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Abstract 

Tracer diffusion in a steady state with both velocity and temperature gradients is analyzed. 
The results are obtained from a kinetic model that incorporates a temperature dependence in the 
collision frequencies. This allows for the consideration of general r-t-repulsive interactions. An 
explicit expression of the tracer diffusion tensor is obtained in terms of the shear rate, the mass 
ratio, the force constant ratio and a parameter characterizing the interaction model considered. 
This expression extends previous results derived in the case of Maxwell molecules (I=5). 
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I. Introduction 

An interesting problem in nonequilibrium statistical mechanics is the description of 

transport phenomena taking place in fluid mixtures. Nevertheless, the general study of 

these systems is certainly very complicated since the transport coefficients are not only 
functions of  the nonequilibrium parameters (hydrodynamic gradients, external fields, 
.. .), but also of  parameters characterizing the mixture such as the mass ratios, the molar 
fractions and/or the size ratios. This complexity leads to consider tractable specific 
situations where a thorough description may be offered. Perhaps, one of  the simplest 
cases is the so-called tracer limit, namely, a binary mixture with a solute molar fraction 
negligibly small. This limit shares the simplicity of  the tagged particle problem but 
introduces the mass ratio as a new ingredient into the dynamics. In this situation, it 
is reasonable to assume that the state of  the solvent component is not appreciably 
disturbed by the presence of the tracer particles, while collisions among tracer particles 
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can be neglected. Very recently, we have analyzed a diffusion problem in a gaseous 

dilute solution under heat and momentum transport (steady Couette flow) in the low- 
density regime [1]. The results were derived from the Gross-Krook (GK) kinetic model 
[2] for binary mixtures, since no explicit solution of the Boltzmann equation for the 
steady Couette flow is known even for a single gas. The GK model is constructed in 
the same spirit as the Bhatnagar-Gross-Krook (BGK) model [3] of a single gas, for 
which an exact  description of the planar Couette flow state has been given [4, 5]. 

In the GK kinetic model all the details of the interaction potential are taken into 

account through effective collision frequencies vii. For low-density mixtures, vii is al- 
ways proportional to the density nj of species j .  The dependence of vij on the tem- 
perature comes from the specific scattering laws that one has in mind. The simplest 
interaction model corresponds to Maxwell molecules (particles interacting through re- 
pulsive forces inversely proportional to the fifth power of the distance), in which 
case vii is independent of the temperature. For the sake of simplicity, our previous 
solution [1] was restricted to Maxwell molecules. Obviously, the model of Maxwell 
molecules cannot be considered as a very realistic example of intermolecular interac- 
tions except in some particular conditions. For this reason, in this paper we extend our 
previous efforts by addressing the same problem for general repulsive intermolecular 
forces. 

The starting point is a kinetic model that generalizes the familiar Gross-Krook equa- 
tion (originally proposed for Maxwell molecules) to inverse power laws. In the case 

of disparate-mass binary mixtures, it is well known [6] that even in the linear regime 
one needs a description which includes the possibility that the different components of 

the mixture have different temperatures. Since we are interested in describing tracer 
diffusion for arbitrary mass ratio, the effective collision frequencies v 0 of the model 
must depend on the temperatures of each species Ti and Tj instead of the temperature 
of the mixture T. In this sense, one expects the model to be more suitable for sys- 
tems of distinguishable particles. The reliability of this kinetic model has been recently 
assessed in the color conductivity problem [7]. 

As the state of the solvent component is well characterized (planar Couette flow) 
[4], our goal is to solve the corresponding kinetic equation for the solute component. 
This solution is constructed by means of a perturbation expansion in powers of the 
gradient of the molar fraction. The main difference of this perturbation method from 
the conventional Chapman-Enskog expansion [9] (valid for situations close to equi- 
librium) is that the zeroth-order approximation is not that of local equilibrium, but a 
nonequilibrium state with arbitrary values of the shear rate and the thermal gradient. In 
the first order of the expansion, one gets an explicit expression for the tracer diffusion 
tensor. This tensor turns out to be a nonlinear function of the shear rate, the mass ratio, 
the force constant ratio and also of a parameter characterizing the potential considered. 
This expression extends the one previously derived for Maxwell molecules [ 1]. It must 
be emphasized that, although the influence of the interaction potential is partially ac- 
counted for by a proper choice of scaled quantities, the extension to non-Maxwell 
molecules is not trivial at all since now the collision frequencies are also functions of 
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the nonequilibrium parameters of  the problem. This implies that n e w  terms appear e x -  

p l i c i t l y  in the expressions of the elements of the tracer diffusion tensor. The calculation 
of these terms is the main motivation of  this work. 

The plan of the paper is as follows. In Section 2 we introduce the model and describe 
the problem. Section 3 concerns with the two first approximations of the perturbation 
method. We obtain the main transport properties of the problem as well as the velocity 
distribution function of the tracer species. We complete the paper in Section 4 with 
some concluding remarks. 

