is illustrative toFIG. 4. Shearrate dependence of the reduced shear viscosity for
compare the results obtained from the GK and Boltzmanm{z=Wz2=1. 6=5, and two values of the mass raia The solid and

. . . GK,. B dashed lines refer to the GK results for Maxwell molecules and hard
equa.tlons forne. In Fig. .3 we plot the rationg"/7g @S @  gpheres, respectively, while the dotted line corresponds to the Boltzmann
function of the mass ratio for several values of the concentesults for Maxwell molecules.

VX1t VioX12
(Vl+ 2&)2

(42

n{@)/no

7()=1775

1
MY s

o 1
_ + _
V(10) V(20)

(43
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Maxwell molecules and hard spheres. In the same way as the
Boltzmann results for Maxwell molecules, the GK solution
predicts thaty(a) decreases aa increasegshear thinning
whatever the interaction potential considered. The inhibition
of momentum transport is more noticeable when the defect
particles are lighter than the excess particles. The compari-
son with the exact results shows again a better agreement
when the mass of the excess component is larger than that of
the defect component. We also observe that, according to the
GK model, the general shape of the relative viscosity is
rather insensitive to the details of the interaction potential.
This “universal” character has been recently also observed
in the case of a single component gas under shear'fidhe
extrapolation of this character to binary mixtures, as the GK
model suggests, remains at this stage to be confirmed.

From a rheological point of view, the normal stresses are
also important. They are measured by the viscometric func-
tionsW¥, and¥,, defined in Eqs(10) and(11), respectively. a
From the expressions of the velocity moments, one gets that
P,y=P,. Consequently, the second viscometric function is
zero whatever the values af w, &, wy;, Wy, andg. This
result is exact for Maxwell moleculésalthough for3 # 0
one expects that, # 0 as happens in the single componentequation presents a good qualitative agreement with Monte
gas.” This drawback of the model may be related to the facicarlo simulation§*** except in the high-velocity region.
that the generalized GK model gives what Chapman anehis fact shows the reliability of kinetic models for describ-
Cowling"® call the first approximation of the transport coef- jng the “real” distribution at least in the region of thermal

¥i(a)/¥,(0)

FIG. 5. The same as in Fig. 4, but for the first viscometric function.

ficients. The first viscometric function is given by velocities.
S In the steady state, a formal solution to E20) compat-
Yi(a)=-2 m(V1+ 2a) 3(vyx1t Viax12) ible with the moment$27) can be written as
+ L +2a)73 + > J o]
1352t 20) “(vaxat vaad) |7z (V) =|n-3a—ayV o5 —aV- 551 @y(V)
In the limit a—0, one gets = fo dre” 1 Q)Texf{aTVy&_VXJ““TV
v4(0)= i L2 45
S b O 9 -a—v}cblw), (@6

which is a Burnett coefficient. This coefficient does not co-

incide with the one obtained from the Boltzmann equafion. where ®;=v,f;;+v,f1,. The explicit expression of

In Fig. 5 we show the dependencebf(a)/¥1(0) withthe  f,(V) can be derived when one takes into account the action
shear rate for the same cases as those considered in Fig.gt.the exponential operator:

We see thatV;(a) is a decreasing function and its depen-

dence on the parameters of the mixture is similar to that of P

the shear viscosity. We note again a weak influence of thex;{aTvvaraT\/. —V}‘Pl(Vx,Vy.Vz)

interaction potential oW ,(a). IVx d

IV. VELOCITY DISTRIBUTION FUNCTIONS =Py (eT(VytarVy),e®Vy e*Vy). (47)

_ The general description of transport processes in thgg getf, (V) in a compact form, it is convenient to introduce
mixture requires the knowledge of the velocity distribution e gimensionless guantitié5) and(26) and also define the
functions f5. Even in the case of Maxwell molecules, an qqyced velocity = (2kgT/m;) "¥2V. In terms of these

explicit solution to the Boltzmann equation in the USF Statequantities and using the identit7), f,(& can be written as
is not known and the information aboty is obtained only

indirectly through the knowledge of the first hydrodynamic a2

moments. This ig one _of the main reasons to use a kipetic fl(V):nl<ﬁ) g1(), (48)
model since its simplicity allows one to get the distribution B

functions. In the case of a single component gas under USF,

the velocity distribution function obtained from the BGK where the reduced distributiag (€) is
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Q=22 “dre 0 P quba= [ ag, [ de 0o, (55)

