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The homogeneous colour conductivity problem for a binary mixture in the
low-density regime is studied by means of the direct Monte Carlo simulation
method. This method is used to solve the Boltzmann equation for three different
repulsive r* potentials: Maxwell molecules (¢ = 4), ‘soft’ spheres (u = 12), and
hard spheres (#— o). The main transport properties and the velocity
distribution functions are computed as functions of the field strength and the
parameters characterizing the mixture. In the case of Maxwell molecules, the
results are compared with those derived from an exact solution of the Boltzmann
equation, showing fairly good agreement over a wide range of field strengths.
Beyond the Maxwell interaction, the effect of the interaction potential on the
properties of the system is analysed.

1. Introduction

Nonlinear transport phenomena generated by the action of an external force in a
homogeneous system is a very interesting problem from theoretical and computer
simulation points of view. One of the best known of such phenomena is the so-called
colour conductivity problem [1], in which the system is a binary mixture where
particles of different species possess different ‘colour charges’. Under the action of a
constant external field, particles of different charges are accelerated along opposite
directions so that mutual diffusion is produced in the absence of concentration
gradients. The ratio between the mass flux and the colour field defines the colour
conductivity coeflicient, which is the most relevant transport coefficient of the
problem. In the zero-field limit, this coefficient reduces to the mutual diffusion
coefficient. This equivalence was the original motivation for introducing the colour
field algorithm in molecular dynamics simulations [1, 2].

Beyond the scope of the linear regime, an interesting problem is to analyse the
norlinear response of the system to arbitrary values of the field strength. Since the
external field (non-equilibrium parameter of the problem) can take large values in this
state, one expects that deviations from linear laws can. be observed. In the context of
the Boltzmann equation, an exact solution for a binary mixture of mechanically
different particles subjected to an external colour field has been found recently [3].
Explicit expressions for the mass and momentum fluxes have been obtained as
functions of the colour field and the parameters of the mixture, namely, the mass ratio,
the concentration ratio, and the interaction constant ratios. Due to the mathematical
difficulties embodied in the Boltzmann collision integral, the results were restricted to
the particular case of Maxwell molecules, i.e., particles interacting through repulsive
forces inversely proportional to the fifth power of the distance. Nevertheless, it is
evident that the above description cannot be regarded as general, since the model of
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Maxwell molecules is not generally a very realistic representation of intermolecular
interactions.

In this paper we extend our previous solution [3] to other repulsive interaction
models. Unfortunately, this objective cannot be overcome analytically using the
Boltzmann equation. One possibility would be to replace the exact Boltzmann
collision kernel by approximate kinetic models that retain its essential features. Here,
however, we want to consider the details of the Boltzmann collision term and, for this
reason, we numerically solve the Boltzmann equation by means of the direct simulation
Monte Carlo (DSMC) method [4]. Although the colour problem has been studied by
molecular dynamics in dense fluids [1, 2], to the best of our knowledge the DSMC
method has not been applied so far to the colour problem. Furthermore, and from a
computational point of view, the DSMC method is more efficient than the molecular
dynamics method for dilute gases. The reliability of the Monte Carlo algorithm for
studying transport phenomena in far from equilibrium situations has been shown
recently in the case of uniform shear flow [5-7].

The goal of this paper is to evaluate the effect of the interaction potential on the
main transport properties of the mixture and on the velocity distribution functions. To
this end, three representative repulsive potentials of the form r* are considered:
Maxwell molecules (1 = 4), “soft’ spheres (u = 12), and hard spheres (u — o). The
r** model can be seen as an intermediate case between the two extreme cases of
Maxwell molecules and hard spheres. In addition, and as a validation test of the
simulation method, a comparison with the exact results obtained for Maxwell
molecules for the mass flux, the partial temperature and the pressure tensor is carried
out.