2. Kinetic model for tracer diffusion in steady Couette flow 

Let us consider a binary mixture in the low-density regime, with f i ( r ,v;  t) being 
the one-particle distribution function of  species i (i = 1,2). From this distribution, one 
defines the number density and mean velocity of species i, respectively, as 

n, = f dvfi,  (1) 

1/ 
ui = - -  d v  v f i  • (2) 

ni 

It is also convenient to define a temperature T,. for each species, which is a measure 
of  its mean kinetic energy per particle. It is given by 

nikBT i mi / = u i )  f i ,  5 -  dv  (v - 2 (3) 

where kB is the Boltzmann constant and mi is the mass of a particle of species i. 
We are interested in analyzing a tracer diffusion problem in a far from equilibrium 

situation. In that case, it is a very hard task to solve the Boltzrnann equation [9] even 
for simple interaction potentials. This prompts the use of a simple kinetic model. Here, 

we will start from a generalization of the familiar Gross-Krook (GK) model [2] (pro- 
posed for Maxwell molecules) to general repulsive intermolecular forces. Specifically, 
for particles interacting via a repulsive force law ~ i j  = ~cijr - I f  (I = 5 . . . . .  c~), the 
Boltzmann collision integrals J i j [ f i ,  f j ]  are replaced by simple relaxation terms of the 
form 

GK ~ [ f i ,  f j ]  = - v u ( f i  - f i j ) ,  (4) 

where the expressions of the reference distribution functions f i j  a r e  the same as those 
given in the conventional GK model for Maxwell molecules (l = 5) [2], i.e. 

f i j  = ni exp mi (v - uij)z  
- 2kBTij  ' (5) 
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with 

miui + mjuj 
u/j - , (6) 

mi + mj 

Z (m -mi---mj+ m j) 2 [(TJ - Ti)'-b mj ] vii = ri + g-~B(u~ - u j )  2 . ~7) 

The influence of the interaction enters through the collision frequencies v~j, which can 
be identified as [8] 

)~,-a)/2 ( 2ksTj~a/2 Yij = Af(~)lrlj (K "'mi~Lm-j - 2kBvi -~- . ( 8 )  
\ ': mimj \ m i mj ] 

Here, 6 = (l-5)/(l- 1) and A(6) is a constant for a given interparticle potential that is 
tabulated in Ref. [9]. The above expressions are obtained by requiring that the first five 
collisional moments as computed with Eq. (4) be the same as those computed with the 
Boltzmann operator Jij[fi, fj] for Maxwell molecules [10]. The kinetic model defined 
by Eqs. (4 ) - (8 )  can be considered as an extension of the GK model for Maxwell 
molecules since it generalizes the latter to harder repulsive intermolecular forces. One 
expects that the temperature dependence of vii proposed in the model is sufficient (at 
least qualitatively) to explore the influence of the interaction potential on the transport 
properties. Recent results derived from it in the case of tracer diffusion under uniform 
shear flow [8] as well as in the color conductivity problem [7] confirm the above 
expectations. 

We describe now the problem we are interested in. We consider a binary mixture in 
which one of the components, say 1, is present in tracer concentration, i.e., nl/n2 ~ 1. In 
the tracer limit, one expects that the state of the solvent component 2 is not significantly 
disturbed by collisions with tracer particles 1, so that the velocity distribution function 
f2 satisfies a closed equation. This equation turns out to be the well-known Bhatnagar- 
Gross-Krook (BGK) kinetic model [3] for a single gas, i.e. 

t f 2  + V • xTf2 = - v 2 2 ( f 2  - f 2 2 ) .  ( 9 )  

Furthermore, the molar fraction xl = nl/n2 of the tracer species is so small that one 
can neglect their self-collisions. Consequently, f l  verifies the equation 

~-~fl  + ¥ " V f l  ---- - - V l Z ( f l  --  f 1 2 ) .  ( 1 0 )  

On the other hand, the masses and sizes of both species are arbitrary. We assume that 
the solvent component is in steady planar Couette flow, namely, it is enclosed between 
two parallel plates (normal to the y axis) in relative motion (along the x axis) and kept 
at different temperatures. Consequently, profiles of density, velocity, and temperature 
exist across the system. In this state, no explicit solution of the Boltzmann equation 
valid for arbitrary values of the velocity and temperature gradients is known, although 
a perturbation solution through super-Burnett order has been recently obtained [11]. 
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Nevertheless, an exact description can be given if one uses the BGK approximation. 
In this case, Eq. (9) becomes 

Vyo~Tyf2 = - -V22( f2  - -  f 2 2 ) .  (1 1 ) 

The solution is characterized by a uniform pressure and linear velocity and parabolic 
temperature profiles with respect to a scaled space variable, i.e. 

p2 - n2kBT2 = const., (12) 

1 O 
v22(y) ay U2,x = a = const. , (13) 

[ 1 ~y] 2 v 2 2 - ( y )  T2 = - 2 ~ 2 ~ ( a ) = c o n s t .  (14) 

Here, a is the constant shear rate and 7(a) verifies the implicit equation [4] 

2F2(y) + 3FI(y) 
a2 = 7 , (15) 

F1(7) 

where Fr(x) =- [(d/dx)x]rFo(x) and 

= 2 f dt t exp (-t2/2)K0(2x- ' /4t ' /2),  (1 Fo(x) 6) 

Ko being the zeroth-order modified Bessel function. The asymptotic series expansion 
of  Fr is [4] 

OO 

Fr(x) = E ( k  + 1)r(2k + 1)!(2k + 1)!!(-x) k . (17) 
k=0 

From the profiles (12)-(14),  the local conservation equations provide the main trans- 
port properties. In particular, when conveniently scaled, the reduced shear viscosity and 
the reduced thermal conductivity happen to be universal functions of the shear rate, 
independently of the potential model. Furthermore, an explicit expression for the ve- 
locity distribution function f2 has been also derived [5]. Now, our objective is to solve 
the kinetic equation for f l  when tracer diffusion appears in the system. 