Xexp — x1 'e2ET - )+ vigx s’

L augia= | ae | de a8, (56
Xexp(—x1 e E I, 8], (49) 0 -
andI’, is the matrix, From Eq.(49) it is a simple matter of algebra to get these
functions. They are given by
1 ar 0
r=|ar 1+a’~® 0], (50) gty ——[Tdr S (r=a)r [
7 = V
0 0 1 1x\ Sx 2\/; mﬁ 11X1
The distributiong,; happens to be a highly nonlinear g2art gf(
function of the shear rate and the parameters of the mixture. Xexg — Y. 1+ai?

The dependence of; on a appears explicitly and also
through the functionsy(a), x.(a), vi4(a), andv,5(a). By e*” ar
making use of Eqs(37) and (38), the first few terms of the Xerfc[—,i m@gx}
Chapman-Enskog expansi@nof the distribution function

can easily obtained. Up to Burnett hydrodynamic order, one 1 e2er §x
has Xz O T T a2
01§ =99 +ag’(H +a’g?(§+ (%), (5D ot ar
where xerf X1—21/2(1+a27.2)1/2§x ] (57
90O =m Y% ¢, (52 1 e
1y 2) = —= | dre a7
(D) g — f f (0) ey 2\/; 0
91 (§)=-2 (8, (53

xexp(— x; "e* g erfd x; Yarg,e]

92 (&)= [ 3(3—28%)— 5( Q) + VX1 eXP(— X12 €2
s = x erfd 1, 27,671}, (58)
—2potu
+ W V12 | X10 where erfc) is the complementary error functidhFor the

sake of illustration, we plot the ratiog,(£,)=0;4(&x;a)/
2 2)| g0 91x(£:0) and (Py(gy)Egl,y(gy;a)/gl,y(g;o) for w;=1,
—oz&y(1—2&5) 191 (§). (549 5=5, x=0.1,1 and 10 in the cases of Maxwell molecules
! and hard spheres. In Figs. 6 and 7 we show the shape of

Notice that, up to the Burnett approximation, the interactionthese ratios foa=1. For this not too large a shear rate, the
parameter only appears implicitly through the quantitiesdistributions for Maxwell molecules and hard spheres agree
Vrs) and y19. This means that the influence of the potentialrather well. In general, the distortion from local equilibrium
law on the distribution function can only be significant at (¢, ,=1) is significant for all the mass ratios considered.
large shear rates. According to E@9), note thatg, di-  The dependence af, with u depends if thex component of
verges to infinity aé=0 whenv,;<3a. This singularity was the thermal velocity is positive or negative, namely, it in-
already found in the monocomponent gas caskhe origin  creasegdecreas@swith u if £,<0 (£,.>0). According to
of this divergence at vanishing velocity is related to the vis-the predictions fore,, we observe that while the high-
cous heating effect inherent to the USF. For the sake ofelocity population of the solvent increases as its mass is
clarity, let us consider the Maxwell interaction for which lighter than that of the solute, the opposite happens in the
v, is independent of the shear rate. Two exponential termsegion of very small velocities. In order to analyze the influ-
compete in Eq(49): on the one hand, exp(v;7) gives the  ence of the repulsion law on the distribution function in far
fraction of particles of species 1 that have not collided aftefrom equilibrium states, we have consideiged 8 in Figs. 8
7 effective collision times; on the other hand, exgBis a and 9 for the same cases as in the two previous figures. Since
consequence of the presence of the thermd@sistous heat- a=8 is larger than the threshold values of these systems, the
ing). For small shear ratdsy(a) <»,/3], the viscous heating functions diverge in the vicinity o&,=0 and £,=0. The
is not sufficiently large to exceed the effect of collisions andqualitative differences between Maxwell molecules and hard
g, is finite at £&=0. However, if a(a)=v,/3 the opposite spheres are now quite evident, especially in the region of
occurs and there exists a “condensation” of particles of spehigh velocities. In this region, the population increases as the