The plan of the paper is as follows. In section 2 we describe the colour conductivity
problem in a binary mixture and give a brief summary of the results derived from the
Boltzmann equation for Maxwell molecules. Section 3 is concerned with the simulation
results obtained for the interaction models considered. Two different systems are
simulated for each interaction model. The results are illustrated and compared with
those derived for Maxwell molecules {3]. Finally, we close the paper in section 4 with
some concluding remarks.

2. Description of the colour conductivity problem

Let us assume that in a binary mixture of mechanically different particles we assign
‘colour charges’ to particles of different species. Particles of each colour are accelerated
along opposite directions when a constant external force is applied. Consequently,
mass fluxes are generated across the system in a spatially homogeneous state. This is
the main aspect of the colour conductivity problem. The colour force F, (i = 1, 2) is
given by

F,=—ky T, 49

where kj is the Boltzmann constant, 7T is the temperature of the mixture, and ¢, = €%
is a constant vector that mimics the role played by a chemical potential gradient in
a typical diffusion problem. In this problem the field strength is the only non-
equilibrium parameter so that it measures the departure of the system from
equilibrium. Since the colour force does work on the mixture, an additional external
force must be introduced to achieve a steady state. Hamilton’s principle of least action
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provides the simplest choice [8], namely, a drag force of the form —om, v, where m;, is
the mass of a particle of species 7 and « is a thermostat parameter identical for both
species. This type of thermostat force is usually employed in computer simulations [9].
For a low-density binary mixture, all the information on the properties of the
system is contained in the velocity distribution functions f,. They obey the set of two
coupled Boltzmann equations [10]. When a steady homogeneous state has been
reached, the corresponding Boltzmann equations in the colour problem are

ks T 0 :
51 avf 1T () = Julfu Al + Rl Sl @
kT 0 »
m, & avfz P (V) = ol fon ol + Il fn fi)s (3)

where J,[ f;,f]] is the Boltzmann collision term which in standard notation is given by
[10]

Sl fo 1 = ] dvy [ QY —vylo,(v — vy, O (V)LD — L f)), )

o,; being the cross-section of collisions i—j. This quantity contains all the dependence
on the potential model considered.

Conservation of total momentum (taken to be zero) and energy yields, respectively,

n, €+n,e, =0, 5)
and
___# oo P 6
*= 3nm, p, “'h 3nm, ps €Jo> ©
where
- [avs, ™

is the number density of species i, n = n, +n, is the total number density, p = p, +p, =
n, m; +n, m, is the total mass density, and

ji=pu = fdv mvf, ®

is the mass flux of species i. Equation (5) implies that the colour forces acting on the
two species are not independent, while equation (6) couples o with the relevant fluxes
of the problem. The mass flux defines the nonlinear colour conductivity coefficient ¢
through the law

§i= _wani € ©®)

p
which is the main transport coefficient of the problem. According to the original
motivation of the colour field method in molecular dynamics simulations [2], o reduces
to the conventional mutual diffusion coefficient D [10] in the zero-field limit. Beyond
the linear regime ¢ depends on the field strength.
In terms of f; we also define the pressure tensor of species i as

P,— fdv (v —u) =), (10)
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and the heat flux of species i as

= @ —u) -, a

The two quantities measure the contribution of each species to total momentum and
energy fluxes, respectively. Furthermore, it is also interesting to introduce a partial
temperature 7; for species i through

gn,.kBy;=jdv%(v_ui)z ; . (12)

which is related to the mean kinetic energy of each species. The temperature of the
mixture T (which is the relevant one at a hydrodynamic level) is