3. Transport properties of the solute component 

Let us assume that a weak molar fraction gradient Xgxl is introduced in the system. 
We are interested in deriving an explicit expression for the mutual diffusion tensor 
when only terms through first order in VXl are considered. In this approximation, and 
taking into account the mass balance equation of the solute component, one needs 
to take the concentration gradient parallel to both velocity and temperature gradients 
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to preserve the stationarity of the state, i.e., VXl - (Sxl/Oy)~. Therefore, under this 

geometry Eq. (10) becomes the steady equation 

8 
Vy~yf l  = --Vl2(fl -- f l2 ) .  (18) 

In the same way as in Ref. [1], we shall solve Eq. (18) by expanding f l  around 

a nonequilibrium state with arbitrarily large velocity and temperature gradients. The 

gradient of  the molar fraction Xl = nl/n2 will be taken as the perturbation parameter. 
Thus, 

f l  = f l  k) + (--~(~7k+lxl) ,  (19) 

where the approximation f l  k) contains all the contributions up to order k in Vxl, al- 

though it is a highly nonlinear function of the shear rate and the thermal gradient. As 

a consequence, the transport coefficients obtained from this method will be nonlinear 

functions of  both nonequilibrium parameters. The corresponding hydrodynamic fields 

u12 and TI2, as well as the collision frequency v12 must also be expanded in a similar 
way. By substituting these expansions into Eq. (18), one gets a hierarchy of equa- 

tions for the different distributions f]k). In this paper, we only consider the two first 
approximations. 

3.1. Zeroth-order approximation 

On physical grounds, one expects that this approximation is characterized by a con- 
(0) , (0) stant molar fraction, the absence of diffusion, i.e. u I = ul 2 = u2, and a constant 

temperature ratio Z = T~°)/T2. This parameter, which is the crucial quantity at this 

level of  description, must be a function of the shear rate a, the mass ratio p = rn2/rnl, 
the force ratio co ~ K12/K22 , and the interaction parameter 6. The parameter co can 

be interpreted as a measure of the size ratio alZ/~r22 when one assigns an effective 
diameter aij to the interaction between particles i and j .  

In order to scale the influence of the interaction potential on the collision frequency 

v(i °), it is convenient to introduce a space variable s through the relation ds = v(l°)(y)dy, 
where 

12 tY = ~o(I-~)/2 \ 1~--~-~ J v22(Y)' (20) 

In terms of s, we propose the same hydrodynamic profiles as the ones assumed in the 
case of  Maxwell molecules [12], namely 

p(0) -(0) 
12 ~ n z k B l l 2  = const., (21) 

8 .  (o) 
ysU12,x = a = const., (22) 

0 2 T(0) 2ml 
, 2  = - = c o n s t .  (23) 
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Fig. 1. Plot of  the temperature ratio g - T~°)/T2 versus the reduced shear rate for ~o = 1 and two values of  
the mass ratio # - m2/ml: (a) /~ = 0.5, and (b) /t = 2. The solid lines refer to Maxwell molecules (6 = 0) 
and the dashed lines refer to hard spheres (6 = 1). 

These conditions imply that 

a ( l + f  ~ 6/2 
t~ = O)(1_6)/2[(1 + f)/2]1/2 k , ~ J  ' (24) 

2# 1 ( 1 + # ' ~  6 
~7 -- 1 + f ~ T  SE-6)[g + 2M(1 - Z)] \ 1 - - ~ Z j  Y, (25) 

where M = (#/(1 +f)2) .  The formal analogy between the equations for f~0) and for f2 
allows one to get the fluxes of d ° )  [12]. In particular, the consistency of the solution J l  

gives ~ through the following implicit equation: 

where 

M ( 1  - Z) 
f l =  z + 2 M ( 1 - Z ) '  (27) 

and Fr  = Fr(~). Notice that in order to close Eq. (26) one must use the relations (24) 
and (25). The solution of the implicit equation (26) gives the temperature ratio Z as 
a function of a, f ,  co, and the interaction parameter 6. Even in the case of Maxwell 
molecules (6 = 0), this solution must be obtained numerically except in some limiting 
cases. Thus, for small shear rates Z ~ 1 + 32- [(1 - f 2 ) / ( o ( l - a ) f ] a 2 ,  while for large shear 
rates Z ~ 1/ft. These behaviors suggest that Z is hardly sensitive to the interaction 
potential. The temperature ratio Z is plotted in Fig. 1 as a function of the shear rate 
for the two extreme cases of Maxwell molecules (6 ---- 0) and hard spheres (6 = 1 ). We 
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have included two values of the mass ratio # and for simplicity we have set o9 = 1. 

We observe that X monotonically varies from 1 to ml/m2 as the shear rate increases 
whatever the interaction model considered is. Therefore, the mean-square velocities of 
each species tend to be equal (although the mean kinetic energies are different) as 
the mixture goes away from equilibrium. With respect to the influence of the repulsive 
force, Fig. 1 indicates that the general shear rate dependence of X is not greatly affected 
by the power of the repulsive law, especially if o) ~ 1. Beyond the linear regime and 
at a given value of a, we observe that the temperature ratio increases as the potential 
becomes softer. 