cies 1 aroun&=0. potential becomes harder. These discrepancies are more sig-

Sinceg; (&) depends on the three componentsEpit is  nificant when the mass of the defect particles is smaller than
useful to define some marginal distribution functions: that of the excess component. Nevertheless, despite these
2762 Phys. Fluids, Vol. 8, No. 10, October 1996 C. Marin and V. Garzo
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FIG. 6. Reduced distribution functionp,(&,) versus & for a=1, FIG. 8. The same as Fig. 6, but far=8.

Wy;=W,,=1, §=5, and three values of the mass ratio The solid lines
refer to Maxwell molecules while the dashed lines refer to hard spheres.

cantly to the total properties of the mixture. Nevertheless,

discrepancies among the velocity distribution functions forand quite surprisingly, recent results derived from the
thermal velocities, the rheological properties are practicallyBoltzmann equation for Maxwell molecufeshow a transi-
independent of the potential considered. tion to a new state in which the relative contribution of the
tracer species to the properties of the mixture does not tend
to zero as6—0 when the mixture is sufficiently far from
equilibrium. Now we are going to analyze the tracer limit in
The results presented in previous sections apply for arge context of the GK equation.
bitrary values of masses, concentrations, and force constants. oy the sake of simplicity, let us consider first the special
An interesting physical limit corresponds to the so-calledcase of Maxwell molecules, for which the thermostat param-
tracer limit, namely,n,;<n,. In this situation, one usually eterq verifies the closed equatid8l). Taking carefully the
assumes that the excess component is not disturbed by thgit 5.0, Eq.(31) factorizes into two cubic equations:
presence of the tracer particles and, in addition, one neglects
the effect on the state of the tracer component of collisions 3a(vyt2a)?= vy, (59)
among tracer particles themselves. As a consequence, one 3(a+M)(1+2a)2=(1-2M)a% (60)
expects that the tracer particles do not contribute signifi-

V. TRACER LIMIT
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FIG. 7. The same as Fig. 6, but fer(£,) as a function o, . FIG. 9. The same as Fig. 7, but far=8.
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Equation(59) is associated with the time evolution of the sixth-degree equatio(81) does not vanish for any value of
excess component, while E(G0) gives the transient behav- the shear rate and the parameters of the mixture. In the same
ior of the tracer species. The real roGtghich give the domi-  way as in the Boltzmann description, for a given choice of
nant be_havior in the long-time limitof both equations are, the force constants, it turns out that,,= a if w is larger
respectively, than a certain threshold valye,, which is the solution of
a 2M+wvy,=1. On the other hand, ift <<, then amp= '
V_22 ' (61)  for shear rates larger than a critical valag n). The main
physical consequence of the existenceagfu) is that the
o' = (} -M ) F( . ) M, (62) tracer species have a finite contribution to the total properties
2 1-2M of the mixture whera>a (u) and u< u,. For instance, let
whereF(x) is defined in Eq(36). According to the analysis US consider the ratigp,/p, where p;=n;kgT;. This ratio
carried out in Ref. 9, the adequate thermostat to achieveepresents the relative contribution of the tracer particles to
steady values fof; andT, iS ay.=Max(a,a’). As long as  the total energy of the system. From E41), one gets that in
6 # 0, the difference between the two largest roots of thethe tracer limitp,/p~0 if a<a.(w) and

V22
o= ——

2

p1  4a’3(A+2M—1)+12a'*MA+a’A[1—N+2M(2+\)]+ M)
P [4a'2+8a’'M+2M(1+N)—N](M+a’)(A—1) ’