2
nky T =3, (g T+3p,u5)- (13)

i=1
The hierarchy of moments of equations (2) and (3) can be solved exactly if
one restricts oneself to Maxwell molecules (particles interacting via the potential,
9, = k;~%). In particular, the reduced colour conductivity coefficient 6* = 6/D is [3]

o*(e*) = e* (1 +2¢*H)2—1], (14)

where e* is a reduced field strength. Expression (14) indicates that, in terms of
convenient reduced units, the colour conductivity is a function only of the colour field.
All the dependence on the ratios of mass, concentration, and force constants has been
scaled out. This general character disappears for other quantities, such as the partial
temperature or the pressure tensor. Their explicit expressions can be found in [3].
As stated in the introduction, no analytical solution of the Boltzmann equation is
available in the colour problem when the particles interact via a potential other than
the Maxwell interaction. Even in the case of Maxwell molecules, the distribution
functions f; are not known. In order to tackle the problem we use a numerical
approach based on a Monte Carlo method. This will be the goal of the next section.

3. Simulation results

From a numerical point of view, the DSMC method [4] is the most convenient
algorithm to study non-equilibrium phenomena in rarefied gases. It was devised to
mimic the dynamics involved in the Boltzmann collision term. In the simulation, one
has to deal with N particles in each one of A" realizations of the stochastic process
associated to the Boltzmann equation. As a consequence, the results are averaged over
an ensemble of N x 4" members. In the method, the free motion and the collisions are
uncoupled over a time step At which is small compared with the mean free time. In the
free motion stage, all the molecules are displaced according to their velocity
components. In the collision stage, a number of collisional pairs are chosen at random.
Each pair is accepted or rejected according to a probability that depends on the
relative velocity and the potential model considered. If the collision is accepted, the
post-collision relative velocity is chosen at random, taking into account the scattering
law. This process is repeated until an adequate set of collisions, according to the time
step At, is considered. Further details of the method can be found in Bird’s monograph

[4]-
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We have used Bird’s scheme to simulate the colour conductivity problem in a
binary mixture. As the problem is homogeneous, it is necessary neither to store the
coordinates of the particles nor to split the system into cells. In order to evaluate the
transport properties, specific interaction models must be considered. We are interested
in the case of repulsive potentials of the form ¢, = ;™. Specifically, we consider
three representative cases of this kind of potential: Maxwell molecules (1 = 4), soft
spheres (1 = 12), and hard spheres (1 — o0). The cases # = 4 and y — oo are limit cases
in the above family of potentials, while the r~*2 potential is an illustrative example of
an intermediate case. The combination of the three cases may allow us to predict the
general influence of repulsive potentials on the properties of the system. In addition,
the Maxwell interaction will be used to check the degree of reliability of the simulation
results.

In the following we will focus on the transport properties of species 1. The
properties of species 2 can be obtained by changing adequately the roles of both
species. In this case, we taken an effective mean free path and an effective mean
collision time for collisions 1-1 as units of length and time, respectively. In addition,
to compare the results obtained from the three interaction models, the force constant
ratios (for Maxwell molecules and soft spheres) and the diameter ratios (for hard
spheres) are chosen to give the same equilibrium collision frequencies. This implies

that -
Ky _ (@)ﬂ (15)
Ky )’

where d,; = (d;+d,)/2, and d| is the diameter of sphere i.

We are interested in computing the man transport properties as well as the velocity
distribution function in a steady state. For this reason a thermostat force is introduced.
Here, the thermostat parameter a(f) is chosen as the one that keeps the temperature T’
constant at any time. When the steady state has been achieved (long time limit), o will
be given exactly by equation (6). On the other hand, and to carry out a detailed
comparison with the exact solution obtained in [3], a convenient reduced field strength
€* must be introduced. To parallel the results derived in the Maxwell case, we take

1/2
SER
where the effective collision frequency ¢ is defined by
T= k;DT, an

D being the mutual diffusion coefficient of a binary mixture with general repulsive
intermolecular forces [10]. This choice guarantees that the reduced colour conductivity
coefficient ¢* = /D tends to the universal value v/2|e*|™* in the limit of large field
strengths. The fact that o* reaches the same saturation value for all the interaction
models is not surprising, since the system behaves as a collisionless gas when ¢* — oo
{31

In our simulations we have typically taken a total number of particles N = N, +N, =
5000, a number of replicas 4" = 100, and a time step Az = 3 x 1073, Furthermore,
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Table 2. Simulation values of some quantities for n,/n, = 4 and m,/m, =3 in the cases
of Maxwell molecules (i = 4), soft spheres (¢ = 12) and hard spheres (1 = ). We also
include the exact solution values for Maxwell molecules. The statistical error is indicated
in parentheses, in units of the last digit.