Once )~ is known, the velocity distribution function f(l °) can be obtained. By ex- 
ploiting again the formal analogy between Eqs. (18) (in the lowest order) and ( l l ) ,  
it is easy to derive an explicit expression for f]0) from that of f2 [5] by making the 

changes: n2 ---+ nl, m2 --+ ml, T2 ~ T~2 °}, and Y22 ----+ V(10). This distribution can be 
written as f l ° ) =  nl(ml/2nkBT2)3/2~(~), where 

(14-, /-1"~1/2 (1 q '- ~lZ'~ 6/2 2ex(1-I-~) 3/2 
4}(¢) = co {1-6)/2 i T )  t 1 - - ~ f J  [Z + 2M(1 - X)] -3/2 ~l~yl 

X 

tl 

/ 
to 

dt [2t - (1 - cQt2] -5/2 

( l + l.t "}l/2 ( l + ~z"~ 6/2 2~ 1-- t 
x exp t-co(i-6)/2 \ T , ]  t,, li--+-~ ] 1 + ~ ~¢;, 

- [ g  + 2 M ( 1 -  g)]-I  2 t _  (1 ~x+ + ~ y +  • 

(28) 

Here, (to, h) = (0,1) if ~y > 0 and (to, tl) = [1,2/(1 - ~)] if ~y < 0. Furthermore, 
= (ml/2kBT2)l/z(v -- U2), 

1 (2kBT2~l/2 0 
v22 \ m2 / ~ lnT2 (29) 

is the reduced temperature gradient and 

g 

= (132 _~_ 8~)1 /2  - ( 3 0 )  

Since this distribution depends on the three components of the velocity, for illustrative 
purposes it is convenient to define the (reduced) marginal distribution 

q~(G) =- f_~ aG f 2 ~  a~ze -~  " (31) 
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Fig. 2. Plot of the reduced distribution function (#(~y) for a = 1, e : 1, co : 1, and # = 2. The solid line 
corresponds to Maxwell molecules (5 = 0) and the dashed line corresponds to hard spheres (6 = 1 ). 
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Fig. 3. The same as in Fig. 2 but for # = 0.1. 

In Fig. 2 we plot (~(~y) for o~ = 1, a = 1, e = 1, and # = 2, in the cases o f  Maxwel l  

molecules  and hard spheres. The distort ion from local equi l ibr ium [q~(¢y) = 1] is 

significant. Nevertheless,  no important  influence o f  the interact ion potential  on this 

dis t r ibut ion is observed. It might  be due to the fact that the values  considered for the 

nonequ i l ib r ium parameters  are not  sufficiently large and/or  the mass ratio chosen is 

not  very  disparate. For  this reason, in Fig. 3 we consider  the case # = 0.1 for the 

same values  as those in Fig. 2. For  this case, Z -~ 6.338 for Maxwel l  molecules  while  

g ~ 5.611 for hard spheres. For  a g iven interact ion potential ,  we observe that the shape 

o f  this dis t r ibut ion is inf luenced by  the value o f  the mass ratio. Further,  it is evident  that 

q~(~y) is more  affected by  the interact ion considered. The discrepancies be tween both 
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distributions become more important in the region of high velocities. This concludes 
our discussion on this stage of approximation where no mutual diffusion is present in 
the mixture. 

3.2. First-order approximation 

The first-order approximation corresponds to a situation in which a weak molar 
fraction gradient coexists with arbitrarily large velocity and temperature gradients. The 
kinetic equation for f l  I) can be written as 

where 

/ (1) ) 
. 6~ ,c(l) _f(1))_ [vi2" 1 (f(l 0) t"(0) 

= -- J12 ' - ( s l ' )  t, v7 ) - ) 

•(1) ~ ~ (T~I) ) 
i2 1 -  \--~'-2 - Z , 

Y<I~) 2 1 -t- ]2~ 
i 

_ _  
f( l )  1 + ml 1 V • j~l) + 

12 = nikBr~ °) 1 +/~ k 2kBT~ °) 

( ml ml f(o) 
12 = n, .it 2.grfo, ) exp 2k/lxl2-(°) ' 

Here, V = v - u 2 ,  

l<,,vi  ') 
is the flux of tracer particles, and 

( T ~ ) )  p~l) _ p~0) P(I O, Xlt, T~O----7-1 = (1 - 2M) , 

where 

p~k)= m-213 i dv vz f~ k) 

is the partial pressure of tracer species. 

( 32 )  

/ T;~' _ 1 f ( 1  ° )  

t, °) 

(33) 

(34 )  

(35) 

(36) 

(37) 

(38) 

The main goal of this paper is to derive the explicit expression of the tracer diffusion 
tensor in terms of the gradients and the parameters characterizing the mixture. This 
tensor is defined through j]l). To evaluate this flux, let us consider the formal solution 
to Eq. (32) given by 

1v12 1 (f~o) _ f (o ) )  (39)  f ~ l )  = 1 + Vy~s f(l12 ) - { . ( o )  - 
\v12  
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As the first term on the right-hand side of Eq. (39) does not explicitly depend on the 
interaction parameter 6, its contribution to the fluxes of f l  1) will be formally the same 
as the one obtained for Maxwell molecules [1]. Consequently, beyond the Maxwell 
interaction, it is only necessary to evaluate the (extra) contributions to j]l) and p~l) 
coming from the second term on the right-hand side of Eq. (39). This calculation is 
quite tedious but involves identical mathematical steps as those made in Ref. [1]. It is 
carried out in Appendix A. The final result is 

j(1) l + #n2kBT2~ , , c~ 
l,i - -  ] A  ~ ~ikta)-~rkXl , (40) 

p],) _ p]O) = 5 (1 + #)2(1 + 2p) n2k2T2 Q(a)O~ Oxl (41) 
6 /A 2 m l  7:122 dy ' 

w h e r e  %'12 ~ O9(1--~)/2((1 -+-~)/2)1/2V22 and we have normalized the mutual diffusion 

tensor D with respect to its Navier-Stokes value. The explicit expressions of the tensor 
D and the function f2 are given in Appendix A. 