(63

if a>ag(u). Here, \=[2uw,,/(1+ u)]"% Although the flow. The macroscopic state is characterized by uniform den-
molar fraction of the tracer particles is negligible, their con-sity and temperature and a linear profile of theomponent
tribution to the total energy may be relevant for sufficiently of the flow velocity along they direction. In principle, this
large shear rates. Obviously, identical conclusions can bstate is not stationary since the temperature increases in time
obtained for other transport properties of the mixture. Posdue to viscous heating. To prevent this effect, and in the
sible physical implications of the singularity have been dis-same way as in computer simulations, a drag external force
cussed in Ref. 9. is introduced. The only nonequilibrium parameter is the con-
A natural question is whether the above phenomenostant shear rata, which measures the deviation from equi-
can be extended to other interaction potentials. Since folibrium. The main transport property is in this case the mo-
non-Maxwell molecules no explicit closed equation fer mentum transport, which is related to the pressure tensor. On
can be obtained, it is a complex problem to analyze withthe other hand, the transport coefficients also depend on the
detail the tracer limit. One possibility is to numerically solve parameters of the mixture, namely the mass, concentration,
the coupled equations far and x; for very small values of
the concentration ratio. For illustrative purposes, Fig. 10

showsp; /p—n;/n versusa for u=0.1 andé=10* in the 06 ' i ' ‘ '
casew;=W,,=1. We have considerad ? repulsive forces,

with y=5,7,9,13, and<. We have also included the exact ¢ 051

tracer limit (5=0) for Maxwell molecules §=5), which is g

indistinguishable from the one correspondsste 10 4. For I 0.4 -

this interaction potentiak(0.1)=3.906. According to Fig. <

10, it is evident thap, /p is only negligible fora<a.. This & o3t

indicates the different qualitative behavior of the system de-

pending on whethea is larger or not than a certain critical o2 L

valuea., which might be a weak function of the interaction

parameter. The curves also show that the contribution of the o1 b

tracer species to the total energy of the mixture decreases as

v increases. In factp;/p~0 in the limit of hard spheres

(y—) for the range of shear rates considered. Neverthe- 0.0

less, these conclusions must be taken with caution since they

require an accurate analysis of the tracer limit for general —0.1 5 ' = ' ) ‘ 15
repulsive potentials. We plan to address this study in the near () .

future.

FIG. 10. Shear-rate dependencemf/p—n,/n for w,,=1, ©=0.1, and
VI. CONCLUDING REMARKS 5=10"* for severalr ~” repulsive forces(a) y=5, (b) y=7, (c) y=9, (d)
. . . . . y=13, and(e) y==. We have also included the cage-0 for Maxwell
In this paper we have considered a binary mixture Withygjecules(dashed ling The arrow indicates the location of the critical
repulsive intermolecular interactions under uniform sheakaluea, for Maxwell molecules.
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and size of each species. In this situation, only the specialso appears for non-Maxwell molecules, although it is less
case of Maxwell molecules allows one to obtain explicit re-strong as the potential becomes harder. As a matter of fact, it
sults for the rheological properties within the framework of might disappear in the limit of hard spheres. We plan to
the Boltzmann equatiohln order to analyze the problem for present a more detailed analysis of the tracer limit in the
more realistic intermolecular potentials, one needs to resortontext of the GK model in order to support the above ex-
to a kinetic model. In the model considered here all the depectations.
tails of the interaction potential are introduced through effec-  The analysis carried out refers to a binary mixture in the
tive collision frequencies,s, which depend on the tempera- low-density regime. The extrapolation of the conclusions
tures of each species. Furthermore, and due to the simplicitgrawn out here to dense fluids must be taken with caution
of the model, explicit expressions for the velocity distribu- since the dominant mechanism of collisional transfer is ab-
tion functions can be derived. sent in the dilute gas regime. Nevertheless, qualitative fea-

All the velocity moments are obtained as nonlinear func-tures in appropriate scaled variables may still be useful for
tions of the shear rate, the ratios of mass, concentration, aridterpretation of simulation results in fluidsn the particular
force constants and a parameter characterizing the interactimase of the uniform shear flow, one could obtain a qualitative
potential. The expressions of such moments are given iagreement with the shear thinning observed in simulations at
terms of the thermostat parameterand the temperature liquid densities whether one scales the shear viscosity to a
ratios ys, which are in general coupled. The rheological convenient dimensionless form.
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