Y7 e* = 0125 0-25 0-5 075 1 1-25 1-5
Exact results
4 o* 099230 097056  0-89897 081375  0-73205 065984 059787
T 097445 090707 072571  0-56625  0-45058 036896  0-31020

pPF, 097168  0-89746 070108 053298 041431 033263  0-27510
Simulation results

4 o* 0:993(5)  0:975(2) 0-904(8) 0-8163(0) 0-7351(6) 0:6631(0) 0-6009(4)
T* 0:9750(1) 0-9072(4) 07243(0) 05650(4) 0-4485(5) 0-3661(8) 0-3072(3)
P}, 09721(8) 0897(2) 07009(8) 0-5335(2) 0:4124(6) 0:3308(7) 0-2731(6)
@ 0:0078(8) 0-0562(3) 0-1922(3) 02629(1) 02752(4) 02617(4) 02426(3)

12 o* 0982(1)  0911(2) 0794(0) 0-6993(7) 0-6280(1) 0-5697(5) 0-5205(6)
T* 0974(2)  0:9160(6) 07768(3) 0-6541(3) 0-5526(6) 0-4722(5) 0-4098(9)
P}, 09688(d) 0:9002(0) 07353(6) 0:5929(8) 0:4807(4) 0-3976(7) 0-3342(0)
7 00122(2) 0:0642(4) 02747(0) 0-324@8) 0371(2) 0:3786(8) 0-3706(7)

w o* 0:995(0)  0-898(3) 0754(8) 0-659(2) 0-5879(4) 0-5330(9) 0-4881(1)
T* 0:9734(6) 0-9183(0) 07953(3) 0-6852(7) 0-5935(3) 0-517(7) 0-4556(8)
P¥, 09674(1) 0894(2) 0733209) 0-5963(1) 0-4891(0) 0408(0) 0-345(4)
* 0:0145(1) 0-0775(8) 0:2543(6) 0-3732(9) 0-4343(0) 0-4545(2) 0-4513(5)

an angular cut-off y = 0-8° has been introduced for Maxwell molecules and y = 0-6°
for soft spheres. All these technical values have been seen to reproduce well the exact
results of Maxwell molecules. It is expected that the reliability of the method increases
as the number N of particles increases. The study of the influence of the simulation
parameters on the convergence rate is an interesting subject in itself, although such an
analysis lies beyond the scope of the present paper. This question has been recently
studied in [6] in the case of uniform shear flow for a single gas of Maxwell molecules.

With respect to the choice of the force constants «,;, and for illustrative purposes,
we take d, = 2d,, so that according to equation (15) x,,/k;; = (3/2)%, and x,,/x,, =
2% for Maxwell molecules while x,/xc,, = (3/2)** and k,,/x,, = 2** in the case of soft
spheres. We have considered the field strengths * = 0-125, 0-25, 0-5, 0-75, 1, 1-25, and
1-5. We have simulated mixtures with a concentration ratio n,/n, = 4 and two values
of the mass ratio: m,;/m, = 1/3 and m,/m, = 3. The properties of the system with
n,/n, = 1/4 can be inferred by changing 1 to 2.

In tables 1 (for m,/m, = 1/3) and 2 (for m,/m, = 3) we display the values of the
reduced colour conductivity coefficient ¢* (which is the main transport coefficient of
the problem), the partial temperature ratio Ty = T;/7, the reduced normal element
of the pressure tensor Pf, =P /¢ kT, and the reduced heat flux vector gf =
2/p,)(m,/2k, T)*2 q,. At a given value of the field strength, we include the values
corresponding to the three interaction models studied and also the analytical solution
in the Maxwell case.