Eq. (40) describes the mass transport of the solute (tracer) component when the 
solvent (bath) component is in a far from equilibrium situation. This expression can 
be considered as a generalization of the conventional Fick law (valid in the absence 
of velocity and thermal gradients). According to the symmetry of the problem, the 
relevant elements of the tracer diffusion tensor are Dyy and Dxy. They are given as 
functions of the shear rate, the mass ratio, the force constant ratio, and the interaction 
parameter. In the special case of Maxwell molecules (6 = 0), the results derived in 
Ref. [1] are recovered. The fact that the mass flux does not depend on the thermal 
gradient (loss of thermodiffusion effect) is probably exact for Maxwell molecules (in 
the same way as in the linear regime), although for 6 ¢ 0 one expects that there 
should exist a term proportional to ~ in the expression of j~l). This drawback of the 
model is perhaps related to the fact that the generalized GK model gives what Chap- 
man and Cowling [9] call the first approximation to the determination of the transport 
coefficients. For small shear rates, the elements of the diffusion tensor behave as 

1 ( 2 "~1/21+2. 
Dxy "~ a, (42) 

Dyy ,~  1 - 6(5p2 + 18# + 11) - 5fi(/~ - 7)(1 + #)a2 (43) 
15co0-~)(1 +/z)  

Cross effects induced by the shear flow in the mass transport are measured through 
the off-diagonal element Dxy. In general, this coefficient is always negative and its mag- 
nitude increases as the mass of  the tracer particles increases, irrespective of the model 
interaction considered. The influence of the repulsive power law is more significant as 
the mass of the tracer particles increases, as shown in Fig. 4 where -Dxy is plotted 
versus a z for ~ = 1 and # = 0.1 in the cases of Maxwell molecules and hard spheres. 
As a matter of  fact, -Dxy increases as 6 increases, especially in the region of small 
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Fig. 4. Shear-rate dependence of the reduced element -Dxy for co = 1 and /~  = 0.1 in the cases of Maxwel l  

molecules (solid line) and hard spheres (dashed line). 
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Fig. 5. Shear-rate dependence of the reduced element Dyy for co = 1 and two values of the mass ratio /z: 

(a)  /t = 0.1, and  (b)  /* = 10. The solid lines refer to Maxwell molecules and the dashed lines refer to hard 
spheres. 

shear rates. When /~ > 1 the value of  --Oxy is practically zero, independently of  the 
interaction potential considered. The shear rate dependence of  the diagonal element Dyy 
is plotted in Fig. 5 for the same cases as in previous figures and for two (disparate) 
values o f  the mass ratio. We observe that the mass transport along the y direction is 
inhibited by the presence o f  the shear flow. This inhibition becomes more noticeable 
as the mass of  the solute particles is heavier than that of  the solvent component. With 
respect to the influence of  the interaction potential, we see that it is more important 
when the mass ratio is larger than 1. In this case and at a given value of  the shear rate, 
Dyy decreases as the intermolecular repulsion becomes softer. For/t  < 1, the opposite 
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happens in the region of finite a although the effect of the power law is smaller than 
when # > 1. 

4. Concluding remarks 

In summary, we have analyzed a diffusion problem in a gaseous dilute binary mix- 
ture subjected to both velocity and temperature gradients. The starting point is a gen- 

eralization of the GK model for a binary mixture where the collision frequencies vii 

are in general functions of the temperatures of each species. This dependence allows 
one to consider general r-t-intermolecular forces. The description is not restricted to 

any value of the mass ratio, the force constant ratio and the interaction parameter, 
and progress was possible here due to previous results derived for the simple case of 
Maxwell molecules [1], where vii is independent of the temperature. The main trans- 
port property is the mutual diffusion tensor whose dependence on the nonequilibrium 
parameters and on the parameters of the mixture (mass ratio, force constant ratio, and 
interaction parameter) we aimed at determining. 

Since the state of the solvent component is well characterized, our goal has been 
to solve the kinetic equation for the tracer species by means of a perturbation ex- 
pansion in powers of the gradient of the molar fraction. The reference state of this 
expansion contains all the hydrodynamic orders in both the shear rate a and the ther- 
mal gradient e, so that the corresponding transport coefficients are (in principle) highly 
nonlinear functions of a and e. Our solution describes the two first approximations, 
and we have concentrated mainly in assessing the differences between our present 
results and those previously reported in the case of Maxwell molecules. These differ- 
ences have been illustrated in the two extreme cases of Maxwell molecules and hard 
spheres. 

Concerning the results for such systems, we conclude that the qualitative behavior 
of the shear-rate dependent tracer diffusion tensor is not significantly affected by the 
power of the interaction law considered. This conclusion is similar to the one ob- 
tained in the tracer diffusion problem under uniform shear flow [8]. At a quantitative 
level, it is interesting to remark that the influence of the interaction potential is more 
significant as the mass of the tracer species decreases, especially in the case of the off- 
diagonal element Dxy. This element measures the cross couplings due to the presence 
of the Couette flow. Besides, the inhibition of the mass transport along the y direction 
decreases as the interaction parameter increases. 