Figure 1 shows o* as a function of ¢*. In the case of Maxwell molecules, we see that
the simulation data reproduce fairly well the exact solution. For this interaction
model, and according to the results presented in tables 1 and 2, o* is.a function of ¢*
that is independent of the parameters of the mixture. Beyond the Maxwell model, this
independence disappears. As seen in figure 1, the influence of the interaction potential
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Figure 1. Plot of the reduced colour conductivity coefficient o*(¢*) for the concentration ratio
n,/n, = 4and for two values of the mass ratio: m, /m, = 1/3 (filled symbols) and m, /m, =
3 (open symbols). The simulation data are represented by circles (Maxwell molecules),
triangles (soft spheres), and squares (hard spheres) while the solid curve corresponds to
the exact result obtained for Maxwell molecules.

becomes more noticeable as the field strength increases, very specially when the
particles of the defect species are lighter than the particles of the excess species. We
also observe that, for a given value of ¢*, o* monotonically increases as the
intermolecular repulsion becomes softer, whatever the mass ratio. All the curves
collapse into the universal value +/2}¢*|™* in the limit of large field strengths.

In figure 2 we plot the partial temperature 7. In contrast to o*, Ty depends on
the parameters of the mixture, even in the case of Maxwell molecules. According to the
results derived in [3], T is not in general a monotonic function of e¢* although for the
simulations performed here it always decreases as the field strength increases. With
respect to the influence of the inverse power law, we seen again that it is more sensitive
when the excess particles are heavier than the defect particles. In contrast to what
happens for o*, T7 increases with increasing interaction parameter u for a given e*.
The reduced normal element P, of the pressure tensor measures the transport of
momentum across the system along a direction orthogonal to the external field. Its
dependence on the field strength is shown in figure 3. We observe that, at a given value
of ¢*, P}, monotonically decreases as the interaction parameter y increases when
m, /m, = 1/3, and the opposite occurs for m,/m, = 3.

A knowledge of the velocity of all the particles allows one to construct the velocity
distribution function £,(v). This quantity contains all the information for the colour
problem. In addition, no explicit expression for the distribution function is known in
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Figure 2. Plot of the reduced partial temperature TF = T,/T as a function of ¢* for the same
cases as in figure 1. Symbols as for figure 1.
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Figure 3. As for figure 1 but for the reduced normal element of the pressure tensor P¥ .
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Figure 4. Reduced distribution function @(£,) obtained from simulation results for n,/n, =
4, my/m,=1/3 and ¢* =1, in the cases of Maxwell molecules (——), soft spheres

{(~--), and hard spheres (---).

the context of the Boltzmann equation, even in the particular case of Maxwell
molecules. Since f,(v) depends on the three velocity components, for the sake of
illustration, we consider the reduced distribution

BE,) = med J e, J e w o), (18)

where & = (m, /2ky T)?v, and ¥,(&) = (1/n,) kg T/m,)"**f,(v). This distribution
measures the distortion from equilibrium (&(£,) = 1) resulting from the fact that the
system is far from equilibrium. The behaviour of @(&,) is shown in figures 4 and 5 for
¢* = 1 and the mixtures previously considered. In both systems we observe in general
a distortion from equilibrium. A comparison of the three interaction models
indicates that the velocity distribution function is rather sensitive to the repulsive
intermolecular law in a far from equilibrium state. Although the qualitative behaviour
of all the potentials is similar, important differences appear, especially in the high-
velocity region. This is not surprising as one expects that influence of the potential law
to become significant as one goes up in the degree of the moments, which are the
relevant ones in the region of high velocities. With respect to the dependence on the
mass ratio, it is evident that the effect of the power law is much more noticeable when
the defect particles are lighter than the excess particles. In this situation there exist
important discrepancies not only in the region of high velocities but also in the
location and the value of the maximum. Anyway, in general, the predictions of the soft
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éx

Figure 5. As for figure 4, but for m,/m, = 3.

sphere model are between the two extreme cases of Maxwell molecules and hard
spheres. This monotonic behaviour is in agreement with the results derived for the first
moments.