Apart from obtaining the diffusion tensor, we have derived an explicit expression 
for the zeroth-approximation distribution function f~0). This function represents the 
reference state around which we perform our expansion. With respect to the dependence 
of f]0) on a and e, we observe that this distribution is strongly distorted from its 
equilibrium value whatever be the interaction considered. Further, the influence of  the 
interaction potential is hardly sensitive for systems of  like particles. This influence 
increases significantly as the mass ratio differs from 1 (for instance # = 0.1). 
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The derivation of explicit expressions for the fluxes and the velocity distribution 
function involved in a certain nonequilibrium problem (such as the one analyzed here) 
may be of relevance in connection with computer simulations. Nevertheless, the scarcity 
of simulation data for mutual diffusion under steady planar Couette flow in the low- 
density regime does not allow a comparison with our predictions. We expect that the 
results presented in this paper can stimulate the performance of simulations of tracer 
diffusion in Couette flow. 
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Appendix A. Extra contributions to the mass flux and partial pressure 

In this appendix we calculate the (extra) contributions to j~l) and p(l l) coming from 
the second term on the right-hand side of Eq. (39). In the same way as the Maxwell 
description [1], we assume (to be verified later) that Us~lt..12~2~ t,p(1)/,r,(O)\/112 ) 7_. O. 

Let us start with the new contribution to the x component of the mass flux vector. 
It is proportional to the integral 

- -  - -  - -  f 1 2  ¢ 
dY Vx(1 + ryes)  -1 ~k-'-~- 2 Z (f(o) (o)~ 

~,"-'~2 -- • (Vx -~- 12'x'' Yt'JI 12 

5 E ( k  + 1)(_~s)k [ T(1) vk+l+r(0) f(0)~ (A.1) 
= k:0 I -~2 -X dv ' '  'J' - J '2 ' "  

The first piece of (A. 1 ) is given by 

T~ 1) _ v l ,~(0) 
--y --),212 dvVk+'Z(-Os)',:o 

:  (kk:0 + 1) av  xl - Z 

- k ~ s  ' / - - ~ - ~  - Z ( - O s )  k - I  Z ( - t ~ s )  VyfD,2 
1=0 
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(T~S) ~ o¢ " " I I "  "~ ",2k+S t t .  , ' r , (0)/_ xk+S = x l \  --~-2-z/Z(k+l)(2k+3)(2k+l)"t-Os)k=o n2~.r,.B q2/, , ,s ) 

5Os 1 \  -~-2 - x Z ( 2 k  + l)(2k2 + 5k + 3)(2k + 

2k (0) k+S ×0 s n2(kBTs2 /ml) , 
(A.2) 

where q'12"C°) = f~°2)/Xs and only terms up to first order in Osxl have been retained. Now, 
taking into account Eq. (23), one gets the result 

yl2 as s \ -~-2 - Z Z ( 2 k 2  + 5k + 3)(2k + 1)!(2k + 1)!!(-~) k 
3 ms k=0 

_ 2 Ps2 (2J~2 +F1)Os s - - : -  - ;( , (1.3) 
3 ms 

where use has been made of the functions Fr(~) defined in Eqs. (16) and (17). Here, 
for the sake of brevity we have called Fr -= Fr(~7). Similarly, the second piece in Eq. 
(A.1) can be computed as 

k=0 " y '~" 12 
Z ( k  ÷ 1)(-as)kx' \ -~-2 z dv v k,~C°) 

S - -  .0  s n21,r~Bls2 / m l )  = -Os /-~-~ )~ Z (2k + 1)(2k + 2)(2k + 1)! l'2k :"  ~(o), -,k+l 
k=0 

=-2PS2 1~T7-2 - Z  Z(k+l)(2k+l)!(2k+l)!!(-7)kk=o 

= --2 ~'12 as s_--~-- -- Z Fs • (1.4) 
m l  

Putting together all the contributions (those coming from the Maxwell case, Ref. [1], 
plus those given from Eqs. (A.3) and (A.4)), the x component of the mass flux can 
be written as 

p(0) t l  E" :(1) 
j ( l ) _ _  -(1 - -  2 ~ P l )  at- 2 *'s2 ~lff'SasX 1 --  ].,l,t'OJl,y 

S,x 1 # ms 1 + 

p(O) (I(11) 

I ) )1 ,A.,, 
/al2 a# a Z +  ( /6 '2 -F l )as  - I  

3 ms 1 +/ . t  Z 1 - - ~ M  l ~,r(O) , 
\ --12 
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where in the last term use has been made of the identity 

/ ) ~-2  - Z  = Z +  1 - 2 - M  tT~2 ° - - -5 -1  " (1.6) 

The new contributions to the y component of the mass flux can be obtained by 
following similar mathematical steps as those made for j(1) Thus, one has 1,x" 

- ~:o f dv vVl(-a,)  ~ t ~ - x (fl ° ' -  s<, °') 

~ as 1 k ~  2 -- )~ Z(kk=0 + 1)(2k ~- 1)(2k-~- 1) . .c  s H2t~,BII2 /m 1) 

Ix (T~I) ) ]  oo 
- a ,  l kT-2  - )~ }--~(2kk=0 + 1)(2k + 1)!ta2,knz(kBr~)/mO k÷! 

= m112 as I k---~'- 2 -- ,~ (FI - Fo ) ,  (1.7) 

r .(1) Consequently, the complete expression OIJl,y is 

j(i)l,y p(0) Jl,y [1 
-- m112 F o a s X l  Jr- . - 2~(FI + 2/~2)] - m112 Plas k ~-2  -- ~( 

/ )] +/-'12 Z +  ---2-M ( P l - / ~ ° ) a s  1 - -  (A.8) 2m,  1 + ~ 1 r~o, - 1 

Since USJl,y ~ 41) = 0, Eqs. (A.5) and (A.8) imply that C s J l , x  ~ .0) = 0 and ,,s.~lt,12~2- r,~(l)/,r(0)~/Xl2 ) = 0, 
as previously assumed. 

Let us consider the new contribution to the partial pressure. It is proportional to the 
integral 

f O - Z (f~0) (1.9) - ~ dvV 2 y(-  s) ~ _~0~,~,. 
k=0 

The first piece of Eq. (A.9) is given by 

dvV2(-a#V~yx' \ --r?- z Z(-a')  

= x , ~ - - < - z  Z ( k + l )  d , _  .y,-~, ,~. ,~ 
k=0 

_ _  - ~ . k  CO) ( A . I O )  

--as i k T2 --Z k=0 2 
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Since V 2 is a quadratic function of the variable s, one has the following 
identity: 

k 2 2 k c~, v . . . .  v 0. 2akO~-I d2k(k 1)0~-2. 

operator 

(A. l l )  

By using this identity and taking into account the symmetry of the integrals over v, 
Eq. (A.10) can be rewritten as 

xl \ -~-2 - Z (k + 1)(-~s) k dv V 2vk .(0) 

+ g t 2 Z ( k + l ) ( k + 2 ) ( k + 3 ) ( - O s )  k dV.y ~12J -Os x, \--T-2-2 - Z  
k=0 

[~-~ (k + 1)(k + fd,~V2vk+l,~(o ) × 2 2)(-c~*)k - " -  ' y  vq2 
k=O 

q - a 2 Z  (k-k-k=0 1)(k+2)(k+3)(k+4)(-Os)k2 dV,y ~'12j 

= x, ( rll~ P~  (2k)!(zk + 3)!!(-f) k 
\ r ,  -X  m---7 

+2a 2 ~~.(;k + 3)(k + 1)(2k + 1)!(2k + 1)!!(-,D k 
k=0 

Ix:.,' )],..0, '~B/q2 c~ T (°) +~s ,\---~2 - X  2m~ ~ 12 ( k+l ) (2k+2) ! (2k+5) ! [ ( -~ )  k 

!(_~)~1 
+2a 2 '5-~(k + 1)(k + 2)(2k + 3)(2k + 5)(2k + 2)!(2k + 3)! 

k=0 

= x l  ~ - Z  PlZml [ 3 - 2 ~ ( 4 P 3 + 8 F z + 3 / ~ l ) + 2 a 2 ( 2 P 2 + F t ) ]  

ix:., )1 r~BPI2 ~ u,(0)ra .r~, "+'Os 1 ~ W -- Z ~Osll2""'l t'*r4 -b 8/7"3 q- 3F2 

-k-2a2(8F6 "Jr- 28F5 q- 34/~4 q- 17¢3 + 3¢2)] • (A. 12) 

The second piece of (A.9) can be evaluated in a similar way. It is given by 

.=0 \ W - ~  1. 

= X, ~ T2 - Z dv V2(-6qs) kVk,,~(O) 
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-as i \T7 - z ~(k~=o + l) av V~(-Os:,, ,,,~ 

x, \ ~ - 2  - X m---7 k=o (2k + 1) (_f ) t  

cx) 
+2a 2 }--~(k + 1)(2k + 1)!(2k + 1)!!(-~) k 

k=0 

IX (T~I) ) ]  k-(°)ttBpl2 ,-3 T (0) [ ~ - ~ ( k + l ) ( 2 k + 2 ) R 2 k + 5 ) , ,  
+as 1 ~ 2  -- ~ 2 -s--12 (2k + 3) ml k=0 

+2a 2 }--~(k + 1)(k + 2)(2k + 3)!(2k + 3)!!(-~) k 
k=0 

/'112 [3 - 4if(F2 q- 3El) + 252(F1 )] x , \  r2 m, 

_ _  zPi£KB ~ v(o) 
+as 1~ T2 --Z m 2 ~s--12 

x [2F3 + 3P2 + 2a2(4ps + 8t04 + 5F3 +F2)] • 

( - f )*  

(A.13) 

We are now ready to write the expression of the partial pressure. Taking into account 
again the results derived in Ref. [1] and using the relation (A.6), one finally arrives at 

1) 1 ~ x ~  ~ T(0) 
\ --12 

= kB(~sT;O))(asXl)C 1 2kB 1 ..~ ,~,0)..(l,p : Z ~ '  1)C3 
m, P,2-(°)1 + p ~'U~''2 )J,,yW2 + 2x, \ T;O) - 

Ex )] 2kB 1 (a,r~O))~c, +2kS(asT;°))a, I :I;~) 1 C4 + - -  
ml ~ 1,(lo) p{O) 1 + 1* a 