4. Conclusion

In this paper, we have analysed the colour conductivity problem for a binary
mixture in the low density regime. The system is subjected to an external force that
produces mutual diffusion in the absence of concentration gradients. As a conse-
quence, the physical situation corresponds to a non-equilibrium homogeneous steady
state. The only non-equilibrium parameter is the field strength, which can take values
arbitrarily large. The main transport coefficient is the colour conductivity coeflicient.
It is defined as the ratio of the mass flux to the colour field strength. Recently, an exact
solution of the colour conductivity problem has been derived in the case of Maxwell
molecules [3]. In this paper we extend our previous analysis to stronger interaction
models. For this purpose we use a Monte Carlo simulation method due to Bird [4],
which has been devised to capture the dynamics involved in the Boltzmann collision
term. We have computed the main transport properties and the velocity distribution
functions for three different »™ potentials: Maxwell molecules (u = 4), ‘soft’ spheres
(u = 12), and hard spheres (uz — o0).

Concerning the influence of the potential model, discussed at length in section 3,
the following conclusions may be drawn. Beyond the Maxwell interaction, the reduced
colour conductivity coefficient ¢* happens to be a function of the parameters of the
mixture as well as of the reduced field strength ¢*. This conclusion contrasts with the
results obtained for Maxwell molecules, where ¢* is a function only of ¢*. The colour
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conductivity coefficient decreases as the field strength increases, so that the mass
transport is inhibited by the colour field whatever the interaction model. Further, the
influence of the potential model becomes more significant as the mass of the defect
particles is smaller than that of the excess species. With respect to the temperature ratio
T, and in contrast to what happens for g*, at a given value of the field strength it
decreases as the intermolecular repulsion becomes softer. The influence of the
interaction parameter x on the normal element of the pressure tensor is not
monotonic, and depends on the mass ratio considered. Even though all the fluxes are
defined with respect to a frame moving with species velocity, we have verified that
other choices for the reference frame of the fluxes (for instance, laboratory frame) do
not alter the general dependence of the transport properties on the parameters of the
problem. Finally, the simulation data show that the velocity distribution function is
strongly distorted from equilibrium as well as being affected appreciably by the inverse
power law.

Although the results obtained in this work have been restricted to three different
interaction potentials, we believe that our predictions can be extrapolated to other
repulsive interaction potentials. This expectation is based on the general monotonic
dependence with the interaction parameter observed in the simulation. On the other
hand, note that the choice of the reduced field strength ¢* may affect the conclusions
about the influence of the interaction model. It is clear that in a mixture there are
several possibilities for ¢*. Since the mixture behaves as a collisionless gas in the limit
of large field strengths, we take ¢* under the condition that the reduced conductivity
coeflicient o*(¢*) tends to a ‘universal’ value (independent of the potential law) when
¢* — 0. In this sense, our choice seems to be the most natural. In terms of this reduced
field strength, and in contrast to what happens for a single gas in other non-
equilibrium situations [5, 11], we observe that the transport properties are sensitive to
the interaction potential so that the quantitative predictions previously made from the
exact description for Maxwell molecules cannot be extended to other interaction
potentials.

As a final comment, we should like to point out that the comparison between exact
and simulation results for the colour conductivity coeflicient, the temperature ratio,
and the normal element of the pressure tensor show good agreement when the
simulation parameters are chosen properly. This comparison may be considered as a
stringent test of the DSMC method for binary mixtures in far from equilibrium
situations.
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