( 2M ) ( T ~ ) )  
+ 26 /~ Z q- X1 -- 1 C 6 

1 + 1 \ ° , 

+ku6 l* ( 2M ) Ix { I~)  )l(asT~O,)C7 (A.14) 
ml I + p Z  ; ~ + l - T M  as l ~ r [ O ) - I  

where the coefficients Ci are given by 

2 ~ C, = ~ [ 2 7 ( 5 F  I I  ~ -2 _ 4p22)_p,(p0 _ 1 ) ] -  ff-~l~(F, - /w2)fl , (1.15) 

G = (3Pl + 2 F 2 ) -  ~-~l~(Fo -- Fl ) f l ,  (1.16) 
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~ F2fl (1.17)  C3 = ~2( /~o q-- 5 ) -  6-~1 [6FoF1 --(J~21 q- 4 F 2 2 ) ] -  F--7 ' 

~2 
1 [8~TP2(3Pl +2P2)+Po(F I  + P 2 ) - F l - F 2 ]  Ca = 12"~P, 

1 
8ff2p I (Fo + 2ff'lff + 16P2ff- 1)fl, (A.18) 

C5 = ~ y(2F2 + 3 P l ) -  P1 

C6 = 2~ f  lF3~- F2 F2 
F1 + 3~-Tfl, (A.20) 

C7 = 2~1[(P2 + 7F3 + 18F4 + 20P5 + 8F6)(3Pl + 2P2) 

+FI(2F3 + 2F4  - 3 F 2 ) ]  - 6 ~ E(F2 + 7/w3 + 18ff'4 + 20F5 + 8fi '6)fl . 

(A.21) 

The coefficients C1-C5 have been previously obtained in Ref. [1]. Eqs. (A.5), (A.8), 
and (1.14) are coupled. Derivation of both sides of Eq. (A.14) with respect to s leads 
to 

1 1)] 
= -2fClOsXl + P12-(°----3 1 + #Y~zJl,y + 2C3~s I ~,T~O2 ) - 

[/T l,,12 1)] ml 4  csJ  'x 
-4~C4~s i ._(o) - -~-C6) 1 + 

~ ' 1 2  F12 

l + # x  ~ (C6-~C7)0s 1 - 1  . (A.22) 

From Eqs. (A.5), (A.8), and (A.22), the explicit expression of the mass flux can 
be obtained. This flux can be written in the form of a generalized Fick law, Eq. (40), 
where the relevant elements of the tracer diffusion tensor are given by 

( l + p ~ / 2  Rl 
Dyy = [Z + 2M(1 - )~)1 \ 1 - ~ , ]  PR-~2' (A.23) 

~ 

Vxy = [Z + 2 M ( 1  - )C)]{R4ayy "b 2Dc --F 2 M ( 1  - )~)]p.R5)} n u--- , ( 1 . 2 4 )  
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where we have introduced the functions 

R~ = 24Cs5~2(PoP2 - p21) - 3 ( 2 P ~  + #)[2ClP~,72 + Fo(2C32 - 4C4~72 + 1 )] 

+ .  & #  ~7{3(2P~7 + # ) [G(Po  - P l )  + 2Po(C6 - ~7C7)] 
1 + # Z  
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+4C5[Po(2Pl + F2) - 3p211}, (A.25) 

R 2 = 3(2Pt'~ + #)[4C2P152 - (2P~'~ + 4/~2"~ + #)(2C32 - 4C452 + 1)] 

+]2Csf,2[PoP~ + 2P2(2P~5 + 4P2~7 + #)] 

- 2  ac~# {3C2(2P1~7 + #)(Fo - P l  )~7 + Cs~713p2o - 3PoPl 
1 -I-#z 

+2(2P1~ + 4P2~7 ÷ # ) ( F 1  - F 2 ) ]  

-314F2]'~ 2 ÷ 4P~7(2P2~7 + #) + #(4P2~ + #)1(C6 - -  '~C?)} , (A.26) 

R 3 = 24C5P2~2 - 3(2P~7 + #)(2C32 - 4C4~2 + 1) 

- 2  as# [4Cs~(P~ -/7"2) - 3(2P~7 + #)(C6 - ~C7)], 
1 + # Z  

(A.27) 

R 4 = 12~72(2C2P2 - C4fi'o) + Fo(2C32 + 1) 

- 2  & #  [4C2f(P~ - F 2 )  + 3Fo(C6 - ~C7)], 
I + # Z  

(A.28) 

R5 = 3Fl + 6C>#12 - 62~(2C4Pl - CLP2) 

6~# [2CI~(Pl - F2) + 6F1(C6 - ~7C7)]. (A.29) 
1 + # Z  

In these expressions, 2 - 2M - 1 = - (1  ÷ #)2/(1 ÷ #)2. In the particular case of 
Maxwell molecules (5 = 0), previous results are recovered [1]. 

From the knowledge of  the mass flux, the partial pressure can be also obtained. It 
can be written in the form (41), where f2 is 

6 # 1 
f2 5 (1 ÷ #)2(1 ÷ 2#) [Z ÷ 2M(1 - Z)]~66 

/ oxy,} 
x - - G - - i f - )  , (A.30) \ I~-~#Z.  ] [X + 2M(1 Z)]#C1 + 2 C2Dyy 

where 

R6 = 1 + 2 2 ( C 3 -  2 ~ ) + 2 , 6 - - ~ #  [ ~ + 2 M ( 1  - Z)](C6 - YC7). (A.31) 
I + # Z  
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